
E�cient Communication Using Total-ExchangeSatish RaoNEC Research Institute4 Independence WayPrinceton, NJ 08540 Torsten SuelNEC Research Institute4 Independence WayPrinceton, NJ 08540 Thanasis TsantilasyDept. of Computer ScienceColumbia UniversityNew York, NY 10027 Mark GoudreauDept. of Computer ScienceUniversity of Central FloridaOrlando, FL 32816SummaryA central question in parallel computing is to determine the extent to which one can write parallelprograms using a high-level, general-purpose, and architecture-independent programming languageand have them executed on a variety of parallel and distributed architectures without sacri�cinge�ciency. A large body of research suggests that, at least in theory, general-purpose parallel com-puting is indeed possible provided certain conditions are met: an excess of logical parallelism in theprogram, and the ability of the target architecture to e�ciently realize balanced communicationpatterns.The canonical example of a balanced communication pattern is an h-relation, in which each proces-sor is the origin and destination of at most h messages. A plethora of protocols has been designedfor routing h-relations in a variety of networks. The goal has been to minimize the value of h whileguaranteeing delivery of the messages within time a constant factor from optimal. In this paper wedescribe protocols that meet the most stringent e�ciency requirement, namely delivery of messageswithin time that is a lower order additive term from the best achievable. Such protocols are called1-optimal. While these protocols achieve 1-optimality only for heavily loaded networks, that is, forlarge values of h, they are remarkable for their simplicity in that they only use the total-exchangecommunication primitive. The total-exchange can be realized in many networks using very simple,contention-free, and extremely e�cient schemes.The technical contribution of this paper is a protocol to route random h-relations in an N -processornetwork using hN (1+ o(1)) +O(log logN) total-exchange rounds with high probability. Using mes-sage duplication, we can improve the bound to hN (1 + o(1)) +O(log�N). This improves upon thehN (1 + o(1)) + O(logN) bound of Gerbessiotis and Valiant. While our theoretical improvementsare modest, our experimental results show an improvement over the protocol of Gerebessiotis andValiant.1 IntroductionIn this paper we study the total-exchange communica-tion pattern in the context of general-purpose parallelcomputing. Under this communication pattern, everyprocessor has a distinct message to send to every otherprocessor. The e�cient implementation of the total-exchange in a variety of networks has been extensivelystudied [16, 4, 14]. These studies were primarily mo-tivated by the ubiquitousness of the total-exchange inmany parallel algorithms, particularly in the �eld ofscienti�c computing [15, 7, 6, 3].Our motivation is, however, di�erent. We study thetotal-exchange communication primitive for its poten-tial to implement general communication patterns inparallel computers. Speci�cally, we consider a class ofbalanced communication patterns, called h-relations,in which each processor is the origin and destinationy Supported by NEC Research Institute.
