Improved Index Compression Techniques for Versioned
Document Collections

Jinru He
CSE Department
Polytechnic Institute of NYU
Brooklyn, NY, 11201

jhe@cis.poly.edu

ABSTRACT

Current Information Retrieval systems use inverted index
structures for efficient query processing. Due to the ex-
tremely large size of many data sets, these index structures
are usually kept in compressed form, and many techniques
for optimizing compressed size and query processing speed
have been proposed. In this paper, we focus on versioned
document collections, that is, collections where each docu-
ment is modified over time, resulting in multiple versions of
the document. Consecutive versions of the same document
are often similar, and several researchers have explored ideas
for exploiting this similarity to decrease index size.

We propose new index compression techniques for ver-
sioned document collections that achieve reductions in in-
dex size over previous methods. In particular, we first pro-
pose several bitwise compression techniques that achieve a
compact index structure but that are too slow for most ap-
plications. Based on the lessons learned, we then propose
additional techniques that come close to the sizes of the bit-
wise technique while also improving on the speed of the best
previous methods.

Categories and Subject Descriptors

H.3.3[INFORMATION STORAGE AND RETRIEVAL|:

Information Search and Retrieval.

General Terms

Algorithms, Performance.

Keywords

Inverted index, index compression, versioned documents.

1. INTRODUCTION

Over the last few years, web search engines and other in-
formation retrieval tools have become the primary means
of finding relevant information for millions of users. The
largest search engines now have to answer tens of thousands
of queries per second over billions of web pages. To do so,
current search engines rely on a data structure called an in-
verted index, which allows efficient retrieval of all documents
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containing a particular term or set of terms. A lot of research
over the last three decades has focused on how to efficiently
build, compress, and access inverted index structures, result-
ing in the highly optimized implementations deployed in the
current generation of search engines.

In this paper, we focus on an important special case of the
text indexing problem that has received much less attention,
the case of a versioned document collection, i.e., a collec-
tion where each document is represented by multiple versions.
Important examples of such collections are web archives con-
taining many past versions of web pages, the page history in
Wikipedia, or revision control systems storing all past ver-
sions of program source code. Our goal is to build a concise
and efficient inverted index structure for versioned collec-
tions, such that queries can be evaluated over all versions of
all documents. A trivial way to build such an index would
treat each version as a separate document. However, this is
wasteful, since for a collection with 50 versions per document
we obtain an index with 50 times the size of a single-version
index, even if many versions are almost identical.

Thus, the main challenge in indexing versioned document
collections is how to exploit the significant similarity that
often exists between versions of the same document, in or-
der to avoid a blowup in index size. Ideally, the resulting
index should have a size that is proportional to the amount
of change between the versions, rather than the total collec-
tion size. This problem has received some attention in the
research community [2, 8, 4, 13, 31, 11], but we believe there
is still room for improvements.

We are motivated by two important search applications,
search in the Internet Archive and in Wikipedia, and our
experiments use data from these collections. The Internet
Archive (www.archive.org) is a non-profit organization that
has collected more than 150 billion web pages since 1996 in
an attempt to archive the World Wide Web. While current
commercial search engines provide only access to the most
recent snapshot of the evolving web, and simply replace old
versions of pages with the most recently crawled version, the
Internet Archive aims to also provide access to all previous
versions. However, indexing all these versions is very expen-
sive (and not currently done by the Archive), especially for a
non-profit without the deep pockets of the major search en-
gine companies. Our second application is Wikipedia, which
keeps a complete history of all past versions of every arti-
cle, and where it would be desirable to be able to search
across the different versions. Other applications are search
in revision control and document management systems, and
indexing support for versioning file systems.

Our contributions in this paper are improved techniques for
organizing and compressing inverted index structures for ver-



sioned document collections. In particular, we analyze typ-
ical properties of versioned document collections that make
them highly compressible, and provide simple combinatorial
upper and lower bounds for index size. Our main result is a
set of index organization and compression schemes, building
on previous work in [2, 13, 11, 1], that achieve improvements
in both index size and query processing speed over all previ-
ous approaches.

The remainder of this paper is organized as follows. Next,
we provide some technical background and discuss previous
work. Section 3 discusses some typical properties of versioned
document collections that help compression, and Section 4
establishes combinatorial upper and lower bounds. Section 5
provides improved practical schemes and evaluates them on
data sets from Wikipedia and the Internet Archive. Finally,
Section 6 provides some concluding remarks.

2. BACKGROUND AND RELATED WORK

In this section, we first give some background on versioned
document collections, inverted indexes, and index compres-
sion techniques, and then discuss related work.

2.1 Background on Indexing

Most current search engines use an inverted indexr struc-
ture to support efficient keyword queries [32]. An inverted
index for a collection of documents is a structure that stores,
for each term (word) occurring in the collection, information
about all locations where it occurs. For each term ¢, the index
contains an inverted list I; consisting of a number of index
postings. Each posting in I; contains information about the
occurrences of ¢ in one particular document d, usually the 1D
of the document (the docID), the number of occurrences of ¢
in d (the frequency), and possibly other information such as
the locations within the document. In this paper, we assume
that postings have docIDs (or version IDs) and frequencies,
but we do not consider the case of a positional index where
within-document positions are stored in the postings.
Index Compression: The postings in each list are usually
sorted by docID and then compressed using any of a number
of techniques from the literature [32]. Most techniques first
replace each docID (except the first in the list) by the differ-
ence between it and the preceding docID, called a d-gap, and
then encode the d-gaps using some suitable integer compres-
sion algorithm. Using d-gaps instead of docIDs decreases the
average value that needs to be compressed, resulting in bet-
ter compression. These values have to be summed up again
during decompression, but this can be done quite efficiently.
The d-gaps and frequencies are often stored separately, and
thus we compress sequences of d-gaps and frequencies.

A large number of inverted index compression techniques
have been proposed; see [32] for an overview and [30] for a
recent experimental evaluation of state-of-the-art methods.
In our work here, we utilize two techniques that have been
previously applied to versioned document collections [11], In-
terpolative Coding (IPC) and PForDelta (PFD).

