
Interactive Wrapper Generation with Minimal User Effort∗

Utku Irmak
CIS Department

Polytechnic University
Brooklyn, NY 11201

uirmak@cis.poly.edu

Torsten Suel
CIS Department

Polytechnic University
Brooklyn, NY 11201

suel@poly.edu

ABSTRACT
While much of the data on the web is unstructured in nature, there
is also a significant amount of embedded structured data, such as
product information on e-commerce sites or stock data on financial
sites. A large amount of research has focused on the problem of
generating wrappers, i.e., software tools that allow easy and robust
extraction of structured data from text and HTML sources. Inmany
applications, such as comparison shopping, data has to be extracted
from many different sources, making manual coding of a wrapper
for each source impractical. On the other hand, fully automatic
approaches are often not reliable enough, resulting in low quality
of the extracted data.

We describe a complete system for semi-automatic wrapper gen-
eration that can be trained on different data sources in a simple in-
teractive manner. Our goal is to minimize the amount of user effort
for training reliable wrappers through design of a suitabletraining
interface that is implemented based on a powerful underlying ex-
traction language and a set of training and ranking algorithms. Our
experiments show that our system achieves reliable extraction with
a very small amount of user effort.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services

General Terms
Algorithms, Design, Experimentation.

Keywords
Data extraction, active learning, wrapper generation.

1. INTRODUCTION
Over the last decade, the world-wide web (WWW) has become

one of the most widely used information resources. On the WWW,
the information is usually presented via Hypertext Markup Lan-
guage (HTML) to make its perception easier for humans. However,
this visual presentation is often not appropriate for automatic pro-
cessing. Thus, it is often necessary to extract the data embedded

∗Work supported by NSF Awards IDM-0205647 and CCR-
0093400, and the New York State Center for Advanced Technology
in Telecommunications (CATT) at Polytechnic University.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

in the pages into a relational or other structured format forfurther
processing.

This task is usually performed by software tools calledwrappers.
The goal of a wrapper is to translate the relevant data embedded in
web pages into a relational (or other regular) structure. Wrappers
may be constructed manually, or by a semi-automatic or automatic
approach. Since the manual generation of wrappers is tedious and
error-prone, semi-automatic and automatic wrapper construction
systems are highly preferable; see, e.g., [4, 5, 16, 22]. Common
applications of wrappers include comparison shopping where infor-
mation from multiple online shops is extracted to compare prices,
and online monitoring of news over multiple websites or bulletin
boards, say for items relevant to a particular topic.

In this paper, we describe a new system for semi-automatic wrap-
per generation. The system was originally developed as a proto-
type for an industrial application that required data extraction from
multiple public websites that frequently modify the formatof their
pages, and a manual approach to this problem required a signifi-
cant ongoing effort. (We are unable to disclose more detailsof the
application scenario.) The system provides a visual interface and
interactively generates a wrapper from input provided by a human
operator (user). Unlike in some earlier systems, the user isnot re-
quired to work on HTML source code, Document Object Model
(DOM) trees, or some intermediary expression generated by the
system. All interaction takes place in the browser on the origi-
nal view of the web pages, by using the mouse. The constructed
wrappers are internally represented in a powerful special-purpose
declarative extraction language, but the user does not needto read
or understand this language.

Our system uses various algorithmic techniques hidden behind the
user interface in order to minimize the amount of manual input pro-
vided by the user. Often only one example is required to generate a
correct wrapper. Since labeling of training examples is considered
the major bottleneck in wrapper generators, this approach offers
great advantages. In addition, hiding all technical details behind
the interface makes the resulting tool very easy to learn anduse.

As part of our approach, we present an active-learning basedframe-
work that utilizes a larger set of unlabeled web pages duringwrap-
per generation. Within this framework, we perform ranking of dif-
ferent hypotheses about the extraction scenario using a category
utility function [10]. This allows us to significantly increase the
accuracy and robustness of the generated wrappers through afew
simple user interactions that require much less effort thanmanual
labeling of additional examples. The approach offers an elegant
solution to common obstacles to the generation of robust wrappers,
such as missing (or multiple) attribute values or differentattribute
orderings in a tuple as described in [11], as well as other represen-
tational variations between different tuples, say, when a site uses

fonts, colors, or indentation to convey certain information (e.g., by
showing a stock price in red if there was a decrease). Such vari-
ations often lead to problems later if a particular case was not en-
countered among the few labeled examples that are provided.In
our approach, these variations are usually resolved in a fairly pain-
less manner during wrapper generation, and the risk of laterwrap-
per failures is reduced significantly. Combined with the interactive
interface and powerful internal extraction language, thisallows us
to deal with challenging extraction scenarios that are often impos-
sible to capture under previous approaches.

1.1 Problem Statement and Motivation
We now formally introduce the problem we consider and discuss

it on a simple example. In the wrapper generation problem, our
goal is to correctly extract a set of tuples from a class of webpages
available from one or several web sites. For example, a meta search
tool might have to extract tuples from result pages generated by
the Yahoo! search engine; see Figure 1.1 for the query “parallel
databases”. In particular, we might want to extract the following
four attributes for each of the top-10 results: (i) the rank of the
page, (ii) the page title, (iii) the page URL, and (iv) thesnippet
of surrounding text provided by the engine. Thus, in the example
the first tuple would be(1, “Parallel and Distributed Databases”,
www.csse.monash.edu.au/˜rama/cse3000/notes/pdb.pdf,“... Intro-
duction. Parallel and Distributed databases are. being increas-
ingly used to achieve, ... Parallel Database Architecture.Parallel
databases (Pdbs) use more ...”). (We choose the Yahoo! example
for its simplicity. Some search engines now provide APIs that pro-
vide result data in XML format, but this option is not available on
many other sites with embedded data.)

Figure 1.1: A result page from the Yahoo! search engine

In the standard semi-automatic approach to this problem, the user
first defines the structure of the resulting tuples (i.e., thenames and
maybe the types of the attributes), and then identifies a fewtrain-
ing tupleson one or several example pages, say by highlighting
the attribute values of these tuples directly on the page using the
mouse. Thus, the user supplies a small training set, and the system
then tries to induce a wrapper (set of extraction rules) for extract-
ing tuples from these pages as well as other pages of the same class
that may be encountered in the future (i.e., Yahoo! result pages for
future queries). Depending on the scenario, there may be a single
tuple or a large number of tuples on each page, and in the latter
case the user should not have to label every tuple on the page.Most
approaches only require positive examples (tuples), and the system
will then make sure not to consider any overly general wrappers
that extract everything on the page. In the Yahoo! example, after
highlighting the first tuple, the system might consider the spon-

sored links at the top or the ads on the right aspossible tuples, but
probably not the text above the search box or other very dissimilar
structures.

Some remarks now on the resulting challenges. First, the extrac-
tion rules themselves are expressed in terms of some underlying
language that needs to be powerful enough to capture the scenario.
For example, a simple choice would be to define the start of each
attribute that needs to be extracted by evaluating a regularexpres-
sion on the HTML of the Yahoo! result page, but depending on
the scenario more powerful languages may be needed that takethe
DOM tree structure of the HTML or even the layout of the rendered
page into account.