of at most h messages. The e�cient realization of h-relations is very important, as it is a necessary condi-tion for the optimal implementation of high-level pro-gramming models such as Valiant's BSP model andthe PRAM [24, 26, 25]. Thus, the main idea is towrite computer programs in a language based on thesemodels and, provided the degree of virtual parallelismis su�ciently large compared to the number of proces-sors available, have them executed with optimal e�-ciency. (Intuitively, the value of h corresponds to theratio of the degree of virtual parallelism required in aprogram to the number of processors in the underlyingmachine.) For a detailed description of this approach,as well as discussions on e�cient general-purpose par-allel computing, see [26, 25, 7, 19, 20].In this paper, we present theoretical and experi-mental results in support of total-exchange based com-munication protocols for routing h-relations. Our goalis to minimize the number of total-exchange rounds.1

We consider the case where h is large (about the sizeof the network) and compare the performance of ourprotocols with existing ones considering two architec-tures. The strengths of our approach are detailed inthe following arguments:1. The total-exchange communication pattern canbe implemented e�ciently in a variety of inter-connection topologies. For example, there aresimple protocols for the circuit-switched butter
yand the Optically Connected Parallel Computer(OCPC) model that run in N=2 and N steps, re-spectively. We emphasize that these protocols arecontention-free and require very simple networkcontrol.2. We show how a random h-relation can be routedusing hN (1 + o(1)) + O(log logN) total-exchangerounds, with high probability. This can be im-proved to hN (1 + o(1)) + O(log�N) if duplicationof messages is used. Arbitrary h-relations can berouted in about twice as much time, by �rst rout-ing to random intermediate destinations as pro-posed by Valiant [23].3. We compare the total-exchange based protocolsagainst other protocols in two cases: The N -nodeOCPC, for which there is a protocol to realizea random h-relation within h(5:5 + o(1)) com-munication steps provided that h = !(log logN)[10], and the N -input circuit-switched butter
yfor which there is a protocol to realize a randomh-relation within O(h logN log logN) parallel com-munication steps [21]. These protocols were engi-neered towards achieving e�ciency for small val-ues of h, rather than 1-optimality for large valuesof h.In contrast, our protocols are 1-optimal for largevalues of h. Speci�cally for h = !(N log logN)and h = !(N log�N), we present two 1-optimalprotocols for routing random h-relations in botharchitectures. This improves upon a result byGerbessiotis and Valiant [7], who gave a 1-optimal total-exchange based algorithm for h =!(N logN)�.4. Experiments based on a variation of our protocolsshow its e�cacy for routing large h-relations.The remainder of the paper is organized as fol-lows. In the next section we discuss the importanceof h-relations in general-purpose parallel computing,and we review simple protocols for realizing the total-exchange on the butter
y and the OCPC. Section 3�We remark that these algorithms can also be used hierar-chically to lower the value of h at the expense of the protocol'soptimality. For example, there is a two-level total-exchangeprotocol that is 2-optimal for h = !(pN log logN):

contains our new protocols. Finally, in the last sec-tion, we present experimental results using a variationof one of our protocols.2 Communication primitives andgeneral-purpose parallel computingIn this section we discuss the importance of h-relationsin the theory of general-purpose parallel computing.Much of this discussion is drawn from [22]. Thenwe survey routing protocols in two contexts, viz., thecircuit-switched butter
y and the OCPC (OpticallyConnected Parallel Computer). Finally, we review twosimple protocols for realizing a total-exchange in thesenetworks. None of the results in this section are new.One of the major challenges in parallel computing isto determine the extent to which general-purpose par-allel computing can be achieved. The goal is to deliverboth scalable parallel performance and architecture-independent parallel software. One approach towardsachieving this goal has been proposed by Valiant[24, 26]. (Other approaches have been proposed; see,for example, Kruskal, Rudolph, and Snir [17].)Valiant introduced the Bulk-Synchronous Parallel(BSP) model which abstracts the characteristics of aparallel machine into three numerical parameters cor-responding to the number of processors, bandwidth,and latency. The BSP model was suggested by Valiantas a possible \bridging model" to serve as a standardinterface between the language and architecture lev-els in parallel computation. It can support two pow-erful programming styles: a shared-memory PRAM-like programming style and a direct programming stylewhere the programmer maintains control of memoryallocations. As already mentioned, any parallel archi-tecture that can e�ciently realize h-relations can alsoe�ciently support programming languages written forthe BSP modely. The value of h a�ects the latencyparameter of the BSP model, and the e�ciency of theimplementation of an h-relation a�ects the bandwidthparameter of the BSP model. Speci�cally, higher val-ues of h produce higher values for the latency parame-ter. On the other hand, assuming a higher value of h,one can derive more e�cient solutions to the h-relationrouting problem, and thus obtain better values for thebandwidth parameter of the BSP model.While there are numerous existing protocols forrouting h-relations [26, 18], they are primarily con-cerned with minimizing the value of h while guaran-teeing that a random h-relation is delivered withina constant factor of the optimal time. For the BSPyArguments for the BSP model have been extensively pre-sented and supported by theoretical analysis. For precise de�ni-tion of the BSP model, examples of BSP-style algorithms, andarguments for the candidacy of BSP as a universal model, werefer to Valiant [24, 26, 25, 7] and McColl [19, 20].

