
ON THE SCALABILITY OF AN IMAGE TRANSCODING PROXY SERVER
�

Anubhav Savant, Nasir Memon, Torsten Suel

CIS Department
Polytechnic University

Brooklyn, NY, USA
anubhav@vip.poly.edu,

�
memon,suel � @poly.edu

ABSTRACT

Image transcoding proxies are used to improve Web browsing
over low bandwidth networks by adapting content-rich web images
to bandwidth-constrained clients. Such transcoding proxies dy-
namically analyze, manipulate and transcode images (e.g. quality
reduction, down sampling) on the fly enabling significant reduc-
tions in download times over low bandwidth links. However, tran-
scoding proxies have scalability problems if the objective policy
that decides whether to transcode an image does not take the client
load (e.g. number of concurrent clients) into consideration. We
show that seemingly intuitive policies that make decisions solely
based on whether transcoding yields savings in transmission time
fail to scale. Under high load, the average latency perceived by a
client can be improved by a factor of about two by taking overall
client load into consideration and properly scheduling transcoding
operations on a single CPU. We show that an Earliest Deadline
First Based (EDF) scheduling policy further improves transcoding
performance.

1. INTRODUCTION

Many wide area mobile clients still access the Internet using second-
generation wireless technologies such as CDPD, CDMA and GSM.
These wireless technologies have constraints in terms of network
bandwidth, latency, connection reliability, and access costs. In the
context of Web access, the problem of slow and expensive net-
works is aggravated by the size of the objects that exist on the
web. Studies [1] have shown that the average Web page access is
about 61 Kbytes in size. Of these, 67% of the data represents im-
ages (mostly GIF and JPEG) and 22% is text (HTML files), and
the average page has about ��� embedded images. Downloading
such as page via a non-persistent connection would take around a
minute on a typical 2G cellular connection, with data rates around
10 Kbps and round trip delay of 0.7-1.0 sec. Moreover, slightly
faster data connections, e.g., based on GPRS, also have high round
trip delays and typically charge a high cost per MB transferred.
Unfortunately, most Web servers do not give any consideration to
the network connection between them and the client. They return
objects assuming the client is capable of efficiently receiving and
rendering the object.

Transcoding proxies are used to improve Web browsing over
slow wireless networks by adapting content-rich Web images to
bandwidth-constrained mobile clients [2, 7, 6, 4, 12]. Such tran-
scoding proxies dynamically analyze, manipulate and transcode
images (e.g. quality reduction, down sampling) on the fly enabling

*This work was supported by a grant from Intel Corporation.

Fig. 1. System Architecture

significant reductions in download times over low bandwidth links
without requiring modifications to Web servers and browsers. A
typical architecture of a transcoding proxy is shown in Figure 1.
In reality, the transcoding proxy is built into an HTTP proxy as a
subsystem. The transcoding subsystem analyzes the input image,
decides if it is worthwhile to transcode (based on some policy)
and then invokes one of the actual algorithms (e.g. image qual-
ity reduction, image down sampling) along with its parameters for
image transformation. In most cases, the decision regarding the
transcoding policy to be used is based on a number of criteria,
including: characteristics of the image (e.g. image spatial dimen-
sion), bandwidth estimates on the client-to-proxy and proxy-to-
server links, user preferences, and the client’s device characteris-
tics such as display capabilities.

Image transcoding is a CPU-intensive task, which usually re-
quires the transcoding algorithm to examine each pixel in the input
image possibly multiple times. The number of transcoding jobs in
the system at any time will be in direct proportion to the num-
ber of concurrent clients. Thus, as the number of clients on the
proxy increases, each transcoding job would take more time to
complete.1 In such a case, a transcoding policy that does not con-
sider the client load while making transcoding decisions (e.g. as
described in [7]) does not scale, i.e., performance for each client
degrades. This has a direct consequence on the number of ma-
chines required for service deployment as it severely limits the
number of clients that can be efficiently served by each proxy. To
minimize the cost for a given user population, a service provider
would like maximum scalability in terms of client load with only

1Either due to concurrent execution of different transcoding tasks or, in
our architecture, due to the waiting time in the transcoder’s queue.



modest degradation in service, particularly during peak times.
SPAWN Proxy: We have implemented a scalable dual-proxy

