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Abstract

We study the problem of maintaining large replicated collec-
tions of files or documents in a distributed environment with
limited bandwidth. This problem arises in a number of impor-
tant applications, such as synchronization of data between
accounts or devices, content distibution and web caching net-
works, web site mirroring, storage networks, and large scale
web search and mining. At the core of the problem lies the
following challenge, called the file synchronization problem:
given two versions of a file on different machines, say an out-
dated and a current one, how can we update the outdated
version with minimum communication cost, by exploiting the
significant similarity between the versions? While a popular
open source tool for this problem called rsync is used in hun-
dreds of thousands of installations, there have been only very
few attempts to improve upon this tool in practice.

In this paper, we propose a framework for remote file syn-
chronization and describe several new techniques that re-
sult in significant bandwidth savings. Our focus is on appli-
cations where very large collections have to be maintained
over slow connections. We show that a prototype implemen-
tation of our framework and techniques achieves significant
improvements over rsync. As an example application, we fo-
cus on the efficient synchronization of very large web page
collections for the purpose of search, mining, and content
distribution.

1 Introduction

Consider the problem of maintaining large replicated collec-
tions of files, such as user files, web pages, or other docu-
ments, over a slow network. In particular, assume that we
have two machines,

�
and � , that each hold a copy of the

collection, and that files are frequently modified at one of
the machines, say

�
. Periodically, machine � initiates a syn-

chronization operation that updates all its replicas to the latest
version. This operation involves identifying all files that have
changed, deciding which version of the file is the latest one (if
files can be changed at either location), and finally updating

�
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the files that have changed. Given the size of the collections,
we are interested in performing the synchronization with a
minimum amount of communication over the network.

The above scenario arises in a number of applications, such
as synchronization of user files between different machines,
remote backups, mirroring of large web and ftp sites, content
distribution, and web search engines, to name just a few. In
many cases, updated files differ only slightly from their previ-
ous version; for example, updated web pages usually change
only in a few places. In this case, instead of sending the en-
tire updated version over the network, it would be desirable
to be able to perform the update by sending only an amount
of data proportional to the change between the two versions.

In this paper, we focus on this problem of updating files in
a bandwidth efficient manner; we refer to this as the file syn-
chronization problem. Our work is primarily motivated by
several applications in large scale web search and content dis-
tribution discussed later, but our techniques are applicable to
the more general case and we believe that file synchroniza-
tion is a fundamental operation in distributed systems. We
note that there is a very widely used open source software
tool called rsync that addresses exactly this problem and that
is described in [47, 48]. Our goal is to derive techniques that
achieve significant savings over rsync particularly in the case
of large collections and slow networks.

Before continuing, we point out a few assumptions. We as-
sume that collections consist of unstructured files that may be
modified in arbitrary ways, including insertion and deletion
operations that change byte and page alignments between dif-
ferent versions. Thus, approaches that identify changed disk
pages or bit positions or that assume fixed record boundaries
do not work – though some of them are potentially useful for
identifying those files that have been changed and need to be
synchronized. We also note that the problem is much easier
if all update operations to the files are saved in an update log
that can be transmitted to the other machine. However, in
many cases such logs are not available. We are also not con-
cerned with issues of consistency in between synchroniza-
tion steps, and with the question of how to resolve conflicts
if changes are simultaneously performed at several locations
[3, 39]. It is left up to an application to decide when and how
often files should be synchronized.



1.1 Applications Motivating Our Work

The rsync file synchronization tool is currently widely used
to exchange user files between different machines (e.g., be-
tween a machine at work and a machine at home), to mirror
web and ftp sites, and to perform backup over a network. In
addition to these general scenarios, we are particularly inter-
ested in the following potential applications:

1. Sharing crawled web pages for mining and search:
One of the main bottlenecks in large-scale web search
and mining is the cost of crawling large sets of web
pages and then keeping these pages up to date. A lot
of recent work has focused on efficient strategies for re-
crawling changing web pages based on their past history
of updates [6, 7, 8, 9, 14]. An alternative or complemen-
tary approach would be to share the results of recrawls
between many parties. For example, several organiza-
tions or even nodes in a P2P system [19] could indepen-
dently perform crawls and later exchange their results,
or one centralized high-performance crawler could al-
low clients to obtain the latest versions of web pages
of interest. As an example of the latter, the Stanford
WebBase project [20] enables researchers at other insti-
tutions to receive a feed of web pages from the WebBase
collection. However, due to bandwidth limitations, large
data sets today are still frequently shared via “sneaker-
net”, i.e., by sending disks or tapes by mail [18]. Use of
file synchronization would allow other organizations to
receive updated content over the network at a fraction of
the current bandwidth cost. In fact, our main motivation
for this work is to build a system for efficiently sharing
large recrawls over a wide area network.

2. Maintaining massive collections at clients: Given the
speed at which hard disk capacity is currently expand-
ing, several researchers have considered the possibility
of storing and maintaining the entire web, or large parts
of the world’s content, at desktop machines. For exam-
ple, Garcia-Molina [17] outlined a scenario where the
world’s changing content is distributed to end users in
monthly or weekly updates shipped out on future ver-
sions of CDs or DVDs. One could also imagine instead
using file synchronization to maintain large up-to-date
collections at desktop clients for personalized browsing,
search, or mining. Browsers such as Internet Explorer
already allow users to subscribe to web pages that are
then periodically downloaded and stored; the proposed
techniques could be used to significantly improve the ef-
ficiency of this process.

3. Server-Friendly Web Crawling: Closely related to the
first scenario is the idea of integrating file synchroniza-
tion into web servers to support more efficient recrawl-
ing. We caution that there have been previous propos-
als to modify servers for this purpose [5, 16], but that
widespread adoption of such schemes appears unlikely
for various reasons.

