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Abstract might simply execute all the subscription queries peri-

: L odically against any newly arrived documents. How-
Current web search engines are retrospective in that the Y a9 y y armv . .
ver, if the number of subscriptions is very large, this

limit users to searches agamst already existing PagEYHuId result either in a significant delay in identifying
Prospective search engines, on the other hand, allow

users to upload queries that will be applied to newly dis- - matches, if we only execute the queries very rarely,
P 4 PP YAISora significant query processing load for the engine. Fol-
covered pages in the future. Some examples of prospe

: L . fowing the approach in [11 , we essentially reverse the
tive search are the subscription features in Google New?oles%f the sz)F::uments aEnd]the queries Th);t is. we build
and in RSS-based blog search engines. : :

_ o an inverted index on the subscriptions instead of the doc-
In this paper, we study the problem of efficiently ynents, and then issue a number of queries into the in-
processing large numbers of keyword query subscripyex for each newly arriving document. We note, how-
tions against a stream of newly discovered documentsyyer, that the two cases are not completely symmetric. In
and propose several query processing optimizations fo,;g paper, we study techniques for optimizing the per-

prospective search. Our experimental evaluation showg,rmance of prospective search engines. A more detailed
that these techniques can improve the throughput of §¢rsion is available from the first author.

well known algorithm by more than a factor2f, and al- I . ) )
low matching hundreds or thousands of incoming docu- Applications of Prospective Search:One of the pop

. - L .~ ular implementations of prospective search is Ne/s
ments per second against millions of subscription QUENeK | vt feature in Google News. It allows users to sub-
per node. ’

scribe to a keyword search, in which case they will be
notified via email of any newly discovered results match-
1 Introduction ing all the terms. Similar services include specialized
search applications created for job or real estate searches
The growth of the world-wide web to a size of billions Prospective search can be performed with the help of
of pages, and the emergence of large-scale search eSS (RSS 2.0: Really Simple Syndication) feeds, which
gines that allow real-time keyword searches over a largé!low web sites to syndicate their new content at a spec-
fraction of these pages, has fundamentally changed thied URL. Thus, a prospective search engine can find
manner in which we locate and access information. Suci€ néw content on a site by periodically downloading
search engines work by downloading pages from the weff€ appropriate RSS feed. There are a number of exist-
and then building a full-text index on the pages. Thus,iNg weblog and RSS search engines based on RSS feeds,
they areretrospective in nature, as they allow us only to including PubSub, Bloglines, Technorati, and Feedster.
search for currently already existing pages — including Problem Setup: We are given: queriesgy t0 g1,
many outdated pages. In contrgsspective searchal-  where each queryy; contains s; terms (keywords)
lows a user to upload a query that will then be evaluated.o, - - -, tis,—1. We definel” as the union of all the;,
by the search engine against documents encountered ir¢., the set of terms that occur in at least one query. The
the future. In essence, the user subscribes to the resulterms in a query may be arranged in some Boolean for-
of the query. The user can be notified of new matches irmula, though we will mainly focus on the AND queries.
one of several ways, e.g., via email or an RSS reader. Given these queries, we are allowed to precompute ap-
A naive implementation of a prospective search engind’roPriate data structures, say, an inverted index.
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queries are assigned integer query IDs (QID), and docuwe expect additions and deletions of subscriptions to be
ments are assigned integer document IDs (DID), and alhandled in an amortized fashion, by periodic rebuilding
terms in the queries and documents are replaced by intef the structures (including updating the assignments of
ger term IDs (TID). The output of the matching processTIDs and QIDs).
is a stream of (QID, DID) pairs indicating matches. The main data structure used in all our algorithms is an
While retrospective search engines typically store theiinverted index, which is also used by retrospective search
index on disk, we assume that for prospective search, aktngines. However, in our case we index the queries rather
the index structures fit into main memory. Tens of mil- than the documents, as proposed in [11]. The inverted
lions of queries can be kept in memory on a single ma-index consists ofT'| inverted lists, one for each unique
chine with the currently available memory sizes. In caseterm that occurs in the queries. Each list contains one
of more queries, our results indicate that CPU cycles beposting for each query in which the corresponding word
come a bottleneck before main memory. occurs, where a posting consists of the QID and the po-