model, this translates to minimizing the latency pa-rameter while only sacri�cing the bandwidth by a con-stant factor. A di�erent approach is to require that theh-relation be routed in time that is optimal to within afactor of 1+o(1). These protocols are called 1-optimalby Gerbessiotis and Valiant [7]. For the BSP model,such an approach corresponds to minimizing the la-tency while essentially not sacri�cing any bandwidthat all.In addition to de�ning 1-optimality, [7] presentsa very simple 1-optimal protocol based on the total-exchange primitive. Here we improve on [7] and giveprotocols, also based on the total-exchange, which are1-optimal for a slightly wider range of h. These pro-tocols are very simple to implement, contention-free,require minimal hardware control, and are e�cient.To illustrate the strengths of total-exchange pro-tocols against those designed for small values of h,we consider two abstract networks. The �rst is theN -input circuit-switched butter
y, where any set ofdisjoint paths can be set up in one step. For such anetwork, the results of Ranade, Schleimer and Wilk-erson [21] imply that there is a protocol that routes arandom h-relation in O(h logN log logN) steps. Forlarge h, the total-exchange based protocols are bet-ter by a factor of O(logN log logN). This is achievedby the protocol of Gerbessiotis and Valiant [7] whenh = !(N logN), or by our protocols when h =!(N log logN) and h = !(N log�N), respectively.Our second example is the OCPC (Optically Con-nected Parallel Computer), a model designed to cap-ture the features of optical communication systems.This model was previously used by Eshaghian [5] andAnderson and Miller [1]. (A similar model was alsodiscussed by Hartmann and Red�eld [13].) An N -OCPC consists of N processors, each of which has itsown local memory. In any step, a processor can sendat most one message to any other processor. If twoprocessors transmit messages to the same processor,neither transmission is successful and the messageshave to be retransmitted. A successful transmissionis acknowledged by sending a con�rmation message tothe sending processor; hence, a non-successful trans-mission is detected by the absence of such an acknowl-edgement message. Thus, in constant time, all theprocessors requesting accesses are informed whetherthey have succeeded. A very simple randomized proto-col for routing h-relations on an N -OCPC is describedby Ger�eb-Graus and Tsantilas in [8]. Their protocolruns in time�(h+logN log logN). A muchmore com-plicated protocol that runs in time �(h + log logN)is described in [10]. For either protocol, however,the constant factor is about 5.5. In contrast, forlarge h, our total-exchange based protocols achieve 1-optimality on the OCPC.Finally, we describe how the total-exchange primi-

tive itself can be realized in these two networks. Weemphasize the simplicity of these protocols, the factthat they are contention-free, and the low hardwarecontrol requirements for their realization.Fact 1 There exist simple, deterministic and content-ion-free protocols that realize the total-exchange in theN -input multi-port butter
y and the N -OCPC withinN=2 and N parallel communication steps, respectively.Proof. The protocol of [7] realizes the total-exchangein the OCPC as follows. It runs forN phases, and dur-ing phase j processor i transmits its message destinedfor processor (i + j) mod N .For the butter
y, one can implement the previousprotocol in N steps, in the single port model of thecircuit switched butter