4. Caching and Content Distribution Networks: Several
companies in the CDN space have studied and deployed
file synchronization techniques. We are not aware of any
published work in this direction, but file synchronization
techniques are a natural approach for updating content
that is widely replicated at the network edge.

5. Replication in P2P File Sharing: While much of the
content in current file sharing networks is static, file syn-
chronization could be used to maintain dynamic content
that is replicated for fault tolerance or performance.

All of these scenarios have in common that they involve mas-
sive amounts of data, and thus bandwidth efficiency is of pri-
mary importance. Our goal is to design improved protocols
for file synchronization that use multiple roundtrips to signif-
icantly decrease the amount of data sent over the network.

2 File Synchronization and the rsync Tool

We now define the file synchronization problem and describe
the algorithm of Tridgell and MacKerras [47, 48], which
forms the basis of the widely used rsync tool.1 We note that a
similar approach was proposed by Pyne in a US Patent [38].

2.1 Problem Definition

The setup for the file synchronization problem is as follows.
We have two files (strings)

���������	��
���
������
over some alpha-

bet
�

(most methods are character/byte oriented), and two
machines � (the client) and � (the server) connected by a
communication link. We assume that � only has a copy of��
���


and � only has a copy of
�������

, and the goal is to design
a protocol between the two parties that results in � holding
a copy of

�������
, while minimizing the communication cost.

We also refer to
� 
���


as the outdated file and to
� �����

as the
current file. For a file

�
, we use

��� ���
to denote the

�
th symbol

of
�

,  "! ��#%$ �&$
, and

��� �'��(��
to denote the block of symbols

from
�

until (and including)
(
.

2.2 The rsync Algorithm

The basic approach in rsync, as well as in our algorithms,
is to split a file into blocks and use hash functions to com-
pute hashes or “fingerprints” of the blocks. These hashes are
then sent to the other machine, where the recipient attempts
to find matching blocks in its own file. One issue is the lack
of alignment between matching blocks in the two files; this
is addressed by comparing received hashes not just with the
corresponding block in the other file, but with all substrings
of the same size. For efficiency, hashes are composed from
two different hash functions, a fast but unreliable one, and a
very reliable one that is more expensive to compute. Then
the steps in rsync are as follows:

1. At the client:

(a) Partition
� 
���


into blocks �*)&+ � 
���
 � ��,-�/.0�214365�,�7839�
of

some block size
,
.

1Available at http://rsync.samba.org/.



Figure 2.1. The rsync algorithm on a small ex-
ample. The client sends a set of hashes while
the server replies with a stream of literals and
indices identifying hashes.

(b) For each block � ) , compute two hashes, � ) + ��� .
� ) 5

and �/)�+ ��� .
� ) 5 , and communicate them to the server.

Here,
� �

is a heuristic but fast hash function, and
���

is
a reliable but expensive hash function.

2. At the server:

(a) For each pair of received hashes
. � ) � � ) 5 , insert an entry. � ) � � ) ����5 into a dictionary structure, using � ) as the key.

(b) Perform a pass through
�������

, starting at position
( +  ,

and involving the following steps:

(i) Compute the unreliable hash
��� . ������� � (�� ( 1 , 7 3 � 5

on the block starting at
(
.

(ii) Check the dictionary for any block with matching
unreliable hash.

(iii) If found, and if the reliable hashes match, transmit
the index

�
of the matching block in

��
���

to the

client, advance
(

by
,

positions, and continue.

(iv) If none found, or if the reliable hash did not match,
transmit the symbol

������� � (��
to the client, advance(

by one position, and continue.

3. At the client:

(a) Use the incoming stream of symbols and indices of
hashes in

��
���

to reconstruct

�������
.

The process is illustrated in Figure 2.1. All symbols and in-
dices sent from server to client in steps (iii) and (iv) are also
compressed using an algorithm similar to gzip. A checksum
on the entire file is used to detect the (fairly unlikely) fail-
ure of both checksums, in which case the algorithm could be
repeated with different hashes, or we can simply transfer the
entire file. The reliable checksum is implemented using MD4

(
3��
	

bits), but only two bytes of the MD4 hash are used since
this provides sufficient power. The unreliable checksum is
implemented as a � � -bit “rolling checksum” that allows ef-
ficient sliding of the block boundaries by one character, i.e.,
the checksum for

��� ( 1 3���( 1 ,	�
can be computed in con-

stant time from
��� (�� (�1 ,�7439�

. Thus, � bytes per block are
transmitted from client to server.

2.3 Discussion of rsync and Related Proposals

Clearly, the choice of block size is critical to the performance
of the algorithm, but this choice depends on the degree of
similarity between the two files – the more similar, the larger
the optimal block size. Moreover, the location of changes
in the file is also important. If a single character is changed
in each block of

��
���

, then no match will be found by the

server and rsync will be completely ineffective; on the other
hand, if all changes are clustered in a few areas of the file,
rsync will do well even with a large block size. Given these
observations, some basic performance bounds based on block
size and number and size of file modifications can be shown.
However, rsync does not have any good performance bounds
with respect to common metrics such as edit distance [34].

In practice, rsync uses a default block size of 
6 � bytes ex-
cept for very large files where a larger block size is used.
Decreasing the block size to

3  � bytes or less is usually not
practical: if one out of three hashes finds a match, this means
that

3�	
bytes are transmitted for each discovered match, while

simply applying gzip to the unmatched blocks might result in
a reduction to about

�����
of the size. Other algorithms pro-

posed in [10, 25, 34] are based on recursive splitting of un-
matched blocks. We will also adopt this approach, but com-
bine it with several other ideas that save on communication
costs and allow us to utilize much smaller block sizes effi-
ciently.

