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Abstract—Inverted index files are commonly used to support
keyword search in document collections. While the offline con-
struction of an index can be done efficiently, its incremental
update remains a hard problem, especially when the index does
not completely fit into memory. We propose a novel approach for
maintaining up-to-date index files on a system that constantly
serves document updates and user queries. Unlike previous
updating policies, we use knowledge of both the update term
distribution and the query term distribution to partition the
terms into functional groups. We implement two schemes for
selective enforcement of contiguous layout of the data on disk,
while mandating that the cost of the consolidation is less than
its estimated benefit. The first is the “greedy merge” inspired by
the ski-rental problem (as studied in the context of competitive
analysis). The second is the “opportunistic prognosticator” –
by making reliable predictions, the online problem becomes
suitable for offline optimizations. We compare the performance
of our system with base algorithms for incremental indexing
in three different settings: an “append-only” system that grows
indefinitely, and two fixed size systems where documents are
deleted to accommodate new data, in either chronological order
or in arbitrary order.

I. INTRODUCTION

There is an ongoing and increasing need to perform full-
text search on the vast amount of information generated today
(e.g., web-pages, social media, logging) [1]. Users see a
paramount importance in being able to search for fresh content
as soon as it is introduced into the system. This mandates the
transition of search systems from offline construction of their
data structures (batch build) to online updates (incremental
build) [2]–[4].

A ubiquitous data structure used to support full-text search
is the inverted index [2], [5], [6]. An inverted index file
contains posting lists for every term – ordered collections
of references to all documents where the term appears [7],
[8]. The ordering can be by document ids or by the expected
importance (or impact) w.r.t. a given ranking function [9], [10].
In addition to the document id, it is common to store the
number of appearances of the term in the document and their
positions [11], which is used for advanced ranking and query
techniques [12], [13].

When latency is important and the budget allows it, the
inverted files are kept in the main memory [2], [5], [12], [14].
The large gap between main memory and hard drives (in price
and performance) dictates that in many systems the inverted

file is at least partially located on disk. In this paper, we focus
on the latter case and do not consider incremental updates of
an in-memory index as described in [2], [15].

General consensus for the architecture of an updating index
introduces an intermediate sub-index in RAM – the update
buffer (UB), sometimes called delta index. New documents
are parsed and the produced postings are added to appropriate
posting lists in the UB. At some point (e.g. when UB reaches
a size limit) the data is flushed to disk in an eviction phase
[11], [16]–[18].

Given a set of keywords, the query processing mechanism
fetches the associated posting lists (usually in compressed
form [11], [19]) and looks for documents where some (in OR
queries) or all (in AND queries) of the terms occur. A ranking
function is then used on the result set to order it by an impact
factor. In this paper we make the conservative assumption
that the posting lists are fetched entirely prior to processing,
even for early terminating algorithms. While skipping parts
of posting lists residing in main memory is beneficial, it is
seldom the case for data on disk.

The job of the incremental indexer is to keep the posting
lists fresh without degrading the efficiency of the query
processor. A central challenge of disk-based storage is due to
the limitations that the hardware imposes on the reader/writer
of the data. Sequential access to data is fast, while random
seeks take a lot of time. Therefore an inverted list placed
contiguously on disk is read faster than a list occupying several
segments. In Section II we show that in many of the proposed
algorithms the core idea revolves around maintaining more
or less contiguous lists, while incorporating new documents
efficiently.

We claim that while it is important to keep some of the terms
contiguous (e.g., the ones that are very frequent in the query
log), for many terms the effort of consolidation is wasteful.
We postulate that introducing a continuum of policies for
scheduling merges, from “none at all” to “merge always”, of
small and uniform groups of terms can result in a better trade-
off between index management and query processing time.

Contributions of This Paper: We propose a system for
dynamic updates of inverted indexes that differs in how the
evictions are made from a full update buffer in main memory,
and in how and when the consolidation of segmented data
occurs.



We partition the terms into functional groups using both
update and query distribution estimates. To perform accurate
optimizations, we impose a grouping of the terms into ’Term
Packs’. TPacks are non-overlapping sets of terms such that
all members of a single TPack are comparable w.r.t. both
update and query rate. The posting lists of a TPack are evicted
together from the update buffer (UB), and hence are located
in the same segments of the disk. Similarly, consolidation of
segmented inverted lists is also TPack-wise: either all lists in
a TPack are merged, or none.

We design and implement two strategies for scheduling
merges of segments for the postings of the terms in TPacks.
The Opportunistic Prognosticator uses the update and query
distribution estimations to schedule optimizations when they
are beneficial. The Greedy Merge resorts to a ski-rental based
approach for scheduling optimizations when the future is
unpredictable.

We demonstrate the merits of the system in three settings:
an index with no deletion of documents, an index where old
documents are deleted chronologically to accommodate new
documents, and an index where random deletes are issued in
roughly the same rate as the updates.