Interpolative Coding is a technique introduced in [17] that
was designed for the case of clustered or bursty term oc-
currences, such as those encountered in longer linear texts
(e.g., books). IPC achieves a very small index size in many
scenarios, but it is not very fast in terms of decompression
speed. PForDelta is a family of compression schemes first
introduced in [12, 33], and further optimized in [30, 29|, that
allows extremely fast decompression (beyond a billion inte-
gers per second per core) while also achieving a fairly small
compressed size. Here, we use a version of PFD called OPT-

PFD described in [29] that achieves very good compression
on clustered data, in some cases coming close to IPC in size.
Inverted lists are often organized into blocks that can be
independently accessed, thus enabling forwards skips during
query processing. We use such blocked indexes throughout
this paper, with a block size of 128 postings.
Versioned Collections and Two-Level Indexes: We de-
fine a versioned document collection D as a set of documents
do,...dn—1, where each d; has m; versions d%,df, .. .7d?”.
(In some cases, it is convenient to define d? as the empty
document.) We assume a linear history, and do not try to
model the case of branches (forks) in the revision history,
though we believe our ideas could be adapted to this case.

We define the first-level index of a versioned document
collection D as an inverted index where the inverted list for
a term t contains a posting for document d; if at least one
version df of d; contains t. For a term ¢ that occurs in at least
one version of d;, we define the bit vector of ¢ and d; as an
array of m; bits such that the j-th bit is set to 1 iff version
d} contains ¢. Similarly, we define a frequency vector that
contains in its j-th entry the frequency of ¢ in dZ . (When the
bit vector is already known, it may be convenient to think
about the frequency vector as having entries only for those
versions that contain t.)

A two-level index structure for a versioned document col-
lection consists of the first-level index, and a second level
storing all the bit and frequency vectors. All our construc-
tions in this paper use the two-level approach, which was
first proposed in [1] in the context of non-versioned collec-
tions, and then adapted to versioned collections in [11]. This
approach allows efficient query processing by first running a
query on the small first-level index, and then fetching and
decompressing any necessary bit and frequency vectors.

The first-level index contains only docIDs, and no fre-
quency values. It is compressed using standard index com-
pression techniques such as IPC or PFD, since there is no ob-
vious structure in the data that distinguishes this case from
that of a non-versioned collection. The main challenge is the
modeling and compression of the bit and frequency vectors
in the second level, and as we will show, these vectors have
a wealth of interesting structure that can be exploited.

2.2 Related Work

We now discuss previous related research, including work
on indexing and querying versioned document collections, on
indexing collections with similar documents, and on storage
and transmission of similar and versioned documents.
Positional Indexing of Versioned Collections: Previ-
ous work on indexing versioned text collections falls into two
classes, work on positional indexes [31] and work on non-
positional indexes [2, 8, 4, 13, 11]. For positional indexes, [31]
uses content-dependent string partitioning techniques [22, 14,
27] to split each document into fragments, and then removes
duplicate fragments from the collection; this results in signif-
icant reductions in index size and also supports very efficient
updates as new versions are added to the collection.

We note here a basic difference between positional and non-
positional indexes. In the former case, similarity is based on
common substrings; this way a change in position informa-
tion due to an insertion or deletion before the start of the
substring can be efficiently handled by changing the offset
of the substring in the document. In the latter case, we
have a set- or bag-oriented model where similarity is based
on common subsets of terms; for non-positional indexes this
performs much better than a substring-oriented approach,



and thus techniques for positional indexes are of limited rel-
evance. However, improved techniques for positional indexes
are an interesting open problem.

Non-Positional Indexing of Versioned Collections: The
approaches in [2, 8, 4, 13, 11] consider non-positional indexes,
our focus in this paper. The earliest work we are aware of is
that in [2], which proposes to index the differences between
the versions rather than the versions themselves. In particu-
lar, [2] indexes the last version, and then adds delta postings
to store changes from the last to previous versions. We will
refer to this basic approach as DIFF (for difference).

In more recent work in [8], the set of terms of a document
is organized into a tree structure, where each node has some
private and some shared terms, and each node inherits its
ancestors’ shared terms. The versions are then expressed
in terms of these sets of terms, and the sets of terms are
indexed. Followup work in [13] identifies subsets of terms
that are contained in a range of consecutive versions. Such
subsets are then treated as virtual documents and indexed,
and the main challenge is to minimize the number and size
of virtual documents. This can be done by reordering the
versions in an optimal manner, resulting in an instance of the
NP-Complete Multiple Sequence Alignment (MSA) problem.
However, in most cases a simple ordering of versions by time
appears to achieve very good results, and this is the approach
we use later in our constructions. We nonetheless refer to this
general approach as MSA.

Another approach in [4] is based on the idea of coalesc-
ing index postings corresponding to consecutive versions if
they contribute almost the same score to the overall ranking
function. This is a lossy compression technique that uses an
index with precomputed quantized scores, and thus it is not
easily comparable to other approaches.

Recent work in [11] compares the DIFF and MSA ap-
proaches to two additional techniques. One technique, called
Sorted, simply assigns docIDs to the versions of a document
in the natural order, and then relies on standard index com-
pression techniques to exploit the resulting clustered nature
of the index data. This can be seen as a non-lossy variant
of the approach in [4], and it is shown to do much better
than the trivial baseline, but not as well as either DIFF or
MSA. Another method, called HUFF, uses the two-level ap-
proach in [1], and compresses the bit and frequency vectors
in the second level using a simple hierarchical Huffman cod-
ing scheme adapted from [10]. This method outperforms all
other methods in terms of size, but results in slightly slower
query processing due to the use of Huffman coding.

Thus, the work in [11] provides a recent comparison of ex-
isting methods that we use as a baseline for our results. We
also use the same Wikipedia and Internet Archive data sets

s [11], allowing a direct comparison of the numbers. Over-
all, we will show significant improvement in both index size
and access speed over previous methods.