We note that recursive splitting, as some of our other tech-
niques, increases the number of roundtrips between the two
parties. However, as in rsync itself, the roundtrip latencies
are not incurred for each file since many files can be pro-
cessed simultaneously. Thus, for large collections additional
roundtrips are not a problem. For small files, e.g., to fetch
individual web pages, a less bandwidth efficient algorithm
based on a single roundtrip would be preferable.

3 Our Contributions

We study the file synchronization problem for large collec-
tions of files and documents, and propose and evaluate new
techniques that significantly improve on previous approaches
in terms of bandwidth usage. Our main contributions are:

� We describe a framework for file synchronization al-
gorithms that partitions the problem into two phases,
map construction, where the two parties use a multi-
round protocol to determine the common parts of the
corresponding files, and delta compression, where the
remaining parts are encoded in relation to the common



parts and then transmitted to the other side. The frame-
work allows for a variety of algorithms and techniques.

� Within the framework, we describe and implement a
number of known and new techniques. In particular, we
use recursive partitioning as proposed in [10, 25, 34].
We introduce new techniques for extending matches via
“continuation hashes” and for the optimized verifica-
tion of suspected matches in the two files, plus sev-
eral other optimizations. The techniques are related to
classical problems in group testing and “searching with
liars” (also known as Ulam’s Problem), and insights
from these problems may lead to additional moderate
improvements in the future.

� We evaluate the framework and techniques on several
data sets, including a large set of changing web pages
that we recrawled daily over several weeks. The results
show that our algorithm allows the maintenance of large
file collections with significantly lower communication
costs than the widely used rsync tool, and in many cases
comes within

�  � of the best delta compressor (which
provides a reasonable lower bound in practice).

The remainder of this paper is organized as follows. In the
next section, we discuss some related work. Section 5 de-
scribes the new framework and algorithmic techniques. Sec-
tion 6 presents the experimental evaluation of our implemen-
tation. Finally, Section 7 discusses some limitations of our
current results and open problems for future research.

4 Related Work

The most important previous work is the rsync file syn-
chronization algorithm proposed by Tridgell and MacKerras
[47, 48], which is the basis of the very widely used rsync
open source tool. There are a number of theoretical studies of
the file synchronization problem [10, 15, 32, 33], also called
the document exchange problem in [10]. In particular, Orl-
itsky [32, 33] presents almost tight bounds for the problem
with varying numbers of communication phases, under some
assumptions about the assumed file distance metric. How-
ever, many of the theoretical algorithms assume that a hash
function is reversed as part of the decoding operation; while
this is allowable under the standard model for communication
complexity [24], it makes the algorithms impossible to im-
plement in practice. An exception are algorithms proposed
in [10, 15, 25, 34] that are based on recursive partitioning
of blocks similar to our implementation. These algorithms
can also be shown to achieve provable bounds with respect
to some common file distance measures. Some limited ex-
perimental results are given in [25, 34]. Recent work in [40]
presents a version of the rsync algorithm that updates files
in-place without using additional temporary space.

Delta compression is the problem of encoding one file rela-
tive to another similar file, where both files are available dur-
ing the encoding. Thus, file synchronization can be seen as a
distributed version of delta compression where the two files

are located at different machines. Our framework reduces
the file synchronization problem to delta compression; on the
other hand any algorithm for file synchronization also solves
the delta compression problem, though typically at signifi-
cantly higher cost. Some available open source tools for delta
compression are described in [23, 26, 46], and an overview
of delta compression and file synchronization techniques and
their applications is given in [45].

A number of authors have studied problems related to iden-
tifying disk pages, files, or data records that have been
changed or added or deleted, or that differ between two or
more replicas; see, e.g., [1, 4, 27, 28, 29, 30, 36, 42]. These
problems differs from ours in that data is assumed to be par-
titioned into fixed units such as pages, records, or files that
are treated as atomic. The work is nonetheless related to ours
in two ways. First, it addresses the problem of efficienctly
identifying files that have changed in scenarios where almost
all objects are unchanged; afterwards, our file synchroniza-
tion techniques can be applied to update those files. We do
not focus on this aspect and instead use a fingerprint for each
file as this is efficient enough for our data sets. Second, some
of the results [27] are also based on techniques from Group
Testing, while others are based on Error Correcting Codes
and probably not as useful in our context.

In addition to rsync, there are many other tools for synchro-
nizing data between different machines. Some of these tools,
such as Microsoft’s ActiveSync, Palm’s HotSync, or Puma
Technologies’ IntelliSync, are used to synchronize data be-
tween a desktop or online account and a mobile device. They
typically transfer the entire file if a change has occurred,
though for record-based data such as appointments and con-
tacts only updated records are transmitted in most cases. Re-
cent work in [2, 44] surveys and studies synchronization tech-
niques for handheld devices, while [3, 39] discuss correctness
issues when files are modified at several locations.

Hash-based techniques similar to rsync have been explored
by the OS and Systems community for purposes such as com-
pression of network traffic [43], distributed file systems [31],
distributed backup [11], and web caching [41]. These tech-
niques use string fingerprinting techniques proposed by Karp
and Rabin [22] to partition a data stream into blocks in a con-
sistent manner on both sides of a communication link, and
then send hash values to encode repeated substrings.

Group Testing is a set of combinatorial problems, intro-
duced by Dorfman [12], that deal with identifying “defec-
tive” elements in a set through a sequence of simple tests on
subsets. We are not aware of previous results on the exact
version of the group testing problem that arises in our work
here. Group testing was used by Madej [27] to identify files
that have changed. Search problems with liars were intro-
duced by Ulam [49] and have been studied extensively over
the last 50 years; see the recent survey of Pelc [37] for an
overview. In particular, Pelc discusses a relationship of the
problem to communication over noisy channels. On the other
hand, Orlitsky and Viswanathan [35] recently established a



relationship between Error Correcting Codes for noisy chan-
nels and one-way communication problems where a receiver
has related information.

