Efficient Communication Using Total-Exchange

Satish Rao
NEC Research Institute
4 Independence Way
Princeton, NJ 08540

Torsten Suel
NEC Research Institute
4 Independence Way
Princeton, NJ 08540

Dept. of Computer Science

Mark Goudreau
Dept. of Computer Science
University of Central Florida
Orlando, FL 32816

Thanasis Tsan?fz‘las]L

Columbia University

New York, NY 10027

Summary

A central question in parallel computing is to determine the extent to which one can write parallel
programs using a high-level, general-purpose, and architecture-independent programming language
and have them executed on a variety of parallel and distributed architectures without sacrificing
efficiency. A large body of research suggests that, at least in theory, general-purpose parallel com-
puting is indeed possible provided certain conditions are met: an excess of logical parallelism in the
program, and the ability of the target architecture to efficiently realize balanced communication
patterns.

The canonical example of a balanced communication pattern is an h-relation, in which each proces-
sor 1s the origin and destination of at most h messages. A plethora of protocols has been designed
for routing h-relations in a variety of networks. The goal has been to minimize the value of h while
guaranteeing delivery of the messages within time a constant factor from optimal. In this paper we
describe protocols that meet the most stringent efficiency requirement, namely delivery of messages
within time that is a lower order additive term from the best achievable. Such protocols are called
l-optimal. While these protocols achieve 1-optimality only for heavily loaded networks, that is, for
large values of h, they are remarkable for their simplicity in that they only use the total-exchange
communication primitive. The total-exchange can be realized in many networks using very simple,
contention-free, and extremely efficient schemes.

The technical contribution of this paper is a protocol to route random h-relations in an N-processor
network using 2(1+ o(1)) + O(loglog N) total-exchange rounds with high probability. Using mes-
sage duplication, we can improve the bound to %(1 +0(1)) + O(log*N). This improves upon the
%(1 + 0(1)) + O(log N) bound of Gerbessiotis and Valiant. While our theoretical improvements
are modest, our experimental results show an improvement over the protocol of Gerebessiotis and

Valiant.

1 Introduction

In this paper we study the total-exchange communica-
tion pattern in the context of general-purpose parallel
computing. Under this communication pattern, every
processor has a distinct message to send to every other
processor. The efficient implementation of the total-
exchange in a variety of networks has been extensively
studied [16, 4, 14]. These studies were primarily mo-
tivated by the ubiquitousness of the total-exchange in
many parallel algorithms, particularly in the field of
scientific computing [15, 7, 6, 3].

Our motivation i1s, however, different. We study the
total-exchange communication primitive for its poten-
tial to implement general communication patterns in
parallel computers. Specifically, we consider a class of
balanced communication patterns, called h-relations,
in which each processor is the origin and destination

i Supported by NEC Research Institute.

of at most A messages. The efficient realization of A-
relations is very important, as it is a necessary condi-
tion for the optimal implementation of high-level pro-
gramming models such as Valiant’s BSP model and
the PRAM [24, 26, 25]. Thus, the main idea is to
write computer programs in a language based on these
models and, provided the degree of virtual parallelism
1s sufficiently large compared to the number of proces-
sors available, have them executed with optimal effi-
ciency. (Intuitively, the value of h corresponds to the
ratio of the degree of virtual parallelism required in a
program to the number of processors in the underlying
machine.) For a detailed description of this approach,
as well as discussions on efficient general-purpose par-
allel computing, see [26, 25, 7, 19, 20].

In this paper, we present theoretical and experi-
mental results in support of total-exchange based com-
munication protocols for routing h-relations. Our goal
i1s to minimize the number of total-exchange rounds.

We consider the case where h is large (about the size
of the network) and compare the performance of our
protocols with existing ones considering two architec-
tures. The strengths of our approach are detailed in
the following arguments:

1. The total-exchange communication pattern can
be implemented efficiently in a variety of inter-
connection topologies. For example, there are
simple protocols for the circuit-switched butterfly
and the Optically Connected Parallel Computer
(OCPC) model that run in N/2 and N steps, re-
spectively. We emphasize that these protocols are
contention-free and require very simple network
control.

