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ABSTRACT

While much of the data on the web is unstructured in natuergth
is also a significant amount of embedded structured dath, asic
product information on e-commerce sites or stock data omdiah
sites. A large amount of research has focused on the problem o
generating wrappers, i.e., software tools that allow easyrabust
extraction of structured data from text and HTML sourcesnany
applications, such as comparison shopping, data has tdize®d
from many different sources, making manual coding of a weapp
for each source impractical. On the other hand, fully aut@ma
approaches are often not reliable enough, resulting in loality
of the extracted data.

We describe a complete system for semi-automatic wrapper ge
eration that can be trained on different data sources in plsiin-
teractive manner. Our goal is to minimize the amount of uferte
for training reliable wrappers through design of a suitdtaing
interface that is implemented based on a powerful undeglgix:
traction language and a set of training and ranking algmsthOur
experiments show that our system achieves reliable exiraafth
a very small amount of user effort.

Categories and Subject Descriptors

H.3.5 [Information Storage and Retrieval]: Online Information
Services

General Terms
Algorithms, Design, Experimentation.

Keywords

Data extraction, active learning, wrapper generation.

1. INTRODUCTION

Over the last decade, the world-wide web (WWW) has become
one of the most widely used information resources. On the WWW
the information is usually presented via Hypertext Markugmi
guage (HTML) to make its perception easier for humans. Hewev
this visual presentation is often not appropriate for awtierpro-
cessing. Thus, it is often necessary to extract the data dufelde
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in the pages into a relational or other structured formafdaher
processing.

This task is usually performed by software tools calledppers
The goal of a wrapper is to translate the relevant data enukitd
web pages into a relational (or other regular) structureajers
may be constructed manually, or by a semi-automatic or aatiom
approach. Since the manual generation of wrappers is tediod
error-prone, semi-automatic and automatic wrapper coctsbn
systems are highly preferable; see, e.g., [4, 5, 16, 22]. iGom
applications of wrappers include comparison shopping e/rdor-
mation from multiple online shops is extracted to compaiegs:,
and online monitoring of news over multiple websites or dtiri
boards, say for items relevant to a particular topic.

In this paper, we describe a new system for semi-automatip-wr
per generation. The system was originally developed as @ro
type for an industrial application that required data eottcan from
multiple public websites that frequently modify the fornaditheir
pages, and a manual approach to this problem required disigni
cant ongoing effort. (We are unable to disclose more detdilke
application scenario.) The system provides a visual iaterfand
interactively generates a wrapper from input provided byman
operator (user). Unlike in some earlier systems, the usentise-
quired to work on HTML source code, Document Object Model
(DOM) trees, or some intermediary expression generatechéy t
system. All interaction takes place in the browser on theiori
nal view of the web pages, by using the mouse. The constructed
wrappers are internally represented in a powerful spexigbose
declarative extraction language, but the user does not toesd
or understand this language.

Our system uses various algorithmic techniques hiddembehe
user interface in order to minimize the amount of manual igpo-
vided by the user. Often only one example is required to geaer
correct wrapper. Since labeling of training examples issabered
the major bottleneck in wrapper generators, this approdienso
great advantages. In addition, hiding all technical dethéhind
the interface makes the resulting tool very easy to learruaed

As part of our approach, we present an active-learning bfasec-
work that utilizes a larger set of unlabeled web pages duwirggp-
per generation. Within this framework, we perform rankiriglié-
ferent hypotheses about the extraction scenario usingegmat
utility function [10]. This allows us to significantly incase the
accuracy and robustness of the generated wrappers throiegh a
simple user interactions that require much less effort thanual
labeling of additional examples. The approach offers agagie
solution to common obstacles to the generation of robugipacs,
such as missing (or multiple) attribute values or differattibute
orderings in a tuple as described in [11], as well as otheessm-
tational variations between different tuples, say, wheiteuses



fonts, colors, or indentation to convey certain informat{e.g., by
showing a stock price in red if there was a decrease). Such var
ations often lead to problems later if a particular case v®n-
countered among the few labeled examples that are provibted.
our approach, these variations are usually resolved irrlg fzin-
less manner during wrapper generation, and the risk of Vetap-

per failures is reduced significantly. Combined with theiattive
interface and powerful internal extraction language, #figws us

to deal with challenging extraction scenarios that arenoftepos-
sible to capture under previous approaches.

1.1 Problem Statement and Motivation

We now formally introduce the problem we consider and discus
it on a simple example. In the wrapper generation problem, ou
goal is to correctly extract a set of tuples from a class of pades
available from one or several web sites. For example, a reatals
tool might have to extract tuples from result pages gendrhte
the Yahoo! search engine; see Figure 1.1 for the query “ighral
databases”. In particular, we might want to extract theofeihg
four attributes for each of the tol® results: (i) the rank of the
page, (ii) the page title, (iii) the page URL, and (iv) theippet
of surrounding text provided by the engine. Thus, in the epdam
the first tuple would bg1, “Parallel and Distributed Databases”,
www.csse.monash.edu.au/"rama/cse3000/notes/pdb.pdhtro-
duction. Parallel and Distributed databases are. beingréas-
ingly used to achieve, ... Parallel Database Architecturarallel
databases (Pdbs) use more ...[We choose the Yahoo! example
for its simplicity. Some search engines now provide API$ fita-
vide result data in XML format, but this option is not avaikalon
many other sites with embedded data.)
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v veeb
Search Results
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ducts,
comparing prices amang your
s pricegrabber.com

t Calibex. We have  complete
mpi r-rated online stores.
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Figure 1.1: A result page from the Yahoo! search engine

In the standard semi-automatic approach to this probleenisier
first defines the structure of the resulting tuples (i.e. ndmes and
maybe the types of the attributes), and then identifies atfain-
ing tupleson one or several example pages, say by highlighting
the attribute values of these tuples directly on the pagegusie
mouse. Thus, the user supplies a small training set, and/shens
then tries to induce a wrapper (set of extraction rules) fbragt-
ing tuples from these pages as well as other pages of the dasse c
that may be encountered in the future (i.e., Yahoo! resgepdor
future queries). Depending on the scenario, there may begtesi
tuple or a large number of tuples on each page, and in the latte
case the user should not have to label every tuple on the Voagt.
approaches only require positive examples (tuples), amdytstem
will then make sure not to consider any overly general wreppe
that extract everything on the page. In the Yahoo! examfter a
highlighting the first tuple, the system might consider tpers

sored links at the top or the ads on the righpassible tuplesbut
probably not the text above the search box or other veryrdiksi
structures.

Some remarks now on the resulting challenges. First, tha@xt
tion rules themselves are expressed in terms of some uiragrly
language that needs to be powerful enough to capture tharsaen
For example, a simple choice would be to define the start di eac
attribute that needs to be extracted by evaluating a regufares-
sion on the HTML of the Yahoo! result page, but depending on
the scenario more powerful languages may be needed thatiake
DOM tree structure of the HTML or even the layout of the remeder
page into account.