Finally, several recent studies look at the type and frequency
of web page updates and propose efficient strategies for re-
freshing pages or other objects based on observations about
their past behavior [6, 7, 8, 9, 13, 14]. These techniques are
complementary to ours in the context of our web page update
application. Of course, if file synchronization were to be-
come widely deployed at web servers, then this would change
the cost model assumed in current recrawling strategies.

5 Our Framework and Algorithms
We now describe our technical contributions. We first intro-
duce our basic framework in the next subsection, and then
give a detailed description of techniques for the map con-
struction phase of our framework in Subsections 5.2 to 5.5.
Finally, Subsection 5.6 summarizes the resulting protocol.

5.1 A Framework for File Synchronization

Recall that the client � has a copy of an outdated file
� 
���


,
and the server � has a copy of the current file

�������
. The goal

is to design a protocol between the two parties that results
in � obtaining a copy of

�������
, while minimizing the com-

munication cost. As we saw in the description of the rsync
algorithm, hash values can be used to identify common sub-
strings in both files, allowing the recipient to learn about the
structure of the file at the other machine.

All the algorithms in our framework consist of the following
two phases:

(1) Map construction:: in this phase, the two parties use
multiple roundtrips to create an approximate representa-
tion of the parts of the two files that are identical. In par-
ticular, the client will generate a map of the current file� �����

, based on hash values sent by the server, that spec-
ifies the known and unknown parts of

� �����
. The server

will meanwhile maintain a shadow map that keeps track
of the map, i.e., which parts of

�������
are known to the

client. The goal of this phase is to minimize the size of
the parts of

�������
that are unknown to the client.

(2) Delta compression: in the second phase, we use delta
compression to transmit the unknown parts of

� �����
to

the client. In particular, the server creates a reference
file

� �'� � , consisting of all parts of
�������

that are known
to the client, and a target file

����� ���9���
of all other parts.

The server then performs a delta compression of
����� �	� �
�

with respect to
� �'� � , and transmits the delta to the client.

The client uses its map to recreate
� �	� � , then decodes

the delta into
����� ���9���

, and merges the two files again to
obtain

�������
.

We define a map of a file
���  �	� 7 39�

as an array 
 �  �	� 7 39�
with 
 � � � + ��� � �

or 
 � ��� + “?” for
� +  ������� ���"7 3

. In other
words, 
 is identical to

�
in some areas (called the known

areas), and unknown in the other areas, labeled by “?”.

Figure 5.1 illustrates our basic approach. Suppose that ma-
chine � contains a file

������� + “BDAFHKZER”, and � con-
tains

� 
���
 + “ABADFHKBCZY”. Suppose � splits
� �����

into three blocks “BDA”, “FHK”, and “ZER”, and sends a
fairly strong hash for each block to � . � can now create
a map 
 �����

of file
� �����

that looks as follows: 
 ����� +
“???FHK???”, by finding that the hash for “FHK” matches
with its own substring “FHK” in positions � to � of

��
���

. As

part of the map 
 �����
, B may also store where it found the

match in its own file
��
���


, in this case in positions � to � (the
first position is  ).

Next, � sends back “010” to � , indicating that the second
hash found a match but the other two did not. Now � can
build a shadow map for

� �����
, called � ����� + “???FHK???”,

that describes what � knows about
� �����

. (Note that � �����
could be represented as a simple bit array “000111000”
where “0” means that � does not know this element of

� �����
.

Of course, � does not know where in
��
���


the matches were
found by � .) In the next communication round � will again
receive hashes, for smaller blocks obtained by splitting the
unknown blocks, and will try to refine the map 
 �����

so
that the unknown areas become smaller and smaller, while
� maintains its shadow map � ����� of

�6�����
.

Figure 5.1. Framework for file synchronization.

Throughout the remainder of this section, we will focus on
optimized techniques for the map construction phase, since
good delta compression tools for the second phase are already
available from several sources. Note that in the above ex-
ample, hashes are transmitted from server to client, while in
rsync the client sends hashes to the server. We could in prin-
ciple also send hashes from client to server, and then have the
server build a map of the client file

� 
���

; at the end we could

delta encode the entire file
� �����

with respect to the known
parts of

� 
���

. In fact, this is essentially what rsync does, in

a single communication round. However, we would expect
more bandwidth savings by sending hashes to the client and
finally encoding only the unknown parts of

�������
.



5.2 Techniques for Efficient Map Construction

We now focus on techniques for efficient map contruction.
While the example in the previous section might indicate that
there is not much to do apart from repeatedly sending hashes,
the problem turns out to be surprisingly rich in terms of pos-
sibilities. All the following techniques are based on exchang-
ing hash values, but use various ideas to minimize the num-
ber of bits needed for the hashes. In particular we employ the
following ideas, described in more detail further below:

(a) Recursive splitting of the block size by powers of
�
.

This technique was already used in [10, 25, 34]. We start
out with a block size of �� � � or some other power of

�
,

and split any blocks that remain unmatched by a factor
of

�
in each round. This technique is straightforward

and does not require additional explanation.

(b) Optimized match verification to minimize the number
of bits that are needed to verify, beyond a reasonable
doubt, that substrings in the two files match. The idea is
to first send a fairly weak hash that can be used to iden-
tify a possible match, and then use an optimized proto-
col based on ideas from group testing to filter out any
false matches. A more limited version of this approach
was also proposed in [25].

(c) Local and continuation hashes to decrease the num-
ber of bits that have to be initially sent in certain cases.
In particular, continuation hashes are very weak hashes
that are used to entend known matches towards the left
and right in both files, allowing us to recurse down to
block sizes for which “global” hashes (i.e, hashes that
are matched against all positions in

��
���

) are too expen-

sive. Local hashes trade off these two cases. The case of
continuation hashes can be modeled as a version of the
problem of “searching with liars”, also called Ulam’s
problem [37, 49].