Second, as we see from the example, the structure of the result
tuples shows several variations: The second result has an empty
snippet text, while the first result has an extra label “PDF” at the end
of the page title to indicate PDF format. We also have sponsored
results and ads that are similar to real results in their structure but
that we may not wish to extract. Other variations not shown in
Figure 1.1 occur when a search term is a stock symbol or matches
a current popular news items, or when two consecutive results are
from the same site. Thus, if only a small training set of tuples is
provided, it is likely that the generated extraction rules will fail on
future pages that contain variations not occurring in the training set.
On the other hand, a large training set involves a significantamount
of user effort.

Our goal is to overcome these problems by using what is essen-
tially an active learning approach, where the system is supplied
with a very small set of initial training examples (usually just a sin-
gle tuple) plus an unlabeled larger set of other result pages(hope-
fully containing most of the common variations) called theverifi-
cation set. Such a set can usually be obtained by crawling parts of
the targeted site or by automatically issuing a few queries.After
analyzing this data, the system then interactively requests a very
small amount of additional input from the user as needed to resolve
any uncertain cases in the verification set. We will show thatsuch
an approach, when combined with a powerful underlying extrac-
tion languages that takes DOM tree structure as well as the layout
of the rendered result page into account, results in robust extraction
with only minimal user effort.

The remainder of this paper is organized as follows. In the next
section, we describe our basic approach and its operation onan ex-
ample. Section 3 summarizes and discusses our contributions. Sec-
tions 4 to 6 describe the design of the system and the underlying
algorithmic techniques, and Section 7 contains our experimental
results. Finally, Section 8 gives an overview of related work, and
Section 9 provides some concluding remarks. Due to space con-
straints, many details are omitted from this manuscript; see [12]
for the full version.

2. INTERACTIVE WRAPPER GENERATION
We now discuss the steps involved in generating a wrapper. In

later sections we will show how to implement these steps at the
lower level using various algorithmic and learning-based techniques.

2.1 The Interactive Interface
Our system provides a visual interface within Internet Explorer

that enables the user to work on the original view of the web pages.
The user starts the process by supplying the number and names
of attributes in a tuple, and optionally also their types. (Provid-
ing types, and possibly also constraints such as “not empty”or “≤
100”, can help in some challenging scenarios, but is usuallynot
needed. All our experiments later are run without providingtypes.)
The user then inputs atraining tupleon a page by highlighting each

attribute with the mouse. The user can highlight any one of the
complete tuples (not necessarily the first one) from the desired tu-
ple set she wishes to extract. The desired tuple set depends on the
needs of the application, and reflects a specificextraction scenario.

Since highlighting tuples by hand is tedious, our goal is to mini-
mize this effort, and our system usually only requires highlighting
of a single training tuple on a page containing many tuples. Once a
tuple is marked, the system attempts topredict the desired tuple set
on the page, by determining the set of all possible tuples (i.e., all
structures in the page that are “similar enough” to the highlighted
tuple) and then considering various subsets of the possibletuples
that each contain the highlighted tuple. Each subset that isconsid-
ered is called acandidate tuple set, and the goal is to have the user
select which candidate tuple set is the desired tuple set.

Thus, the system needs to generate a collection of candidatetuple
sets that is likely to contain the desired tuple set but not solarge
that we cannot find the desired set among all the other sets. The
key is to exploit the structure of the set of possible tuples,such that
ideally each candidate tuple set corresponds to a reasonable extrac-
tion scenario on the page, though maybe not the one the user has
in mind. (E.g., extracting both the top-10 results and sponsored re-
sults on the page in Figure 1.1 might be a reasonable goal in some
other scenarios.) Informally, a wrapper can be seen as an extraction
pattern, for example a regular expression on the HTML sourceor
some expression on the DOM tree or visual structure of the page.
Given a training tuple, there are many extraction patterns that cor-
rectly extract the training tuple – plus possibly other tuples on the
page. By considering multiple such patterns, we generate multiple
candidate tuple sets corresponding to different extraction scenarios.

Thus, each candidate tuple set that is considered is the result of ap-
plying a wrapper to the training web page. After the user highlights
a single training tuple on the page, our system generates many dif-
ferent extraction patterns that may identify a number of different
candidate tuple sets on the training web page. The precise internal
structure of our wrappers is actually quite complex, see Section 5.4,
but the important thing for now is that a wrapper consists of aset of
extraction patterns that agree with each other on the training page,
i.e., extract exactly the same candidate tuple set on this page. Each
pattern essentially corresponds to a different hypothesis[23] about
what makes something a tuple. Thus, a wrapper groups and stores
all those patterns that agree on the current page. Some of these pat-
terns may be too specific, with odd conditions that just happen to
be true on the current page, while others may be overly general.

Our system generates and renders several versions of the train-
ing web page, where each version highlights a different candidate
tuple set extracted by a different wrapper. The user can now nav-
igate between these pages using special toolbar buttons added to
the browser, and choose the desired tuple set. If none of the pages
shows the desired set, the user may correct this problem by either
highlighting another tuple or editing one of the displayed sets. We
add one additional important idea to allow the user to efficiently
select the correct tuple set: Navigating all choices would be quite
inefficient if there are many different candidate sets. We address
this by ranking the candidate tuple sets using a technique described
later, such that more likely sets are ranked higher. As we show in
our experiments, in most cases the correct set is displayed among
the very first sets.

Once the user selects the desired tuple set, the system treats this
as a confirmation for the corresponding wrapper. Note that while
all extraction patterns in the wrapper are consistent on thecurrent
training page, they might diverge on unseen web pages (in which
case some of the extraction patterns will turn out to be incorrect).
Possible reasons are variations in the web pages, such as missing at-

tributes and variant attribute permutations in some tuples, that may
not occur in any page considered thusfar. This leads us to theidea
of using an additionalverification setof unlabeled web pages from
the same site to increase the accuracy and robustness of the gener-
ated wrapper. All extraction patterns in the wrapper are tested on
the verification set to see if any of them disagree on any page (i.e.,
extract a different set of tuples). If so, the system interacts with
the user by displaying, again in suitably ranked order, the different
tuple sets on the page with the most disagreements, and asking the
user for a choice. After the user selects the desired set, thenon-
conforming patterns are removed from the wrapper and the new
wrapper is again tested until there are no more disagreements. The
final wrapper is then stored for later use on not yet seen pages.

As we will show, the described framework significantly increases
the accuracy and robustness of the resulting wrapper. The total ex-
tra user effort is small, typically just a few mouse clicks, and is
needed only if disagreements are found in the verification set. The
verification set can usually be acquired in an almost automatic way,
by pointing a crawler to parts of the website likely to contain tuples
(even if only some of the pages contain tuples while others are un-
related). If a user decides not to provide a verification set,or to
provide a set that is too small, it becomes much more likely that
disagreements will be encountered later during the operation of the
system. In the case of such later disagreements, the system can be
set up to take any of the following actions depending on the sce-
nario: (i) stop immediately, (ii) ignore the current page, (iii) choose
the most likely tuple set using built-in heuristics and continue to ex-
tract tuples with a modified wrapper, or (iv) store all different tuple
sets separately for future analysis. In addition, the system notifies
an administrator.

In summary, our method typically requires the labeling of a single
tuple, followed by a selection of a tuple set from a ranked list where
the desired set is usually among the first few, plus the labeling of
another tuple in the rare case when the desired set is not found in
the list. If a verification set is provided, then any disagreement of
the extraction patterns in the current wrapper on a page in this set
results in another selection from a usually much shorter ranked list.