[8] architecture called SPAWN (Scalable Proxy Architecture for
web access over slow Wireless Networks); see [9, 11] for details.
SPAWN is designed to overcome delays associated with Web ac-
cess over slow wireless networks by combining a variety of known
and new techniques, based on compression and differential com-
pression of HTML pages, transcoding of images, caching of old
and similar content, and optimization of the transmission protocol
(HTTP) to avoid extra roundtrips. SPAWN’s proxy server is based
on the single-process event driven architecture for maximum con-
currency. The event-driven approach implements the processing
of each operation as a finite state machine, where various events,
either system or user generated (e.g. readiness or completion of
a network I/O), trigger transitions between states, allowing an ap-
plication specific centralized control over all the events. SPAWN
makes use of this architecture to implement intelligent scheduling
decisions for efficient resource allocation.

In this paper, we are only interested in analyzing the effects of
SPAWN’s image transcoding component on the overall system per-
formance when subjected to different client load levels. We show
that even at for moderate number of clients performance drops sig-
nificantly if the image transcoding policy does not considers client
load while making transcoding decisions. We show that the per-
formance can be improved significantly by considering client load
as one of the criteria while making transcoding decision and by
properly scheduling transcoding operations on a single CPU.

2. IMAGE TRANSCODING

Transcoding is an important technique that allows a HTTP proxy
server to customize the delivered image (embedded in a Web page)
for the network bandwidth available on the “last hop” to the mobile
client. Common transcoding operations are down-scaling, color
reduction, and reducing the JPEG quality factor. For a modern
workstation transcoding time is small compared to the time saved
in transmission of a transcoded image. However, as the number of
clients on the proxy system increases, the rate at which transcoding
needs to be done becomes more than the transcoder’s speed. As a
result image transcoding becomes a bottleneck. For example, if
we assume average transcoding speed to be � Mbps and average
transcoding ratio (reduction in size) to be

�
, then the transcoder

can only serve ��� clients at a rate of ��� Kbps. Thus, the overall
transcoding time for the ��� � client also includes the transcoding
times for the other �	� � clients as part of the queue latency for the
� � � client. The average queue latency for all the clients increases
with the number of clients on the system. Once the average queue
latency is more than the average latency of sending a transcoded
image to the client, the overall latency of a Web page as perceived
by a client increases linearly with the number of clients.

In all our experiments, we used a model (simulator) for tran-
scoding images instead of the actual algorithm in SPAWN. Us-
ing a model allows us to generalize results without having to de-
pend on any particular transcoding algorithm. For any transcoding
algorithm, the two critical parameters, called transcoding vector,
are: transcoding ratio and transcoding speed. Our model accepts
these two parameters and simulates a transcoding operation sim-
ply by deleting the appropriate number of bits as calculated from
the transcoding ratio and sleeping for an amount calculated from
transcoding speed. We understand that the model has practical
limitations as it is generally hard to know the transcoding vector in
advance on an image by image basis. However, in a previous study

[7], it was shown that the transcoding vector for an image can be
reasonably well predicted based on basic image properties.

3. SCHEDULING TRANSCODING OPERATIONS

In order to minimize average latency for the case of multiple con-
nected clients, an image transcoding proxy server needs to make
various decisions regarding scheduling transcoding jobs, such as:


 How to schedule transcoding operations to satisfy some ob-
jective (e.g. minimizing average latency): There are many
known scheduling algorithms such as “First-Come First-
Serve (FCFS)”, “Round-Robin (RR)”, “Shortest Job First
(SPT)”, “Earliest Deadline First (EDF)” etc. They were
proposed for different purposes: some of them intend to op-
timize overall service response time, some of them focus on
fairness in accessing a common resource. In this work, we
compare the costs and benefits of RR and EDF scheduling
policies.