Query Processing in Versioned Collections: Another
related problem is how to perform query processing in ver-
sioned document collections, and in particular what types of
operations should be supported. This is a non-trivial prob-
lem that has received only limited study. The simplest type
of query treats all versions as separate documents, and thus
would return the most relevant versions over the entire his-
tory of the collection (probably with additional filtering to
remove multiple versions of the same document). It is likely
that in many scenarios, users would also like to be able to
restrict a query to a limited time interval (e.g., the most rel-
evant pages during 1998); this could be achieved either by

post-filtering, or through specialized index structures that
support more efficient range queries over time. Recent work
in [16] proposes durable search, where the goal is to return
documents consistently ranked high over a range of time, and
describes a number of algorithms for this problem.

In general, in this paper we are trying to sidestep the ques-

tion of what the right set of query operations is. We evaluate
our index structures by running queries over all versions, with
no temporal restrictions, but we believe that our techniques
are fast enough to allow efficient filtering and aggregation
on top in order to implement other operations. Of course,
specialized index organizations for range search and durable
search should outperform more general index layouts, and
how to optimize versioned index structures for these cases is
an interesting problem for future work.
Succinct Indexing of Similar Documents: There are
several techniques that exploit similarities between distinct
documents (i.e., not different versions of the same document)
for better index compression. This problem is closely related
to that of indexing versioned collections, but also differs from
it in important ways: First, similarities between distinct doc-
uments are typically smaller, leading to more limited gains,
and second, an important part of the problem is to identify
which documents are similar, while in versioned collections
this information is more or less implied.

The most common approach to indexing similar documents
is based on reordering the documents in the inverted lists,
by assigning consecutive or close-by docIDs to documents
with high similarity [7, 24, 26, 6, 25, 29]. This results in
a more skewed d-gap distribution in the inverted lists, with
many more small d-gaps and a few larger ones, leading to
a reduction in index size under common index compression
schemes. The Sorted method in [11] is an application of this
idea to versioned collections.

Another approach was studied in [1], where similar docu-
ments are clustered into disjoint groups and then indexed by
a two-level index structure. While in [1] this does not reduce
index size, it leads to an increase in query processing speed.
The HUFF approach in [11] and our techniques here adapt
the two-level approach to versioned collections, where it re-
sults in improvements in both size and speed.

Storing Redundant Document Collections: There has
been a significant amount of research on the problem of re-
ducing space or network transmission costs in storage systems
by exploiting redundancy in the data. This includes the Low
Bandwidth File System [18], various storage and backup sys-
tems [9, 5, 15, 21, 27|, and remote file synchronization tech-
niques [28, 23, 19]. This work differs from our work in that
the goal is to reduce the size of the collection rather than the
size of the index. However, some of the techniques are also
relevant to our work, and we will adapt ideas from [19] based
on Communication Complexity for our analysis in Section 4.

3. DATA SETS AND DATA ANALYSIS

In this section, we describe the data sets that we use, and
then perform a preliminary analysis of the data in order to
detect patterns that can be exploited for better compression.

Data sets: In our experiments, we use versioned col-
lections obtained from Wikipedia (Wiki) and the Internet
Archive (Ireland). The Wikipedia data set consists of 0.24
million distinct documents with 35 versions per document on
average, resulting in slightly more than 8 million pages. This
is about 10% of the English version of Wikipedia. The Inter-
net Archive data set consists of 1.06 million documents from
the Irish web domain, collected between 1996 and 2006, with



15 versions per document on average. The data sets were
used in [11], thus allowing a direct comparison of results.

Data analysis: Next, we perform a simple analysis of the
data in order to identify four properties that lead to good
data compression. For each property, we also point out which
previous methods take advantage of it.

Property 1: Most changes are small. Figure 1 shows
the distribution of the sizes of the changes between versions.
Here, the size of the change is the number of unique terms
that are either added or removed between versions. As we
see, at least half of all versions in Wiki and Ireland differ by
less than 5 terms that are added or removed. (Note that we
are looking at a set-based model — a change size of 0 does
not mean that two consecutive versions are identical, but
only that they are based on the same set of terms. All iden-
tical versions were removed from the data.) This is of course
not surprising, and the main reason why a versioned index
structure should be much smaller than a standard structure
that treats each version as a separate document. All existing
techniques for versioned collections exploit this property.
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Figure 1: Cumulative distribution of change size for Wiki
(left) and Ireland (right). The x-axis is the size of the
change (symmetric difference between consecutive ver-
sions) while the y-axis shows the fraction of versions with
at most this amount of change.

Property 2: Terms changes are bursty. Figure 2
shows the distribution of the change distance, defined as the
number of versions between two changes in a term bit vec-
tor. From the figure, we see that the longer a term stays
unchanged, the more unlikely it is to change in the next
step. Conversely, terms that have just been added or re-
moved are more likely to disappear or reappear again in the
next few steps. (To limit the impact or the truncated his-
tory, we removed terms that stay until the last version.) We
note that all existing compression techniques also exploit this
property; in the case of DIFF, MSA, and Sorted this happens
through use of compression methods such as IPC and PFD
that exploit data clustering, while in HUFF the Huffman ta-
ble catches on to this pattern.

Property 3: Change size is bursty. Figure 3 shows
the cumulative size of the amount of change when we sort
versions from largest to smallest change. This is the flip side
of Property 1: while most changes are small, less than 10%
of all versions are responsible for more than 50% (Wiki) and
70% (Ireland) of the total change. So, large changes are rare,
but account for much of the total change. (However, the
distribution of change does not seem to follow power law.)

We note that none of the existing techniques really exploits
this property, but that it is potentially very useful. If we have
a term that exists in the current version, then knowing, say,
that the next 3 versions have very little change, but that the
fourth version has a large amount of change, would lead us
to guess that the term is most likely to change in this fourth
version than in the others. In fact, in the next section, we
show that even a simple combinatorial technique that uses

only this property, and that knows the change size for each
version, outperforms all previous methods in terms of index
size. Most of the improvements in this paper are based at
least indirectly on exploiting this property.
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Figure 2: Distribution of change distance for Wiki (left)
and Ireland (right). The x-axis is the change distance and
the y-axis shows the number of term changes (essentially
postings in DIFF) with this distance in millions.
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Figure 3: Cumulative distribution of change size for Wiki
(left) and Ireland (right). We sort versions in decreasing
order by change size, and then plot on the y-axis the
cumulative amount of change.