2.2 An Example
We now illustrate this process using a real web page from the site

www.half.ebay.com , shown in Figure 2.1. This page provides
an example of a fairly challenging extraction task on which many
existing wrapper generation systems would likely fail. Theuser
might be interested in collecting postings of auction data from this
website over a period of time, e.g., to perform statistical analyses
on prices, sellers, or shipping methods. Let us assume the user is
interested in extracting tuples with the attributes “Price”, “Total-
Price”, and “Seller” for certain products. In general, there are mul-
tiple different reasonable extraction scenarios on these web pages,
corresponding to different user needs and resulting in different tu-
ple sets. For example, one scenario is to extract all possible such
tuples on the web page, or only those tuples that appear in thetable
“Like New Items”, or the first tuples of each table (i.e., onlythe
cheapest items since the entries are ordered by price). Although it
may not look reasonable for this web page, another scenario might
be to extract all tuples whose background color is gray and not
white. This might be appropriate in cases where this color conveys
some distinct meaning, as is in fact the case on many other sites.

Let us assume a user is interested in only those tuples that appear
under “Like New Items” and where the seller has a “Red Star” in
“Feedback Rating”. (We point out that in Figure 2.1 only the 3rd
and 4th stars from the top are red.) On the website, stars withvar-
ious colors represent the feedback profiles of the sellers, and “Red

Figure 2.1: Training page from www.half.ebay.com .

Star” represents a “Feedback Profile of 1,000 to 4,999 users”.
We started the training process on the page shown in Figure 2.1,

using a verification set of size ten. When we highlighted one com-
plete tuple on this training web page according to the desired ex-
traction scenario (the first tuple under “Like New Items”), the sys-
tem identified18 different candidate tuple sets. These sets were
ranked from most to least likely according to techniques described
later, and the desired set was ranked as the third (behind options of
all tuplesandall “Like New Items”). After selecting the desired
set, the system tested the wrapper on the verification set, resulting
in two disagreements.

The first disagreement was on a page where the wrapper resulted
in two different tuple sets. The reason for this is interesting: We
observe in Figure 2.1 that on our training page, tuples with “Red
Star” sellers appear only in the table “Like New Items”; thusthe
extraction pattern that extracts all tuples with “Red Star”had the
same result as the correct pattern on the training page, but not on
all other pages. A subsequent second disagreement on another page
involved a somewhat similar issue. On this page, shown in Figure
2.2, there were no “Brand New Items”, and thus the first table from
the top was “Like New Items” and the second table was “Very Good
Items”. By choosing the correct set in this case, we eliminated the
pattern that always extracts items from the second table from the
top, and kept the pattern that extracts from any table labeled “Like
New Items”. Note that without a verification set, any approach that
labels only a single page would likely fail on subsequent pages,
since a priori both of these choices (second table from top vs. table
under the string “Like New Items”) are reasonable rules thatmake
sense on certain sites.

2.3 Preliminary Discussion
We saw that in our example pages fromwww.half.ebay.com ,

there were a number of different possible extraction scenarios. Thus,
it is not obvious at all what is a desired tuple and what is not,and a

Figure 2.2: Page where 2nd disagreement occurs.

good system has to support many different scenarios. The fact that
the items are organized into different tables such as “BrandNew
Items” or “Like New Items” attaches some meaning to the tuples
that may have to be taken into account during the extraction pro-
cess. However, it could be argued that maybe the extraction prob-
lem could be solved with a simpler wrapper generation systemthat
extracts all possible tuples, followed by a filter step that eliminates
any unwanted tuples, say by running an appropriate SQL query. In
our example, this query would consist of two selections, onefor
“Red Star” and one for “Like New Items”.

However, for the first condition, we would have to change the tu-
ple definition and add an extra attribute to store, say, the file names
(source URLs) of any existing star images. After using a simpler
wrapper generation tool (which still has to be able to handlemiss-
ing attribute values in a tuple since not all tuples have a star), we
could then do a check if the file name contains “redstar.gif”.Ob-
viously, this solution requires some effort and SQL expertise from
the user, while our system provides a simple solution which hides
all these details from the user. For the second task, it is noteasy
to come up with a similar solution, since in this case the new extra
attribute would have to indicate in which table the tuple appears.
But this is not a trivial problem as there is only one label “Like
New Items” for several tuples; we contend that our more advanced
approach is more appropriate for such cases. As we saw, merely
using information such as “second table from top” instead ofthe
actual label does not work.

The first condition above also demonstrates another powerful fea-
ture of our wrapper generation system: The system can detectob-
jects (such as images and text content) that are visually next to the
tuples (or the attributes of the tuples), and utilize them asrules in
the wrapper. If the data to be extracted has descriptive labels next
to it, these labels can be automatically detected and utilized in the
rules. This is achieved by using auxiliary properties of ourpage
representation as discussed in Subsection 5.1.

3. CONTRIBUTIONS OF THIS PAPER
We now briefly summarize and discuss what we consider to be the

main contributions of this paper. In particular:

• We describe a complete system for wrapper generation that
includes an interactive interface, a powerful extraction lan-
guage, and techniques for deriving and ranking extraction
patterns. The system was designed in a top-down fashion, by
first considering how a user should be able to interact with
the system, and then deriving techniques that enable this in-
terface.

• To implement the interface, we describe a framework based
on active learning that uses an additional verification set of
pages to increase the robustness of the generated wrapper
without requiring the labeling of many additional examples.

• We propose the use of a category utility function [10] to rank
candidate tuple sets, in order to further decrease user effort.

• We perform a detailed experimental evaluation on 14 web
sites that shows that our system can capture very challenging
extraction scenarios with only minimal user effort.

We now compare our approach to some other recent works; a
more detailed overview of previous work on wrapper generation is
provided in Section 8. We note that an active learning approach for
wrapper generation was first developed by Muslea et al. in [21, 13,
23], which uses a set of pages corresponding to our verification set.
Our framework can be seen as an extension of their approach. We
use a much more general extraction language that captures DOM
tree structure as well as visual properties of the rendered page, and
group multiple such extraction patterns (hypotheses) intoone wrap-
per corresponding to a candidate tuple set. Instead of asking a user
to label additional tuples from the verification set, as in [23], we
enable the user to select the correct tuple set from a ranked list.

Lixto [3, 2] also offers an interactive interface that hidesmost
technical details. Lixto does not support a verification set, and does
not provide a ranking of candidate tuple sets to decrease user effort.

Most previous work on wrapper extraction uses extraction pat-
terns based on regular expressions on the HTML source or other
expressions on the DOM tree structure, and does not considervi-
sual properties of the rendered page. An exception is the very re-
cent work of Zhai and Liu [30], published while our own imple-
mentation was already completed, which uses visual properties in
a fully automatic wrapper generation system. As discussed,fully
automatic wrapper generation is a much more challenging problem
and the results are usually far less reliable, and visual properties can
greatly help. Our experience shows that visual properties are also
very powerful, and often essential, when capturing data sources in
a semi-automatic manner.

4. SYSTEM ARCHITECTURE OVERVIEW
Our wrapper generation system consists of two main components,

an interactive user interfacethat handles the user-system interac-
tions and creates an internal representation of the web pages with
auxiliary properties, and awrapper generation systemthat con-
structs and tests the wrappers. An overview is shown in Figure 4.1.

The Interactive User Interface: The interface allows users to
train the system on browser-displayed web pages. It is implemented
within the browser using Internet Explorer browser extensions, and
includes several added browser toolbar buttons. During training,
the user is guided by the system with the help of browser-supported
messaging tools such as alerts and confirmation messages. All in-
teraction takes place within the browser on the exact view ofthe

Figure 4.1: Overview of our system.

pages, and the user uses the toolbar buttons and the mouse to inter-
act with the system. When the user hits a toolbar button, a corre-
sponding JScript program is executed in the browser.