2. We show how a random h-relation can be routed
using %(1 + o(1)) + O(loglog N) total-exchange
rounds, with high probability. This can be im-
proved to %(1 + o(1)) + O(log™ N) if duplication
of messages is used. Arbitrary h-relations can be
routed in about twice as much time, by first rout-
ing to random intermediate destinations as pro-

posed by Valiant [23].

3. We compare the total-exchange based protocols
against other protocols in two cases: The N-node
OCPC, for which there is a protocol to realize
a random h-relation within A(5.5 4+ o(1)) com-
munication steps provided that A = w(loglog N)
[10], and the N-input circuit-switched butterfly
for which there is a protocol to realize a random h-
relation within O(hlog N loglog N) parallel com-
munication steps [21]. These protocols were engi-
neered towards achieving efficiency for small val-
ues of &, rather than l-optimality for large values
of h.

In contrast, our protocols are 1-optimal for large
values of h. Specifically for h = w(N loglog N)
and h = w(Nlog"N), we present two l-optimal
protocols for routing random h-relations in both
architectures. This improves upon a result by
Gerbessiotis and Valiant [7], who gave a 1-
optimal total-exchange based algorithm for & =

w(N log N)*.

4. Experiments based on a variation of our protocols
show its efficacy for routing large h-relations.

The remainder of the paper is organized as fol-
lows. In the next section we discuss the importance
of h-relations in general-purpose parallel computing,
and we review simple protocols for realizing the total-
exchange on the butterfly and the OCPC. Section 3

*We remark that these algorithms can also be used hierar-
chically to lower the value of i at the expense of the protocol’s
optimality. For example, there is a two-level total-exchange
protocol that is 2-optimal for & = w(v/Nloglog N).

contains our new protocols. Finally, in the last sec-
tion, we present experimental results using a variation
of one of our protocols.

2 Communication primitives and
general-purpose parallel computing

In this section we discuss the importance of h-relations
in the theory of general-purpose parallel computing.
Much of this discussion is drawn from [22]. Then
we survey routing protocols in two contexts, viz., the
circuit-switched butterfly and the OCPC (Optically
Connected Parallel Computer). Finally, we review two
simple protocols for realizing a total-exchange in these
networks. None of the results in this section are new.

One of the major challenges in parallel computing is
to determine the extent to which general-purpose par-
allel computing can be achieved. The goal is to deliver
both scalable parallel performance and architecture-
independent parallel software. One approach towards
achieving this goal has been proposed by Valiant
[24, 26]. (Other approaches have been proposed; see,
for example, Kruskal, Rudolph, and Snir [17].)

Valiant introduced the Bulk-Synchronous Parallel
(BSP) model which abstracts the characteristics of a
parallel machine into three numerical parameters cor-
responding to the number of processors, bandwidth,
and latency. The BSP model was suggested by Valiant
as a possible “bridging model” to serve as a standard
interface between the language and architecture lev-
els in parallel computation. It can support two pow-
erful programming styles: a shared-memory PRAM-
like programming style and a direct programmingstyle
where the programmer maintains control of memory
allocations. As already mentioned, any parallel archi-
tecture that can efficiently realize h-relations can also
efficiently support programming languages written for
the BSP model’. The value of h affects the latency
parameter of the BSP model, and the efficiency of the
implementation of an h-relation affects the bandwidth
parameter of the BSP model. Specifically, higher val-
ues of h produce higher values for the latency parame-
ter. On the other hand, assuming a higher value of A,
one can derive more efficient solutions to the h-relation
routing problem, and thus obtain better values for the
bandwidth parameter of the BSP model.