Second, as we see from the example, the structure of the resul
tuples shows several variations: The second result has atyem
snippet text, while the first result has an extra label “PDthe end
of the page title to indicate PDF format. We also have sp@tsor
results and ads that are similar to real results in theicgire but
that we may not wish to extract. Other variations not shown in
Figure 1.1 occur when a search term is a stock symbol or matche
a current popular news items, or when two consecutive 1eauit
from the same site. Thus, if only a small training set of tapke
provided, it is likely that the generated extraction rule f&il on
future pages that contain variations not occurring in taming set.

On the other hand, a large training set involves a signifiaargunt
of user effort.

Our goal is to overcome these problems by using what is essen-
tially an active learning approach, where the system is lgeghp
with a very small set of initial training examples (usuallgf a sin-
gle tuple) plus an unlabeled larger set of other result péugse-
fully containing most of the common variations) called theifi-
cation set Such a set can usually be obtained by crawling parts of
the targeted site or by automatically issuing a few querksfter
analyzing this data, the system then interactively requasiery
small amount of additional input from the user as neededsiolve
any uncertain cases in the verification set. We will show shah
an approach, when combined with a powerful underlying extra
tion languages that takes DOM tree structure as well as jfraita
of the rendered result page into account, results in robtist@ion
with only minimal user effort.

The remainder of this paper is organized as follows. In thé ne
section, we describe our basic approach and its operatiamn ex-
ample. Section 3 summarizes and discusses our contrilutgat-
tions 4 to 6 describe the design of the system and the undgrlyi
algorithmic techniques, and Section 7 contains our expariai
results. Finally, Section 8 gives an overview of relatedkyand
Section 9 provides some concluding remarks. Due to space con
straints, many details are omitted from this manuscripg [42]
for the full version.

2. INTERACTIVEWRAPPER GENERATION

We now discuss the steps involved in generating a wrapper. In
later sections we will show how to implement these steps at th
lower level using various algorithmic and learning-bassdhhiques.

2.1 The Interactive Interface

Our system provides a visual interface within Internet Exgpt
that enables the user to work on the original view of the wejepa
The user starts the process by supplying the number and names
of attributes in a tuple, and optionally also their typesrogi-
ing types, and possibly also constraints such as “not engatyX<
100", can help in some challenging scenarios, but is usumdty
needed. All our experiments later are run without providinges.)
The user then inputsteaining tupleon a page by highlighting each



attribute with the mouse. The user can highlight any one ef th
complete tuples (not necessarily the first one) from theredgu-
ple set she wishes to extract. The desired tuple set depenite o
needs of the application, and reflects a speeifitaction scenario

Since highlighting tuples by hand is tedious, our goal is toim
mize this effort, and our system usually only requires hgjtting
of a single training tuple on a page containing many tuplexeta
tuple is marked, the system attemptptedictthe desired tuple set
on the page, by determining the set of all possible tuples, @ll
structures in the page that are “similar enough” to the Iigitéd
tuple) and then considering various subsets of the postiples
that each contain the highlighted tuple. Each subset treatrisid-
ered is called @andidate tuple seaind the goal is to have the user
select which candidate tuple set is the desired tuple set.

Thus, the system needs to generate a collection of candigzte
sets that is likely to contain the desired tuple set but ndasge
that we cannot find the desired set among all the other sets. Th
key is to exploit the structure of the set of possible tupesh that
ideally each candidate tuple set corresponds to a reasoexiohc-

tributes and variant attribute permutations in some typheg may
not occur in any page considered thusfar. This leads us tinl¢iae
of using an additionalerification sebf unlabeled web pages from
the same site to increase the accuracy and robustness adribe g
ated wrapper. All extraction patterns in the wrapper aretesn
the verification set to see if any of them disagree on any piage (
extract a different set of tuples). If so, the system interadgth
the user by displaying, again in suitably ranked order, ifierént
tuple sets on the page with the most disagreements, andgabiin
user for a choice. After the user selects the desired sendhe
conforming patterns are removed from the wrapper and the new
wrapper is again tested until there are no more disagresmehée
final wrapper is then stored for later use on not yet seen pages
As we will show, the described framework significantly irases
the accuracy and robustness of the resulting wrapper. Taketo
tra user effort is small, typically just a few mouse clickedas
needed only if disagreements are found in the verificationTdee
verification set can usually be acquired in an almost auticaty,
by pointing a crawler to parts of the website likely to contaiples

tion scenario on the page, though maybe not the one the user ha (even if only some of the pages contain tuples while othexsiar

in mind. (E.g., extracting both the taf® results and sponsored re-
sults on the page in Figure 1.1 might be a reasonable goahie so
other scenarios.) Informally, a wrapper can be seen as eacérn
pattern, for example a regular expression on the HTML soarce
some expression on the DOM tree or visual structure of the.pag
Given a training tuple, there are many extraction pattenas¢or-
rectly extract the training tuple — plus possibly other &spbn the
page. By considering multiple such patterns, we generatgpieu
candidate tuple sets corresponding to different extracé@narios.

Thus, each candidate tuple set thatis considered is thit ofap-
plying a wrapper to the training web page. After the user lighits
a single training tuple on the page, our system generateg difan
ferent extraction patterns that may identify a number dfedént
candidate tuple sets on the training web page. The predisenal
structure of our wrappers is actually quite complex, se¢i@eb.4,
but the important thing for now is that a wrapper consists sdteof
extraction patterns that agree with each other on the trgipage,
i.e., extract exactly the same candidate tuple set on tigie.d@ach
pattern essentially corresponds to a different hypottj@8isabout
what makes something a tuple. Thus, a wrapper groups aresstor
all those patterns that agree on the current page. Somesef fiae-
terns may be too specific, with odd conditions that just happe
be true on the current page, while others may be overly genera

Our system generates and renders several versions of the tra
ing web page, where each version highlights a different ickatel
tuple set extracted by a different wrapper. The user can reaw n
igate between these pages using special toolbar buttoresl add
the browser, and choose the desired tuple set. If none ofahesp
shows the desired set, the user may correct this problenthegrei
highlighting another tuple or editing one of the displayetss We
add one additional important idea to allow the user to effitye
select the correct tuple set: Navigating all choices wouddyjbite
inefficient if there are many different candidate sets. Weresks
this by ranking the candidate tuple sets using a technigserited
later, such that more likely sets are ranked higher. As washo
our experiments, in most cases the correct set is displayenhg
the very first sets.