Another task of the user interface is the generation of the DOM
parse tree. Instead of using tools such as JDOM [24] or Tidy [28],
we generate the parse tree in the browser with the help of JScript
and DHTML programming. In our experience this provides a con-
sistent and robust way of creating DOM parse trees. Furthermore,
it allows us to obtain additional useful properties from thepages,
such as the visual properties of each object in the parse treeinclud-
ing the relative positions of objects on the rendered page. More
details about the parse tree and document model are given below.

The Wrapper Generation System:The objective of this compo-
nent is to generate wrappers internally, test them interactively, and
release the final wrapper upon confirmation. When the DOM parse
tree is created in the user interface, it is sent to this component
as a stream via the communication modules. Upon receiving the
stream, it is processed and stored internally in an object-oriented
form. After the training example is received from the user inter-
face, many possible extraction patterns are created in one of the
key subcomponents as described in Section 6. These patternsare
then run on the internal representation of the training web page to
obtain the tuple sets that would be extracted. Next, we grouppat-
terns that have the same resulting tuple set on the current page into
one wrapper. When the user completes the training on the training
page, the selected wrapper is run on the verification set withthe
help of the testing module, which modifies the confirmed wrapper
according to user input received from the interface. Thus, some of
the extraction patterns may be removed from the wrapper. Once
training is completed, the final wrapper is stored for futureuse.
The wrapper generation system is implemented with Java Servlet
Technology [29].

5. TUPLE EXTRACTION
In this section, we describe our declarative extraction language.

We first present the internal representation of the web pagesand
their auxiliary properties. Then we describe the language in more
detail and present the wrapper structure.

5.1 Document Representation
In our system, documents are represented by DOM parse trees.

A DOM parse tree is an ordered tree where each node is either an
element node or a text node. An element node is an internal or leaf
node that has a specified tag name and tag attributes, whereasa text
node is a leaf node with a single string value. This representation
is created in the browser by JScript and DHTML programs that run
a depth-first, left-to-right algorithm starting from the root node of
the document. During this traversal, each node is marked with a
unique ID, and other potentially useful information for each node
is also retrieved. When the browser displays a page, the content of
each node in the tree is bounded by an invisible rectangle. Using
DHTML properties and methods, we can retrieve the coordinates of

this surrounding rectangle for each node, given in terms of pixels.
This information is utilized by our extraction language, allowing
neighboring objects on a webpage to be identified without relying
on the DOM parse tree. Thus, pages are modeled as they appear in
the browser.

A small portion of the DOM tree created for the eBay example
is shown in Figure 5.1. The values at the upper-left corners of the
nodes are the generated unique IDs. The (left, top) coordinates of
the surrounding rectangles are shown in the first bracket andthe
(right, bottom) coordinates are shown in the second bracket. For
simplicity, we do not show the tag attribute values of the element
nodes in the figure. This representation is sent to the wrapper gen-
eration component where it is stored in object-oriented form.

Html

(0,0) (1152,2353)

1

Body

(0,0) (1152,2352)

12

Table

(12,17) (1124,143)

46

Table

(12,143) (1124,2150)

184

Tr

(182,611) (1124,653)

915

Td

(189,611) (245,653)

918

Font

(192,624) (242,640)

919

B

(192,624) (242,640)

920

Br

(192,624) (192,640)

922

Img

(413,631) (428,645)

950

Font

(371,619) (494,645)

940

Td

(368,611) (497,653)

939

949

A

(413,631) (428,645)

P

(12,2169) (1124,2340)

1743

2

Head

(0,0) (0,0)

$17.98

(192,624) (242,640)

921

...
 ...
 ...

...
 ...

...
...
 ...

...
 ...

��������� depth 0

depth 1

depth 2

depth 11

depth 12

depth 13

depth 14

depth 15

Figure 5.1: A part of the HTML DOM tree of an eBay page.

5.2 Extraction Language Overview
Our extraction language is based on the DOM tree model. Ex-

traction rules (patterns) consist of a sequence ofexpressionsthat
impose conditions on the path from the root to a tuple attribute. An
extraction rule contains an expression for each node along this path,
where each expression consists of conjunctions and disjunctions of
predicates. In addition, wildcards can be used to skip a variable
number of levels.

If a node at depthi satisfies its matching expression, then that
node is consideredaccepted, otherwiserejected. Only children of
accepted nodes at leveli are checked further for the expression de-
fined for depthi+1. This continues until the leaf nodes are reached,
and the accepted leaf nodes form the output of the pattern on the
current page. We now describe some basic types of predicatesthat
are available; note that this is not a complete list. The language is
extendable and additional predicates can be easily added.

5.3 Predicates in the Extraction Language
We first introduce some conventions used in the predicates:N

represents a node (either an element or text node),T represents
a tag name,A represents a tag attribute (name, value) pair such
as A=(width, 5%),I represents an integer,R represents a regular
expression which can be either a built-in expression such as“is a
phone number” (or email address etc.) or a string which is created
by the system on the fly, andS is a “combined specification” for
a node (a set of (attribute, value) or (tagname, value) pairs). The

extraction language assumes that children are ordered fromleft to
right, since the document representation is created that way. The
following is not an exhaustive list of the predicates, but intended
to give the user a basic overview. The set of predicates may seem
overly rich, but note that the user does not see any of the complex-
ity due to our interactive framework – this in fact allows us to use
such a feature-rich language.

Some Basic Predicates for Element Nodes:We list some basic
predicates for element nodes, which return false if the nodeis not
an element node.

• tagName(N, T): true iff node N has tag name T.

• tagAttr(N, A): true iff node N has a (tag attribute name, value)
pair satisfying A. Note that N may also have other pairs with-
out affecting the outcome.

• tagAttrArray(N, A[]): where A is an array of (tag attribute
name, value) pairs. This predicate returns true iff node N has
tag attributes satisfying all the pairs in the array and contains
no other additional tag attributes.

• elementSiblingPstn(N, I): true iff node N is theI-th child of
its parent.

• childrenNumber(N, I): true iff node N has exactlyI chil-
dren.

• tagPstn(N, T, I): true iff node N has tag name T, and it is the
I-th such child of its parent. This is useful when the number
of left siblings varies, but the number of left siblings withtag
name T remains the same.

• leftSibling(N, S): true iff node N has any left sibling which
satisfies expression S. This is useful when position informa-
tion alone does not work, but there is a consistently observed
left sibling which identifies a relevant item. Similarly, right-
Sibling(N, S) and variations such as previousSibling(N, S)
and nextSibling(N, S) are also available.

Basic Predicates for Text Nodes:The following predicates are
defined for text nodes and return false if a node is an element node.

• textNode(N): true iff node N is a text node.

• textSiblingPstn(N, I): true iff N is theI-th child of its parent.

• syntax(N, R): true iff the string value of node N matches
regular expression R. This is often used to ensure syntactic
correctness of the content. There is a set of built-in regu-
lar expressions defined in the system, e.g., for dates, phone
numbers, and e-mail addresses.

• leftTextNode(N, R, I): true iff theI-th closest left text neigh-
bor node of N has a string value satisfying expression R. Note
that proximity is defined in terms of distance on the rendered
page, not the tree structure, soI = 1 tests for the closest text
neighbor to the left of the current node.