y. (That is, the set of circuitsthat can be routed in one step correspond to a set ofnode disjoint paths.) In a multi-port circuit switchedmodel, where the set of circuits that can be routedin one step correspond to a set of edge disjoint paths,one can implement a total-exchange in N=2 roundsas follows. Consider the N permutations obtained ascompositions of a sequence of logN shu�e or exchangepermutations as de�ned by the shu�e-exchange net-work. The result follows by observing that these per-mutations constitute a total-exchange and that theycan be divided in pairs each of which can be realizedin a con
ict-free manner in the butter
y.3 Two Routing ProtocolsIn this section we present two protocols for routingrandom h-relations in networks equipped with thetotal-exchange communication primitive. These pro-tocols can also be used to route arbitrary h-relations,by using Valiant's two-stage routing strategy [23],where messages are �rst sent to a randomly chosenintermediate destination.Gerbessiotis and Valiant [7] observed that themaximum number of messages over all origin-destination pairs in a random h-relation is h=N +O(p(h=N) log logN) +O(logN), with high probabil-ity. This implies that hN (1 + o(1)) + O(logN) total-exchange rounds su�ce to route all messages to theirdestinations.On the other hand, the standard deviation of thenumber of messages over any origin-destination pair is�(ph=N), and it can be shown that at least h=N +
(ph=N) total-exchange rounds are needed to route arandom h-relation, with high probability. Thus, in thedesign of our protocols, we have to deal with the factthat the number of messages over all origin-destinationpairs in a random h-relation is not uniform. We dothis by routing some of those messages that belong

to heavily loaded origin-destination pairs to randomintermediate destinations.In our analysis, we assume that every processor ini-tially holds h messages, and that the destinations ofthe messages are chosen independently and uniformlyat random from among the N processors. Note thatthe resulting communication pattern will actually notbe an h-relation in the strict sense. However, our re-sults can also be extended to the case of a \true" h-relation chosen uniformly at random from the set ofall h-relations.3.1 Analysis of a Simple Routing ProtocolIn this subsection, we present and analyse a sim-ple protocol that achieves 1-optimality for h =!(N log logN). For the sake of simplicity, we assumeh = O(N logN). However, the result can be fairlyeasily extended to larger values of h, either by run-ning the protocol repeatedly on small subsets of theinput, or by adapting it appropriately. The protocolruns in the following steps:1. Perform h=N + �p(h=N) log logN + � log logNrounds of total-exchange to route messages totheir �nal destinations, for some appropriatelychosen constants � and �.Condition A: With probability 1 � N��(1),the remaining messages form an (N= logc�1N)-relation, where c is a constant depending on �.2. a. Consider a partition of the processors into con-secutive blocks of size logcN . Each processorassigns a random block to each of its messages.Condition B: The number of messages thatchoose the same destination block is at mostlogcNwith probability 1� N��(1).b. If Condition B does not hold then break anddeliver the messages with as many rounds oftotal-exchange as necessary. Otherwise, foreach processor pick an intermediate destina-tion for each message by injectively assigningdestinations within the block to messages des-tined for the same block.Condition C: For each possible intermediatedestination, each processor has at most onemessage to deliver.c. Using one total-exchange round, deliver themessages to their intermediate destinations.3. Using one total-exchange round deliver, some ofthe messages to their destinations. The choice ofwhich message to send is done arbitrarily.4. Repeat Steps 2 and 3 until all messages are deliv-ered to their destination.