Once the user selects the desired tuple set, the systers tineat
as a confirmation for the corresponding wrapper. Note thalewh
all extraction patterns in the wrapper are consistent orctineent
training page, they might diverge on unseen web pages (inhwhi
case some of the extraction patterns will turn out to be ireay.
Possible reasons are variations in the web pages, suchsingras-

related). If a user decides not to provide a verification seto
provide a set that is too small, it becomes much more likedy th
disagreements will be encountered later during the omeratithe
system. In the case of such later disagreements, the sysieivec
set up to take any of the following actions depending on tle sc
nario: (i) stop immediately, (ii) ignore the current pag#) ¢hoose
the most likely tuple set using built-in heuristics and doné to ex-
tract tuples with a modified wrapper, or (iv) store all diffat tuple
sets separately for future analysis. In addition, the systetifies
an administrator.

In summary, our method typically requires the labeling ahgle
tuple, followed by a selection of a tuple set from a ranketdiisere
the desired set is usually among the first few, plus the lagedf
another tuple in the rare case when the desired set is nodl fioun
the list. If a verification set is provided, then any disagneat of
the extraction patterns in the current wrapper on a pageisrstt
results in another selection from a usually much shorteeadtist.

2.2 An Example

We now illustrate this process using a real web page fromitee s
www.half.ebay.com , shown in Figure 2.1. This page provides
an example of a fairly challenging extraction task on whicingmn
existing wrapper generation systems would likely fail. Tiser
might be interested in collecting postings of auction dedanfthis
website over a period of time, e.g., to perform statisticellgses
on prices, sellers, or shipping methods. Let us assume #reisis
interested in extracting tuples with the attributes “Ptic¢&otal-
Price”, and “Seller” for certain products. In general, thare mul-
tiple different reasonable extraction scenarios on thesie pages,
corresponding to different user needs and resulting irefit tu-
ple sets. For example, one scenario is to extract all pessilth
tuples on the web page, or only those tuples that appear ke
“Like New Items”, or the first tuples of each table (i.e., othe
cheapest items since the entries are ordered by price)oudthit
may not look reasonable for this web page, another scenagiat m
be to extract all tuples whose background color is gray artd no
white. This might be appropriate in cases where this colavegs
some distinct meaning, as is in fact the case on many otlesy. sit

Let us assume a user is interested in only those tuples thatap
under “Like New Items” and where the seller has a “Red Star” in
“Feedback Rating”. (We point out that in Figure 2.1 only thd 3
and 4th stars from the top are red.) On the website, starsvaith
ious colors represent the feedback profiles of the sellads;Red
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Figure 2.1: Training page from www.half.ebay.com

Star” represents a “Feedback Profile of 1,000 to 4,999 users”
We started the training process on the page shown in Fig(re 2.
using a verification set of size ten. When we highlighted ama-c
plete tuple on this training web page according to the désre
traction scenario (the first tuple under “Like New ItemsHhe tsys-
tem identified18 different candidate tuple sets. These sets were
ranked from most to least likely according to technique<diesd
later, and the desired set was ranked as the third (behimnhspif
all tuplesandall “Like New Items”). After selecting the desired
set, the system tested the wrapper on the verification sefltirey
in two disagreements.
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Figure 2.2: Page where 2nd disagreement occurs.

good system has to support many different scenarios. Théaic
the items are organized into different tables such as “Bided
Iltems” or “Like New Items” attaches some meaning to the tsiple
that may have to be taken into account during the extraction p
cess. However, it could be argued that maybe the extractiin p
lem could be solved with a simpler wrapper generation sys$hern
extracts all possible tuples, followed by a filter step tHabimates
any unwanted tuples, say by running an appropriate SQL qlrery
our example, this query would consist of two selections, fame
“Red Star” and one for “Like New Items”.

However, for the first condition, we would have to change the t

The first disagreement was on a page where the wrapper i@sulte ple definition and add an extra attribute to store, say, teenfimes

in two different tuple sets. The reason for this is interestiWe
observe in Figure 2.1 that on our training page, tuples wibd
Star” sellers appear only in the table “Like New Items”; thibe
extraction pattern that extracts all tuples with “Red Stzaitl the
same result as the correct pattern on the training page,dbhwm
all other pages. A subsequent second disagreement on apatie
involved a somewhat similar issue. On this page, shown inr€ig
2.2, there were no “Brand New Items”, and thus the first tatalnf
the top was “Like New Items” and the second table was “Very@&oo
Iltems”. By choosing the correct set in this case, we elineiddhe
pattern that always extracts items from the second tabha fre
top, and kept the pattern that extracts from any table lalitli&e
New Items”. Note that without a verification set, any apptotmat
labels only a single page would likely fail on subsequentesag
since a priori both of these choices (second table from totaixe
under the string “Like New Items”) are reasonable rules thake
sense on certain sites.

2.3 Preliminary Discussion

We saw that in our example pages frasww.half.ebay.com
there were a number of different possible extraction séesar hus,
it is not obvious at all what is a desired tuple and what is aotl a

(source URLS) of any existing star images. After using a s&mp
wrapper generation tool (which still has to be able to hanaikes-
ing attribute values in a tuple since not all tuples have g,stee
could then do a check if the file name contains “redstar.giib-
viously, this solution requires some effort and SQL exgerfrom
the user, while our system provides a simple solution whidesh
all these details from the user. For the second task, it iasy
to come up with a similar solution, since in this case the netnae
attribute would have to indicate in which table the tuple egp.
But this is not a trivial problem as there is only one labelKé.i
New Items” for several tuples; we contend that our more ackdn
approach is more appropriate for such cases. As we saw,ynerel
using information such as “second table from top” insteathef
actual label does not work.

The first condition above also demonstrates another polfeeu
ture of our wrapper generation system: The system can daect
jects (such as images and text content) that are visuallytadke
tuples (or the attributes of the tuples), and utilize themudes in
the wrapper. If the data to be extracted has descriptivddatext
to it, these labels can be automatically detected and edilia the
rules. This is achieved by using auxiliary properties of page
representation as discussed in Subsection 5.1.



3. CONTRIBUTIONS OF THIS PAPER

Interactive User Interface ‘Wrapper Generation System

We now briefly summarize and discuss what we consider to be the
main contributions of this paper. In particular:

e We describe a complete system for wrapper generation thal
includes an interactive interface, a powerful extractian-|

guage, and techniques for deriving and ranking extraction
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Module
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Wrapper
Generator

Wrapper
Storage

-
-

Extraction Language
Interpreter

‘Wrapper Testing Module
for Verification Set

l

Communication
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Communication
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patterns. The system was designed in a top-down fashion, by
first considering how a user should be able to interact with

the system, and then deriving techniques that enable this in

terface.

To implement the interface, we describe a framework based
on active learning that uses an additional verification $et o

Figure 4.1: Overview of our system.

pages, and the user uses the toolbar buttons and the mounserto i
act with the system. When the user hits a toolbar button, @e-<cor
sponding JScript program is executed in the browser.

pages to increase the robustness of the generated wrapper Another task of the user interface is the generation of théVDO

without requiring the labeling of many additional examples

We propose the use of a category utility function [10] to rank
candidate tuple sets, in order to further decrease usat.effo

We perform a detailed experimental evaluation on 14 web
sites that shows that our system can capture very challgngin
extraction scenarios with only minimal user effort.