 How to decide whether to perform transcoding: The trans-
coding subsystem in an HTTP proxy analyzes and transcodes
images based on a number of criteria such as: the char-
acteristics of the image (i.e. content analysis), the current
estimate of the bandwidth on the client-to-proxy link, the
characteristics of the client device, and user preferences.
Based on these criteria, the transcoding subsystem decides
whether it is beneficial to transcode (i.e. whether the re-
duction in response time justifies the delay introduced as a
result of this transcoding) and, if so, what transcoding pol-
icy to use. Almost all prior work on transcoding proxies
has concentrated on developing efficient algorithms based
on the above criteria. However, as the number of clients on
the system increases, the length of the transcoding queue
also increases. As a result, the transcoding delay for a par-
ticular image increases due to additional waiting time in the
queue. In such a case, the transcoding proxy should also
consider client load as one of the criteria to decide about
the transcoding policy in order to provide each client a sim-
ilar quality of service as under the single client case.

We introduce the notion of “deadline” for a client, which
efficiently captures our idea of keeping a client’s connection
busy all the time. The deadline is based on how much data
has already been sent to a client for a particular Web page,
and how much is still waiting to be transmitted after having
been transcoded. Deadlines are initialized and updated for
each client. Define:�
���

- bandwidth to client ���� � - bytes sent in the ��� � write() to client �� � � - deadline after � � � write() to client ����
- current time

Then ������ � ��
��� ��� ���

and � � � � � �! #"� �
� � �

�
���
Thus, if many deadlines are missed, this implies that proxy-
to-client connections are often idle due to the transcoding
bottleneck. To avoid this, the transcoding subsystem de-
cides to transcode for a client only if it would not miss the
deadline.




 How to select an image for transcoding: It is common to
have multiple images available for a particular client that
need to be transcoded. Recent work in [3] suggested that
not all images are suitable for transcoding, as it would not
result in efficient savings in terms of byte size. For exam-
ple, small GIF images representing bullets, logos etc. are
not suitable for transcoding. For each embedded image re-
ceived from the Web server, the transcoding subsystem first
decides whether it is beneficial at all to transcode, based
on image characteristics and independent of client load.2

Next, to decide whether to transcode an image for a client
given the current client load, the transcoding system checks
whether the deadline is missed or not. The transcoder al-
ways tries to pick an image with an expected transcoding
time closest to the difference of current deadline and cur-
rent time. If we cannot transcode any image for a given
client without missing the deadline, then we transmit in
non-transcoded form all the images that are marked as not
suitable for transcoding, or an image that would give mini-
mum benefit.

4. PERFORMANCE EVALUATION

In this section, we present experimental results that compare the
performance of an image transcoding server under the different
scheduling policies and optimizations mentioned earlier. The main
goal of these experiments is to support our claim that for a trans-
coding proxy server better service can be provided by considering
client load and by using non-traditional service order. We will also
demonstrate that it is not efficient to transcode always even in the
case when the savings in transmission time are more than the time
to produce a useful transcoded image.

4.1. Experimental Setup

4.1.1. Experimental Environment

To generate HTTP requests from a set of concurrent clients, we im-
plemented our own custom workload generator (SimUser). Sim-
User makes requests using synthetic clients, each of which op-
erates in a loop, alternating between requesting a complete web
page (including all embedded images) and lying idle.3 The load
that SimUser generates is varied by varying the number of simu-
lated clients. All our tests were conducted using two client ma-
chines (evenly splitting the SimUser clients) running Windows
2000 equipped with a Pentium II 589 MHz processor and 384
MB RAM, and one machine for the proxy server running Linux
2.4.7-10 equipped with a Pentium II 451 MHz processor and 750
MB RAM. The client machines and the proxy server were on the
same 100 Mbps LAN. The proxy server was connected to the In-
ternet through our campus T3 connection. All test were run for
15 minutes, to allow each simulated client to request Web pages a
reasonable number of times.

In order to simulate a typical 2G cellular connection (around
14.4 Kbps peak), we used traffic control mechanisms available for
recent Linux kernels [5]. In all our tests, we specified 10 Kbps as
cellular bandwidth for all clients. Here, we assume that a connec-
tion can be monitored in order to predict current bandwidth to a
client. There are tools available for such tasks, such as [10]. We
also assume round-trip delays to be zero.

2In our experiments, we assume all images are suitable for transcoding.
3Idle time is set to zero in all our experiments.

Average queue latency per image
clients Minimum RR EDF

(s) (s) (s)
40 0.96 1.0 1.0
80 1.92 2.0 2.0

120 2.9 3.2 3.2
160 3.84 4.3 4.3
200 4.8 5.4 5.2

Table 1. Non Scalable Selective Transcoding: A comparison of
average queue latency per image under different scheduling poli-
cies.