Property 4: Terms are dependent. One more prop-
erty of the collections is that terms often come and leave
together. In particular, we found that a pair of terms in
Wiki that exists in a given version has a 48.8% change of
being deleted at the same time if it was also added at the
same time, while the chance was only 30.5% if the words
were added at different times. For Ireland, the numbers were
55% and 34.6%. This is of course not really surprising and
can be explained in several ways. Terms that are added in
the same version are often next to or close to each other, so
that a future change often also impacts both terms. Or, this
could be mainly a result of Property 3 since many pairs of
terms will be added in a large update and then removed to-
gether in the next large update. Or it could be a consequence
of Property 2. We note that this property is only exploited
in the MSA approach [13], and is an important reason for its
good performance compared to DIFF.

4. A COMBINATORIAL APPROACH

In this section, we discuss the index compression problem
from a combinatorial perspective, and derive worst-case lower
bounds and upper bounds for the problem. The techniques
we use are fairly simple, and motivated by previous work in
Communication Complexity [19], but we are not aware of
any previous formal analysis of versioned index compression.
We note that the algorithms in this section are not directly
useful in practice, as their bitwise approach to compression
is too slow for a state-of-the-art query processor. However,
we believe the results are of interest on their own, and they
also inform the practical approaches in subsequent sections.

In the following, we assume the two-level approach to in-
dexing as described earlier. Thus, we have a small first-level
index that specifies for each term which documents contain
the term in at least one version, and a second-level index
containing compressed bit vectors specifying which versions



contain the term. (We focus on the case of docIDs only, but
the approach can be extended to indexes with frequency val-
ues.) The first-level index is compressed using standard tech-
niques, as the problem of compressing this level is similar to
the standard non-versioned index compression problem. Our
focus here is on the second level, and the modeling and com-
pression of the bit vectors, which encapsulates the essence of
the versioned index compression problem.

We start out with an analysis of a simple model based on
set difference in Subsection 4.1, where we establish upper
and lower bounds in this model. Subsection 4.2 extends the
results to models that use term appearances, term deletions,
and term reappearance, and provides some experimental re-
sults on real data. In Subsection 4.3, we provide another
upper bound that uses additional features to obtain better
results, and finally we discuss conclusions from this section.

4.1 A Simple Model Using Set Difference

Let D = {do,di,...,dn—1} be a collection of versioned
documents. Consider one document d; € D consisting of
m; versions di,dZ, ... ,d;"*. For convenience, we define d9 as
the empty document. The size of d;, s(d;), is the number of
terms that appear in at least one version of d. For each d?, we
define ch(d?), the change in d?, as the size of the symmetric
difference between d? and d? "', that is, the number of terms
added or removed between versions d/ " and d?.

As discussed before, we expect that the index size of a
versioned document collection should depend on the amount
of change between versions. In the following, we show that
this can be formalized, by deriving suitable lower and upper
bounds for index size based on change. In particular, we can
show the following simple information-theoretic lower bound:

Theorem: For any numbers ¢, c2, ..., cn and s, and any
index compression scheme, there exists a document d with
s(d) = s and m versions such that ch(d’) = ¢; for all j, that
requires an index size of at least

m S m s )
;Ing <<CJ>> z ; c;j - log, <g) bits

Proof Sketch: Given a set of s terms, there are at least

< 11()

distinct documents d that satisfy the stated constraints on
change between versions. An index needs to be able to dis-
tinguish between all such documents, and thus there must
exist a document with index size at least log,(X) bits. End.

We note that this is not just a bound on index size, but also
a bound on the amount of bits needed to store the versions
themselves (modeled as sets rather than sequences of terms).
More precisely, it is a lower bound on the second level of the
index, that it, it holds even if we already know the informa-
tion in the first level of the index. The theorem is stated for
one document, but generalizes to collections by summing up
over all documents, with each document having its own con-
straints on the change between versions. The result and its
proof are inspired by previous work on the communication
complexity of exchanging similar documents in [19], which
we apply to a set-based model with multiple versions.

Next, we will derive an upper bound on second-level index
size based on the amount of change between versions, and
relate it to the lower bound. The second level consists of
bit vectors that we need to represent in a concise manner.

Consider a bit vector Z of length m for a term ¢ that occurs
in at least one version of an m-version document d. It is well
known that compression is related to prediction, and one way
to compress such a bit vector is to derive a probability for the
next bit to be 0 or 1, given the previous bits and the bounds
c; on change between versions. These probabilities can then
be used to drive a binary coder matching the entropy bound
(e.g., binary arithmetic coding) to code the bit vector.

The main insight here is that the values c; are very useful
in predicting the next bit of the bit vector. Assume that
version d’~! of d contained a term ¢, and we would like to
guess how likely it is that ¢ will also be present in version d’.
This should depend on ch(dj ), the amount of change between
the two versions, and if we assume that terms affected by
change (terms that disappear or appear in the next version)
are selected at random from all eligible terms, than ¢ has a
chance of ch(d”?)/s(d) of disappearing in version d’. Thus, we
will code the j-th bit of the bit vector by using the probability
ch(d?)/s(d) in the binary coder. Overall, we use the following
probabilities to encode a bit vector ¥ = 12 ... Tm:

ch(d")
s(d)

priz =1 =

h(d?
M @ F i

prizjlzize ... zj_1] =

ch(d?
1- s((d>) Tj=Tj-1

We now analyze this approach. For simplicity, assume that
ch(d?) < s(d)/2 for all j. (Otherwise, we can simply use
the inverse of d’.) We also assume that bit vectors are com-
pressed optimally and in a continuous manner — a practical
arithmetic coder would have some additional waste in bits,
and we would also need to periodically align the data with
bit or byte boundaries in order to allow retrieval of particular
bit vectors, but this is harder to model. Then we can show:

Theorem: The number of bits used by the above algo-
rithm for a document d is

JZ:: (Ch(dj) log (i&iz)) + (s(d) — ch(d’))

108z (ﬁ))

<2. ich(dj) log, (C;((‘;ZQ

The bound follows from the fact that when we look at the

j-th bit of all the s(d) bit vectors for d, there are ch(d’) cases
where we have to encode an x; # 21, and s(d)—ch(d?) cases
where we encode an x; = ;1. The well-known formula for
entropy then gives the expression in the first line, which can
be easily bounded by the second line.
Thus, at least under the idealized assumptions about coding
and data alignment, the algorithm achieves a size within a
factor of 2 of our lower bound. We note that the factor of
2 can be improved for values of ch(d’) bounded away from
s(d)/2. (However, we were unable to come up with a useful
form for such an improved bound.) As shown in our later
experiments, the actual gap on real data is much smaller.