Theorem 1 A random h-relation can be routed in anN -node network using hN (1+o(1))+O(log logN) total-exchange rounds with probability 1� N��(1).Proof. We prove that Conditions A, B, and C aretrue with high probability and that O(log logN) iter-ations of Steps 2 to 4 su�ce to deliver all the messagesto their destinations. This is established by a series ofclaims.Claim 1 Condition A is true.Proof. For the probabilistic analysis, we use the stan-dard Bernstein-Cherno� estimate for bounding thetail of the binomial distribution with parameters mand p (e.g., see [2]). Suppose we toss m indepen-dent coins each having probability p of landing heads.Then, the probability that the total number of headsis greater than or equal to k, k � mp, is at mostexpf�k ln(k=mp) + k �mpg.In what follows, \with high probability" meanswith probability 1� N��(1). In a random h-relation,the above bound implies that, with high proba-bility, no source processor has more than h=N +�p(h=N) log logN + O(logN) messages destined forany given processor.Consider now the h messages destined for a givenprocessor. We want to estimate how many of themdo not get delivered after Step 1 of the algorithm.This can be done by analysing the underlying urnprocess where we toss h balls into N urns, each ofcapacity h=N + �p(h=N) log logN + � log logN . Us-ing the Bernstein-Cherno� bound, we can show thatthe probability that a particular urn is over
owed isat most 1= log� N , and that the number of over
owedurns is with high probability at mostN= log
 N , where� and
 are constants that depend on �. We nowobserve that the number of excess balls in an over-
owed urn is h=N + �p(h=N) log logN + O(logN) �(h=N + �p(h=N) log logN + � log logN) = O(logN)with high probability. We conclude that, with highprobability, any destination processor will have atmost N= logc�1N messages after Step 1, where c isa constant that depends on �.A similar analysis shows that the total numberof undelivered messages in any source processor isN= logc�1N with high probability.Claim 2 Condition B is true.Proof. We estimate the probability that in any ofthe N source processors one of the N= logcN blocksis chosen by more than logcN messages. By Condi-tion A the number of messages residing at a processorafter Step 1 of the algorithm is at most N= logc�1N .

Therefore this probability is bounded from above byN � NlogcN � Xk�logc N � Nlogc�1 Nk �� logcNN �kThis can easily be shown to be 1=N�(1). Notice thatCondition B implies Condition C.Claim 3 With probability 1� N��(1), Steps 2 and 3will be repeated O(log logN) times.Proof. Assuming the message distribution after Step1 of the algorithm, consider the N= logc�1N messagesfor a particular destination processor �. We estimatethe number of messages delivered to � in an iterationof Steps 2 to 4, and show that O(log logN) iterationsare enough, with high probability.Recall that in Step 2a, each message is sent to anintermediate destination in a randomly chosen block.The probability that a message is successfully trans-mitted to its actual destination in Step 2c is boundedfrom below by the probability that no other messagewith the same destination is assigned to the sameblock.To estimate the number of such messages, we setB = N= logc n and proceed as follows. We assumethat in the beginning of iteration i, there are at mostB=`i messages destined for �, and we show that withprobability 1� 1=N�(1) at most B=`i3=2 messages areundelivered at the end of the iteration. Since `0 is atleast logN , it follows that after O(log logN) iterationsall the messages have been successfully tranmitted.The analysis follows by considering the urn processwhere we toss B=`i balls into B urns. The goal is toshow that not too many balls share urns. The num-ber of balls that share an urn with some other ballcorresponds to the number of messages that are un-delivered after iteration i. We consider the processsequentially. If a ball shares an urn with other balls,we \charge" this event to this ball if it is the last ballto land in the urn; otherwise we charge it to the nextball that lands in the urn. Thus, each ball is chargedat most twice, and it can only be charged if it lands inan urn that was previously chosen by a ball. Thus, theprobability that k balls share urns is upper-boundedby the probability that k=2 balls choose a previouslyoccupied urn. The probability that a ball chooses anoccupied urn is at most (B=`i)=B = 1=`i. Thus, theprobability that at least k=2 balls choose previouslyoccupied urns isXj�k=2�B=`ij �� 1̀i�j �1� 1̀i�B=`i�j� �B=`ik=2 �� 1̀i�k=2 � �eB=`ik=2 �k=2� 1̀i�k=2 :