The remainder of this paper is organized as follows. In
Section II we discuss the background and related work. The
architecture of the proposed system is described in Section III.
Section IV provides a detailed description of the experimental
setup. In Section V we present the results of performance eval-
uation in multiple scenarios and discuss our results. Finally,
Section VI concludes and discusses future work.

II. BACKGROUND AND RELATED WORK

We outline and classify different methods for constructing
and maintaining an up-to-date inverted index.

Offline Construction: During offline construction (or batch
rebuild) of an index the raw documents are parsed to form
postings of the inverted lists (document inversion). This pro-
cess is illustrative of many processes that take place in an
online inversion. Moreover, a periodic offline rebuilding of the
index is the simplest form of handling incremental updates
of the system (albeit the slowest of them). The techniques
for offline construction and their efficient implementations are
described in multiple surveys, including [5], [8], [11], [12],
[20], [21]. In [21] Heinz and Zobel compare several popular
variations of the inversion techniques, and propose an effective
offline single-pass inversion method.

Re-Merge Updating: The naive approach to index updating
is to rebuild it completely from the updated set of raw
documents. This process is usually performed offline on a
cluster of machines and the new index is then switched with
the old one. An efficient index merging procedure (such
as the one described in [21]) can be trivially applied to
incremental updates. Under the re-merge strategy a batch of
new documents is inverted in main memory and then merged
with the large index file on disk. The immediate benefit over
complete rebuild is avoiding unnecessary inversion of the old

documents. However, the procedure is still costly, as we have
to read and re-write the entire index file.

In-Place Updating: The in-place updating strategy is the
opposite approach, where instead of handling the storage
as a monolithic block, we operate on a term level. During
an eviction from the update buffer (UB) the relevant terms
are appended one at a time. When an inverted list exhausts
the allocated space, it is transferred to a new area, usually
with overallocation. For example, in [22] authors propose to
reserve an extra 10% of space each time a list is relocated to
accommodate future updates. This strategy requires multiple
seeks to different locations on disk when postings of different
terms are evicted from UB.

Comparison of Strategies: Lester, Zobel, Williams in [23]
and later Zobel and Moffat in [11] compared the above
approaches and concluded that if a single strategy is ultimately
applied to all terms, re-merge is better. The intuition for this
conclusion is as follows: to amortize the cost of multiple
seeks of the in-place strategy, the system needs to buffer as
many writes as possible before a disk-friendly write-back takes
place. With small batches the seeks dominate the process, and
with large batches most of the index is being read and written
anyway.

Hybrid Strategies : In these systems the terms are divided
into two classes – those that are handled with the re-merge
strategy, and those that are maintained in-place [3], [17], [22],
[24], [25]. The assignment of a strategy is usually governed
by the length of the list, but also by its frequency in a query
log [3], [25]. In [26], [27] the strategy applies to the entire
index rather than to selected terms and depends on the nature
of the workload in a time-window.

Non-Contiguous Layout: Both in-place and re-merge based
systems go to extremes trying to keep the inverted lists
contiguous. This is mainly due to the hardware limitations
– hard drives are capable of reading sequential data extremely
fast, while reading from random locations is very costly. Yet
there are efficient systems where the contiguity demand is
partially relaxed. In [25] a single monolithic inverted file is
replaced with multiple sub-index files (horizontal partitioning).
In [6], [28] a geometric partitioning is applied – the index is
composed of several partitions with size growing geometri-
cally. In [29] the authors implement two eviction strategies
for the Proteus framework [30] – Selective Range Flush and
Unified Range Flush. Under those polices the postings of
long lists can occupy multiple segments. Similarly in [31],
the long lists are realized as a blockwise linked list on a hard
drive. In [27] the authors propose to apply a ski-rental [32]
inspired technique to schedule the merging of the inverted file
segments.

Summary: A system for incremental updates can be de-
scribed by the following set of parameters:

• Inverted lists: strictly contiguous / segmented
• Space management: tight / over-allocating
• Terms partitioning: single set / multiple groups
• Consolidation policy: static policy / policy that changes

dynamically at runtime



Under this nomenclature an always re-merging system from
[23] is {strictly contiguous, tight, with a single set of
terms, and static policy}; Lucene [6] is an example of
{segmented, tight, single set, static policy}; Proteus from [29]
is {segmented, over-allocating, multiple groups, static policy};
the system we propose is {segmented, tight, multiple groups
(TPacks), dynamic policy}.

III. PROPOSED SYSTEM

We propose a system where several standard components
are redesigned to utilize the knowledge of update and query
rates and distributions. In our system the update buffer (or
delta index) is using a cost-based policy to make partial
evictions and serves as a secondary term cache. An actual
cache for posting list is also present and its size can be
regulated dynamically, depending on the query rate. We allow
for segmentation of the posting data and devise two dynamic
policies for scheduling beneficial consolidations of the seg-
ments, again w.r.t. current rate and distribution of the update
and query streams.