While there are numerous existing protocols for
routing h-relations [26, 18], they are primarily con-
cerned with minimizing the value of & while guaran-
teeing that a random h-relation is delivered within
a constant factor of the optimal time. For the BSP

t Arguments for the BSP model have been extensively pre-
sented and supported by theoretical analysis. For precise defini-
tion of the BSP model, examples of BSP-style algorithms, and
arguments for the candidacy of BSP as a universal model, we
refer to Valiant [24, 26, 25, 7] and McColl [19, 20].

model, this translates to minimizing the latency pa-
rameter while only sacrificing the bandwidth by a con-
stant factor. A different approach is to require that the
h-relation be routed in time that is optimal to within a
factor of 1+0(1). These protocols are called 1-optimal
by Gerbessiotis and Valiant [7]. For the BSP model,
such an approach corresponds to minimizing the la-
tency while essentially not sacrificing any bandwidth
at all.

In addition to defining l-optimality, [7] presents
a very simple l-optimal protocol based on the total-
exchange primitive. Here we improve on [7] and give
protocols, also based on the total-exchange, which are
l-optimal for a slightly wider range of A. These pro-
tocols are very simple to implement, contention-free,
require minimal hardware control, and are efficient.

To illustrate the strengths of total-exchange pro-
tocols against those designed for small values of h,
we consider two abstract networks. The first is the
N-input circuit-switched butterfly, where any set of
disjoint paths can be set up in one step. For such a
network, the results of Ranade, Schleimer and Wilk-
erson [21] imply that there is a protocol that routes a
random h-relation in O(hlog N loglog N) steps. For
large h, the total-exchange based protocols are bet-
ter by a factor of O(log N loglog N'). This is achieved
by the protocol of Gerbessiotis and Valiant [7] when
h = w(NlogN), or by our protocols when h =
w(Nloglog N) and h = w(N log™ N), respectively.

Our second example is the OCPC (Optically Con-
nected Parallel Computer), a model designed to cap-
ture the features of optical communication systems.
This model was previously used by Eshaghian [5] and
Anderson and Miller [1]. (A similar model was also
discussed by Hartmann and Redfield [13].) An N-
OCPC consists of N processors, each of which has its
own local memory. In any step, a processor can send
at most one message to any other processor. If two
processors transmit messages to the same processor,
neither transmission is successful and the messages
have to be retransmitted. A successful transmission
is acknowledged by sending a confirmation message to
the sending processor; hence, a non-successful trans-
mission is detected by the absence of such an acknowl-
edgement message. Thus, in constant time, all the
processors requesting accesses are informed whether
they have succeeded. A very simple randomized proto-
col for routing h-relations on an N-OCPC is described
by Geréb-Graus and Tsantilas in [8]. Their protocol
runs in time O(h+log N loglog N). A much more com-
plicated protocol that runs in time ©(h + loglog N)
is described in [10]. For either protocol, however,
the constant factor is about 5.5. In contrast, for
large h, our total-exchange based protocols achieve 1-
optimality on the OCPC.

Finally, we describe how the total-exchange primi-

tive itself can be realized in these two networks. We
emphasize the simplicity of these protocols, the fact
that they are contention-free, and the low hardware
control requirements for their realization.

Fact 1 There exist simple, deterministic and content-
ton-free protocols that realize the total-exchange in the
N -input multi-port butterfly and the N-OCPC within
N/2 and N parallel communication steps, respectively.

Proof. 'The protocol of [7] realizes the total-exchange
in the OCPC as follows. It runs for NV phases, and dur-
ing phase j processor ¢ transmits its message destined
for processor (i + j) mod N.

For the butterfly, one can implement the previous
protocol in N steps, in the single port model of the
circuit switched butterfly. (That is, the set of circuits
that can be routed in one step correspond to a set of
node disjoint paths.) In a multi-port circuit switched
model, where the set of circuits that can be routed
in one step correspond to a set of edge disjoint paths,
one can implement a total-exchange in N/2 rounds
as follows. Consider the N permutations obtained as
compositions of a sequence of log N shuffle or exchange
permutations as defined by the shuffle-exchange net-
work. The result follows by observing that these per-
mutations constitute a total-exchange and that they
can be divided in pairs each of which can be realized
in a conflict-free manner in the butterfly. l

3 Two Routing Protocols

In this section we present two protocols for routing
random h-relations in networks equipped with the
total-exchange communication primitive. These pro-
tocols can also be used to route arbitrary h-relations,
by using Valiant’s two-stage routing strategy [23],
where messages are first sent to a randomly chosen
intermediate destination.