(d) Decomposable hash functions to decrease the number
of bits used for the initial hashes for finding possible
matches. The simple idea is that if we have already
transmitted a hash value for the parent block and the
left sibling, then for certain types of hash functions we
could compute the hash value of the right sibling from
the other two hashes. In practice though, designing ap-
propriate hash functions to implement this is nontrivial.

In the remainder of this section, we describe these ideas in
more detail. Subsection 5.6 summarizes the protocol.

5.3 Optimized Match Verification

Suppose that � initially sends a set of � -bit hashes to � , and
that � uses these hashes to check for matches in

� 
���

. Sup-

pose that the block size is
,

and
� 
���


is of length
�

. There
are

� 7 , 183
possible match positions in

� 
���

that need to be

checked, and for each position there is a certain probability of
a false match. Thus, for a � -bit perfectly random hash value,

the chance of a false match in
��
���


is

3�7��23�7 3
����� �	��

����� 3�7�� ������������
� �

where
�

is the base of the natural logarithm. In short, around "! . � 5
bits per hash are needed to make sure that we have an

even chance of not getting a false match, and any additional
bit beyond

 #! . � 5
decreases the chance of a false match by

roughly a factor of
�
.

For web pages,
 #! .�� 5

is already around
3��

on average, and
to be reasonably confident about a match we would need to
send maybe another � � bits (about the number rsync uses).
Instead, we propose the following alternative: the server ini-
tially sends only slightly more than

 #! . � 5
bits to allow the

client to identify candidates for matches; these candidates are
then verified in an optimized manner, by having the client
send verification hashes of its matches back to the server. We
use three different ideas for this:

(i) The client can send one verification hash for each candi-
date back to the server. This hash is then compared only
against the block that generated the original hash. The
advantage is that verification hashes are only issued by
the client for those hashes that found a possible match
in
� 
���


, which is typically a minority of hashes.

(ii) The client can send one verification hash for several can-
didate matches, in essence asking: Are all these matches
correct? This should only be done once some degree of
confidence is achieved, since one bad apple may cause
the entire group to fail the test.

(iii) After a group match has failed, we can try to salvage
some of the elements in the group by reissuing hashes
for individual candidates or smaller groups.

Thus, we propose using a sequence of tests on various sub-
sets of the candidates to efficiently identify those that are
correct matches with fairly high certainty. This can be mod-
eled by the following group testing problem [12], where false
matches correspond to defective items and our goal is to iden-
tify all nondefective items, or a large subset of them, through
a sequence of question of the following type: Are all elements
in a specified group nondefective?

The answer to the question is unreliable in the following
sense: If all elements are nondefective, the answer is always
correct, but if there exists a defective item, then the correct
answer is only returned with probability

3 7 �$ � . The cost of
each question is � 1 3

(a � -bit hash for the subset and one bit
for the reply), and the goal is to reliably identify nondefec-
tive items with minimum cost. We are not aware of previous
results on this precise version of the problem. In practice, it
appears that using only two or three batches of tests already
gives close to optimal results, as we see later.

5.4 Local and Continuation Hashes

In the previous subsection, we saw that at least
 #! .�� 5

bits
are needed for a “global” hash that is compared to all po-



sitions in the client file. However, in certain situations we
can do better. Consider a scenario where we have already
found a confirmed match between blocks

� ����� � � � � 1 ,�7 39�
and

� 
���
 � � ��� 1 , 7 39�
. There is no reason to believe that

the match stops exactly at the power-of-two block boundaries
used by the algorithm, and thus we would like to try to ex-
tend the match towards the left and right in subsequent itera-
tions with smaller block sizes. Thus, for block size

,�� + ,��
�
,

we could send a hash for blocks
��������� � 7 ,�� � � 7 39�

and�6������� � 1 ,-� � 1 , 1 ,���7 39�
to the client to check for matches

only with blocks
��
���
 � �27*,��0���27�39�

and
��
���
�� � 1 ,-��� 1�,/1 ,���7�3 �

,
respectively. In this case, even a very small number of bits
(say, � or � per hash) would separate most of the true and
false matches, and we could directly continue with the op-
timized match verification protocol described above. Since
this makes the hashes much cheaper, we can afford to work
with smaller block sizes than for global hashes.

This idea can be generalized to local hashes that use a lit-
tle bit more than � bits and that are compared only with
matches in a neighborhood of size

� �
in

��
���

. The neigh-

borhood can be chosen with various heuristics based on con-
firmed matches of surrounding blocks of

�������
, using the ob-

servation that most changes to files are fairly local in nature.

The problem of expanding matches, say, towards the right,
can be modeled as a searching game with liars [37, 49] as
follows: imagine performing a binary search with unreliable
comparisons (corresponding to continuation tests with block
sizes

,��
�
,
,�� � or � ,�� � , etc.) in the following sense: if the cor-

rect answer is “ 	 ” (“go to the right”) then this answer is al-
ways returned; otherwise with probability

�$ � a wrong answer
is returned. The cost of each query is again � 1 3

. Known
results show that it is not optimal to verify each answer with
a high probability before going down one level in the search
tree. However, in our case we are performing many such
searches concurrently, and we could perform group testing
across these searches to more efficiently verify answers on
each level; it is not clear which strategy is best in this case.