RR EDF
clients Original Reduced Queue Original Reduced Queue

latency latency
(bytes) (bytes) (s) (bytes) (bytes) (s)

40 58446 23167 1.0 58822 23370 1.0
80 59288 27477 1.5 58994 27155 1.4
120 59374 31877 1.9 59357 33014 1.6
160 59663 34754 2.2 59666 37028 1.8
200 60070 36626 2.5 59795 40268 1.9

Table 2. Scalable Selective Transcoding - Average Web Page
Statistics and average queue latency per image under different
scheduling policies.

In the experiments reported in this paper, we assumed the tran-
scoding ratio to be

�
and the transcoding speed to be � Mbps. Note

that the choice of these parameters affects the number of clients
that can be efficiently served by a single machine, but has no effect
on the relative performance of different scheduling optimizations
as described in the next section.

4.2. Experimental Results

Before presenting the results of our experiments, we list the vari-
ous cases that we have compared against each other.


 No Transcoding (NT): In this case, the proxy server acts as
traditional HTTP request forwarder.4 This will serve as the
base case.


 Round Robin Schedule, Non Scalable Selective Transcoding
(RR-NSST): In this case, we attempt to capture the behavior
of a typical transcoding proxy, where transcoding is per-
formed on a round-robin basis and the decision whether to
transcode or not does not take client load into consideration
(e.g., [7]).


 Earliest Deadline First Scheduling, Non Scalable Selective
Transcoding (EDF-NSST): This is similar to RR-NSST ex-
cept transcoding is done in order of increasing deadlines.


 Round Robin Schedule, Scalable Selective Transcoding (RR-
SST): Here, we only transcode if we would not miss the
deadline, as described earlier.


 Earliest Deadline First Scheduling, Scalable Selective Tran-
scoding (EDF-SST).

Figure 2 shows the average latency for a web page under dif-
ferent cases, as we increase the number of clients (or load on the
system). As expected, the average latency under the NT case re-
mains almost constant, since in this mode the proxy server simply
acts like a request forwarder. As the average size of a web page is

4However, compression of HTML pages and optimized HTTP/1.1 pro-
tocol were switched on in this and all other cases.



0

10

20

30

40

50

60

70

80

40 60 80 100 120 140 160 180 200

L
at

en
cy

 (
se

c)

# of clients

NT

0

10

20

30

40

50

60

70

80

40 60 80 100 120 140 160 180 200

L
at

en
cy

 (
se

c)

# of clients

NT
RR-NSST

0

10

20

30

40

50

60

70

80

40 60 80 100 120 140 160 180 200

L
at

en
cy

 (
se

c)

# of clients

NT
RR-NSST
EDF-NSST

0

10

20

30

40

50

60

70

80

40 60 80 100 120 140 160 180 200

L
at

en
cy

 (
se

c)

# of clients

NT
RR-NSST
EDF-NSST
RR-SST

0

10

20

30

40

50

60

70

80

40 60 80 100 120 140 160 180 200

L
at

en
cy

 (
se

c)

# of clients

NT
RR-NSST
EDF-NSST
RR-SST
EDF-SST

Fig. 2. Average Latency Per Web Page under different cases.

around 60K, the latency is constant at around 50s. RR-NSST and
EDF-NSST perform almost identically, which can be explained
as follows. If the average image size is

� � , then for
�

number
of clients the average queue latency per image would at least be�����
�	� . However, this is only true if we always decide to transcode5

and there is at least one image per client in the transcoder’s queue.
Table 1 shows the average queue latency per image for different
scheduling policies. The values for RR-NSST and EDF-NSST are
quite close to the minimum values and therefore both of them per-
form similar. This also explains the steep increase in the average
latency per Web page. Since we are transcoding each image by a
factor of 2 and the average image size is around 3K, the acceptable
average queue latency would be around 1.3s, which is the time
to transfer 1.5K of data over 10Kbps. However, the observed la-
tency soon becomes significantly larger than this, and at around��
 � clients RR-NSST and EDF-NSST become worse than a proxy
with no image transcoding at all.