• leftElementNode(N, S, I): true iff theI-th closest left leaf el-
ement node of N, according to distance on the rendered page,
satisfies expression S. This predicate can match only leaf ele-
ment nodes such as images (img) and break (br) nodes. Simi-
lar predicates for the other three directions are also available,
as are other variations. For example, instead of stating a pre-
cise value forI , another set of predicates checks for at least
one match within a range of close-by nodes.

5.4 The Wrapper Structure
During the training process multiple wrappers are generated in-

ternally and modified based on the interactions. Once training is

completed, the final wrapper is stored externally in a file. Inaddi-
tion to meta data such as the wrapper name, website name, and file
path, a wrapper contains the following three sets of items:

(1) For each tuple attribute, a set of extraction patterns:For
each tuple attribute specified in the tuple definition, the wrapper
stores a set of patterns in the described extraction language. Al-
though these patterns agree (i.e., extract the same set of items)
on the training and verification pages, they may disagree on yet
unencountered pages. Thus, many different patterns are stored in
the wrapper, until it is inferred from the interactions thata pattern
should be removed.

(2) A set of extraction patterns that define tuple regions:With
the help of the previous component, attribute values can be ex-
tracted. However, given the extracted attribute values we still need
to decide which of them belong to the same tuple. This is not a triv-
ial problem due to possible missing attributes, variant attribute per-
mutations and multiple entries that may exist in a single attribute.
In general, the problem cannot be solved by simply sorting the ex-
tracted data items in the order they appear in the document and
then constructing tuples based on some heuristic. In our solution,
we rely on the visual representation of the web pages. We makethe
assumption that there exist (invisible) disjoint rectangular regions
such that each region contains all attributes for one tuple.We have
not seen a counterexample yet, and believe this would be unlikely
due to the properties of the DOM representation. Thus, we only
need to find suitable patterns that identify (extract) theseregions;
we refer to [12] for more details.

(3) The tuple validation rules: Our wrapper structure requires
all constructed tuples to satisfy a set ofvalidation rulesto be out-
put, where each validation rule is a combination of conjunctions
and disjunctions of special predicates on the tuples and attributes.
This component plays an important role in capturing the different
extraction scenarios. The input parameters used in the predicates
are as follows:T represents a tuple,TA represents an attribute of
the tuple definition,R represents a regular expression (possibly a
string value) andE represents an expression constructed with the
predicates defined in the general extraction language. Notethat E
can define rules for the specification of neighbor objects. Predi-
cates implemented in the current prototype include the following
(additional predicates can be added as needed):

• specificAttributeValue(T, TA, R): true iff TA satisfies R.

• noMisses(T): true iff T has at least one item extracted for
each attribute.

• oneItem(T): true iff T has at most one item extracted for each
attribute.

• hasTheContent(T, TA, E): true iff TA satisfies E.

6. WRAPPER GENERATION ALGORITHM
We now give details of the wrapper generation process. To do so,

we first define some internal data structures and concepts used in
the algorithm. Adom path object is used to represent each high-
lighted attribute of the training tuple in the system. In particular,
a dompath object of an attribute identifies all nodes on the path
from the root to the leaf node(s). Given these dompath objects, we
find the lowest common ancestor (lca) of a training tuple, i.e., of
the text nodes highlighted in the training tuple. AnLCA objectis
a data structure that stores (i) a set of lca nodes for tuples on the
training web page and (ii) a set of extraction patterns that extract
this set of lcas. The major steps of our algorithm are as follows:

(1) Initializing the internal representations: Internal represen-
tations are created through preprocessing of the training and verifi-
cation web pages.

(2) Creating dom path and LCA objects: Upon retrieval of the
training tuple, dompath objects are created for each attribute, and
multiple LCA objects are created as follows (if possible):

• Using the attribute dompath objects, create the lca dompath
object of the training tuple.

• Using the lca dompath object, create an extraction pattern
with only tagName(N, T) predicates at each level. Execute
this pattern and identify a set of lcas: This is the largest possi-
ble lca set that we allow in our system (i.e., the set of possible
tuples). Create the LCA object for this largest lca set and its
extraction pattern.

• Starting from the nodes in the largest lca set, move towards
the root and identify the ancestor nodes at each depth.

• Starting from the root and moving down on the lca domobject,
construct expressions for each depth, where an expression is
a conjunction or disjunction of predicates. The goal is to ob-
tain expressions that accept different sets of nodes at each
depth. One obvious restriction is that the node in the lca
dom path of the training tuple has to accepted.

• Create patterns by concatenating the expressions defined for
each depth. Execute these patterns, and group those that ex-
tract the same set of lca nodes. Create and return LCA ob-
jects for each unique set, containing the corresponding setof
extraction patterns.

(3) Creating patterns that extract tuple attributes: Given the
largest lca set, we now create patterns leading from the lcasdown
to the attributes. The algorithm for this step is similar to the above,
but a different set of predicates is used for the leaf nodes. In order
to avoid creating very unlikely patterns, we apply some heuristic
basic filtering rules. For example, use of neighbor predicates in an
expression may be unrealistic in some cases: If a neighbor node
is visually too far on the web page, or the content of it is justa
single whitespace, then we do not consider such predicates for the
patterns.

(4) Creating initial wrappers: For each wrapper, the attribute
extraction patterns are obtained by concatenating the patterns cre-
ated in (3) to the patterns stored in the LCA objects in (2). Then the
patterns for extracting tuple regions are created as follows: First,
the lcas of the candidate tuples are checked to see whether they are
unique. If so, the set of patterns that define tuple regions isequal
to the lca patterns. Otherwise, there should be some contenton the
web pages (such as lines, images, breaks, or some text) to visually
separate the tuples. These visual separators are then identified in an
iterative manner to create the tuple extraction patterns; see [12] for
details.

(5) Generating the tuple validation rules and new wrappers:
Using the predicates defined in Subsection 5.4, we now generate
the validation rules. These rules are tested on all wrapperscreated
so far: If a validation rule does not change the tuple set, then this
rule is placed in the unconfirmed rules set of that wrapper. Ifa rule
causes a different tuple set, then a new wrapper is replicated from
that wrapper, and the rule is stored in the set of confirmed rules of
the new wrapper. If this is the desired tuple set, then this means this
rule must apply to future tuples.

(6) Combining the wrappers: The wrappers are analyzed, and
any that generate the same tuple sets are combined.

(7) Ranking the tuple sets:This crucial step is discussed below.
(8) Getting confirmation from the user: If one of the tuple sets

is confirmed, the system continues with the next step. If the user
could not find the correct set, then she can now select the largest
tuple set with only correct tuples, highlight an additionaltraining
tuple missing from this set, and go back to step (2).

(9) Testing the wrapper on the verification set:Once the cor-
rect tuple set is obtained with the interactions, the corresponding
wrapper is tested on the web pages in the verification set to resolve
any disagreements. In the case of a disagreement, we again use
ranking of tuple sets as in step (7).

(10) Storing the wrapper: The final wrapper is stored in a file.

6.1 Ranking the Predicted Tuple Sets
Even though navigation of the various candidate tuple sets is fast

and convenient with our interface, it is still important to order the
tuple sets such that “more likely” sets are displayed first, since there
can be many different tuple sets. However, it is not easy to give a
general solution to this problem since (i) a user may want to extract
specific information based on her own interest and needs, and(ii)
as we will observe in Section 7, some websites present their data in
fairly unexpected ways.