In general, there are two challenges to designing even tighter
upper bounds. First, our lower bound is based on the size
of a non-trivial combinatorial space (the set of documents
satisfying the constraints) that is not easy to map to a dense




set of bit representations. Second, an upper bound for in-
dex structures needs to be able to separately decode the bit
vectors for a particular term, and simply labeling the space
of possible documents in an optimized way would not assure
this. Our approach based on probabilities clearly allows de-
compression on a per-term basis, but at some inefficiency in
representing the document space.

4.2 Extensions and Experimental Results

The results in the previous section are based on only the
information about the total amount of change between ver-
sions. We now improve these bounds using additional con-
straints, and state upper and lower bounds for each case.

In the first case, assume that rather than just knowing the
change ch(d’) between d’ and d’~!, we know the number
of newly added terms ins(d’) (insertions) and the number of
removed terms del(d”) (deletions). Given this, we can further
restrict the combinatorial space, resulting in the following
worst-case lower bound on the number of bits:

- s(d™1) s(d) — s(d’™)
;mgQ <<del(dﬂ')> ' ( ins(dr) )) ’

where s(d?) is the size (number of distinct terms) of ver-
sion d’. (Note also that del(d') = 0 by definition.) Fur-
thermore, if we divide insertions into first occurrences fo(d?)
(where a term occurs for the first time) and reappearances
re(d?) (where a term reappears after having previously been
deleted), we obtain the following worst-case lower bound on
the number of bits:

" s(d1) D<) fo(d") — s(d™1)
;logZ ((del(dﬂ)) ' ( re(di) )

) S(d) - Zi<j fo(di)
fo(d?)

We can also derive upper bounds for these two cases, by as-
suming that in each step, terms affected by a change (inser-
tion, deletion, first occurrence, or reoccurrence) are selected
at random from all eligible terms. This gives us the following
probabilities to drive a binary coder:

s(dh)
P = 1 =
==
ins(d?) _
s(d)—s(di—1) Tj-1= 0
PT‘[:EJ‘ = 1|:E1:E2...l'j71} = s
s(dd)—ins(d?
(ds)(djfl)(d Laya=1
and for the second case:
s(dl)
=1 =

p[Ij = I‘Ilwz . 1']'71] =

fo(d?)

73(‘1)—21(]' fo(di) T; = 0,1 S Z < j

s(dd)—fo(d?)—re(d?
W) fold)oreld) 4, —

re(d’)

Ei<j fo(di)fs(djfl) else

Next, we apply the three different types of upper and lower
bounds to the Wiki and Ireland data sets described in Section
3. The results are shown in Table 1.

Wiki Ireland
upper | lower | upper | lower
Case 1 117 114 295 288
Case 2 92 89 267 261
Case 3 92 88 254 249

Table 1: Compressed size in MB for Wiki and Ireland,
for our three upper and lower bounds. The lower bound
here is a worst-case bound for a class of inputs, and does
not imply a lower bound for the particular data sets used
here. To compare numbers in the section 5, we need to
add the size of the first level index as shown in Table 2

To implement the upper bound for Case 1, we need for
each version d’ the value of ch(d”); this can be stored at a
cost of about 1 byte per version. For Case 2, we need ins(dj),
del(d?), and s(d”?). Note that s(d’) is probably stored anyway
as it is needed, e.g., for basic ranking under BM25 or cosine,
and that del(d’) and ins(d’) can be computed from ch(d’)
and s(d?); in this case the extra space is the same as for Case
1. Finally, for Case 3, we need fo(d’) and re(d’) instead
of just ins(d”), resulting in an additional about 1 byte per
version in the collection.

Looking at the results, we see that the upper and lower
bounds are quite close, and that adding additional constraints
results in visible improvements, particularly when moving
from Case 1 to Case 2. The most surprising result for us,
however, was that even the simple upper bound in Case 1
is much better than the best bound from previous work, the
Huffman-based bit vector encoding in [11], which achieves
140M B on Wiki and 304M B on Ireland.

4.3 Feature-Based Prediction

Results in the previous subsection showed that a simple
coding method that focuses on exploiting the amount of change
in each version beats all previous published methods in terms
of index size. The previous methods exploit various other
patterns in the data set, but none of them uses the amount
of change in each version in a principled way. This raises
the question of whether we can improve the upper bound by
using the amount of change as well as other patterns.

We again take a bitwise approach where we model the
probability of the next bit in the bit vector being 0 or 1.
However, in addition to the amount of change, we want to use
various other features that might lead to a better prediction.
In particular, from Section 3 we know that the likelihood of
a term disappearing in the next version depends on how long
the term has been in the document; recently added terms are
more likely to disappear again. It is difficult to derive a good
explicit formula for the probabilities without a better model
for generating versioned documents (i.e., better than our ear-
lier model where affected terms are selected at random), and
thus we take a simple statistical approach where we analyze
the complete data to derive a table of precomputed probabil-
ities. We use the following features to predict the next bit:

e F'1: the value of the current bit.

e ['2 to F'4: the lengths of the previous 3 ups and downs
in the bit vector. Thus, if F2 is 5, the value of the
current bit has been the same for 5 versions.

e F'5: The number of 1’s seen in the bit vector so far,
divided by the total number of bits so far.

e [6: if F1=1, the number of term deletions between the



current and the next version; otherwise, the number of
term insertions.

e F'7: the inverse document frequency of the term.

e ['8: the relative position in the bit vector, defined as
the current bit position ¢ divided by the total length m
of the bit vector.