A. Motivation

Obtaining non-cached posting list data for a query incurs
two costs – the penalties for random access (“seeks”) and
the cost of sequential transfer of the postings. The latter cost
is unavoidable, but the seeks can be reduced to a minimum
of one, if all the data is laid as a contiguous block. For
every type of media (e.g., hard drives, SSDs) those costs are
determined by the latency (in ms) and throughput (in MB/s)
of the hardware. For each latency/throughput pair there exists
a constant S s.t. for blocks larger than S the relative share of
the seek penalty is insignificant.

To reduce the overall seek penalties the system is required
to minimize the segmentation of the posting lists. The price
of consolidations is bound from above by the most aggressive
policy – always merging (AM). However, under high query
rate most of the disk I/O is spent on fetching posting lists,
while the consolidation cost becomes negligible.

Clearly, a policy fixed for all terms and query rate oblivious
is always sub-optimal for some subset of the terms. This
motivates us to introduce a system where the terms are divided
into many functional groups according to their expected fre-
quency in both the update and query stream. The consolidation
scheduling for each group is not fixed, but governed by the
cost effectiveness. This allows different parts of the index to
progress through the continuum of policies dynamically.

To illustrate, if we learn that a group of terms participates in
many queries we consolidate the posting lists of its members
more aggressively, while terms that are rarely queried undergo
almost no consolidation whatsoever. This contrary to eviction
scheduling, where an often updated and queried group ought
to be kept longer in main memory.

B. Architecture

We propose a system for dynamic updates of inverted index
that is different in how the evictions are made from full UB

and how and when the consolidation of the segmented data
is scheduled. To be able to perform accurate optimizations
we impose a grouping of the terms into “TPacks”. TPacks
are disjoint sets of terms such that all members of a single
TPack are comparable w.r.t. both the update rate and the query
rate. The postings of lists of a TPack are evicted together
from UB, and are always located in the same segments of
the disk. Similarly, consolidation of segmented inverted lists
is also TPack-wise: either all lists in a TPack are merged, or
none is.

1) Formal Definition of a TPack: We assume that for every
term in our lexicon we have an estimation of their update and
query frequencies (or probabilities). The update frequency of a
term makes it possible to predict the length of its inverted list,
while the query frequency allows us to estimate the number
of queries that hit this term in a fixed time window. We define
a TPack as a set of terms (members) such that:

• The terms have comparable update frequencies, i.e., the
variance of lengths of the members is low.

• The variance of query frequencies predicted for the
members is low as well.

• The sizes of posting lists of TPack members sum up to
at least some threshold S.

The threshold S is chosen to be at least the amount of posting
data we are able to read from disk during an average seek
time. For such S the overhead of accessing the segment (i.e.,
paying for the seek) is never more than the time we need
to read it entirely. Under a realistic distribution of terms in
update and query streams and reasonable UB size and disk
I/O parameters, the total number of TPacks varies from dozens
to hundreds. The dynamics of TPacks follow a long-tailed
distribution: we see a few TPacks with a small number of
long lists and many TPacks with multiple short lists. In the
extreme case we observe a TPack with a single frequent term
versus a TPack with millions of singletons.

The notions of “frequently updated” and “frequently
queried” are extended naturally from terms to TPacks. The
“TPacking” of the terms creates sets with the uniformity that is
inherently lacking when an entire term universe is considered.
This uniformity allows us to apply fine-grained optimizations
to the system.

We use a simple greedy assignment of terms to TPacks
under the constraints stated in the rules. The terms are sorted
by the update frequency first, with the query frequency applied
for tie-breaking. The TPacks are formed by greedily assign-
ing terms in the above-mentioned order until the expected
threshold S is met. We find that partitions obtained with
more rigorous techniques (e.g., clustering) do not improve the
overall performance of the system.

The initial static assignment of terms to TPacks is executed
using a distribution data obtained from a training corpus of
updates and queries. We find that for documents coming from
similar domains (e.g., training on TREC web pages [35] and
running on ClueWeb web pages [36]) will mostly have similar
distributions for updates and queries on a TPacks coarse
granularity. With that said, with negligible overhead we prefer
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Fig. 1. System Architecture

to collect per-TPack statistics of updates and queries to allow
for re-packing the terms if a skew in distributions is observed.

The overhead of TPacks is very small. We need to extend the
lexicon to store a TPack id for every term, in our experiments a
single byte was enough. Additionally for every TPack we store
several counters accumulating update and query statistics as
well as a vector of segment sizes. The length of those vectors
is bound by the total number of evictions of UB.

2) Eviction: Unlike the monolithic re-merge policies, we do
not evict the sub-index in the UB entirely. Instead, we only
free a portion of the UB (e.g., 10%) by writing to disk the
posting-data of TPacks that are less likely to be queried and
updated in the future. This allows the terms (and TPacks) that
are updated and queried frequently to benefit from remaining
in main memory. Since the goal of an incremental index is
to be able to always serve the most up-to-date information,
the query processor is not limited to fetching the posting data
from disk (or term cache), but also able to use the postings
that were not yet evicted.