The results under RR-SST and EDF-SST demonstrate the im-
pressive performance improvements under “scalable selective tran-
scoding” as compared to “non scalable selective transcoding”, i.e.,
the benefits of considering client load while making transcoding
decisions. Also, it shows that an EDF scheduling policy provides
further performance improvements over the RR scheduling policy.

In order to understand the difference in the performance under
“Non Scalable Selective” and “Scalable Selective” transcoding, we
need to look into how each of these strive to reduce latency as
perceived by a client. While the former tries to reduce latency
by sending a minimum amount of data over the network and in
turn incurs huge queuing delays, the later does so by keeping an
appropriate balance between the data sent over the network and the
queuing delays in the transcoder. If we try to perform too much
transcoding, the reduction in latency by sending less data over the
network is largely offset by additional queuing delays.

Table 2 shows the average web page statistics under RR-SST
and EDF-SST. As we increase the number of clients on the system,
both RR-SST and EDF-SST try to minimize queuing delays per
image, by selectively deciding about transcoding operations. In

5This is true in the case of “Non Scalable Selective Transcoding” be-
cause of the relatively large difference in bandwidth between the proxy-to-
server and client-to-proxy links.

the process, both actually send more data over the network than
RR-NSST and EDF-NSST. While both cases yield similar average
latencies initially, as the load increases further the performance of
RR-SST degrades compared to EDF-SST. Since under EDF-SST
we deal with the clients in the order of increasing deadlines, the
average queue latency per image is less.

5. CONCLUSIONS

We presented results from a systematic performance study of an
image transcoding proxy server. We have shown that seemingly
intuitive transcoding policies that decide solely based on whether
transcoding allows savings in transmission time fail to scale. The
image transcoding performance can be improved by a factor of two
in terms of average Web page latency as perceived by a client, by
taking client load into consideration and by properly scheduling
transcoding operations on a single CPU. We have also shown that
an Earliest Deadline First (EDF) based scheduling policy further
improves transcoding performance.

6. REFERENCES

[1] ALL THINGS WEB. Second state of the web survey (SOWS
II). May 1998. http://www.pantos.org/atw/35654.html

[2] H. Bharadvaj, A. Joshi, and S. Auephanwiriyakul. An Active
Transcoding Proxy to Support Mobile Web Access. In Proc.
of the IEEE Symp. on Reliable Distributed Systems, 1998.

[3] S. Chandra, A. Gehani, C. S. Ellis, and A. Vahdat. Trans-
coding characteristics of web images. In Proc. of the SPIE
Multimedia Computing and Networking Conference, 2001.

[4] S. Chandra, and C. S. Ellis. JPEG Compression Metric as
a Quality Aware Image Transcoding. In Proc. of the 2nd
USENIX Symp. on Internet Technologies & Systems, 1999.

[5] S. Floyd and V. Jacobson. Link-sharing and Resource Man-
agement Models for Packet Networks. IEEE/ACM Transac-
tions on Networking, Vol. 3 No. 4, 1995.

[6] A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir. Adapting
to Network and Client Variability Via on Demand Dynamic
Distillation. In Proc. of ASPLOS-VII, 1996.

[7] R. Han, P. Bhagwat, R. LaMaire, T.Mummert, V. Perret,
and J. Rubas. Dynamic Adaptation in an Image Transcoding
Proxy For Mobile Web Browsing. In IEEE Personal Commu-
nications Magazine, December 1998.

[8] B. C. Housel, G. Samaras, and D. B. Lindquist. WebExpress:
A Client/Intercept Based System For Optimizing Web Brows-
ing in a Wireless Environment. In Proc. 2nd Annual Int. Conf.
On Mobile Computing and Networking, 1996.

[9] A. Savant. SPAWN: a Scalable Proxy Architecture for web
access over slow Wireless Networks. MS Thesis, CIS De-
partment, Polytechnic University, 2003.

[10] S. Seshan, M. Stemm, R. Katz. SPAND: Shared Passive Net-
work Performance Discovery. In Proc. 1st Usenix Symp. on
Internet Technology and Systems, 1997.

[11] SPAWN Project Homepage. Polytechnic University.
http://cis.poly.edu/spawn/

[12] J. Smith, R. Mohan, C. Li. Content-based Transcoding of
Images in the Internet. Proc. of the Int. Conf. on Image Pro-
cessing, 1998.