For the last derivation we used the inequality �xs� �(exs)s. By choosing k=2 = B=2`3=2i , we have that withprobability 1�N��(1) at mostB=`3=2i balls share urns.This completes the proof of the claim.Together, Claims 1 to 3 establish the correctnessof the algorithm, and show that its running time ish=N (1 + o(1)) + O(log logN) total-exchange rounds,with high probability.3.2 A Faster ProtocolIn this subsection we describe a protocol that routesa random h-relation in h=N +O(ph=N) +O(log�N)total-exchange rounds, thus achieving 1-optimality forall h = !(N log�N). The improvement is made pos-sible by the use of a fast contention-resolution tech-nique recently developed in the context of randomizedcomputation on the CRCW PRAM [9, 11, 12]. Thebasic idea underlying this technique, sometimes re-ferred to as the \dart-throwing technique" [12], is toachieve faster contention-resolution by creating multi-ple instances of requests that remain unresolved aftereach step of the protocol. In our routing protocol, wecreate multiple copies of those messages that remainundelivered after the number of messages per sourceand destination has been decreased below N . To de-liver a message to its destination, it then su�ces tosuccessfully route one of its copies.Following is the description of our protocol. If krounds of total-exchange are performed in a given stepof the protocol, and there are more than k messagesthat have to be routed from some processor i to someprocessor j, then a random subset of k of these mes-sages is routed.1. Perform h=N rounds of total-exchange to routemessages directly to their �nal destinations2. h := 2phN (Claim: The remaining messagesform an h-relation, w.h.p.)3. Repeat until h � Na. Every message chooses an intermediate desti-nation uniformly at random from among theN processorsb. Perform h=N rounds of total-exchange toroute messages to their intermediate destina-tionsc. Perform h=N rounds of total-exchange toroute messages to their �nal destinationsd. h := 2phN (Claim: The remaining messagesform an h-relation, w.h.p.)4. Repeat until h < 1=N10

a. Make N=h copies of each undelivered message.Then every copy chooses an intermediate des-tination uniformly at random from among theN processorsb. Perform one round of total-exchange to routemessages to their intermediate destinationsc. Perform one round of total-exchange to routemessages to their �nal destinations, and elim-inate all copies afterwards.d. h := h=2N=(8h) (Claim: The remaining mes-sages form an h-relation, w.h.p.)Note that Step 3 of the protocol is iterated�(log log(h=N)) times, and that the total time spenton Step 3 is dominated by the time for the �rst iter-ation, which involves �(ph=N) total-exchange steps.Step 4 is iterated �(log�N) times, and hence the to-tal running time of the protocol is h=N +O(ph=N)+O(log�N).A proof of correctness for the protocol will be givenin the full version of the paper. We end this subsectionwith a few remarks about some possible modi�cationsof the above protocol.(1) Note that we do not have to send actual copiesof the messages during Step 4 of the protocol.Instead, it would su�ce to generate a number ofempty \dummies" for each message. Once oneof these \dummies" has reached the destination,we can then send the full message along the samepath.(2) If we would not make any copies in Step 4, andcontinue along the lines of Step 3, then the re-sulting, slightly simpler protocol would run intime h=N + O(ph=N) + O(log logN), which is1-optimal for h = !(N log logN).(3) Finally, note that we could route an arbitrary h-relation in about twice the time by simply omit-ting Steps 1 and 2 of the protocol.4 Experimental ResultsIn this section we experimentally test total-exchangebased protocols for routing random h-relations whenh is large. We do not test them against other routingprotocols because, as already mentioned, these wereengineered towards minimizing h and have larger con-stant factors. The �rst protocol, which we call thedirect protocol, is based on the observation that if mis the maximum number of packets over all origin-destination pairs, then m total-exchange rounds suf-�ce to route all the packets. Gerbessiotis and Valiant[7] showed that in a random h-relation, we have m =h=N (1 + o(1)) + O(logN) with high probability.