Discussion of Query SemanticsMost current search Sition of the term in the query (recall that terms are or-
engines assume AND semantics, where a query matchéi¢red within each query by TID). The QID and position
any document containing all query terms, in combinationcan usually be stored together in a singfebit integer,
with ranking. As we show, AND queries can be executed@nd thus each inverted list is a simple integer array.
very efficiently in an optimized system for prospec-

tive search; moreover, several other interesting type i . .
of queries can be efficiently reduced to AND queriesé'1 A Primitive Matching Algorithm

Therefore, we focus on AND queries. We now describe the primitive matching algorithm,
Boolean queries involve a number of terms connectedvhich (with some variations) has been studied in a num-
by AND, OR, and NOT operators. In our framework, ber of previous works including [8, 11, 9, 7]. The basic
they are executed by converting them to DNF, insertingdea is as follows. We initially build the inverted index
each conjunction as a separate AND query, and then rerom the queries using standard index construction algo-
moving duplicate matches from the output stream. rithms; see, e.g., [10]. We also reserve space for a hash
In the RSS search scenario, it might be preferable tdable, indexed by QIDs, of some sufficient size. Given an
restrict the keyword queries to certain fields. It is well incoming document consisting of a set of terms, we first
understood that inverted index structures with appropriclear the hash table, and then process the terms in the
ate extensions can efficiently process many such queriedocument in some sequential order. To process a term,
for retrospective search, and similar extensions are alswe traverse the corresponding inverted list in the index.
possible for prospective search. For each posting of the form (QID, position) in this list,
Contributions of this Paper: we check if there is already an entry in the hash table for
this QID. If not, we insert such an entry into the hash ta-
o We describe the design of a high-performance subble, with an associated accumulator (counter) sét 16
scription matching processor based on an invertecn entry already exists, we increase its accumulatadr, by
index, with several optimizations based on term fre-This first phase is called thaatching phase.

quencies and a Bloom filter structure. In the second phaséefting phase), we iterate over all
e We study preprocessing schemes that cluster sutgreated hash table entries. For every entry, we test if the
scriptions intasuperqueries. final value of the accumulator is equal to the number of

« We evaluate our schemes against a search engin%uery terms; if so then we output the match between t_his
trace, and detail the performance improvements creduery and the document. Note that for Boglgan queries
ated by our optimizations. other than AND, we cou_Id reserve one bit in the ac-
cumulator for each term in the query, and then instead
of increasing a counter we set the corresponding bit; in
the testing phase we check if the accumulator matches
the query through tests applying appropriate bit masks.

In our query processor,_TIDs are assigned fronto Also, since QIDs are assigned at random, we can use the
|T'| — 1, and the terms in each query are ordered by

TID; thus we can refer to the first, second, etc., teerID ltself as our hash function for efficiency.

in a query. Any incoming documents have already been

preprocessed by parsing out all terms, translating thenp 2 Qptimizations for Primitive Algorithm
into TIDs, and discarding any duplicate terms or terms

that do not occur in any query. It will also be convenient Exploiting Position Information and Term Frequen-

to assume that QIDs are assigned at random. Note thaies: One problem with the primitive algorithm is that it

2 The Core Query Processor



creates an entry in the hash table for any query that corfilter structure is small and thus gives better cache behav-
tains at least one of the terms. This results in a largefor, and the innermost loop of our matching algorithm is
hash table that in turn slows down the algorithm, due toalso further simplified. We experimented with different
additional work that is performed but also due to result-settings for the size of the Bloom filter and the number
ing cache misses during hash lookups. of hash functions; our results indicate that a single hash