In our approach, we adopt the concept of category utility [10],
which organizes data by maximizing inter-cluster dissimilarity and
intra-cluster similarity. This concept was applied, e.g.,in Cobweb
[8], a tool for incremental clustering with categorical features that
produces a partition of the input. In our application, a wrapper
corresponds to a partition of the possible tuples on a page into valid
and invalid tuples; it can be argued that the most interesting tuple
sets are those where valid tuples are fairly similar, and invalid tuples
differ significantly from the valid ones.

The goal of thecategory utility functionis to maximize both the
probability that two items in the same cluster have common feature
value, and the probability that items from different clusters have
different feature values. The category utility function isdefined as

CU =
X
C

X
A

X
v

P (A = v)P (A = v|C)P (C|A = v), (1)

whereC is a cluster,A an attribute, andv a value. The first proba-
bility term defines the weight of the attributes used in the function.
The second term is the probability that an item has valuev for the
attributeA, given that it belongs to clusterC. The higher this prob-
ability, the more likely it is that two items in a cluster share the
same attribute values. The third term is the probability that an item
belongs to clusterC, given that it has valuev for attributeA. The
greater this probability, the less likely it is that items from different
clusters will have attribute values in common. In our ranking prob-
lem, each predicted (possible) tuple set is a partition of the possible
tuples into two clusters:tuplesandnon-tuples. With the help of the
described category utility function, each partition is scored to ex-
press the similarity among the tuples and the dissimilaritybetween
tuples and non-tuples. In the current prototype, the attributes we
use in the category utility function are:
(1) DOM Path: Whether the tuples have the same tag name and
attribute paths in the DOM parse tree from leaves to root.
(2) Specific Value:Whether an attribute has the same value in all
tuples.
(3) Missing Items: Whether any tuple in the set has missing items.
(4) Indexing Restriction: Whether an indexing restriction is needed
to extract the predicted tuple set.
(5) Content Specification:Whether there exists a content specifi-
cation (such as neighbor predicates) for all tuples in the set.

Given the vectors representing the attribute values for each pre-
dicted tuple set, the CU function returns real numbers between 0
and 1 which are then used for ranking. An interesting question is
how to choose the weight termP (A = v) in the CU function; we
would expect the best setting to depend on the application scenario,
but also more generally on the typical structure of web pagesfrom
which data is to be extracted. As a default, we assign equal weights

to all attributes, which turned out to work quite well. However, we
also provide an adaptive mechanism that keeps track of past deci-
sions and updates the weight values in the CU function accordingly,
possibly resulting in better ranking once the system is trained on a
few (not necessarily related) scenarios.

We note that a possible alternative approach based on Rissanen’s
Minimum Description Length (MDL) principle [25, 26] was pro-
posed in a very different context in [9], which introduces a sys-
tem for automatically inferring a Document Type Descriptor(DTD)
from a set of XML documents. While we considered such an ap-
proach as well, we do not expect it to do as well as our solution
above; see [12] for more discussion.

7. EXPERIMENTAL EVALUATION
To evaluate our wrapper generation system, we conducted experi-

ments based on data from14 websites. Four of the data sets, Okra,
BigBook, IAF (Internet Address Finder), and QS (Quote Server),
are available at [19], and have been used to evaluate previous wrap-
per induction systems. This allows us to compare our resultsto pre-
vious systems such as WIEN [16], STALKER [22], and WL2 [5].
The other ten data sets were chosen from well-known major sites:1

AltaVista, CNN, Google, Hotjobs, IMDb, YMB (Yahoo! Message
Board), MSN Q (MSN Money - Quotes), Weather, Art, and BN
(Barnes and Noble). Some of these websites were already usedin
previous work on information extraction. We collected fiftyweb
pages from each of these sites during July 2003; the data is avail-
able for download athttp://cis.poly.edu/˜uirmak/ie .

As described earlier, there are usually several possible tuple sets
on a website, corresponding to different reasonable extraction sce-
narios. For the ten new data sets we chose what we considered the
most natural extraction scenarios (see the above URL for more de-
tails). In the case of IMDb, where tuples are listed in multiple tables
with each table containing a different filmography for the queried
person, we assumed that the desired tuple set is the primary fil-
mography of the queried actor/actress/producer, which is the first
one on the page. In each experiment, we trained the system on
one randomly chosen training page, and used ten other randomly
selected unlabeled pages as verification set (with the exception of
IAF, which only consists of 10 pages).

7.1 Initial Results on Four Web Sites
We now first report results on the four previously used data sets,

to allow a comparison with other work. Table 7.1 shows the num-
ber of training tuples required by WIEN, STALKER, WL2, and
our system in order to achieve accuracies of 100%, 97%, 100% and
100%, respectively, on Okra and BigBook. (In the experiments,
STALKER increases the number of training examples gradually,
and stops the process when 97% accuracy is achieved.) For IAF
and QS, neither WIEN not STALKER generates a successful wrap-
per, but WL2 achieves 100% accuracy, as does our system. For
these four data sets, our assumption for the target extraction sce-
nario matches with that of previous wrapper generation systems.
Since only very few pages were available for the IAF and QS data
sets, these sites are not really perfect for our system, which benefits
from larger verification sets.

We observe from Table 7.1 that for these four data sets, our system
requires the user to highlight only a single training tuple to achieve
100% accuracy on the given data, outperforming the other systems.
Of course, this is not a completely fair comparison since oursystem
requires some limited additional user interaction on the verification
1 http://www.altavista.com, http://www.cnn.com, http://www.google.com,
http://hotjobs.yahoo.com, http://www.imdb.com, http://messages.yahoo.com,
http://moneycentral.msn.com, http://weather.com, http://art.com, http://bn.com

WIEN STALKER WL2 Our System
Okra 46 1 1 1

BigBook 474 8 6 1
IAF - - 1 1
QS - - 4 1

Table 7.1: Number of training tuples required by our system
and previous works

set to finish the training process. But this is in fact one of the main
points underlying our approach: we believe that the main goal is
to minimize the time and effort expended by the user, and thatfo-
cusing only on the number of training examples is not the right
approach. Labeling even a few additional training examplesis typ-
ically significantly more time consuming than the interactions on
the verification set needed in our system. Thus, we see it as one of
the main strengths of our approach that a user can generate robust
wrappers even for unusual tuple sets by typically only labelling one
or two tuples by hand. (Of course, there may be scenarios where
we only have access to prelabeled training examples, in which case
an interactive approach is not appropriate.)

7.2 Results for all 14 Sites
To justify this claim, we now give more details on the exact amount

of user interaction required in our system, based on resultsfrom all
14 sites. We did not attempt to design a model of user effort that
weighs the various forms of interaction; ideally we would like to
compare user efforts by measuring the actual times taken by hu-
man operators on the different systems (though we currentlydo not
have access to the previous systems).

Details of the resulting user interactions on all 14 data sets are pro-
vided in Table 7.2. We again chose the training web page and the
web pages in the verification set at random from all pages. Note that
performance might be improved by choosing a set of very diverse
web pages for the training and verification set, either through vi-
sual examination or analysis of the HTML code. During the wrap-
per generation process, we chose uniform weight values in the CU
function for all sites and did not allow the system to update these
terms. While our implementation is not optimized for computation
time yet, generating wrappers and testing them on the verification
set takes computation times in the order of seconds.