We now compare our approach to some other recent works; a
more detailed overview of previous work on wrapper genenaits
provided in Section 8. We note that an active learning aprder
wrapper generation was first developed by Muslea et al. in]31
23], which uses a set of pages corresponding to our verificgtt.
Our framework can be seen as an extension of their approaeh. W
use a much more general extraction language that capturés DO
tree structure as well as visual properties of the rendeagé,pand
group multiple such extraction patterns (hypotheses)antowrap-
per corresponding to a candidate tuple set. Instead of gskirser
to label additional tuples from the verification set, as i8][2ve
enable the user to select the correct tuple set from a raidted |

Lixto [3, 2] also offers an interactive interface that hidesst
technical details. Lixto does not support a verification aetl does
not provide a ranking of candidate tuple sets to decreasestiod.

Most previous work on wrapper extraction uses extraction pa
terns based on regular expressions on the HTML source or othe
expressions on the DOM tree structure, and does not congider
sual properties of the rendered page. An exception is thereer
cent work of Zhai and Liu [30], published while our own imple-
mentation was already completed, which uses visual priegeirt
a fully automatic wrapper generation system. As discusfgyy,
automatic wrapper generation is a much more challenginigl@mo
and the results are usually far less reliable, and visuglgates can
greatly help. Our experience shows that visual propertiesaso
very powerful, and often essential, when capturing datacgsuin
a semi-automatic manner.

4. SYSTEM ARCHITECTURE OVERVIEW

Our wrapper generation system consists of two main comgsnen
aninteractive user interfacéhat handles the user-system interac-
tions and creates an internal representation of the webspaile
auxiliary properties, and arapper generation systemhat con-
structs and tests the wrappers. An overview is shown in Eigi.

The Interactive User Interface: The interface allows users to
train the system on browser-displayed web pages. Itis imieed
within the browser using Internet Explorer browser extensj and
includes several added browser toolbar buttons. Duririgitig,
the user is guided by the system with the help of browser-ateg
messaging tools such as alerts and confirmation messagdes- Al
teraction takes place within the browser on the exact viewhef

parse tree. Instead of using tools such as JDOM [24] or Ti8y, [2
we generate the parse tree in the browser with the help ofpiScr
and DHTML programming. In our experience this provides acon
sistent and robust way of creating DOM parse trees. Furtberm
it allows us to obtain additional useful properties from pages,
such as the visual properties of each object in the parsérks-
ing the relative positions of objects on the rendered pagereM
details about the parse tree and document model are givew.bel
The Wrapper Generation System:The objective of this compo-
nent is to generate wrappers internally, test them intiedyt and
release the final wrapper upon confirmation. When the DOMepars
tree is created in the user interface, it is sent to this corapb
as a stream via the communication modules. Upon receiviag th
stream, it is processed and stored internally in an objeerted
form. After the training example is received from the useeiin
face, many possible extraction patterns are created in btigo
key subcomponents as described in Section 6. These patterns
then run on the internal representation of the training wespepto
obtain the tuple sets that would be extracted. Next, we gpaip
terns that have the same resulting tuple set on the currgetipto
one wrapper. When the user completes the training on th@anopi
page, the selected wrapper is run on the verification set thiéh
help of the testing module, which modifies the confirmed weapp
according to user input received from the interface. Thosjesof
the extraction patterns may be removed from the wrapper.eOnc
training is completed, the final wrapper is stored for futuse.
The wrapper generation system is implemented with Javaeerv
Technology [29].

5. TUPLE EXTRACTION

In this section, we describe our declarative extractiomglage.
We first present the internal representation of the web pagés
their auxiliary properties. Then we describe the languagaadre
detail and present the wrapper structure.

5.1 Document Representation

In our system, documents are represented by DOM parse trees.
A DOM parse tree is an ordered tree where each node is either an
element node or a text node. An element node is an internabér |
node that has a specified tag name and tag attributes, wieseteds
node is a leaf node with a single string value. This represigmt
is created in the browser by JScript and DHTML programs tihat r
a depth-first, left-to-right algorithm starting from theotahode of
the document. During this traversal, each node is markel avit
unique ID, and other potentially useful information for bawde
is also retrieved. When the browser displays a page, theobat
each node in the tree is bounded by an invisible rectanglégUs
DHTML properties and methods, we can retrieve the coordmat



this surrounding rectangle for each node, given in termsafiq
This information is utilized by our extraction languagepaing
neighboring objects on a webpage to be identified withoyingl

the browser.

A small portion of the DOM tree created for the eBay example
is shown in Figure 5.1. The values at the upper-left cornétheo
nodes are the generated unique IDs. The (left, top) codetinat
the surrounding rectangles are shown in the first brackettlaad
(right, bottom) coordinates are shown in the second bradket
simplicity, we do not show the tag attribute values of therelat
nodes in the figure. This representation is sent to the wrappe
eration component where it is stored in object-orientechfor
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Figure 5.1: A part of the HTML DOM tree of an eBay page.

5.2 Extraction Language Overview

Our extraction language is based on the DOM tree model. Ex-
traction rules (patterns) consist of a sequencexgfressionghat
impose conditions on the path from the root to a tuple attebAn
extraction rule contains an expression for each node aloagéath,
where each expression consists of conjunctions and dispunsoof
predicates In addition, wildcards can be used to skip a variable
number of levels.

If a node at depth satisfies its matching expression, then that
node is consideredccepted otherwiserejected Only children of
accepted nodes at leviehre checked further for the expression de-
fined for depthi+1. This continues until the leaf nodes are reached,
and the accepted leaf nodes form the output of the patterhen t
current page. We now describe some basic types of preditates
are available; note that this is not a complete list. The laigg is
extendable and additional predicates can be easily added.

5.3 Predicates in the Extraction Language

We first introduce some conventions used in the predicdtes:
represents a node (either an element or text noiggpresents
a tag nameA represents a tag attribute (name, value) pair such
as A=(width, 5%),l represents an integeR represents a regular
expression which can be either a built-in expression sucfisas
phone number” (or email address etc.) or a string which iatece
by the system on the fly, anflis a “combined specification” for
a node (a set of (attribute, value) or (tagname, value) pairke

extraction language assumes that children are orderedl&frio

right,

since the document representation is created that Wae

following is not an exhaustive list of the predicates, bueided
on the DOM parse tree. Thus, pages are modeled as they appear ito give the user a basic overview. The set of predicates may se
overly rich, but note that the user does not see any of the leoxmp
ity due to our interactive framework — this in fact allows osuse
such a feature-rich language.