The same reasoning that motivated continuation matches
also leads to another possible optimization. Suppose that a
block at a particular level results in a confirmed match in the
client file. In that case, it is unlikely that the sibling of this
block would also find a match because (1) any match that
is a continuation of the first match would have already been
discovered at the parent level, and (2) any other match is un-
likely since the match found by the first sibling will likely ex-
tend at least slightly into the other block. Thus, if we split the
processing for each block size into two phases, first a search
for matches using continuation hashes on blocks adjacent to
confirmed matches, and then a search using global or local
hashes, then in the second phase we can omit sending hashes
for any blocks whose sibling found a confirmed match in the
first phase (and also for any blocks for which continuation
hashes were sent but no matches found). We could extend
this idea by also first sending hashes, say, for all left siblings,
and then only for those right siblings whose left sibling did

not find a match. We did not implement this last idea since
a technique described in the next subsection already avoids
sending hashes for both siblings in this case. We did imple-
ment the idea of first sending continuation hashes, and then
global hashes, and observed some moderate benefits.

5.5 Decomposable Hash Functions

We say that a hash function
�

is composable if we can
efficiently compute

� . ��� 
�� � �05 from the values
� . ��� 
�� 
 �05

,� .���� 
 1 3�� � �05 , 
 7�

, and � 7 
 743

. A hash function is
decomposable if we can efficiently compute

� . ��� 
 1 3�� � � 5
from the values

� .���� 
�� � � 5 , � . ��� 
�� 
 �05
, � 7�


, and � 7 
 7 3
,

and also
� . ��� 
�� 
 �05

from
� .���� 
�� � � 5 , � .���� 
 1 3�� � �05 , � 7

 , and


 7�

. A decomposable hash function allows us to signifi-

cantly save on the cost of the hashes for identifying candidate
for matches: since we have already transmitted a hash for the
parent block, we only have to send one additional hash per
pair of sibling blocks – the hash for the other sibling can then
be computed from these two.

In practice, there are some additional obstacles. Since our
other techniques use different numbers of bits for different
blocks, we ideally would like to have a hash function that is
“bit-prefix” decomposable in the sense that from the first �
bits of

� . ��� 
�� � � 5 and
� . ��� 
�� 
 �05

we would like to be able to
compute the first � bits of

� .���� 
 1 3�� � �05 , for any � . In ad-
dition, there are several other desirable properties of a hash
function. It should be “rolling” so that

� .���� 
 1 3�� � 1839�05
can

be computed in constant time from
� .���� 
�� � � 5 , and it should be

strong in the sense that different strings should have a prob-
ability close to

�$ � of mapping to the same hash value, for a� -bit hash. Finally, strings that can be obtained from each
other through permutation should not be mapped to the same
hash too often, as such cases are quite common in practice.
Some of the techniques used in practice are also limited to
certain ranges of block sizes. There are trade-offs between
some of these properties, and in the end we designed our own
modification of the Adler checksum in rsync, which appears
to perform well on all our data sets and block sizes.

5.6 Overview of the Protocol

We integrate all of the above techniques into a protocol con-
sisting of a sequence of rounds, one for each block size. Each
round consists of one or more roundtrips of communication.
Consider the left part of Figure 5.2 for an example. The round
starts with the server sending a set of hashes to the client;
these hashes may be global, local, or continuation hashes and
are usually strong enough to identify candidates for matches,
but not strong enough to reliably verify the matches. The de-
composability of the hash function is implemented at a lower
level by surpressing the transmission of hash bits that can
be computed from sibling and ancestor hashes. The client
then replies with a bitmap specifying which hashes found a
match candidate, immediately followed by a set of verifica-
tion hashes for the candidates. Each verification hash, based
on MD5, can be for a single candidate or a group of candi-
dates. The server than receives and checks the verification



hashes, and replies with a bitmap specifying which verifica-
tion hash was confirmed. If the round consists of a single
batch of verification hashes, then this bitmap is included into
the first roundtrip of the next round, and is immediately fol-
lowed by hashes for the next smaller block size. Otherwise,
the client may send additional batches of verification hashes.

Figure 5.2. A single round of the protocol (left),
and a complete protocol (right) consisting of
the client request, one round with one batch
of verification hashes, one round with two
batches of verification hashes, and the final
delta sent from server to client.

On the right side of Figure 5.2 we see a simple example
consisting of two rounds. The client first sends a request to
the server, who then sends hashes for the first block size. In
the example, the first round has a single batch of verifica-
tion hashes, while the second round involves two batches,
maybe first a set of weak hashes for each candidate, and then
stronger hashes for small subsets of � or

	
surviving candi-

dates. Finally, the server sends a delta to the client. In our
implementation, a simple parameter file is used to specify all
the options and techniques that should be used in each round,
such as the type and number of bits per hash, the strategy
for verifying candidate hashes through individual or group
hashes or for salvaging failed candidates, etc.

6 Experimental Evaluation

We now report on a preliminary experimental evaluation of
our prototype software. We first describe the experimental
setup in terms of implementation, data sets, and the other
tools that we compare against. Subsection 6.2 provides re-
sults on two data sets previously used to evaluate delta com-
pression tools, and Subsection 6.3 looks at the case of our
web page update application. We note that our work is still
ongoing and thus some numbers may improve slightly in sub-
sequent versions.

6.1 Experimental Setup

We implemented a prototype with the techniques from the
previous section in around

3 �� � lines of C code. The pro-
gram was compiled with gcc and was run on several Linux
servers. The prototype was not optimized in terms of CPU
performance yet, and thus we do not focus too much on this
aspect. We used the zdelta delta compressor2 for the delta
compression step, and used a very simple but efficient hash
table based on double hashing to search for matching blocks.
The prototype can be configured easily to vary the number
of rounds and the set of techniques that are applied in each
round, allowing us to look at the impact of each technique.