We implement this model using a k-D tree [3], which is a
data structure for organizing k-dimensional points. In partic-
ular, our goal is to partition our 8-dimensional feature space
into regions such that in each region the probability of the
next bit being 1 is roughly uniform. We store this probability
with the region, so we use it to arithmetic-code the next bit.

To construct the k-D tree, we go over all bit vectors, and
obtain the set of corresponding 8-dimensional points, with
each point having a label of 0 or 1 corresponding to the next
bit. We recursively partition the space by looking at possible
cuts along each axis, for the cut that achieves the largest
decrease in overall entropy. (This is similar to the MHIST
algorithm for constructing multi-dimensional histograms in
[20].) We recursively apply cuts until the entropy is below a
selected threshold. A lower threshold will result in a better
prediction, but also in a larger tree stored as meta data.

We see from Figure 4 that approaches achieve moderate ad-
ditional improvements over the formula-based approach from
the previous subsection. The best results we get are 77.5 MB
for Wiki and 209 MB for Ireland for the second level of total
index. There is a trade-off between tree size and prediction
quality. Note that using a k-D tree may appear cumbersome
and impractical, but our goal here was to see how far we
can reduce the index size by using many available features,
and to use this as guidance for more practical methods in
subsequent sections.

4.4 Discussion

We now briefly discuss the results from this section. Our
main contribution was a set of upper and lower bounds for
versioned indexing inspired by results in communication com-
plexity. The most useful take-away from this was that a com-
binatorial approach that just exploits information about the
amount of change in each version can beat all previous meth-
ods, which fail to exploit this information. Moreover, adding
additional features can result in modest further gains.

However, the upper bounds in this section are not directly
applicable in practice because of their bitwise nature. That
is, for every bit in the bit vector, we need to call an adap-
tive arithmetic coder using the derived probabilities. While
such coders can decode millions of bits per second on current
CPUs, they are still by one to two orders of magnitude slower
than index compression methods such as PFD or even the
slower IPC. Thus, a query processor based on these methods
would be too slow for most practical applications. Our chal-
lenge in the next sections is to design methods that exploit
information about the amount of change without a bitwise
approach that looks at one version at a time. We will show
that this can be achieved through appropriate reorderings of
the bit vectors, resulting in methods with both smaller index
size and faster index access than previous results.

5. BETTER PRACTICAL METHODS

The approaches from the previous section achieve very
good compression but are not practical due to their use of a
bitwise arithmetic coder that would make decompression and
thus query processing very slow. In this section, we propose
alternative methods based on modifying the DIFF and MSA
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Figure 4: Compressed second-level index size for Wiki
(up) and Ireland (bottom), for various entropy thresh-
olds.
in the k-D tree, while the y-axis shows the index size in
MB. Again, the first-level index size needs to be added
to compare the numbers in section 5

The x-axis shows the resulting number of leaves

approaches that are also able to exploit knowledge about the
amount of change between different versions. The resulting
index sizes are close to the best from the previous section,
with query processing speeds that are faster than that of all
previous methods in the literature.

The new algorithms are based on three modifications to
DIFF and MSA described in the following. In particular, we
convert DIFF and MSA into two-level methods [1], apply a
reordering operation on the versions (i.e. the bits of the bit
vectors), and propose a hybrid between DIFF and MSA.

5.1 Two-Level DIFF and MSA

In a nutshell, both DIFF and MSA work by first creating
artificial virtual documents from versions, and then index-
ing these virtual documents instead. In DIFF, we create one
virtual document for each version, consisting of the symmet-
ric difference between this and the previous version (i.e., the
terms that were either added or removed). In MSA, each
virtual document represents a range of versions; thus, one
virtual document may correspond to versions 3 to 8 and con-
tain all terms inserted in version 3 and deleted in version 9.
This means that DIFF results in more postings than MSA,
since it needs one posting to signal the arrival of a term, and
one posting to signal departure. MSA uses only one posting
for this, but creates more virtual documents, thus resulting
in a larger docID space and larger d-gaps.

DIFF and MSA can be adapted to two levels as follows.
The first-level index is always the same for all methods, and
stores which documents have at least one version contain-
ing a particular term. For the second level, DIFF now looks
at the relevant bit vector corresponding to the virtual docu-
ments rather than versions, and compresses this bit vector by
storing the gaps between 1 values in the bit vector. This is
in fact very similar to standard DIFF, except that gaps are
now only created within a single bit vector and not across
documents. We then compress all these gap values using ei-
ther IPC or PFD with a block size of 128 values. In addition,



we also need to store an indicator bit for every gap to signal
when a gap is the last gap in the current bit vector.

For MSA, the construction is similar. In this case, we have
a bit vector with one bit for each virtual document, and store
the gaps between 1 values in this bit vector. As with DIFF,
we compress these gaps using IPC or PFD, and also add an
extra bit for each gap to indicate when a gap is the last one.
As we show in our experiments further below, this change of
DIFF and MSA into two-level methods results in reductions
in index size and query processing costs. In the following, we
refer to these methods as 2-DIFF and 2-MSA.

5.2 Bit Vector Reordering

The two-level variants of DIFF and MSA still do not ex-
ploit the information about the amount of change between
versions that turned out to be so valuable in the previous
section. While it is conceptually simple to use this infor-
mation in bitwise methods, where we only need to take the
amount of change of the next version into account, this is
much harder for methods such as DIFF and MSA that store
longer gaps. Intuitively, to better model these longer gaps
we would have to look at the change information not just of
the next version, but of many future versions.