The other protocol is a variation of those describedin the previous section. It also consists of a number oftotal-exchange rounds. The key idea is to notice thatin each round the load of the processor-destinationpairs is not balanced: some pairs have an \excess"of packets, and some a \de�ciency" with respect tothe average value. The de�ciencies imply that, inthe direct protocol, some total-exchange round wouldhave \idle" transmissions. We take advantage of these\idle" transmissions to deliver excess packets to \ran-dom" intermediate destinations. This in e�ect createsa more load-balanced situation.In the table below we compare the performance ofthe two protocols. We measure the number of total-exchange rounds (referred to as rounds in the table),as well as the total number of parallel communicationsteps (referred to as time). For the latter we assumean N -node network in which total-exchange can beimplemented within N steps.our protocol direct protocolN h rounds time/h rounds time/h64 4N 8.0 2.00 12.7 3.188N 12.3 1.54 19.9 2.4910N 14.4 1.44 23.8 2.3816N 21.0 1.31 31.6 1.9832N 38.1 1.19 53.1 1.6650N 57.0 1.14 78.2 1.5664N 71.0 1.10 93.8 1.47128 4N 8.0 2.00 13.6 3.408N 12.4 1.55 21.6 2.7010N 14.9 1.49 25.1 2.5116N 21.0 1.31 34.2 2.1432N 38.0 1.19 56.4 1.7650N 57.0 1.14 81.1 1.6264N 71.0 1.11 93.8 1.47256 4N 8.0 2.00 15.0 3.758N 12.9 1.61 22.4 2.8010N 15.0 1.50 26.6 2.6616N 21.1 1.32 36.0 2.2532N 38.1 1.19 59.1 1.8550N 57.0 1.14 83.2 1.6764N 71.3 1.11 100.3 1.57512 4N 8.0 2.00 16.0 4.008N 13.0 1.63 23.8 2.9810N 15.0 1.50 28.0 2.8016N 21.0 1.31 36.9 2.3132N 38.0 1.19 62.2 1.9550N 57.0 1.14 84.9 1.7064N 71.5 1.12 103.1 1.611024 4N 8.0 2.00 17.3 4.338N 13.0 1.63 24.9 3.1110N 15.1 1.51 28.4 2.8416N 21.7 1.36 38.7 2.4232N 38.6 1.21 62.8 1.9650N 57.2 1.14 88.9 1.7864N 72.0 1.12 106.0 1.66The second-to-last column is just the maximum

load over all origin-destination pairs in a random h-relation. It is remarkable that the running time ofour protocol, which is given in the column labelled\time/h", essentially depends only on the value ofh=N . This phenomenon can be explained by thefact that for small N a whole total-exchange roundis wasted to route only a few packets. In such cases itwould be bene�cial to use an algorithm not based ontotal-exchange to route those few packets.References[1] R. J. Anderson and G. L. Miller, Optical commu-nication for pointer based algorithms, Tech. ReportCRI-88-14, Computer Science Department, Univer-sity of Southern California, 1988.[2] D. Angluin and L. G. Valiant, Fast probabilis-tic algorithms for hamiltonian circuits and matchings,Journal of Computer and Systems Sciences, 18 (1979),pp. 155{193.[3] D. Bertsekas and J. Tsitsiklis, Parallel and Dis-tributed Computation : Numerical Methods, Prentice-Hall, Englewood Cli�s, New Jersey, 1989.[4] H. Bruck, C.-T. Ho, S. Kipnis, and D. Weath-ersby, E�cient algorithms for all-to-all communica-tions in multi-port message-passing systems, in 6thSymposium on Parallel Algorithms and Architectures(SPAA '94), 1994, pp. 298{309.[5] M. M. Eshaghian, Parallel algorithms for image pro-cessing on OMC, IEEE Transactions on Computers,40 (1991), pp. 827{833.[6] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W.Otto, J. K. Salmon, and D. W. Walker, SolvingProblems on Concurrent Processors, Vol. 1: GeneralTechniques and Regular Problems, Prentice-Hall, En-glewood Cli�s, New Jersey, 1988.[7] A. Gerbessiotis and L. G. Valiant, Direct bulk-synchronous parallel algorithms, Journal of Paralleland Distributed Computing, 22 (1994), pp. 251{267.[8] M. Ger�eb-Graus and T. Tsantilas, E�cient op-tical communication in parallel computers, in 4thSymposium on Parallel Algorithms and Architectures(SPAA '92), 1992.[9] J. Gil, Y. Matias, and U. Vishkin, Towards atheory of nearly constant time parallel algorithms, in32nd IEEE Symposium on Foundations of ComputerScience (FOCS '91), 1991, pp. 698{710.[10] L. Goldberg, M. Jerrum, T. Leighton, andS. Rao, A doubly-logarithmic communication algo-rithm for the completely connected optical communi-cation parallel computer, in 5th Symposium on Paral-lel Algorithms and Architectures (SPAA '93), 1993.[11] T. Hagerup, Fast parallel space allocation, estima-tion and integer sorting, Tech. Report MPI-I-91-106,Max-Planck-Institut f�ur Informatik, Saarbr�ucken,1991.