To decrease the size of the hash table, we first exploitunction (trivial Bloom filter) performs best.
the fact that we are focusing on AND queries. Recall that Partitioning the Queries: We note that the hash table
each index posting contains (QID, position) pairs. Thus,and Bloom filter sizes increase linearly with the number
if we are processing a posting with a non-zero positionof query subscriptions, and thus eventually grow beyond
then this means that the term is not the term with thethe L1 or L2 cache sizes. This leads to our next opti-
lowest TID in the query. Suppose we process the termsnization. Instead of creating a single index, we partition
in the incoming document in sorted order, from lowestthe queries into a numberof subsets and build an index
to highest TID. This means that for a posting with non-on each subset. In other words, we partition the index
zero position, either there already exists a hash entry fointo p smaller indexes. An incoming document is then
the query, or the document does not contain any of th@rocessed by performing the matching sequentially with
query terms with lower TID, and thus the query does noteach of the index partitions. While this does not decrease
match. So we create a hash entry whenever the posthe number of postings traversed, or the locality for index
tion in the posting is zero, and only update existing hastaccesses, it means that the hash table and Bloom filter
entries otherwise. As we will see, this results in signif- sizes that we need are decreased by a factpr of
icantly smaller hash table sizes. A further reduction is
achieved by simply assigning TIDs to terms in order of
frequency, that is, we assign TIDlo the term thatoccurs 2.3 Experimental Evaluation
the least frequent in the set of queries, and TID— 1
to the most frequent term. This means that an accumulaSince we were unable to find any large publicly avail-
tor is only created for those queries where the incomingble query subscription logs, we decided to use Excite
document contains the least frequent term in the query. S€arch engine query logs, collected in 1999. We note that

To implement this efficiently, we split each inverted list query subsc_riptions_in a prospective engine would ”k?"y
into two parts, a smaller list containing only postings be different in certain ways from standard retrospective

with positions equal to zero, and the rest of the list. wedueries, in particular, we would not expect as many ex-

then perform two passes over the terms in the incomin\ct;remely broad queries. For this reason, we will a!sp look
document, the first pass generates the hash entries, a how performance changes with query selectivity, by

the second pass updates the existing entries. This simpl c_)oklng at d|ff§rent subsets of thle query logs. JO be used
fies the critical inner loop over the postings and also al-2s Incoming documents, we se ectell 000 web pages

lows us to quickly determine the optimal hash table sizelt random from a large crawl of ovée0 million pages
for each incoming document, by summing up the Iengthgrom Fall 2001. _ _
of the first parts of the inverted lists involved. We removed stop words and duplicate queries from the

Bloom Filters: As a result of the previous set of op- query trace, and also convgrted all the tgrms to lower
timizations, hash entries are only created initially, andc3S€: We also removed queries that contained more than

most of the time is spent afterwards on lookups to check? [€7MS; there were only3 such queries out of a total of
for existing entries. Moreover, most of these checks , 077, 958 distinct queries. S_om_e stat|st|_cs on the query
are negative, i.e., the corresponding entry does not e)Jpgs, documents, and resultmg_mverted '”P'E‘X lookups is
ist. In order to speed up these checks, we propose t s follows: There are71, 1@‘7 unique terms in the query
use a Bloom filter [2, 3], which is a probabilistic space- 1°9: @nd each query contains abdut terms on average.
efficient method for testing set membership. The number of postings in the indexds633, 970. Each

_ " incoming document contains aboit4 distinct terms

We use a Bloom filter in addition to the hash table. In g

th tchi h hen hash entri ted that also occur in the queries. For each document, our
€ matching phase, when hash entries are created, V\é‘?gorithms will visit about200, 000 postings, or about

also set the corresponding bits in the Bloom filter; thel,400 postings per inverted list that is traversed. Of those

?vetrheafld for t?'s ILS fayrl{y It(r)1W.BIIn thef_tlfstltng pha_‘fg]' we postings, only aboug, 630 have position zero if we as-
Irst periorm a lookup into the Bloom TIter 1o see It there sign TIDs according to term frequencies.

might be a hash entry for the current QID. If the answer is : , . .
negative, we immediately continue with the next posting; 1© €XPerimentwith numbers of queries beyond the size
otherwise, we perform a lookup into the hash table. of the query log, we _repllcated the queries several times
) according to anultiplier betweenl and14, for a max-
Use of a Bloom filter has two advantages. The BIoomimum size of aboutl5 million queries. We note that



the core query processor does not exploit similarities beef around144, 000 documents (disjoint from the set of
tween different queries, and thus we believe that thisl0, 000 we used for testing), and counted the number of
scaling approach is justified. Later, in Section 3, wematches of each query. We then partitioned queries into
will incorporate clustering techniques into our systemfive subsets, from the0% with the fewest number of
that exploit such similarities; for this reason we will not matches to the0% with the most. In the Figure 2.2, we
use a multiplier in the later evaluation of the clusteringshow how the running times of the algorithms change
schemes, which limits us to smaller input sizes. as we go from queries with very few results (leftmost