Some Basic Predicates for Element Noded\e list some basic
predicates for element nodes, which return false if the nedet
an element node.

tagName(N, T)true iff node N has tag name T.

tagAttr(N, A): true iff node N has a (tag attribute name, value)
pair satisfying A. Note that N may also have other pairs with-
out affecting the outcome.

tagAttrArray(N, A[]): where A is an array of (tag attribute
name, value) pairs. This predicate returns true iff node &\ ha
tag attributes satisfying all the pairs in the array and aioist

no other additional tag attributes.

elementSiblingPstn(N, E)true iff node N is thel-th child of
its parent.

childrenNumber(N, I} true iff node N has exactly chil-
dren.

tagPstn(N, T, I} true iff node N has tag name T, and it is the
I-th such child of its parent. This is useful when the number
of left siblings varies, but the number of left siblings witty
name T remains the same.

leftSibling(N, S} true iff node N has any left sibling which
satisfies expression S. This is useful when position inferma
tion alone does not work, but there is a consistently observe
left sibling which identifies a relevant item. Similarlyght-
Sibling(N, S) and variations such as previousSibling(N, S)
and nextSibling(N, S) are also available.

Basic Predicates for Text Nodes:The following predicates are
defined for text nodes and return false if a node is an elenustg.n

5.4

textNode(N) true iff node N is a text node.
textSiblingPstn(N, 1) true iff N is theI-th child of its parent.

syntax(N, R) true iff the string value of node N matches
regular expression R. This is often used to ensure syntactic
correctness of the content. There is a set of built-in regu-
lar expressions defined in the system, e.g., for dates, phone
numbers, and e-mail addresses.

leftTextNode(N, R, 1) true iff the I-th closest left text neigh-
bor node of N has a string value satisfying expression R. Note
that proximity is defined in terms of distance on the rendered
page, not the tree structure, Be= 1 tests for the closest text
neighbor to the left of the current node.

leftElementNode(N, S, btrue iff the I-th closest left leaf el-
ement node of N, according to distance on the rendered page,
satisfies expression S. This predicate can match only leaf el
ment nodes such as images (img) and break (br) nodes. Simi-
lar predicates for the other three directions are also @ivizi)

as are other variations. For example, instead of stating-a pr
cise value forl, another set of predicates checks for at least
one match within a range of close-by nodes.

The Wrapper Structure

During the training process multiple wrappers are gendrate
ternally and modified based on the interactions. Once trgiis



completed, the final wrapper is stored externally in a fileadili-
tion to meta data such as the wrapper name, website nameleand fi
path, a wrapper contains the following three sets of items:

(1) For each tuple attribute, a set of extraction patterns: For
each tuple attribute specified in the tuple definition, thapper
stores a set of patterns in the described extraction lamguadr
though these patterns agree (i.e., extract the same setro$)it
on the training and verification pages, they may disagreeeatn y
unencountered pages. Thus, many different patterns aredsito
the wrapper, until it is inferred from the interactions thgpattern
should be removed.

(2) A set of extraction patterns that define tuple regionsWith
the help of the previous component, attribute values canxbe e
tracted. However, given the extracted attribute valuestilmeed
to decide which of them belong to the same tuple. This is natat
ial problem due to possible missing attributes, variamitatte per-
mutations and multiple entries that may exist in a singlglatte.

In general, the problem cannot be solved by simply sortiegett
tracted data items in the order they appear in the documeaht an
then constructing tuples based on some heuristic. In outienl|

we rely on the visual representation of the web pages. We ithake
assumption that there exist (invisible) disjoint rectdaguegions
such that each region contains all attributes for one tuptehave

not seen a counterexample yet, and believe this would bkalyli
due to the properties of the DOM representation. Thus, wg onl
need to find suitable patterns that identify (extract) theggons;

we refer to [12] for more details.

(3) The tuple validation rules: Our wrapper structure requires
all constructed tuples to satisfy a setvaflidation rulesto be out-
put, where each validation rule is a combination of conjiomst
and disjunctions of special predicates on the tuples amnithuatis.
This component plays an important role in capturing theedt
extraction scenarios. The input parameters used in thecptted
are as follows:T represents a tupl&A represents an attribute of
the tuple definitionR represents a regular expression (possibly a
string value) anckE represents an expression constructed with the
predicates defined in the general extraction language. tiatee
can define rules for the specification of neighbor objectsdPr
cates implemented in the current prototype include theotg
(additional predicates can be added as needed):

o specificAttributeValue(T, TA, R)true iff TA satisfies R.

e noMisses(T) true iff T has at least one item extracted for
each attribute.

e oneltem(T) true iff T has at most one item extracted for each
attribute.

e hasTheContent(T, TA, E)true iff TA satisfies E.

6. WRAPPER GENERATIONALGORITHM

We now give details of the wrapper generation process. Todo s
we first define some internal data structures and conceptsinse
the algorithm. Adom.path object is used to represent each high-
lighted attribute of the training tuple in the system. Intjgadar,

a dompath object of an attribute identifies all nodes on the path
from the root to the leaf node(s). Given these dpath objects, we
find the lowest common ancestor (Ica) of a training tuple, bé
the text nodes highlighted in the training tuple. AGA objectis

a data structure that stores (i) a set of Ica nodes for tupieth®
training web page and (ii) a set of extraction patterns tkatet
this set of Icas. The major steps of our algorithm are asvaio

(1) Initializing the internal representations: Internal represen-
tations are created through preprocessing of the traimdgverifi-
cation web pages.

(2) Creating dom_path and LCA objects: Upon retrieval of the
training tuple, dompath objects are created for each attribute, and
multiple LCA objects are created as follows (if possible):

e Using the attribute donpath objects, create the Ica dgmth
object of the training tuple.

e Using the Ica donpath object, create an extraction pattern
with only tagName(N, T) predicates at each level. Execute
this pattern and identify a set of Icas: This is the largesspo
ble Ica set that we allow in our system (i.e., the set of pdssib
tuples). Create the LCA object for this largest Ica set asd it
extraction pattern.

e Starting from the nodes in the largest Ica set, move towards
the root and identify the ancestor nodes at each depth.

e Starting from the root and moving down on the Ica dobject,
construct expressions for each depth, where an expression i
a conjunction or disjunction of predicates. The goal is te ob
tain expressions that accept different sets of nodes at each
depth. One obvious restriction is that the node in the Ica
dom.path of the training tuple has to accepted.

e Create patterns by concatenating the expressions defined fo
each depth. Execute these patterns, and group those that ex-
tract the same set of Ica nodes. Create and return LCA ob-
jects for each unique set, containing the correspondingfset
extraction patterns.

(3) Creating patterns that extract tuple attributes: Given the
largest Ica set, we now create patterns leading from thedoas
to the attributes. The algorithm for this step is similarhie ibove,
but a different set of predicates is used for the leaf nodesrder
to avoid creating very unlikely patterns, we apply some is¢ior
basic filtering rules. For example, use of neighbor prediat an
expression may be unrealistic in some cases: If a neighbade no
is visually too far on the web page, or the content of it is jaist
single whitespace, then we do not consider such predicateld
patterns.