The columns in Table 7.2 contain (1) the total number of train-
ing examples (tuples) highlighted by the user, (2) the rank of the
desired tuple set among all candidate tuple sets identified on the
training page, and (3) the rank of the desired tuple set amongall
identified candidate tuple sets on any web page from the verifica-
tion set on which an interaction occurred (if any). There were no
disagreements on the verification set for 4 of the sites, and two in
the case of MSN Q (both ranks are provided).

Our system extracted all tuples correctly on all test pages on all
14 sites. For 13 of the 14 websites, we did not have any disagree-
ments on the testing set, and the generated wrappers extracted all
information successfully. The system encountered a disagreement
between the different extraction rules in the wrapper on theYMB
website, since one variation did not occur on any page in the train-
ing or verification set. This variation was due to the appearance
of a hyperlink anchor text in the body of a message. Some of the
general extraction patterns were able to correctly extractall the text
in the body including the anchor text, while some more specific
extraction patterns extracted the message without the anchor text.
Since the system ranked the former tuple set higher and continued
with the more general extraction patterns (while informingthe user
by sending a message), we consider this a correct decision. How-

Highlighted Ranking Ranking
Tuples (Training) (Verification)

Okra 1 1/3 1/2
BigBook 1 2/3 2/3

IAF 1 3/3 2/2
QS 1 7/7 1/2

AltaVista 1 1/2 2/3
CNN 1 1/1 -

Google 2 -/3 & 1/1 1/2
Hotjobs 1 1/4 -
IMDb 1 3/9 1/2
YMB 1 1/1 2/3

MSN Q 1 1/1 1/4 & 1/2
Weather 1 1/1 -

Art 1 1/32 1/2
BN 1 4/8 -

Table 7.2: Total user effort on all 14 sites.

ever, recall that the user has multiple options to set the system to
take appropriate actions in the case of such a disagreement.

For the websites CNN, YMB, MSN Q, and Weather, the system
identified only one tuple set on the training page, since there was
only one tuple available on each page. In QS, a site-specific for-
matting decision (some values were displayed in red if therewas
a decrease) caused the desired tuple set to be ranked very lowon
the training web page. In search engines, it is common to present a
result indented to the right if the previous result was from the same
host. While for AltaVista this case was successfully captured and
resolved on the verification set, for Google this case was notcap-
tured at that point, and thus one additional training tuple had to be
supplied by the user. The reason is that our system is set up toonly
generate fairly general expressions at deeper depths of theDOM
tree, but not at levels closer to the root, and in Google the inden-
tation was done much closer to the root than in AltaVista. In Art,
items are listed in a table of four rows and three columns (i.e., up
to 12 tuples per page). Since missing attributes and many common
specific values are observed, the system generated many candidate
tuple sets on the training web page. However, the desired tuple set
was ranked first out of 32, since all other tuple sets resultedin very
small inter-cluster dissimilarity.

We do not give the time spent by the user to interact with the
system, since this depends on the users and their familiarity with
the system. Also not shown is the initial effort for defining the tuple
structure in terms of the number of attributes and their names and
types; this is the same for all systems. All interactions consist of
basic tasks such as highlighting a tuple with the mouse, navigating
among several identified tuple sets, or confirming a decisionby
clicking a button. We believe these are fairly simple tasks that can
be learned within a reasonable time period by most computer user.
For us, these tasks took less than two minutes total for each website.

7.3 Updating Term Weights
As described in Subsection 6.1, one of our goals is to get the de-

sired tuple set ranked high, to allow for a quick confirmation. To
achieve this, we modified our system so that it can adjust its weights
based on a user’s past behavior. (This feature was disabled for the
results in the previous subsections.) In order to evaluate the effec-
tiveness of this adaptive approach, we conducted the following ex-
periment: First, we examined our test platform and identified web-
sites on which our system ranked the desired tuple sets fairly low.
This was the case on BN, where the desired tuple set was ranked4th
among 8 identified tuple sets. On Art, while our system performed

well on the randomly chosen training web page in Table 7.2, we
were able to find another page on which the desired tuple set would
have been ranked only 4th among 29 identified tuple sets. Second,
we repeatedly generated wrappers on randomly selected websites
in our set (excluding BN and Art, of course, and also excluding
IMDb which as mentioned had a very different extraction scenario
than the others), and measured how the ranking of the desiredtuple
sets for BN and Art was impacted by having first trained the system
on these other sites. Figure 7.1 shows the rankings of the desired
tuple set on Art and BN after pre-generating wrappers on varying
numbers of other websites. This result indicates that adjusting the
weights may be somewhat beneficial.

(a) Art Website

(b) BN Website

Figure 7.1: The effect of pregenerating wrappers for the same
extraction scenario.

Finally, we noticed that many incorrect tuple sets on Art actually
had indexing restrictions. In order to observe the effect ofreverse
training, we used the IMDb website, which favors such extraction
scenarios. We initially generated a wrapper for IMDb, and then
generated a wrapper for Art. We observed that this decreasedthe
ranking of the desired tuple in Art, and increased the ranking of
some other undesirable tuple sets; however, this was corrected after
subsequently training on a few other sites. (We omit the resulting
figures due to space limitations.) Thus, adjusting the weights does
not always result in improved ranking of the desired sets, ifthe
system is applied to very different extraction scenarios. On the
other hand, we would expect that there are some common features
to many of the different extraction scenarios that arise on the web,
in which case training would on average be helpful.

8. RELATED WORK
Data extraction from the web has been studied extensively over

the last few years. Detailed discussions of various approaches can
be found in several surveys [7, 20, 17, 15, 14]. We now discuss
some of the most closely related work.

Semi-automatic wrapper induction tools such as WIEN [16], Soft-
Mealy [11], and Stalker [22] represent documents as sequences of
tokens or characters, and use machine learning techniques to induce
delimiter-based extraction rules from training examples.If the web
page conforms to anHLRT organization, WIEN can learn Header
and Tail landmarks between which all data items on a page are lo-
cated, plus Left and Right delimiters that mark individual items (at-
tributes or tuples). WIEN cannot handle cases with missing items
or variations in a tuple. SoftMealy [11] generates extraction rules
specified as finite-state transducers. These rules can contain wild-
cards which allow them to overcome the above missing item prob-
lem. However, SoftMealy requires every possible case to be repre-
sented in the training examples. Stalker [22] also learns extraction
rules based on landmarks, but uses a hierarchical wrapper induction
algorithm with anEmbedded Catalog Tree(ECT) formalism.

In follow-up work [21, 13, 23], an active learning approach is
proposed that analyzes a set of unlabeled examples to selecthighly
informative examples for the user to label. Our work differsfrom
this in several ways. First, [13, 23] only consider two different
types of rules:forward rules look at the file from start to end, while
backwardrules go from the end backwards. Our work, on the other
hand, has a much more powerful extraction language and wrapper
structure that captures many tricky cases. Also, our approach aims
to find the desired extraction scenario directly through a series of
user selections via a powerful interface, instead of askingthe user
to label a number of (informative) examples by hand. The system
in [13], on the other hand, learns a minimal number of (perfect)
disjuncts that cover all training examples.