During an eviction of a TPack we write to disk one stan-
dalone segment containing the inverted lists of all members
of this TPack in the UB. We demand that the evicted segment
is at least of size S, however, it is expected (by design) that
the TPacks reach this capacity during the filling of UB. We
are different from systems that use fixed size segments [18],
[29], [31], because we only constrain the minimal size of the
evicted data. In fact, the rarely evicted TPacks tend to become
very abundant in the UB.

In Figure 1 we demonstrate an eviction stage. In the partial
eviction only three TPacks are chosen, depicted i, j, k. Here
i and j are not considered for consolidation and written
contiguously to disk. The posting data for k is consolidated
with two of three existing segments on disk, forming a new
segment – the union of k2, k3, k (but not k1).

C. TPack Consolidation Policies

The price of merging a segmented index file is proportional
to its length, while the benefit is proportional to the rate of
queries that fetch it. Hence, it is possible that the “investment”
in the consolidation of a term will not “pay off” in a finite
time period, if it is not frequent in the query stream. In the

experimental Section we show concrete examples of this for
realistic distributions.

To consolidate a segmented file one needs to read all its
postings, paying an additional seek for each segment, and
then write the data back to disk contiguously. We claim that a
system that applies static consolidation rules uniformly to all
terms is bound to be sub-optimal. In our system the merges for
each TPack are driven by a benefit function depended on the
frequency of queries to it. All lists of the TPack are merged
at the same time.

A consolidation of a TPack is considered beneficial if in
the context of an experiment (or a chosen finite window, e.g.,
system uptime) the time spent on the merge is smaller than
the sum of delays that are prevented in future queries.

1) Cost and Benefit: For M segments containing consecu-
tive parts of the inverted lists with sizes |s1|, |s2|, ..., |sM | the
consolidation price is:

CP =
∑
|si|+M · Seek +

∑
|si|+ Seek

i.e., traversing the data, paying for reads and M seeks, then
writing it all to a new segment, paying for one write seek.

The benefit of that consolidation when Q is the number of
queries that are expected to hit the segments in their lifetime
is:

CB = (M − 1) ·Q · Seek

i.e., saving total of M − 1 seeks for each of the Q queries.
When considering consolidation of two or more segments

the following universal observations are driving our choices:
• Merging M segments into one eliminates M − 1 seeks

for all queries performed after the merge, regardless of
the sizes of the segments, hence it is preferable to merge
smaller segments to get better cost/benefit ratio.

• Delaying a beneficial merge reduces the benefit, since the
cost of merge remains the same and the number of queries
is diminished (when we consider a finite time frame).

• With that said, it is sometimes preferable to postpone a
merge of existing segments until a new one is introduced
to benefit from a N -way merge. For instance, instead of
merging segments of sizes 2x and x we await for the
arrival of another x-sized segment to form 4x.

2) Greedy Ski-Rental: The scheduling of inverted file
merges is an optimization problem that can be realized as
a variant of the ski-rental problem [27], [32]. The ski-rental
family of problems deals with scheduling optimization in sys-
tems where the future is unpredictable. In the non-randomized
approach an optimization with a cost C is performed only after
at least C worth of resources were “wasted” operating a non-
optimized system.

In our implementation we keep an overhead count in the
form of abstract tokens for each TPack – it relates to the
number of superfluous seeks issued when serving queries to
this TPack. A consolidation cost of a chain of segments is also
expressed in tokens. A merge is scheduled for a TPack when
it acquires enough tokens to pay for it. The cost of the merge
at that point is deduced from TPack’s tokens. This strategy



ensures a consolidation schedule well fitted for the needs of
each TPack. Those with low-query rate are accumulating less
tokens and rarely consolidate, while the frequently hit “afford”
consolidating often.

Following the observations in III-C1 the system strives
to spend as many tokens as possible on merging as many
consecutive segments as possible. We start by considering the
smallest segments (usually occurring in the tail of the segment
list) and terminate the search when we get to unaffordable
merges.

Note, that the accumulation of tokens is quadratic in the
number of segments:

tokens = 1 · q1 + 2 · q2 + ...+m · qm

where qi is the number of queries that hit the TPack between
eviction i + 1 and i + 2 (when no merges were made). For
non-decreasing query rate:

tokens =

m∑
i=1

i · qi ≥
m∑
i=1

i · q1 = O(m2 · q1)

Yet, this does not mean that TPacks are easily driven to aggres-
sive consolidation modes, since the cost for such policy also
approaches quadratic. An explicit control of the aggressiveness
is possible by introducing a conversion function between the
I/O costs and tokens, thus making the algorithm more or less
eager to perform consolidations.

Overall, this method aims at a decent trade-off between
consolidation cost and query cost, reducing the number of
“over-merged” and “under-merged” lists in the index.