For the hashes sent from server to client, we used two im-
plementations: a high quality one based on MD5 that is not
rolling or decomposable (thus requiring significantly more
running time and moderately more bandwidth) and a more
heuristic construction of a hash function that is both rolling
and decomposable. For the verification hashes, we used an-
other MD5-based hash in both implementations, since in this
case we do not need the other properties. As in rsync, there
is a small probability of failure on each file. Such failures are
detected through the exchange of a very strong

3 � -byte hash
value for each file in the beginning; this also allows our code
to detect unchanged files at that point.

We compare our prototype implementation to rsync with de-
fault block size, rsync with an optimally chosen block size
for each individual file, and the zdelta [46] and vcdiff [23]
delta compressors. We note that current delta compressors
are already fairly optimized in terms of compression, and
thus provide a reasonable bound on what we could hope to
expect from a file synchronization tool that does not have ac-
cess to the outdated file (guarding a major breakthrough in
delta compression techniques). We used the following data
sets for our evaluation:

1. The gcc and emacs data sets used for evaluating delta
compression performance in [21, 45], consisting of ver-
sions 2.7.0 and 2.7.1 of gcc, and 19.28 and 19.29 of
emacs. The newer versions of gcc and emacs consist
of

3  � � and
3�� 	 � files, and each collection has a size

of around
� 
 MB. In each case we measured the cost of

updating all files in the older version to the newer one.

2. A collection of ten thousand web pages that we crawled
repeatedly every night for several weeks during Fall
2001. Pages were selected at random from two massive
web crawls of hundreds of millions of pages and are thus
a fairly reasonable random sample of the web. We use
four versions of each page: a base set and three updated
versions crawled

�
,
�  , and 
 � days later, respectively.

In the experiments, we measure the cost of updating the
base set to one of the updated sets.

2Available at http://cis.poly.edu/zdelta/



6.2 Performance on Benchmark Data Sets

We first look at the performance of a very basic version of
our protocol that uses a decomposable hash function, recur-
sive halving of blocks, and a separate verification hash for
each candidate match, but none of the other techniques. In
Figures 6.1 and 6.2, we give results for the gcc and emacs
data sets, respectively. For each block, our protocol sends a
hash of

 "! . � 5&1 � bits to identify candidates, and the client
replies with a � � -bit verification hash for each match that is
found. The initial block size of our protocol is � � 
 � 	 bytes,
and we plot the total cost in KB for the entire data set under
different minimum block sizes after which we terminate the
recursion. We also show results for rsync with default block
size, an idealized rsync that knows the best block sizes for
each file, and the zdelta delta compressor.
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Figure 6.1. Performance of the basic protocol
with different minimum block sizes on the gcc
data set, compared to rsync and zdelta. For
rsync, we show the costs of client-to-server
and server-to-client communication, and for
our protocol we show the cost of server-to-
client and client-to-server communication dur-
ing the map construction phase and the cost
of the final delta (in order from bottom to top).

As we see, recursive halving and the use of decomposable
hashes and verification hashes already gives significant ben-
efits. The recursion should be stopped around a block size of3�� 	

or � � bytes for best results. (At that point, the increase
in the cost of the map construction phase becomes higher
than the decrease in the delta compression phase.) How-
ever, the best result is still about a factor of

�
away from the

performance of the highly optimized delta compressor. We
note that without decomposable hash functions, the amount
of data sent from server to client in the map building phase
would be about twice as high, and as a result the optimal min-
imum block size is also slightly larger in that case.

Next, we consider the benefit of using an improved match
verification approach and continuation hashes in the proto-
col. In particular, we send � -bit continuation hashes for all
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Figure 6.2. Performance of the basic protocol
with different minimum block sizes on the
emacs data set.

blocks adjacent to an already matched block and
 "! . � 5 1 �

bits for all other blocks (in the same roundtrip). The client
then sends one � � -bit verification hash for every group of

�
candidate matches. We chose two close-to-optimal minimum
block sizes for the global hashes according to the previous ex-
periment, and then continue with continuation hashes down
to sizes of � � , � � ,

3 � , and
	

bytes. The results are shown in
Figure 6.3.
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Figure 6.3. Performance of the protocol with
continuation hashes of various minimum block
size. Shown in the leftmost bar of each
group is the performance with no continuation
hashes but with group verification.

We see from the leftmost bars in the two groups that the
simple single-roundtrip group verification already gives some
improvements over the corresponding numbers in Figure 6.1.
For the gcc data sets, the best choice appears to be to use con-
tinuation hashes down to

3 � -byte blocks; for emacs it would
be

	
-byte blocks (not shown). Also, we see that when using

continuation hashes down to
3 � -byte blocks, having a mini-



mum block size for global hashes of
3��
	

bytes becomes bet-
ter than � � bytes. We also experimented with the use of local
hashes as described in Subsection 5.4; however, we were un-
able to get any significant improvements from this technique.
One issue here is the “harvest rate”, i.e., the percentage of
hashes that result in confirmed matches. Not surprisingly,
blocks that qualify for continuation hashes have a fairly high
harvest rate, which is another reason why they can be prof-
itably used for much smaller block sizes. Local hashes do not
fare well in this context, though we plan to revisit this issue
in future experiments.

We now look at the impact of the optimized match verifica-
tion techniques from Subsection 5.3. In particular, we com-
pare the following five strategies (note that we always send #! .�� 5

bits less from server to client for continuation hashes):

(1) the trivial verification with � � -bit hashes for each candi-
date, used in the first experiment,

(2) the slightly smarter approach above where we used #! .�� 5�1 � bits for each global hash sent from server to
client, and then return one � � -bit hash for every group
of

�
candidates (losing all

�
candidates if the verification

hash fails),

(3) an approach with one additional roundtrip per round
where we first send

 #! .�� 5 1 � bits for each global hash,
then send a � -bit verification hash for each candidate
back, and then one � � -bit verification hash for each
group of

3 � surviving candidates,

(4) a more complicated approach with three roundtrips per
round where we send only

 #! . � 5�1 �
bits per global hash

to the client, who first replies with a
�
-bit hash for each

match, then with a � -bit hash for groups of � , and finally
with a � � -bit hash for groups of � � , and

(5) an even more complicated approach with � roundtrips
per round where we first send

 "! . � 5 1 �
bits, and a

�
-bit

verification hash for each candidate back, then an
	
-bit

hash for groups of � , then a salvage phase where we send�
bits for each candidate in a failed group, and finally a

� � -bit hash for groups of � � .