Gerbessiotis and Valiant [7] observed that the
maximum number of messages over all origin-
destination pairs in a random h-relation is h/N +
O(+/(h/N)loglog N) 4+ O(log N), with high probabil-
ity. This implies that %(1 + o(1)) + O(log N) total-
exchange rounds suffice to route all messages to their
destinations.

On the other hand, the standard deviation of the
number of messages over any origin-destination pair is

O(y/h/N), and it can be shown that at least h/N +

Q(\/h/N) total-exchange rounds are needed to route a
random h-relation, with high probability. Thus, in the
design of our protocols, we have to deal with the fact
that the number of messages over all origin-destination
pairs in a random h-relation is not uniform. We do
this by routing some of those messages that belong

to heavily loaded origin-destination pairs to random
intermediate destinations.

In our analysis, we assume that every processor ini-
tially holds h messages, and that the destinations of
the messages are chosen independently and uniformly
at random from among the N processors. Note that
the resulting communication pattern will actually not
be an h-relation in the strict sense. However, our re-
sults can also be extended to the case of a “true” h-
relation chosen uniformly at random from the set of
all h-relations.

3.1 Analysis of a Simple Routing Protocol

In this subsection, we present and analyse a sim-
ple protocol that achieves l-optimality for h =
w(N loglog N). For the sake of simplicity, we assume
h = O(Nlog N). However, the result can be fairly
easily extended to larger values of h, either by run-
ning the protocol repeatedly on small subsets of the
input, or by adapting it appropriately. The protocol
runs in the following steps:

1. Perform h/N + e\/(h/N)loglog N 4+ aloglog N

rounds of total-exchange to route messages to
their final destinations, for some appropriately
chosen constants « and e.

Condition A: With probability 1 — N9,
the remaining messages form an (N/log®™* N)-
relation, where ¢ is a constant depending on «.

2. a. Consider a partition of the processors into con-
secutive blocks of size log® N. Each processor
assigns a random block to each of its messages.

Condition B: The number of messages that
choose the same destination block is at most
log® Nwith probability 1 — N~©1),

b. If Condition B does not hold then break and
deliver the messages with as many rounds of
total-exchange as necessary. Otherwise, for
each processor pick an intermediate destina-
tion for each message by injectively assigning
destinations within the block to messages des-
tined for the same block.

Condition C: For each possible intermediate
destination, each processor has at most one
message to deliver.

c. Using one total-exchange round, deliver the
messages to their intermediate destinations.

3. Using one total-exchange round deliver, some of
the messages to their destinations. The choice of
which message to send 1s done arbitrarily.

4. Repeat Steps 2 and 3 until all messages are deliv-
ered to their destination.

Theorem 1 A random h-relation can be routed in an
N-node network using %(1+0(1))—|—O(log log N) total-
exchange rounds with probability 1 — N—©1),

Proof. We prove that Conditions A, B, and C are
true with high probability and that O(loglog N) iter-
ations of Steps 2 to 4 suffice to deliver all the messages
to their destinations. This is established by a series of
claims.

Claim 1 Condition A s true.

Proof. For the probabilistic analysis, we use the stan-
dard Bernstein-Chernoff estimate for bounding the
tail of the binomial distribution with parameters m
and p (e.g., see [2]). Suppose we toss m indepen-
dent coins each having probability p of landing heads.
Then, the probability that the total number of heads
is greater than or equal to k, & > mp, 1s at most
exp{—kIn(k/mp) + k — mp}.

In what follows, “with high probability” means
with probability 1 — N=©M) . In a random h-relation,
the above bound implies that, with high proba-
bility, no source processor has more than h/N +
ev/(h/N)loglog N + O(log N) messages destined for
any given processor.