In the experiments, we report the running times of the4 bars) to queries with very many results (rightmast
various optimizations when matching different numbersbars). Not surprisingly, queries with many matches are
of queries againstt0, 000 incoming documents. The ex- more costly. (Since we use a multiplier bf the parti-
periments are performed on a machine with a 3.0 Gh#ioning does not seem to give any benefits in the figure.)
Pentium4 processor with6 KB L1 and2 MB L2 cache,
under a Linux 2.6.12-Gentoo-r10 environment. We useq
thegcc compiler with Pentium4 optimizations. We also
used thevt une performance tools to analyze program
behavior such as cache hit ratio etc. In the charts, we sef
arately show the times spent on the matching and testin
phases. Note that the matching phase includes all in
verted index traversals and the creation and maintenang
of the accumulators, while the testing phase merely iter-
ates over the created accumulators to identify matches. 0 EnnSElun Hﬂﬂ Hﬂ
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S SR dex partitioning resulted in a gain by about a factod of
Moligler . Mulipler 4 Mligler 14 for the largest query set. On tBeMIB machine, a similar
Figure 2.1: Running times of the various algorithm op- €ffectis expected for larger query multipliers.
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In Figure 2.1, we show the time spent by four versic "1 T
of our query processor: (i) the primitive one, (i) wis., Nl
optimization for AND and assignment of TIDs by fri§=
guency, (iii) with Bloom filter, and (iv) with index parti .,,
tioning with optimal choice of the number of partitiorg o
We show total running times in seconds for match -
10,000 documents against the queries with multiplic = e it Mt 14
of 1,4, and14. At first glance, running times are roughly
linear in the number of queries. More exactly, they are
slightly more than linear for the first three algorithms,
due to the increased sizes of the hash table and Bloom
filter structures resulting in more cache misses, while the3 Optimizations using Query Clustering
best algorithm (iv) remains linear by increasing the num-
ber of partitions. In this section, we study clustering techniques to obtain

As discussed, many Excite queries may have mucladditional performance benefits. We note that clustering
larger result sizes than typical subscription queries @oul of subscriptions has been previously studied, e.qg., in [8],
have. To examine possible relationships between matchsut in the context of more structured queries. Our sim-
ing performance and query selectivities, we partitionedple approach for clustering subscriptions is as follows.
our queries into quintiles according to selectivity. To In a preprocessing step, we cluster all queries into artifi-
do so, we matched all queries against a larger collectiowial superqueries of up to a certain size, such that every
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Figure 2.3 Benefit of best possible index partitioning on
a machine with smaller L2 cache.



query is contained in a superquery and shares the sanie each query are sorted by frequency and thus we sort
least frequent term with a superquery (and thus with allaccording to most common, second most common, etc.
other queries in the cluster). Then we present these suerms. We then consider queries in sorted order as we
perqueries to the query processor, which indexes thernonstruct superqueries, rather than in arbitrary order.

and performs matching exactly as before. Thus the re- Overlap Ratio: The third greedy algorithm builds su-
sulting improvements are orthogonal to the earlier techperqueries by checking all remaining queries in the pool
niques. The only changes to the core subscription proto find the one with the best match, i.e., a query that has

cessor are as follows: (i) During matching, we set appro |ot of terms in common with the current superquery.
priate bits in the accumulators for each update instead

of counting, and (i) in the testing phase we need to test . .

each query that is contained in a superquery that has as-2 EXperimental Evaluation
accumulator. To do this test, we create a simple structur
for each superquery during preprocessing that contains
list of the QIDs of the contained queries, plus for each

QID a bit mask that can be used to test the SUPETAUETY llection. In order to obtain at least a slightly larger

accumulatgrforth|s_subquery. o collection of queries, we combined the Excite queries
We now discuss briefly how clustering impacts the costy;ith another set of queries from the AltaVista search en-
of matching. Consider any two queries (or superqueries@ine_ The combined set contaiBg)69, 916 queries and
that s_hgre the same Ieast.frequent term. Note that b¥22,699 unique terms. The number of postings in the re-
combining these two queries into one superquery, W& jting index is9, 239, 690. We first compare the perfor-
are guaranteed to decrease the size of the index by @hance of the proposed clustering algorithms in Table 3.1
least one posting. Moreover, the number of hash entriegnens is set t032 terms. The best algorithm from the
created and accumulator updates performed during thgyeyious section is shown on the last row. Even the most
matching phase will never increase but may often deqajye clustering algorithm gives significant benefits, and