3) Opportunistic Prognosticator: There exists a textbook
efficient algorithm for optimal scheduling of merges [37], [38].
The list of segments is managed as minimum heap and the
algorithm always fetches k smallest segments (k ≥ 2) and puts
their union as a new segment back to the heap. The process
terminates when just one segment remains. This algorithm
can be trivially extended to yield an optimal schedule given
query counts. However, it can only guarantee optimality for
the offline case, when all segment sizes and query counts are
known ahead.

To utilize the power of the optimal algorithm we build
a coarse TPack-level model of evictions to disk and query
dynamics. The model uses the distributions obtained from
training data and the statistics we gather for TPack during
runtime. Using the model we can to some extent predict the
near future and obtain an optimal scheduling for it via offline
algorithm.

In listing 1 we show a pseudo-code of a procedure that pre-
dicts the sizes of segments for every TPack after E evictions
of 10% of the UB, assuming no merges occurred. The only
input it takes is the updates counter of each TPack.

In listing 2 we demonstrate how such prognosis is used to
schedule consolidations. If a TPack has at least one segment on
disk, when evicting another portion from UB we must choose
whether to write it as a new segment or merge it with some
(or all) of the existing segments. Note, that at this point the

Algorithm 1 Prognosis
1: updateArray ← array of update counters
2: normalize updateArray
3: Segments← []
4: for i = 1 to evictions− count do
5: while UB not full do
6: UB �

∑
updateArray[i]

7: end while
8: while UB > 90% full do
9: candidate← leastPopularTPack()

10: Segments[candidate]� evict(candidate)
11: end while
12: end for

consolidation is cheaper, since the last segment still resides in
main memory.

We obtain a consolidation schedule optimal w.r.t. the prog-
nosed segment sizes and the expected query counts. If in that
schedule the new segment is destined to merge with one (or
more) of its predecessors, we immediately perform the same
merge, while the segment is still in memory. Otherwise, we
write it as is. It is still possible that this segment participates
in a merge with its successors in future.

Algorithm 2 Merge Scheduling
1: segments← projected sizes of the segments
2: queries← expected queries based on TPack stats
3: while |segmentSizesArray| > 1 do
4: gain← max (benefitAt(i)− costAt(i))
5: if gain < 0 then return
6: else
7: i = argmax (benefitAt(i)− costAt(i))
8: merged← segments[i] + segments[i+ 1]
9: remove segments[i],segments[i+ 1]

10: insert merged at i
11: record beneficial merge at i
12: end if
13: end while

The crude model may be applied to alleviate another prob-
lem we face when designing a search engine – deciding how
to use the valuable main memory budget. In particular, what
portion of the memory ought to be devoted to the UB and
how much will be used for the term cache (TC). General rule
of thumb dictates to increase the size of the UB if updates
are dominating the disk I/O of the system and favor the TC
when most of disk I/O is due to queries hitting the system.
Yet, finding the sweet spot for the UB/TC trade-off is tricky.
Moreover, poor choice can significantly increase the disk I/O
(as we are demonstrating in our experiments).

We propose to use the prognosis in order to pick the best
combination of the two parameters: the UB to TC ratio and
the portion of the UB we free during eviction. We start by
assigning a reasonable value (e.g., 50/50 for UB/TC ratio and
10% for eviction share, but after recording the update and



query statistics we use the model to perform parameter tuning.
4) Unreliable Predictions: We briefly list several factors

that hinder our ability to perform precise predictions, and
hence affect the performance of our algorithm.

• The query and update distribution of terms may change
by either bursts or a slow drift, rendering our predictions
unreliable. Although we are perfectly capable to recog-
nize such discrepancy and refine our model it does not
happen immediately.

• It is hard to account for the effects of a term cache on disk
I/O. Ignoring it results in overestimating the needed disk
I/O to popular TPacks and with it the benefit and the need
for merges. To keep the model simple and fast we apply
only very basic correction governed by expectations of
cache hit ratio for each TPack.

• For the environments with document deletion we need
to factor the churn rate when calculating the benefit of a
merge.

In general, since the cost of collecting per-TPack stats of
updates, queries, cache hits, etc., is insignificant, we prefer
to constantly update our simple model and produce new
predictions, rather than engineer a robust and expensive model.

5) Summary: We propose a system with term partitioning
based on update and query frequencies and require that the UB
is managed as a priority queue w.r.t. these partitions – evicting
the least “interesting” data to disk first. We show two dynamic
and query rate driven techniques for scheduling consolidation
of segmented data.

IV. EXPERIMENTAL EVALUATION

A. Studied Environments

We study the behavior of a dynamically updating index
in three models of realistic usage. The index receives an
interleaving stream of updates and queries. The queries are
handled immediately, while the updates are applied to a small
sub-index residing in main memory – update buffer (UB). The
system uses an in-memory term cache (TC) for frequently
queried terms to reduce the disk I/O for query processing.

1) Append only system – the updates are always additions
of new documents. The inverted files in this case may
grow indefinitely (in practice, until the disk space is
exhausted).

2) Chronological deletes – to accommodate the data from
new documents the postings of old documents are re-
moved from the index in chronological order.