Consider now the h messages destined for a given
processor. We want to estimate how many of them
do not get delivered after Step 1 of the algorithm.
This can be done by analysing the underlying urn
process where we toss h balls into N urns, each of
capacity h/N + ey/(h/N)loglog N + aloglog N. Us-
ing the Bernstein-Chernoff bound, we can show that
the probability that a particular urn is overflowed is
at most 1/log” N, and that the number of overflowed
urns is with high probability at most N/log” N, where
g and ~v are constants that depend on «. We now
observe that the number of excess balls in an over-
flowed urn is A/N + ey/(h/N)loglog N + O(log N) —
(h/N + ey/(h/N)loglog N 4+ aloglog N) = O(log N)
with high probability. We conclude that, with high
probability, any destination processor will have at
most N/ log ' N messages after Step 1, where ¢ is
a constant that depends on «.

A similar analysis shows that the total number
of undelivered messages in any source processor is

N/log®™* N with high probability. O

Claim 2 Condition B is true.

Proof. We estimate the probability that in any of
the N source processors one of the N/log® N blocks
is chosen by more than log® N messages. By Condi-
tion A the number of messages residing at a processor
after Step 1 of the algorithm is at most N/ log" ' NV.

Therefore this probability is bounded from above by

N — N\ /log" N*
N E loge=t N
<loch) (k)(N)
k>logc N

This can easily be shown to be 1/N®1). Notice that
Condition B implies Condition C.]

Claim 3 With probability 1 — N=©(1) Steps 2 and 3
will be repeated O(loglog N') times.

Proof. Assuming the message distribution after Step
1 of the algorithm, consider the N/ log®™! N messages
for a particular destination processor 7. We estimate
the number of messages delivered to 7 in an iteration
of Steps 2 to 4, and show that O(loglog N) iterations
are enough, with high probability.

Recall that in Step 2a, each message is sent to an
intermediate destination in a randomly chosen block.
The probability that a message is successfully trans-
mitted to its actual destination in Step 2c¢ 1s bounded
from below by the probability that no other message
with the same destination is assigned to the same
block.

To estimate the number of such messages, we set
B = N/log‘n and proceed as follows. We assume
that in the beginning of iteration ¢, there are at most
B/¢; messages destined for 7, and we show that with
probability 1 — 1/N®1) at most B/¢;%/* messages are
undelivered at the end of the iteration. Since £y is at
least log N, it follows that after O(loglog N') iterations
all the messages have been successfully tranmitted.

The analysis follows by considering the urn process
where we toss B/{; balls into B urns. The goal is to
show that not too many balls share urns. The num-
ber of balls that share an urn with some other ball
corresponds to the number of messages that are un-
delivered after iteration i. We consider the process
sequentially. If a ball shares an urn with other balls,
we “charge” this event to this ball if it is the last ball
to land in the urn; otherwise we charge it to the next
ball that lands in the urn. Thus, each ball is charged
at most twice, and it can only be charged if it lands in
an urn that was previously chosen by a ball. Thus, the
probability that k& balls share urns is upper-bounded
by the probability that k/2 balls choose a previously
occupied urn. The probability that a ball chooses an
occupied urn is at most (B/¢;)/B = 1/£;. Thus, the
probability that at least k/2 balls choose previously
occupied urns 1s

> (@ -0
< (00 (@) =57 (@)

For the last derivation we used the inequality (z) <
(££)*. By choosing k/2 = B/2£?/2, we have that with

probability 1— N ~®@) at most B/E?/z balls share urns.
This completes the proof of the claim. l

Together, Claims 1 to 3 establish the correctness
of the algorithm, and show that its running time is
h/N(1+ o(1)) + O(loglog N) total-exchange rounds,
with high probability. l

3.2 A Faster Protocol

In this subsection we describe a protocol that routes
a random h-relation in h/N + O(\/h/N) + O(log" N)
total-exchange rounds, thus achieving 1-optimality for
all h = w(Nlog" N). The improvement is made pos-
sible by the use of a fast contention-resolution tech-
nique recently developed in the context of randomized
computation on the CRCW PRAM [9, 11, 12]. The
basic idea underlying this technique, sometimes re-
ferred to as the “dart-throwing technique” [12], is to
achieve faster contention-resolution by creating multi-
ple instances of requests that remain unresolved after
each step of the protocol. In our routing protocol, we
create multiple copies of those messages that remain
undelivered after the number of messages per source
and destination has been decreased below N. To de-
liver a message to its destination, it then suffices to
successfully route one of its copies.