(4) Creating initial wrappers: For each wrapper, the attribute
extraction patterns are obtained by concatenating therpattre-
ated in (3) to the patterns stored in the LCA objects in (2eMthe
patterns for extracting tuple regions are created as fslldirst,
the Icas of the candidate tuples are checked to see whethearh
unique. If so, the set of patterns that define tuple regiorsjisl
to the Ica patterns. Otherwise, there should be some cooethie
web pages (such as lines, images, breaks, or some textutlyis
separate the tuples. These visual separators are theifi@teint an
iterative manner to create the tuple extraction patteees{$2] for
details.

(5) Generating the tuple validation rules and new wrappers:
Using the predicates defined in Subsection 5.4, we now genera
the validation rules. These rules are tested on all wrappeeted
so far: If a validation rule does not change the tuple sef) thes
rule is placed in the unconfirmed rules set of that wrappex.rifie
causes a different tuple set, then a new wrapper is replideden
that wrapper, and the rule is stored in the set of confirmessrof
the new wrapper. If this is the desired tuple set, then thisna¢his
rule must apply to future tuples.

(6) Combining the wrappers: The wrappers are analyzed, and
any that generate the same tuple sets are combined.

(7) Ranking the tuple sets:This crucial step is discussed below.

(8) Getting confirmation from the user: If one of the tuple sets
is confirmed, the system continues with the next step. If g&r u
could not find the correct set, then she can now select thedarg
tuple set with only correct tuples, highlight an additiotralining
tuple missing from this set, and go back to step (2).



(9) Testing the wrapper on the verification set: Once the cor-
rect tuple set is obtained with the interactions, the cpoading
wrapper is tested on the web pages in the verification sestive
any disagreements.
ranking of tuple sets as in step (7).

(10) Storing the wrapper: The final wrapper is stored in a file.

6.1 Ranking the Predicted Tuple Sets

Even though navigation of the various candidate tuple seftsst
and convenient with our interface, it is still important taer the
tuple sets such that “more likely” sets are displayed firatesthere
can be many different tuple sets. However, it is not easyue gi
general solution to this problem since (i) a user may wanktaet
specific information based on her own interest and needs(ignd
as we will observe in Section 7, some websites present therid
fairly unexpected ways.

In our approach, we adopt the concept of category utility,[10
which organizes data by maximizing inter-cluster dissanity and
intra-cluster similarity. This concept was applied, eig.Cobweb
[8], a tool for incremental clustering with categorical iggs that
produces a partition of the input. In our application, a vpep
corresponds to a partition of the possible tuples on a pagevatid
and invalid tuples; it can be argued that the most intergdtiple
sets are those where valid tuples are fairly similar, andlidiuples
differ significantly from the valid ones.

The goal of thecategory utility functionis to maximize both the
probability that two items in the same cluster have commatufe
value, and the probability that items from different clustbave
different feature values. The category utility functiordefined as

CU = ZZZP @

where(C'is a cluster,A an attribute, ana a value. The first proba-
bility term defines the weight of the attributes used in thecfion.
The second term is the probability that an item has valéer the
attribute A, given that it belongs to clustér. The higher this prob-
ability, the more likely it is that two items in a cluster shahe
same attribute values. The third term is the probability &maitem
belongs to cluste€, given that it has value for attribute A. The
greater this probability, the less likely it is that itemerfr different
clusters will have attribute values in common. In our ragkimob-
lem, each predicted (possible) tuple set is a partition®ftbssible
tuples into two clusterguplesandnon-tuples With the help of the
described category utility function, each partition isretbto ex-
press the similarity among the tuples and the dissimildrétyveen
tuples and non-tuples. In the current prototype, the aiiehwe
use in the category utility function are:

=v|C)P(C|A =),

to all attributes, which turned out to work quite well. Hoveevwe
also provide an adaptive mechanism that keeps track of past d
sions and updates the weight values in the CU function aouglyl

In the case of a disagreement, we again uspossibly resulting in better ranking once the system ingaion a

few (not necessarily related) scenarios.

We note that a possible alternative approach based on Rizsan
Minimum Description Length (MDL) principle [25, 26] was pro
posed in a very different context in [9], which introducesya-s
tem for automatically inferring a Document Type Descrigfor D)
from a set of XML documents. While we considered such an ap-
proach as well, we do not expect it to do as well as our solution
above; see [12] for more discussion.

7. EXPERIMENTAL EVALUATION

To evaluate our wrapper generation system, we conducteztiexp
ments based on data frotd websites. Four of the data sets, Okra,
BigBook, IAF (Internet Address Finder), and QS (Quote Sgrve
are available at [19], and have been used to evaluate pseviap-
per induction systems. This allows us to compare our resufise-
vious systems such as WIEN [16], STALKER [22], and ¥M5].
The other ten data sets were chosen from well-known majessit
AltaVista, CNN, Google, Hotjobs, IMDb, YMB (Yahoo! Message
Board), MSN Q (MSN Money - Quotes), Weather, Art, and BN
(Barnes and Noble). Some of these websites were alreadyiused
previous work on information extraction. We collected fiftxeb
pages from each of these sites during July 2003; the dataik av
able for download dhttp://cis.poly.edu/ uirmak/ie

As described earlier, there are usually several possiple nets
on a website, corresponding to different reasonable didrasce-
narios. For the ten new data sets we chose what we considered t
most natural extraction scenarios (see the above URL foe mier
tails). In the case of IMDb, where tuples are listed in migtiables
with each table containing a different filmography for theqed
person, we assumed that the desired tuple set is the printary fi
mography of the queried actor/actress/producer, whicheaditst
one on the page. In each experiment, we trained the system on
one randomly chosen training page, and used ten other rapdom
selected unlabeled pages as verification set (with the &rcepf
IAF, which only consists of 10 pages).

7.1 Initial Results on Four Web Sites

We now first report results on the four previously used dats, se
to allow a comparison with other work. Table 7.1 shows the num
ber of training tuples required by WIEN, STALKER, W[ and
our system in order to achieve accuracies of 100%, 97%, 10@P6 a
100%, respectively, on Okra and BigBook. (In the experimmgent
STALKER increases the number of training examples graguall

(1) DOM Path: Whether the tuples have the same tag name and and stops the process when 97% accuracy is achieved.) For IAF

attribute paths in the DOM parse tree from leaves to root.
(2) Specific Value: Whether an attribute has the same value in all
tuples.
(3) Missing Items: Whether any tuple in the set has missing items.
(4) Indexing Restriction: Whether an indexing restriction is needed
to extract the predicted tuple set.
(5) Content Specification:Whether there exists a content specifi-
cation (such as neighbor predicates) for all tuples in the se

Given the vectors representing the attribute values foh gae-
dicted tuple set, the CU function returns real numbers betwe
and 1 which are then used for ranking. An interesting questo
how to choose the weight terii(A = v) in the CU function; we
would expect the best setting to depend on the applicatiemso,
but also more generally on the typical structure of web péges
which data is to be extracted. As a default, we assign equghtee

and QS, neither WIEN not STALKER generates a successful-wrap
per, but WI2 achieves 100% accuracy, as does our system. For
these four data sets, our assumption for the target exirastie-
nario matches with that of previous wrapper generationesyst
Since only very few pages were available for the IAF and Q& dat
sets, these sites are not really perfect for our system hidgaefits
from larger verification sets.