[12] , The log-star revolution, in STACS '92, Lec-ture Notes in Computer Science 577, Springer, 1992,pp. 259{278.[13] A. Hartmann and S. Redfield, Design sketches foroptical crossbar switches intended for large scale par-allel processing applications, Optical Engineering, 29(1989), pp. 315{327.[14] S. Hinrichs, C. Kosak, D. O'Hallaron, T. M.Stricker, and R. Take, An architecture for optimalall-to-all personalized communication, in 6th Sympo-sium on Parallel Algorithms and Architectures (SPAA'94), 1994, pp. 310{319.[15] S. L. Johnsson, Massively parallel computing: Datadistribution and communication, in Parallel Architec-tures and their E�cient Use, F. Meyer auf der Heide,B. Monien, and A. Rosenberg, eds., Lecture Notes inComputer Science 678, Springer-Verlag, 1993, pp. 68{92.[16] S. L. Johnsson and C. T. Ho, Optimal broadcastingand personalized communications in hypercubes, IEEETransactions on Computers, 38 (1989), pp. 1249{1268.[17] C. P. Kruskal, L. Rudolph, and M. Snir, A com-plexity theory of e�cient parallel algorithms, Theoret-ical Computer Science, 71 (1990), pp. 95{132.[18] F. T. Leighton, Introduction To Parallel Algorithmsand Architectures: Arrays, Trees, Hypercubes, Mor-gan Kaufmann, San Mateo, California, 1992.[19] W. F. McColl, General purpose parallel computing,in Lectures on Parallel Computation. Proc. 1991 AL-COM Spring School on Parallel Computation, A. M.Gibbons and P. Spirakis, eds., Cambridge UniversityPress, Cambridge, UK, 1992.[20] W. F. McColl, Scalable parallel computing: A granduni�ed theory and its practical development, in Proc.13th IFIP World Computer Congress. Volume I (In-vited Paper), B. Pehrson and I. Simon, eds., Elsevier,1994, pp. 539{546.[21] A. G. Ranade, S. Schleimer, and D. Wilker-son, Nearly tight bounds for wormhole routing, in 35thIEEE Symposium on Foundations of Computer Sci-ence, 1994, pp. 347{355.[22] S. B. Rao and T. Tsantilas, Optical interprocessorcommunication protocols, in First International Work-shop on Massively Parallel Processing Using OpticalInterconnections, 1994, pp. 266{274.[23] L. G. Valiant, A scheme for fast parallel commu-nication, SIAM Journal on Computing, 11 (1982),pp. 350{361.[24] , Optimally universal parallel computers, Phil.Trans. R. Soc. Lond., A 326 (1988), pp. 373{376.[25] , A bridging model for parallel computation,Communications of the ACM, 33 (1990), pp. 103{111.[26] , General purpose parallel architectures, inHandbook of Theoretical Computer Science: Vol. A(J. van Leeuwen, ed.), North-Holland, 1990.