Following is the description of our protocol. If k
rounds of total-exchange are performed in a given step
of the protocol, and there are more than k messages
that have to be routed from some processor i to some
processor j, then a random subset of k of these mes-
sages 1s routed.

1. Perform h/N rounds of total-exchange to route
messages directly to their final destinations

2. h := 2/hN (Claim: The remaining messages

form an h-relation, w.h.p.)

3. Repeat until h < N
a. Every message chooses an intermediate desti-
nation uniformly at random from among the
N processors

b. Perform h/N rounds of total-exchange to
route messages to their intermediate destina-
tions

¢. Perform h/N rounds of total-exchange to
route messages to their final destinations

d. h:= 2/hN (Claim: The remaining messages

form an h-relation, w.h.p.)

4. Repeat until A < 1/N1°

a. Make N/h copies of each undelivered message.
Then every copy chooses an intermediate des-
tination uniformly at random from among the
N processors

b. Perform one round of total-exchange to route
messages to their intermediate destinations

c. Perform one round of total-exchange to route
messages to their final destinations, and elim-
inate all copies afterwards.

d. h := h/2¥/(P) (Claim: The remaining mes-
sages form an h-relation, w.h.p.)

Note that Step 3 of the protocol is iterated
O(loglog(h/N)) times, and that the total time spent
on Step 3 is dominated by the time for the first iter-
ation, which involves ©(\/h/N) total-exchange steps.
Step 4 is iterated O(log" N) times, and hence the to-
tal running time of the protocol is h/N +O(y/h/N) +
O(log"™ N).

A proof of correctness for the protocol will be given
in the full version of the paper. We end this subsection
with a few remarks about some possible modifications
of the above protocol.

(1) Note that we do not have to send actual copies
of the messages during Step 4 of the protocol.
Instead, it would suffice to generate a number of
empty “dummies” for each message. Once one
of these “dummies” has reached the destination,
we can then send the full message along the same
path.

(2) If we would not make any copies in Step 4, and
continue along the lines of Step 3, then the re-
sulting, slightly simpler protocol would run in
time h/N 4+ O(\/h/N) + O(loglog N), which is
1-optimal for A = w(N loglog N).

(3) Finally, note that we could route an arbitrary h-
relation in about twice the time by simply omit-
ting Steps 1 and 2 of the protocol.

4 Experimental Results

In this section we experimentally test total-exchange
based protocols for routing random h-relations when
h is large. We do not test them against other routing
protocols because, as already mentioned, these were
engineered towards minimizing h and have larger con-
stant factors. The first protocol, which we call the
direct protocol, is based on the observation that if m
is the maximum number of packets over all origin-
destination pairs, then m total-exchange rounds suf-
fice to route all the packets. Gerbessiotis and Valiant
[7] showed that in a random h-relation, we have m =

h/N(1+ o(1)) + O(log N) with high probability.

The other protocol 1s a variation of those described
in the previous section. It also consists of a number of
total-exchange rounds. The key idea is to notice that
in each round the load of the processor-destination
pairs is not balanced: some pairs have an “excess”
of packets, and some a “deficiency” with respect to
the average value. The deficiencies imply that, in
the direct protocol, some total-exchange round would
have “idle” transmissions. We take advantage of these
“idle” transmissions to deliver excess packets to “ran-
dom” intermediate destinations. This in effect creates
a more load-balanced situation.