We now describe a simple reordering trick that achieves a
similar result in an indirect way. Consider again the virtual
documents created by DIFF, and suppose that after creating
these virtual documents we sort them by size in decreasing
order. This means that the largest virtual document now
corresponds to the first bit of each bit vector, and that, when
we look at all bit vectors for a document, the first bit has the
largest number of 1 values, the second bit the second largest,
and so on. In other words, we have transformed the bit
vectors into “front heavy” bit vectors where the initial bits
are more likely to be set to 1. This induces a clustering effect
in the resulting gaps that is then automatically exploited
by IPC, PFD, or possibly other methods. We refer to this
method as 2R-DIFF (where R stands for reordering).

We note here that it is not clear that sorting by virtual
document size is the best rule for reordering. In fact, it can
be argued that it is desirable to place as close to each other
those virtual documents that have a lot of terms in common.
This can be modeled by building a graph on the virtual doc-
uments, with edges weighted by the size of the intersection,
and then running a TSP-like computation on this graph. We
experimented with this approach, but were unable to obtain
any benefits over simple sorting, and thus we use sorting in
all subsequent results.

The same reordering trick can also be applied to two-level
MSA, by sorting its virtual documents by size; we call the
resulting method 2R-MSA. We note that this reordering ap-
proach for MSA is very different from the reordering con-
sidered in the original MSA paper [13], in that we reorder
virtual documents while [13] reorders the original versions.

Another algorithm can be obtained by again reordering
the bit vectors for DIFF, and then using the hierarchical
Huffman-based coding scheme from the HUFF method in
[11] directly on the bit vectors, rather than coding gaps using
IPC or PFD. We call this method 2R-HUFF. Finally, these
reorderings have to be inverted during query processing.

5.3 Hybrid Methods

Our third optimization involves a hybrid between DIFF
and MSA. Recall that MSA decreases the number of postings
compared to DIFF, at a blow-up in the docID space. MSA
performs best when a few virtual documents contain most of

the postings, and does less well when there are a large num-
ber of small but non-empty virtual documents. This suggests
a hybrid approach where we pick all the large virtual docu-
ments in MSA, remove the corresponding postings from the
versions, and use DIFF to finish up the rest of the postings.

We refer to this method as 2-Hybrid for the basic two-level
method, and 2R-Hybrid when used with reordering. One
question is to decide how many of the large virtual docu-
ments we should pick using MSA, and when we should stop
and mop up the remaining postings using DIFF. We found
that selecting all virtual documents above a fixed size works
reasonably well.

5.4 Integrating Frequencies

All the described methods can be extended to store fre-
quency values, using ideas similar to those in [11] for the ba-
sic versions of DIFF and MSA. During the reordering step,
we now sort by a slightly different weight function that takes
into account that the virtual documents are bags (multi sets)
rather than sets. In the case of 2R-HUFF, as in the HUFF
method in [11], we have a choice between keeping docIDs
and frequencies separate and integrating them into one vec-
tor for better compression. Details are omitted due to space
constraints, but we provide experimental results for the fre-
quency case further below.

5.5 Query Processing

We now outline the changes in query processing that are
required when using our new techniques. We assume here a
standard DAAT type query processor that implements ranked
queries on top of a Boolean filter such as an AND or OR of
the query terms. Here, we focus on the case of AND. Of
course, real queries on archival collections may involve addi-
tional features such as restrictions to certain time ranges.

For the two baseline methods, 2-DIFF and 2-MSA, we first
traverse the first-level index, and any data from the second-
level is only fetched once the Boolean filter has found a docID
in the intersection of the first-level inverted lists of the query
terms. Recall that the second-level postings are blocked, such
that each block of 128 integers can be independently accessed
and decompressed. To retrieve the second-level data for a
particular document and term, we may need to decompress
more than one block if the data goes across block boundaries.

Bit vectors are recreated from compressed data by initial-
izing a vector to zero, and then setting corresponding bits
as we decompress the gap values. Afterwards, the reordering
needs to be inverted in the cases of 2R-DIFF, or 2R-Hybrid.
Finally, we process the information in the recovered bit vec-
tor as required in DIFF, or the hybrid. In the case of DIFF
we need to loop over the bit vector and apply any changes
(recall that DIFF indexes these changes); we found that this
step can be accelerated significantly by using a lookup table
of size 512 that converts one byte of the bit vector at a time.

5.6 Experimental Results

We now present our experimental results on the Wiki and
Ireland data sets.

One versus two levels: In Table 2 we show the sizes of
the first-level indexes for Wiki and Ireland under IPC and
PFEFD. As we see, IPC performs better than PFD on this part
of the index. Next, in Table 3 we compare the one-level
and basic two-level methods for DIFF and MSA in terms of
index size. For the first level in the two-level methods, we
use IPC, while for the second level, we show results for IPC
and PFD. We see that the two-level methods consistently



outperform their one-level counterparts in terms of index size,
with particularly large improvements when using PFD.

Thus, even without the reordering technique, we see decent
improvements over the one-level versions of DIFF and MSA
evaluated in [11]. To directly compare the results to those
for the combinatorial approach in Table 1, we need to deduct
the size of the first-level structure (73 MB for Wiki and 273
MB for Ireland) from the numbers in Table 3; we see that
there is still a gap between the methods.

[ [ Wiki [ Treland |

1PC 73 273
PFD 114 394

Table 2: Compressed size of the first-level index.

[ [ One Level [ Two Level ]
[ [ Wiki [ Treland | Wiki [ Ireland |
DIFF-IPC 269 751 253 652

DIFF-PFD 323 927 269 757
MSA-IPC 237 682 233 663
MSA-PFD 287 799 243 672

Table 3: Compressed index sizes for the one-level and
two-level DIFF and MSA approaches with IPC and PFD.
In all cases, the first-level index is compressed using IPC.

Results for docID indexes: In Table 4, we look at the
compressed size for index structures with docIDs but no fre-
quency values. First, we see improvements in index size over
the results in Table 3 from use of the reordering technique.
After accounting for the size of the first-level index, many of
the numbers are now in the range of numbers that we saw
from the bitwise approaches in the previous section. The
best result on Wiki is obtained by 2R-HUFF, while for Ire-
land 2R-Hybrid-IPC performs best. Note that, for 2R-DIFF,
2R-HUFF, and 2R-Hybrid, the size of a global table to re-
verse the bitvector is included in the compressed size.