3) Arbitrary deletes – the documents are deleted in random
order and at roughly the same rate as new ones are
added.

In environments 2 and 3 we deal with steady-state systems –
the disk space budget is limited, and the overflow is controlled
by a churn-rate. In both cases we use the standard practice –
maintaining a buffer of the removed content and applying the
changes during merges [16], [39]. The setup can be naturally
extended to support document revisions (such as in [40]).

B. System Prototype

We compare the performance of the proposed system with
two approaches: full re-merge at every eviction (denoted AM)
and logarithmic merge similar to the one used in Apache
Lucene (denoted LM). The experimental prototype includes
an implementation of the in-memory update buffer (UB) and
a term cache (TC) using the Landlord algorithm for evictions
[41], [42]. We assume that disk I/O is a dominant factor
in any of the index operations and do not record the times
of processing memory resident data (e.g., lexicon updates).
Similarly, we omit the actual processing of the query for all
algorithms and consider only the time it takes to bring the
required inverted lists to memory (unless already cached).

The expected running time of many of our experiments is
dozens or hundreds of days on a real hard drive, which renders
them infeasible. Instead of actual disk I/O we direct all calls
to simulated disk model that evaluates the required disk seeks
and sequential R/W and translates those to time estimation.
Similar simplifications were used in other works [22], [43].

We acknowledge that providing an accurate I/O model for
multiple devices is challenging [44], [45] and limit ourself to
overhead estimation with a simple model parametrized with
average disk seek time (latency) and sequential R/W time
(throughput). Our model is conservative and punishes non-
sequential I/O (hence, our system).

A “lite” version of our system and simulator are publicly
available at https://github.com/tpackindex/tpackindex
(anonymized). It allows to perform crude but extremely fast
estimations of running times of our system and two baselines
under different query loads.

In our experiments a generic model of HD is configured
with seek time of 7ms and 150 MB/s for sequential read. The
configuration of the SSD model is based on Samsung 850
PRO drive characteristics [46] with latency of 0.06ms and
sequential read of 500 MB/s.

C. Update and Query Streams

We stress our system with an interleaving stream of updates
and queries. While it is relatively simple to produce a multi-
billion posting stream of updates, the publicly available query
logs are too small to provide similar load for the query stream.
With that said, our goal is to measure the performance of the
system in a realistic environment, hence it is crucial to mimic
a stress of a real system. To achieve these goals we construct
a language model of the updates and the queries.

We use TREC GOV2 dataset [35] (25.2 million web pages)
and the first 80% of the TREC 2006 Efficiency track query
trace as our training set, the remaining 20% are the test set.
For each term we record the number of documents and queries
where a term appears.

We also record the frequencies of terms in the documents
of Clueweb09 TREC Category B [36] (50 million English
pages). Next, we use MIT Language Modeling toolkit [47]
to obtain from the training set, ClueWeb09 data, and the test
set two distributions: update and query. Effectively, two non-
zero probabilities are assigned to every term in the lexicon:

https://github.com/tpackindex/tpackindex


the chances to appear in an update and the chances to appear
in a query.

The simulator samples these distributions to produce arbi-
trarily long update and query streams for our experiments.
Note, that we avoid data pollution and do not make the “real”
distributions explicitly available to the system. For the initial
partitioning of the TPacks we use the training set, and the
consolidation algorithms only use the distribution that they
learn during bootstrapping phase.

We operate under the assumption that a query result cache
exists in front of our system and only misses of that cache
reach our engine. Similar implicit assumption is present in the
query log we use, since it does not contain duplicate queries.

D. Setup

1) Envirnoments: We test separately the three supported
environments (see Section IV-A). In the first phase of the
experiment we stream 32GiB worth of updates to the system.
Under all environments there are no deletions of postings
during this phase, but the queries are processed in a normal
fashion. The lengths of the inverted lists and the issued queries
are the same for all algorithms at this point.

In the second phase we stream additional 224GiB of
updates. For the environment with no deletes the index grows
accordingly to accommodate all 256GiB. In environments
with chronological and random deletes the disk footprint of
the index remains roughly 32GiB since we delete as much
data as we add.

2) Query Rate: We stress the system with low, medium,
and high query rates. The low query rate tests are to estimate
the performance of the algorithms when the inverted file man-
agement is a significant part of the system running time, while
the I/O for query processing is less influential. The high query
rate is needed to show how different algorithms scale with the
number of queries hitting the system, to uncover the different
trade-offs inherent in them, and to estimate the running times
in a situation where the I/O of the query processing component
dominates the running time of the system.
Low: 16 queries per 1, 000, 000 updates, total of 1, 000, 000
queries. An always-merging algorithm with a UB of 2GiB
spends 57% of disk I/O on queries.
Medium: 64 queries per 1, 000, 000 updates, total of
4, 000, 000 queries. An always-merging algorithm with a UB
of 2GiB spends 84% of disk I/O on queries.
High: 1024 queries per 1, 000, 000 updates, total of
64, 000, 000 queries. An always-merging algorithm with a UB
of 2GiB spends 98% of disk I/O on queries. The labels low,
medium, high merely reflect on the relative share of disk
I/O spent on processing queries and are not to be treated as
absolute measures of query traffic in a real search engine.
Note, that under all rates the term distribution of the query
stream does not change – whether we issue a million queries
or a billion, they all are sampled using the same language
model.