Semi-automatic interactive wrapper induction tools that represent
web pages as trees using DOM include W4F [27], XWrap [18], and
Lixto [3, 2]. W4F uses a language called HEL (HTML Extraction
Language) to define extraction rules. To assist the user, it offers
a wizard which shows the DOM tree information for a given web
page. Since the full extraction rule is programmed by the user, W4F
requires expertise in HEL and HTML. XWrap [18] allows interac-
tion between user and system via a GUI, and generates extraction
rules based on certain predefined templates that limit the expres-
sive power of the rules. The wrapper generation process takes a
significant amount of time even for an expert wrapper programmer.
(Each website among four sample websites required between 16 to
40 minutes in [18].) XWrap offers a testing component somewhat
similar to our verification set, but requires user effort to check if
the wrapper works correctly. If the tests fail, an iterativeprocess
is started that performs incremental revisions of the rules. Lixto
[3, 2] generates extraction rules based on Elog, a system-internal
datalog-like rule-based language. Lixto provides a sophisticated
interactive user interface, and users do not have to deal with either
Elog or HTML, but design their wrappers through this interface.
Lixto does not provide a tools to test and train the system interac-
tively on several web pages, but focuses on a single trainingpage.

Work in [5] discusses the sequence-of-tokens and tree representa-
tions of web pages and proposes a system called WL2 based on a
hybrid model. WL2 can generate successful wrappers with fewer
training examples than WIEN or Stalker. One major difference be-
tween our work and WL2 is that we allow interactions through the
interface to reduce the user effort, while WL2 requires more train-
ing examples to generate a successful wrapper.

An interactive semi-automatic tool called NoDoSe (Northwest-

ern Document Structure Extractor) [1] analyzes the structure of
the documents to extract relevant data. This is achieved through
a GUI where the user hierarchically decomposes the file and de-
scribes the interesting regions. NoDoSe has limited capabilities on
HTML pages, but also works on plain text documents.

Fully automatic wrapper induction systems typically rely on pat-
tern discovery techniques and are usually not reliable enough for
many applications that require accurate tuple extraction.In IEPAD
[4], pattern discovery techniques are applied through a data struc-
ture called a PAT tree that captures regular and repetitive patterns.
RoadRunner [6] works on sample HTML pages and discovers pat-
terns based on similarities and dissimilarities, then usesthe mis-
matches to identify the relevant structures. Very recent indepen-
dent work in [30] proposes a novel partial alignment technique to
increase accuracy, and employs visual information (page layout) to
identify data records. As seen in our eBay example, a user might
want to only extract a specific subset of the possible tuples,and in
such cases, some amount of user input is clearly needed to extract
the correct set.

9. CONCLUDING REMARKS
In this paper, we have presented a new system for semi-automatic

wrapper generation. Our system provides an interactive visual in-
terface based on a new framework for generating wrappers that uses
a set of verification pages. The system usually only requiresone or
two manually highlighted training examples to generate a reliable
wrapper. This is achieved with the help of a powerful extraction
language and a set of active learning and ranking techniques. We
conducted experiments on multiple websites to evaluate oursys-
tem; the results show that our system compares favorably to previ-
ous approaches.

10. REFERENCES
[1] B. Adelberg. NoDoSE–a tool for semi-automatically

extracting structured and semistructured data from text
documents. InProc. of the ACM SIGMOD Int. Conf. on
Management of Data, 1998.

[2] R. Baumgartner, S. Flesca, and G. Gottlob. Declarative
information extraction, Web crawling, and recursive
wrapping with Lixto. InProc. of Int. Conf. on Logic
Programming and Nonmonotonic Reasoning, Vienna,
Austria, 2001.

[3] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web
information extraction with Lixto. InThe VLDB Journal,
pages 119–128, 2001.

[4] C. Chang and S. Lui. Iepad: Information extraction basedon
pattern discovery. InProc. of the Int. World Wide Web Conf.,
2001.

[5] W. Cohen, M. Hurst, and L. Jensen. A flexible learning
system for wrapping tables and lists in html documents. In
Proc. of the Int. World Wide Web Conf., 2002.

[6] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner:
Towards automatic data extraction from large web sites. In
Proc. of 27th Int. Conf. on Very Large Data Bases, 2001.

[7] L. Eikvil. Information extraction from world wide web - a
survey. Technical Report 945, Norwegian Computing Center,
1999.

[8] D. Fisher. Knowledge acquisition via incremental conceptual
clustering.Machine Learning, pages 2:139–172, 1987.

[9] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and
K. Shim. XTRACT: a system for extracting document type
descriptors from XML documents. InProc. of the ACM
SIGMOD Int. Conf. on Management of Data, 2000.

[10] M. Gluck and J. Corter. Information, uncertainty, and the
utility of categories. InProc. of 7th Annual Conf. of the
Cognitive Science Society, 1985.

[11] C. Hsu and M. Dung. Generating finite-state transducersfor
semi-structured data extraction from the web.Information
Systems, 23(8):521–538, 1998.

[12] U. Irmak and T. Suel. Interactive wrapper generation with
minimal user effort. Technical Report TR-CIS-2005-02,
Polytechnic University, CIS Department, 2005.

[13] C. Knoblock, K. Lerman, S. Minton, and I. Muslea.
Accurately and reliably extracting data from the web: A
machine learning approach.IEEE Data Engineering
Bulletin, 23(4), 2000.

[14] R. Kosala and H. Blockeel. Web mining research: A survey.
SIGKDD Explorations, 2000.

[15] S. Kuhlins and R. Tredwell. Toolkits for generating wrappers
– a survey of software toolkits for automated data extraction
from web sites. InProc. NetObjectDays, volume 2591 of
Lecture Notes in Computer Science (LNCS), 2002.

[16] N. Kushmerick, D. S. Weld, and R. B. Doorenbos. Wrapper
induction for information extraction. InProc. of the Int. Joint
Conf. on Artificial Intelligence, 1997.

[17] A. Laender, B. Ribeiro-Neto, A. Silva, and J. Teixeira.A
brief survey of web data extraction tools. InSIGMOD
Record, June 2002.

[18] L. Liu, C. Pu, and W. Han. XWRAP: An XML-enabled
wrapper construction system for web information sources. In
IEEE Int. Conf. on Data Engineering, 2000.

[19] I. Muslea. RISE: Repository of online information sources
used in information extraction tasks.
http://www.isi.edu/info-agents/RISE/ .

[20] I. Muslea. Extraction patterns for information extraction
tasks: A survey. InProc. of the AAAI Workshop on Machine
Learning for Information Extraction, 1999.

[21] I. Muslea.Active learning with multiple views. PhD thesis,
University of Southern California, 2002.

[22] I. Muslea, S. Minton, and C. Knoblock. A hierarchical
approach to wrapper induction. InProc. of the Third Int.
Conf. on Autonomous Agents (Agents’99), 1999.

[23] I. Muslea, S. Minton, and C. Knoblock. Active learning with
strong and weak views: A case study on wrapper induction.
In Int. Joint Conf. on Artificial Intelligence, 2003.

[24] JDOM library.http://jdom.org/ .
[25] J. Rissanen. Modeling by shortest data description.

Automatica, pages 14:465–471, 1978.
[26] J. Rissanen. Stochastic complexity in statistical inquiry.

World Scientific, 1998.
[27] A. Sahuguet and F. Azavant. Building light-weight wrappers

for legacy web data-sources using W4F. InThe VLDB
Journal, 1999.

[28] HTML tidy library project.
http://tidy.sourceforge.net .

[29] Sun Microsystems, Inc. Java Servlet Technology.
http://java.sun.com/products/servlet/ .

[30] Y. Zhai and B. Liu. Web data extraction based on partial tree
alignment. InProc. of the Int. World Wide Web Conf., 2005.