In general, improvements are more limited for Ireland, and
this is probably due to the smaller number of versions per
document: Basically, shorter bit vectors offer less structure
that can be exploited for better compression.

Wiki | Ireland
HUFF 213 577
2R-DIFF-IPC 176 548
2R-DIFF-PFD 193 596
2R-MSA-IPC 179 563
2R-MSA-PFD 195 659
2R-Hybrid-IPC 166 520
2R-Hybrid-PFD 182 572
2R-HUFF 161 542

Table 4: Compressed index size in MB for methods with
reordering on the Wiki and Ireland data set. The first-
level index is compressed using IPC and is included in
the total size. The HUFF method in the first line is the
best previous method from [11].

Results for docIDs and frequencies: In Table 5 we
show results for index structures that contain docIDs as well
as frequencies. This means that for MSA and DIFF we also
change the way virtual documents are defined, resulting in
increases in the size of the docID data itself. For 2R-HUFF,
we have a choice between keeping docIDs and frequencies
separate, or integrating them into one vector for better com-
pression. We again see very significant improvements over
the best previous approach, the HUFF method from [11].

Tuning the hybrid: In Figure 5 we show the compressed
size of a docID-only index as we vary the cut-off between
using MSA and DIFF. We see that for Wiki, it is best to use
all virtual documents in MSA with size at least 20, while for
Ireland, virtual documents with sizes as small as 10 should be

selected. We note that slight additional improvements might
be possible by further tuning of this policy.

Wiki Ireland
docID [ freq [ total [ docID | freq [ total
HUFF N/A | N/A | 336 | N/A | NJA | 645
2R-DIFF-IPC 214 86 300 564 215 779
2R-DIFF-PFD 242 98 340 623 240 863
2R-MSA-IPC 197 41 238 597 154 751
2R-MSA-PFD 212 51 263 658 170 828
2R-HUFF 210 64 274 568 236 804
2R-HUFF combined N/A N/A | 235 N/A N/A | 619

Table 5: Compressed sizes of indexes with docID and
frequencies on Wiki and Ireland. The HUFF method in
the first line is the best previous method from [11].
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Figure 5: Selecting the best cut-off point between MSA
and DIFF in 2R-HYBRID.

Query processing performance: We have observed great
improvements in index size, but these improvements would
be futile if query processing performance is degraded due to
the various complicated ordering and hybrid strategies. We
now show that this is not a problem, and that in fact our
methods are even faster than the fastest previous method,
the Sorted algorithm in [11].

In Table 6, we show query processing cost in milliseconds
per query on the Wiki data for a few of our new two-level
techniques and for the Sorted algorithm from [11] that was
previously the fastest method. For each technique we show
the query processing speed, index size, and number of de-
coded postings per query, using IPC, PFD, and a mixed in-
dex with IPC on the first level and PFD on the second level.

Our query processor assumes that the entire index is kept
in main memory, and thus there are no disk access costs.
Following the approach in [11], we randomly selected 10000
queries from a large trace of AOL queries, considering all
queries that resulted in visits to Wikipedia. As we see from
Table 6, our new two-level methods are in fact all faster
than the fastest previous method! The fastest method is 2-
DIFF, which runs in 0.66 millisecond per query using PFD.
Adding the reordering only increases the time to 0.83 mil-
liseconds. Note that for 2R-MSA, the query processing time
is the same as 2-MSA. Because there is no reversed opera-
tion during query processing. For 2R-Hybrid, we were un-
able to get results in time for the final version, but we expect
running times very close to the methods without reordering.
2R-HUFF, on the other hand (not shown), runs slower than
the other methods, due to the use of Huffman coding, and
takes more than 2ms.

We also note that using IPC instead of PFD in the first
level of the index, but keeping PFD in the second level, only
marginally increases query processing costs, while giving a
decent reduction in index size. The new two-level methods
obtain much of their speed gains by decoding many fewer
postings than Sorted. In fact, this is not unexpected and
was the main motivation for the introduction of two-level



methods in [1]. In summary, our results show decent and si-
multaneous improvements in index size and query processing
speed over all previous approaches.

speed (ms/query) index size (MB) decoded

IPC | PFD | Mix | IPC | PFD | Mix | postings
Sorted 4.28 0.97 - 570 583 - 245
2-DIFF 1.34 0.66 0.68 253 294 269 34
2R-DIFF | 1.51 0.83 0.85 176 217 193 34
2-MSA 1.68 0.99 1.01 233 274 243 28
2R-MSA 1.68 0.99 1.01 179 220 195 28
2-Hybrid 1.59 0.88 0.9 166 207 182 30

Table 6: Query processing cost, index size, and number
of decoded docIDs on Wiki using various algorithms and
compression methods. Mix is the case where IPC is used
on the first level and PFD on the second level.

6. CONCLUSIONS

In this paper, we have studied index organization and com-
pression techniques for versioned document collections. In
particular, we analyzed typical properties of versioned docu-
ment collections that lead to succinct index structures, and
then derived combinatorial upper and lower bounds for index
size. Our main contribution are new index organization and
compression schemes based on the DIFF [2] and MSA [13]
approaches that achieve significant improvements in both in-
dex size and query processing speed.

Our improvements are based on exploiting the properties
of the bit vectors in the second level of the index. The prob-
lem of better modeling these bit vectors is closely related to
text evolution and user edit behavior in versioned collections.
It would be very interesting to come up with simple mathe-
matical models for these bit vectors. In particular, it would
be nice to have generative models for user behavior that ex-
plain the patterns we observe in these bit vectors. We would
expect such models to be different in multi-author environ-
ments such as Wikipedia where multiple authors edit the
same document, and collections such as the Internet Archive
where most pages are maintained by a single person or orga-
nization. While there is a lot of recent work on the structure
of Wikipedia, we have not seen a good model to explain the
overall evolution of text and thus the coming and going of
terms in documents.

Other interesting research problems are improved posi-
tional index structures for versioned collections, and opti-
mizing query processing performance in versioned collections
for different classes of queries.
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