In the table below we compare the performance of
the two protocols. We measure the number of total-
exchange rounds (referred to as rounds in the table),
as well as the total number of parallel communication
steps (referred to as time). For the latter we assume
an N-node network in which total-exchange can be
implemented within N steps.

our protocol direct protocol
N h rounds | time/k | rounds | time/A
64 4N 8.0 2.00 12.7 3.18
8N 12.3 1.54 19.9 2.49
10N 14.4 1.44 23.8 2.38
16 N 21.0 1.31 31.6 1.98
32N 38.1 1.19 53.1 1.66
50N 57.0 1.14 78.2 1.56
64N 71.0 1.10 93.8 1.47
128 4N 8.0 2.00 13.6 3.40
8N 12.4 1.55 21.6 2.70
10N 14.9 1.49 25.1 2.51
16 N 21.0 1.31 34.2 2.14
32N 38.0 1.19 56.4 1.76
50N 57.0 1.14 81.1 1.62
64N 71.0 1.11 93.8 1.47
256 4N 8.0 2.00 15.0 3.75
8N 12.9 1.61 22.4 2.80
10N 15.0 1.50 26.6 2.66
16 N 21.1 1.32 36.0 2.25
32N 38.1 1.19 59.1 1.85
50N 57.0 1.14 83.2 1.67
64N 71.3 1.11 100.3 1.57
512 4N 8.0 2.00 16.0 4.00
8N 13.0 1.63 23.8 2.98
10N 15.0 1.50 28.0 2.80
16 N 21.0 1.31 36.9 2.31
32N 38.0 1.19 62.2 1.95
50N 57.0 1.14 84.9 1.70
64N 71.5 1.12 103.1 1.61
1024 4N 8.0 2.00 17.3 4.33
8N 13.0 1.63 24.9 3.11
10N 15.1 1.51 28.4 2.84
16 N 21.7 1.36 38.7 2.42
32N 38.6 1.21 62.8 1.96
50N 57.2 1.14 88.9 1.78
64N 72.0 1.12 106.0 1.66

The second-to-last column is just the maximum

load over all origin-destination pairs in a random h-
relation. It i1s remarkable that the running time of
our protocol, which is given in the column labelled
“time/h”, essentially depends only on the value of
h/N. This phenomenon can be explained by the
fact that for small N a whole total-exchange round
is wasted to route only a few packets. In such cases it
would be beneficial to use an algorithm not based on
total-exchange to route those few packets.

References

[1] R. J. ANDERSON AND G. L. MILLER, Optical commu-
nication for pointer based algorithms, Tech. Report
CRI-88-14, Computer Science Department, Univer-
sity of Southern California, 1988.

[2] D. ANGLUIN AND L. G. VALIANT, Fuast probabilis-
tic algorithms for hamiltonian circuits and matchings,
Journal of Computer and Systems Sciences, 18 (1979),
pp. 155-193.

[3] D. BERTSEKAS AND J. TSITSIKLIS, Parallel and Dis-
tributed Computation : Numerical Methods, Prentice-
Hall, Englewood Cliffs, New Jersey, 1989.

[4] H. Bruck, C.-T. Ho, S. KipNis, AND D. WEATH-
ERSBY, Ffficient algorithms for all-to-all communica-
tions in multi-port message-passing systems, in 6th

Symposium on Parallel Algorithms and Architectures
(SPAA ’94), 1994, pp. 298-309.

[5] M. M. ESHAGHIAN, Parallel algorithms for image pro-
cessing on OMC, IEEE Transactions on Computers,
40 (1991), pp. 827-833.

[6] G. C. Fox, M. A. JouNsoN, G. A. LYZENGA, S. W.
OtTo, J. K. SALMON, AND D. W. WALKER, Solving
Problems on Concurrent Processors, Vol. 1: General
Techniques and Regular Problems, Prentice-Hall, En-
glewood Cliffs; New Jersey, 1988.

[7] A. GERBESSIOTIS AND L. G. VALIANT, Direct bulk-
synchronous parallel algorithms, Journal of Parallel
and Distributed Computing, 22 (1994), pp. 251-267.