The results in Figure 6.4 show slight improvements for each
method for gcc (the same holds for emacs). However, almost
all benefits are obtained with only one or two roundtrips. We
experimented with a number of other settings, but none did
significantly better than the best one shown. In particular, we
did not find any benefit in being very aggressive about group-
ing large numbers of fairly uncertain candidates and then try-
ing to salvage candidates from failed groups. Instead, it ap-
pears to be preferable to slowly grow the size of the groups as
our confidence in the candidates grows. There are a number
of subtle tradeoffs at work here: for example, decreasing the
number of bits sent to the server from

 #! .�� 521 �
to
 #! . � 52183

and increasing the reply by one bit does save bits at this point,
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Figure 6.4. Performance of different techniques
for match verification on the gcc data set. Triv-
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bytes
for global hashes and

3 � bytes for continuation
hashes.

gcc emacs

number of files 1,002 1,286
uncompressed 27,288 27,326
gzip 7,563 8,577
rsync default 964 4,452
rsync best 839 3,731
zdelta 227 1,431

our results 336 2,343

Table 6.1. Best results for the gcc and emacs data
sets using all techniques (in KB).

but results in some real matches being lost due to false posi-
tives taking their place, and ultimately a larger delta.

There are several other minor optimizations that we imple-
mented, such as first sending continuation hashes and then
global hashes in the next roundtrip, or the selective use of lo-
cal hashes. None of these showed significant improvements.
In Table 6.1 we show the best results that we were able to ob-
tain by using all techniques; we note that this results in a total
of more than

�  roundtrips and is thus probably not good in
practice since each roundtrip also requires some computation
(and sometimes a scan of the files).

Looking at Table 6.1, we see that we achieve bandwidth
savings of a factor of

3 � �
to

� � 	
over rsync with our new

techniques, and that we are within � ��� to 
6 � of the best
compression achieved by the delta compressor. A note con-
cerning computation times: we have not yet optimized our
code in terms of CPU performance but expect significant fu-



2 days 20 days 72 days

uncompressed size 143 MB 143 MB 140 MB
number of files 10,000 10,000 10,000
number of changed files 2,818 3,747 5,127
rsync (default) 5,339 7,766 11,770
zdelta 1,479 2,170 3,879

our results 2,062 3,623 6,703

Table 6.2. Cost of updating a web collection us-
ing various methods, for various update fre-
quencies. The cost is in KB for

3  � � � web
pages.

ture improvements. The purpose of the work presented here
is to show the potential benefits of the various techniques,
and we plan to build a high performance version based on
our conclusions. The prototype currently runs at a speed of
up to a few MB of raw data per second; with a compression
ratio of

	  �
3

as for gcc this results in a data rate of only
a few hundred kbits/s over the network. For faster networks
and highly redundant data sets, CPU performance would cur-
rently be a bottleneck. Finally, our current implementation is
also not optimized in terms of memory consumption.

6.3 Performance in a Web Page Update Application

We now look at the web page update application that moti-
vated our work. Recall that we are given ten thousand pages,
selected at random from the web, that were recrawled every
night for several weeks. Each set has a total size of around3 �  MB, with about

3 � KB per page on average. Some of
the files are not updated at all between crawls, while others
change only slightly. In Table 6.2, we show the bandwidth
cost of maintaining such collections at a client using our tech-
niques, under different update frequencies.

We observe that our techniques support the maintenance of
very large replicated sets of web pages even over fairly slow
links, and improve over rsync by nearly a factor of

�
. For

example, if we synchronize the pages every two days then
slightly more than

�
MB of data transfer suffices to maintain3  � � � pages at a client PC, which is easily done over cable

or DSL links. The result shown are the best we could get for
our protocol with all optimizations, but as before there are
simpler settings with fewer roundtrips that perform within �
to

���
of optimal.

7 Concluding Remarks
There are a number of unresolved issues and open problems
left by our work. First, the current implementation is a very
early prototype, and we have not optimized it in terms of CPU
performance. This may result in the CPU becoming a bottle-
neck for faster networks. While some overhead is due to the
repeated passes over the data in the different communication
phases, we believe that significant improvements are possi-

ble through careful optimization. Some minor additional im-
provements in bandwidth efficiency should also be possible.

We plan to integrate our implementation into a system for
maintaining large sets of changing web pages over wide area
networks. We also intend to use the presented techniques as
the basis for a new general purpose tool for file synchroniza-
tion over slow links that we plan to release. Ideally, such a
tool would be adaptive and thus choose the best set of param-
eters and number of roundtrips based on the characteristics of
the data set and communication link.

On the theoretical side, we are working on improved asymp-
totic bounds for file synchronization under some common
file similarity metrics. Interestingly, the idea of continuation
hashes used in this paper appears to be very promising in
this context as well. A detailed study of the group testing and
“searching with liars” problems discussed in this paper might
also lead to slight improvements in practice.

We are also studying how to improve file synchronization
if we are restricted to just one or two round-trips. In this
case, it seems difficult to improve significantly over rsync in
practice, but we believe that at least some moderate gains are
possible. Finally, we plan to look at synchronization in asym-
metric cases, e.g., in cases with server broadcast capability,
lower upload speed, or a bottleneck at a busy server.
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