We observe from Table 7.1 that for these four data sets, atesy
requires the user to highlight only a single training tupl@thieve
100% accuracy on the given data, outperforming the othéess
Of course, this is not a completely fair comparison sincesyatem
requires some limited additional user interaction on théication
1

http://www.altavista.com, http://www.cnn.com, httpaiw.google.com,
http://hotjobs.yahoo.com, http://www.imdb.com, httméssages.yahoo.com,
http://moneycentral.msn.com, http://weather.com,:Hét.com, http://bn.com



WIEN | STALKER | WL? | Our System
Okra 46 1 1 1
BigBook | 474 8 6 1
IAF - - 1 1
QS - - 4 1

Table 7.1: Number of training tuples required by our system
and previous works

set to finish the training process. But this is in fact one efriain
points underlying our approach: we believe that the mair poa
to minimize the time and effort expended by the user, andfthat
cusing only on the number of training examples is not thetrigh
approach. Labeling even a few additional training examislégp-
ically significantly more time consuming than the interant on
the verification set needed in our system. Thus, we see it@sfon
the main strengths of our approach that a user can genetaistro
wrappers even for unusual tuple sets by typically only latgbne

or two tuples by hand. (Of course, there may be scenariosenvher
we only have access to prelabeled training examples, inhnd@ise
an interactive approach is not appropriate.)

7.2 Results for all 14 Sites

To justify this claim, we now give more details on the exacbant
of user interaction required in our system, based on resoltsall
14 sites. We did not attempt to design a model of user effort that
weighs the various forms of interaction; ideally we woulkklito
compare user efforts by measuring the actual times takeruby h
man operators on the different systems (though we currebothyot
have access to the previous systems).

Details of the resulting user interactions on all 14 data aeg pro-
vided in Table 7.2. We again chose the training web page and th
web pages in the verification set at random from all pagese thait
performance might be improved by choosing a set of very dever
web pages for the training and verification set, either thhoui-
sual examination or analysis of the HTML code. During thepwra
per generation process, we chose uniform weight valuesiCth
function for all sites and did not allow the system to updaese
terms. While our implementation is not optimized for congtign
time yet, generating wrappers and testing them on the vatiific
set takes computation times in the order of seconds.

The columns in Table 7.2 contain (1) the total number of train
ing examples (tuples) highlighted by the user, (2) the ranthe
desired tuple set among all candidate tuple sets identifiethe
training page, and (3) the rank of the desired tuple set anading
identified candidate tuple sets on any web page from the e@ifi
tion set on which an interaction occurred (if any). Thereaeveo
disagreements on the verification set for 4 of the sites, wodn
the case of MSN Q (both ranks are provided).

Our system extracted all tuples correctly on all test pageallo
14 sites. For 13 of the 14 websites, we did not have any disagre
ments on the testing set, and the generated wrappers extraitt
information successfully. The system encountered a digsmgent
between the different extraction rules in the wrapper onvthis
website, since one variation did not occur on any page inrttie-t
ing or verification set. This variation was due to the appecga

Highlighted| Ranking Ranking
Tuples (Training)|| (Verification)
Okra 1 1/3 1/2
BigBook 1 2/3 2/3
IAF 1 3/3 2/2
Qs 1 717 1/2
AltaVista 1 1/2 2/3
CNN 1 1/1 -
Google 2 -13&1/1 1/2
Hotjobs 1 1/4 -
IMDb 1 3/9 1/2
YMB 1 1/1 2/3
MSN Q 1 1/1 1/4 & 1/2
Weather 1 1/1 -
Art 1 1/32 1/2
BN 1 4/8 -

Table 7.2: Total user effort on all 14 sites.

ever, recall that the user has multiple options to set thesy$o
take appropriate actions in the case of such a disagreement.

For the websites CNN, YMB, MSN Q, and Weather, the system
identified only one tuple set on the training page, sinceetheas
only one tuple available on each page. In QS, a site-speoific f
matting decision (some values were displayed in red if thes
a decrease) caused the desired tuple set to be ranked vegnlow
the training web page. In search engines, it is common teptes
result indented to the right if the previous result was frtwva $ame
host. While for AltaVista this case was successfully cagduaind
resolved on the verification set, for Google this case wasapt
tured at that point, and thus one additional training tuglé to be
supplied by the user. The reason is that our system is setamyto
generate fairly general expressions at deeper depths d@@id
tree, but not at levels closer to the root, and in Google thern
tation was done much closer to the root than in AltaVista. th A
items are listed in a table of four rows and three columns, (iye
to 12 tuples per page). Since missing attributes and manynmom
specific values are observed, the system generated mangatnd
tuple sets on the training web page. However, the desirdd sab
was ranked first out of 32, since all other tuple sets resifiedry
small inter-cluster dissimilarity.

We do not give the time spent by the user to interact with the
system, since this depends on the users and their fanyiliaiih
the system. Also not shown is the initial effort for definihg tuple
structure in terms of the number of attributes and their raarel
types; this is the same for all systems. All interactionssistrof
basic tasks such as highlighting a tuple with the mouse gadivig
among several identified tuple sets, or confirming a decibipn
clicking a button. We believe these are fairly simple taskd tan
be learned within a reasonable time period by most compsr u
For us, these tasks took less than two minutes total for eabisite.

7.3 Updating Term Weights

As described in Subsection 6.1, one of our goals is to getéhe d
sired tuple set ranked high, to allow for a quick confirmatidio
achieve this, we maodified our system so that it can adjustatghts

of a hyperlink anchor text in the body of a message. Some of the based on a user’s past behavior. (This feature was disatnede

general extraction patterns were able to correctly exaththe text

in the body including the anchor text, while some more specifi
extraction patterns extracted the message without theoareki.
Since the system ranked the former tuple set higher andruadi
with the more general extraction patterns (while informting user
by sending a message), we consider this a correct decisiow- H

results in the previous subsections.) In order to evallsetfec-
tiveness of this adaptive approach, we conducted the follpex-
periment: First, we examined our test platform and idermtifieb-
sites on which our system ranked the desired tuple sety fais
This was the case on BN, where the desired tuple set was rdttked
among 8 identified tuple sets. On Art, while our system penfxt



well on the randomly chosen training web page in Table 7.2, we 8. RELATED WORK

were able to find another page on which the desired tuple sdtiwo
have been ranked only 4th among 29 identified tuple sets.n8eco
we repeatedly generated wrappers on randomly selectedtesbs
in our set (excluding BN and Art, of course, and also exclgdin
IMDb which as mentioned had a very different extraction sc&n
than the others), and measured how the ranking of the desipé=l
sets for BN and Art was impacted by having first trained théesys
on these other sites. Figure 7.1 shows the rankings of theedes
tuple set on Art and BN after pre-generating wrappers oningry
numbers of other websites. This result indicates that ddgishe
weights may be somewhat beneficial.
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Figure 7.1: The effect of pregenerating wrappers for the sara
extraction scenario.