[8] M. GEREB-GRAUS AND T. TSANTILAS, Efficient op-
tical communication in parallel computers, in 4th
Symposium on Parallel Algorithms and Architectures

(SPAA *92), 1992.

[9] J. G, Y. Matias, aND U. VIsHKIN, Towards a
theory of nearly constant teme parallel algorithms, in
32nd IEEE Symposium on Foundations of Computer
Science (FOCS ’91), 1991, pp. 698-710.

[10] L. GoLDBERG, M. JERRUM, T. LEIGHTON, AND
S. Rao, A doubly-logarithmic communication algo-
rithm for the completely connected optical communi-

cation parallel computer,in 5th Symposium on Paral-
lel Algorithms and Architectures (SPAA ’93), 1993.

[11] T. HAGERUP, Fast parallel space allocation, estima-
tion and integer sorting, Tech. Report MPI-1-91-106,
Max-Planck-Institut fir Informatik, Saarbrucken,
1991.

[12]

[13]

[14]

[15]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

, The log-star revolution, in STACS 92, Lec-
ture Notes in Computer Science 577, Springer, 1992,
pp. 259-278.

A. HARTMANN AND S. REDFIELD, Design sketches for
optical crossbar switches intended for large scale par-
allel processing applications, Optical Engineering, 29
(1989), pp. 315-327.

S. Hinricus, C. Kosak, D. O’HaLvraron, T. M.
STRICKER, AND R. TAKE, An architecture for optimal
all-to-all personalized communication, in 6th Sympo-
sium on Parallel Algorithms and Architectures (SPAA
'94), 1994, pp. 310-319.

S. L. JoHNssoN, Massively parallel computing: Data
distribution and communication,in Parallel Architec-
tures and their Efficient Use, F. Meyer auf der Heide,
B. Monien, and A. Rosenberg, eds., Lecture Notes in
Computer Science 678, Springer-Verlag, 1993, pp. 68—
92.

S. L. JounssoN AND C. T. Ho, Optimal broadcasting
and personalized communications in hypercubes, IEEE
Transactions on Computers, 38 (1989), pp. 1249-
1268.

C. P. KruskaL, L. RupoLPH, AND M. SNIR, A com-
plexity theory of efficient parallel algorithms, Theoret-
ical Computer Science, 71 (1990), pp. 95-132.

F. T. LEIGHTON, Introduction To Parallel Algorithms
and Architectures: Arrays, Trees, Hypercubes, Mor-
gan Kaufmann, San Mateo, California, 1992.

W. F. McCoLL, General purpose parallel computing,
in Lectures on Parallel Computation. Proc. 1991 AL-
COM Spring School on Parallel Computation, A. M.
Gibbons and P. Spirakis, eds., Cambridge University
Press, Cambridge, UK, 1992.

W. F. McCoLL, Scalable parallel computing: A grand
unified theory and its practical development, in Proc.
13th IFIP World Computer Congress. Volume I (In-
vited Paper), B. Pehrson and I. Simon, eds., Elsevier,
1994, pp. 539-546.

A. G. RANADE, S. SCHLEIMER, AND D. WILKER-
SON, Nearly tight bounds for wormhole routing, in 35th
IEEE Symposium on Foundations of Computer Sci-
ence, 1994, pp. 347-355.

S. B. Rao anD T. TsSANTILAS, Optical interprocessor
communication protocols,in First International Work-
shop on Massively Parallel Processing Using Optical
Interconnections, 1994, pp. 266-274.

L. G. VALIANT, A scheme for fast parallel commu-
nication, SIAM Journal on Computing, 11 (1982),
pp. 350-361.

, Optimally universal parallel computers, Phil.
Trans. R. Soc. Lond., A 326 (1988), pp. 373-376.

, A bridging model for parallel computation,
Communications of the ACM, 33 (1990), pp. 103-111.

——, General purpose parallel architectures, in
Handbook of Theoretical Computer Science: Vol. A
(J. van Leeuwen, ed.), North-Holland, 1990.