3) Update Buffer vs. Term Cache: In all experiments
8GiB of main memory are shared between the update buffer

(UB) and the term cache (TC). Larger UB results in less
evictions and less segmentation. Larger cache reduces the
disk I/O by serving popular queries from main memory.
For every algorithm (apart from self regulating Prognos-
ticator) we experiment using the following shares of the
UB: 16%, 25%, 32%, 50%, 75%, 96%. Since the performance
of AM and our system degrades rapidly for UB share be-
low 16%, we normally perform the tests with smaller UBs
(1%, 2%, 4%, 8%) on LM alone.

E. Comparing with URF

We implement the Unified Range Flush method from [29]
as a fast representative of systems for incremental update.
Similarly to our framework the terms are divided to groups and
different policies are applied for managing them on disk. In
URF a single group (range) contains consecutive terms ordered
lexicographically. The number of terms in a range depends on
the total space it occupies on disk. Upon overflow the range
is split to multiple smaller ranges. The long lists are treated
specially and managed using in-place strategy.

In [29] the authors present results for a very specific setup
– a system with no deletions, no term cache, UB of 1GiB, and
flushed memory size of 20MB. The authors use the standard
corpora for documents and queries [35], [36]. While the build
times are recorded for an incrementally updating index, the
query time is measured for a single batch of 1000 queries
after index construction. To be able to compare our system
with URF we implement the algorithm for our simulator
and execute it on an a same interleaving stream of queries
and updates that was used for testing the base-line and our
algorithms.

V. RESULTS AND DISCUSSION

In figures 2 and 3 we present the results of experiments in
Environment 1 (ever-growing) on HD and SSD respectively.
AM shows the worst running time in both cases since there
are not enough queries s.t. the benefits of contiguous lists
outweigh the quadratic costs of the consolidation. In fact,
this quadratic cost is visible in the chart for smaller UB
shares. While increasing the UB share in memory significantly
reduces the consolidation costs for AM, the total running time
improves only upto 50% and slowly increases again as TC
is reduced. This is simply because larger UB comes at the
expense of the TC.

LM seems to be much more handicapped by decrease of
TC share than benefiting from the growth of UB. This is only
because it reaches its sweet-spot for UB shares much smaller
than AM: 15%−20%. For even smaller UBs the consolidations
take their toll and total running time increases.

Our system with Greedy Merge powered by a ski-rental
scheme (denoted SKI) performs better than either of the
baselines. Like LM it sweet-spots on small UB shares. On HD
it is as sensitive to TC deprivation in large UB cases, but for
SSD its performance is much more stable. It is expected due to
the discriminative eviction from UB – since the most popular
TPacks are kept in memory and serve queries directly from



Fig. 2. Total running time in minutes with various UB sizes for
medium query rate on HD. Lower is better.

Fig. 3. Total running time in minutes with various UB sizes for
medium query rate on SSD. Lower is better.

UB it effectively operates as a cost-based cache. In general,
we observe that our system performs better on SSDs since
the segmentation penalties are at least an order of magnitude
smaller for it. LM also tends to benefit from it and shows
larger relative gap in running time when compared to AM.

When we use the Opportunistic Prognosticator (denoted OP)
the UB/TC ratio is chosen automatically, hence we present a
single trend line to compare with other methods. We find that
the calculated decisions OP makes result in better running time
than the best of SKI on HD and as good as SKI on SSD.

Fig. 4. Total running time in minutes with various UB sizes for low
query rate on HD. Lower is better.

The results of experiments with low query rate are in Figure
4. The quadratic cost of consolidation is more profound for
AM and it sweet-spots for UB share as large as 75%. SKI

performs better than LM when UB is larger than TC and
it is the other way around for smaller UBs. OP achieves
better running times by allowing for a greater segmentation
of TPacks and avoiding unhelpful merges.

Fig. 5. Total running time in minutes with various UB sizes for high
query rate on HD. Lower is better.

TABLE I
TOTAL DISK I/O TIME IN MINUTES FOR LOW AND HIGH QUERY RATES ON

SSD. LOWER IS BETTER.

Low Query Rate High Query Rate
AM 1754 84,350
LM 1394 83,097
SKI 1167 66,917
OP 1260 68,007

In Figure 5 we observe the running time for high query rate.
In this case the consolidation costs of all systems (even AM)
become negligible and the importance of having a large TC
becomes paramount. We see that in this case AM outperforms
LM, since LM lists often require multiple seeks (logarithmic
in evictions in the worst case). SKI performs much better than
AM and LM (even its worst result is better than the best for
AM). OP performs as well as the best result for SKI.