Finally, we noticed that many incorrect tuple sets on Artiatly
had indexing restrictions. In order to observe the effeaegérse
training, we used the IMDb website, which favors such exioac
scenarios. We initially generated a wrapper for IMDb, anehth
generated a wrapper for Art. We observed that this decresed
ranking of the desired tuple in Art, and increased the ramkif
some other undesirable tuple sets; however, this was ted-after
subsequently training on a few other sites. (We omit theltiegu
figures due to space limitations.) Thus, adjusting the wisigbes
not always result in improved ranking of the desired setshéf
system is applied to very different extraction scenarion tle
other hand, we would expect that there are some common ésatur
to many of the different extraction scenarios that arisehenveb,
in which case training would on average be helpful.

Data extraction from the web has been studied extensivedy ov
the last few years. Detailed discussions of various appesacan
be found in several surveys [7, 20, 17, 15, 14]. We now discuss
some of the most closely related work.

Semi-automatic wrapper induction tools such as WIEN [16ft-S
Mealy [11], and Stalker [22] represent documents as se@senic
tokens or characters, and use machine learning technigjiretuice
delimiter-based extraction rules from training exampléthe web
page conforms to aHLRT organizationWIEN can learn Header
and Tail landmarks between which all data items on a pageoare |
cated, plus Left and Right delimiters that mark individuahis (at-
tributes or tuples). WIEN cannot handle cases with misdiemns
or variations in a tuple. SoftMealy [11] generates extattiules
specified as finite-state transducers. These rules canircavitd-
cards which allow them to overcome the above missing iterb-pro
lem. However, SoftMealy requires every possible case t@peer
sented in the training examples. Stalker [22] also leartmetion
rules based on landmarks, but uses a hierarchical wrapghection
algorithm with anEmbedded Catalog Trg&CT) formalism.

In follow-up work [21, 13, 23], an active learning approach i
proposed that analyzes a set of unlabeled examples to bajabt
informative examples for the user to label. Our work differam
this in several ways. First, [13, 23] only consider two didfiet
types of rulesforward rules look at the file from start to end, while
backwardrules go from the end backwards. Our work, on the other
hand, has a much more powerful extraction language and wrapp
structure that captures many tricky cases. Also, our ajgpraams
to find the desired extraction scenario directly throughréeseof
user selections via a powerful interface, instead of askieguser
to label a number of (informative) examples by hand. Theesyst
in [13], on the other hand, learns a minimal number of (péyfec
disjuncts that cover all training examples.

Semi-automatic interactive wrapper induction tools tlegresent
web pages as trees using DOM include W4F [27], XWrap [18], and
Lixto [3, 2]. W4F uses a language called HEL (HTML Extraction
Language) to define extraction rules. To assist the useffeitso
a wizard which shows the DOM tree information for a given web
page. Since the full extraction rule is programmed by the V§éF
requires expertise in HEL and HTML. XWrap [18] allows intera
tion between user and system via a GUI, and generates éatract
rules based on certain predefined templates that limit tpeeex
sive power of the rules. The wrapper generation process take
significant amount of time even for an expert wrapper prognem
(Each website among four sample websites required betw@emn 1
40 minutes in [18].) XWrap offers a testing component sonswh
similar to our verification set, but requires user effort teck if
the wrapper works correctly. If the tests fail, an iterarecess
is started that performs incremental revisions of the rulesto
[3, 2] generates extraction rules based on Elog, a systema
datalog-like rule-based language. Lixto provides a saiglited
interactive user interface, and users do not have to dehleittier
Elog or HTML, but design their wrappers through this integfa
Lixto does not provide a tools to test and train the systeraa-
tively on several web pages, but focuses on a single trajpaigg.

Work in [5] discusses the sequence-of-tokens and treesepta-
tions of web pages and proposes a system called Wased on a
hybrid model. WI2 can generate successful wrappers with fewer
training examples than WIEN or Stalker. One major diffeeshe-
tween our work and Wi is that we allow interactions through the
interface to reduce the user effort, while Wiequires more train-
ing examples to generate a successful wrapper.

An interactive semi-automatic tool called NoDoSe (Nortbtve



ern Document Structure Extractor) [1] analyzes the strectf
the documents to extract relevant data. This is achievexuigfr

a GUI where the user hierarchically decomposes the file and de

scribes the interesting regions. NoDoSe has limited céipabion
HTML pages, but also works on plain text documents.

Fully automatic wrapper induction systems typically rety pat-
tern discovery techniques and are usually not reliable gimdar
many applications that require accurate tuple extractiotEPAD
[4], pattern discovery techniques are applied through a sfrtic-
ture called a PAT tree that captures regular and repetititeems.

[9] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and
K. Shim. XTRACT: a system for extracting document type
descriptors from XML documents. roc. of the ACM
SIGMOD Int. Conf. on Management of Da2000.

[10] M. Gluck and J. Corter. Information, uncertainty, ahe t
utility of categories. IrProc. of 7th Annual Conf. of the
Cognitive Science Societj985.

[11] C. Hsu and M. Dung. Generating finite-state transdufmers
semi-structured data extraction from the wigtformation
Systems23(8):521-538, 1998.

RoadRunner [6] works on sample HTML pages and discovers pat- [12] U. Irmak and T. Suel. Interactive wrapper generatiothwi

terns based on similarities and dissimilarities, then tkesmis-
matches to identify the relevant structures. Very recedépen-
dent work in [30] proposes a novel partial alignment techaitp
increase accuracy, and employs visual information (pag®ith to
identify data records. As seen in our eBay example, a usehntmig
want to only extract a specific subset of the possible tujgled,in
such cases, some amount of user input is clearly neededraxext
the correct set.

9. CONCLUDING REMARKS

In this paper, we have presented a new system for semi-atitoma
wrapper generation. Our system provides an interactiveaVis-
terface based on a new framework for generating wrapperasba
a set of verification pages. The system usually only reqainesor
two manually highlighted training examples to generateliabke
wrapper. This is achieved with the help of a powerful exiract
language and a set of active learning and ranking technidives
conducted experiments on multiple websites to evaluatespsy
tem; the results show that our system compares favorablseta-p
ous approaches.
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