crease as a result of combining the two queries. On thgye aigorithm based on overlap outperforms all others.
other hand, we need at least one bit per term in the super-

fve cannot use the multiplier method of Section 2.3 in the
&valuation of the proposed clustering algorithms since
they exploit the similarities among the queries in the

query for the accumulator, and a very large superquery | | Matching | Testing | Total |
would result in higher costs for both testing and hashta-  "Random 16.83 135 | 18.18
ble accesses. However, this effect is not easy to capture Alphabetical 14.42 134 | 15.76

with a formal cost model for clustering. Instead, we will
impose an upper bouridon the size of each superquery,
and try to minimize index size under this constraint. In
general, this problem is still intractable, and we will fo-
cus on some heuristics.

Overlap 13.71 1.34 15.05
Best non-clustered 33.28 6.34 39.62

Table 3.1 Running time of the clustering algorithms on
the combined query set (in seconds).

In Table 3.2, we show the number of superqueries cre-

ated by each clustering algorithm, the number of postings
3.1 Greedy Algorithms for Clustering in the resulting inverting index, and the number of ac-

cumulators created during the matching process. As we
All the algorithms we present in this subsection follow see, clustering decreases the number of index postings by
the clustering approach discussed above. They start o@bout40%, but the number of accumulators created dur-
by initially grouping all queries into pools based on their ing the matches is reduced by a factor of up@oThis is
least frequent terms, and then separately build supebecause clustering is most effective for large query pools
queries within each pool. Note that if we use index par-that have a significant number of queries with the same

titioning, we should make sure to assign all queries in deast common query term that can be combined.
pool to the same patrtition.

Random Selection: The simplest approach starts with | | (Super) querie§ Postings | Accumulators|
the empty superquery and then repeatedly picks an arbji-Random 957366 6089165 8870966
trary query from the pool and merges it into the super{ Alphabetical 948417 5784684 7670446
query, as long as the resulting superquery has at mostOverlap 939779 5522510 6543883
b = 32 terms (apart from the least frequent term). If the| Best | 3069916 | 9239690 | 130691462 |
result has more thahterms, then we write out the old
superquery and start a new one. Table 3.2 Comparison of the clustering algorithms and

Alphabetical Ordering: We first sort all queries in the ~the best algorithm.
pool in reverse alphabetical order - recall that the terms Next, we investigated if there are benefits in allowing



larger superqueries with up 6d, 96, and128 terms. We  The proposed algorithm also employs a clustering ap-
observed that there is a slight benefit in allowing up toproach. The created clusters have access predicates,
64 terms, but for96 and128 terms any further gains are where an access predicate is defined as a conjunction of
lost to additional testing time. We also tried to improve equality predicates. In our approach, we create clusters
the greedy approach based on overlap by looking furthewith new artificial superqueries. The scenario we con-
ahead at the next and3 sets that can be added, as op-sider is different, as the terms in the queries as well as
posed to a strictly one step at a time approach. Howevethe content of the incoming documents are keywords.

we did not observe any measurable gains, indicating thatanother body of related work is in the area of content-
maybe the overlap approach is already close to optimabased networking and publish/subscribe communication
We ran the clustering algorithms on the different selectiv-systems [1, 6]. In this model, subscribers specify their in-
ity ranges, introduced in Section 2.3, which showed thaterests by conjunctive predicates, while sources publish
again queries with many results are more expensive téheir messages as a set of attribute/value pairs. The goal
match (we omit the figures due to space limitations). Fi-is to efficiently identify and route messages to the inter-
nally, we summarize our results by showing the through-ested subscribers [5, 4]. The forwarding algorithms used
put rates in documents per second obtained by our variby the routing nodes are related to our query processing
ous matching algorithms in Figure 3.1, on the Excite sefa|gorithm; see [7]. Previous related work exists in the
and the combined set of Excite and AltaVista queries database literature about triggers and continuous queries

We see that overall, throughput increases by more than @ stream processing and XML filtering systems.
factor of20 when all techniques are combined.
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