Due to lack of space we omit the charts for other experi-
ments and present only the summaries with the best results
for each algorithm. The charts in those cases show trends
similar to shown in the above figures. The charts are publicly
available at https://github.com/tpackindex/experiment-results
(anonymous repository).

In Table I we show the best results for every algorithm for
low and high query rate using SSD. On SSD we observe even
better performance of both SKI and OP. We see that the model
OP uses for future prognosis is too conservative for an SSD,
causing a small bias in predictions. Consequently SKI shows
slightly better performance in the best case. However, it is
important to remember that obtaining an a priori UB/TC ratio
to achieve the best result is not trivial.

In tables II and III we show the best results of experiments
executed on Environment 2 and Environment 3 respectively.
We find that our system outperforms the baseline algorithms
in all experiments. Introducing deletions impedes our ability
to make accurate predictions and in several cases we again
observe better performance for SKI.

https://github.com/tpackindex/experiment-results


TABLE II
CHRONOLOGICAL DELETES. TOTAL DISK I/O TIME IN MINUTES. LOWER

IS BETTER.

HD SSD
Low Medium High Low Medium High

AM 1329 4605 65,562 365 1254 17,729
LM 1350 4982 77,353 333 1169 17,582
SKI 1318 4308 55,744 295 990 13,910
OP 1370 4120 54,100 286 977 13,922

TABLE III
RANDOM DELETES. TOTAL DISK I/O TIME IN MINUTES. LOWER IS

BETTER.

HD SSD
Low Medium High Low Medium High

AM 5075 18,732 283,770 1489 5494 83,191
LM 4892 19,040 301,714 1350 5146 83,061
SKI 5091 16,909 238,478 1163 4447 66,745
OP 4587 16,033 239,715 1256 4468 68,001

A. Comparing with URF

We run URF and our system with OP and the reference
settings for URF: no deletion of documents, no term caching.
Although in the original paper URF is handling only a single
batch of 1000 queries after accommodating all postings, we
stress it with our usual low, medium, and high query streams
interleaving with updates. We run the experiment simulating
a hard drive storage and UB budgets of 1 and 8 GiB.

TABLE IV
TOTAL DISK I/O TIMES (MINUTES) FOR URF AND OP

UB: 1 GiB UB: 8 GiB
low medium high low medium high

URF 6700 23,000 353,500 5700 22,300 350,500
OP 6100 22,400 342,100 5000 18,600 287,300

A system based on Unified Range Flush shares similarities
with our system. Data is only partially evicted from UB, the
terms are grouped into functional sets, the segmentation of the
index is controlled using a dynamic strategy.

However URF has no use for query distribution information.
The partial eviction of data from UB does not necessarily favor
less frequent lists. The grouping of terms is lexicographical
and only long lists get special treatment. Moreover, the number
of ranges constantly increases (reaching thousands in our
tests), while the TPacks numbers are kept within manageable
dozens. The segmentation control is dynamic, but it only
accounts for the updates distribution.

We believe that by introducing query stream awareness to
URF it possible to improve its performance to be on par or
even better than the system we propose.

B. Summary

Our experimental results indicate that non-monolithic and
query aware policies outperform the baseline approaches in
most environments. Our system is less sensitive to bad choices
of UB to TC ratios, especially on SSD. The Opportunis-
tic Prognosticator often outperforms ski-rental based Greedy
Merge or at least performs on par.

The results clearly imply that the query distribution and rate
ought to be acknowledged when designing and configuring a
search engine – whether for picking a proper eviction and
consolidation policies, or for allocating main memory for UB
and TC. We demonstrate that Greedy Merge is able to address
the former and Opportunistic Prognosticator helps with the
latter as well.

While showing that TPack-based system works in general,
it is obvious that neither of our proposed schemes is always
executing an optimal schedule. But we do believe that the
results are promising enough to motivate further investigation
of system reacting dynamically to update and query rates.

We observe that even though SSDs provide much better
latency/throughput capabilities, the choice of an optimal policy
is still very important, i.e., the index update problem remains
actual. We see that the cheap seeks on SSD allow for more
segmented data, which makes them extremely appealing to
all systems that sacrifice contiguity (including logarithmic
merge).

VI. CONCLUSIONS AND FUTURE WORK

We demonstrate that using competitive analysis and/or pre-
diction for functional groups of terms often provides com-
petitive edge over monolithic and static algorithms, while
incurring insignificant overhead for book-keeping. The im-
provement comes from consolidation scheduling that strives to
optimality, but also from turning the update buffer into another
level of term cache with cost based eviction policy. Finally, we
show that different choices of UB/TC ratios are beneficial in
different scenarios and exploit this knowledge in Opportunistic
Prognosticator.

In our future work we plan to further investigate the
dynamic optimization of merge scheduling for TPacks. We
plan to further improve the quality of prediction for the
Prognosticator, thus allowing the system to make offline-
algorithm quality decisions in an on-line setup. Finally, we
want to test the system with real data, while writing the files
to actual hard drives.
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