Lower Bounds for Sorting Networks

Nabil Kahalel?
C. Greg Plaxton'?®

Abstract

We establish a lower bound of (1.12 — o(1)) nlogn
on the size of any n-input sorting network; this is
the first lower bound that improves upon the trivial
information-theoretic bound by more than a lower or-
der term. We then extend the lower bound to com-
parator networks that approximately sort a certain
fraction of all input permutations. We also prove a
lower bound of (¢ — o(1)) log n, where ¢ & 3.27, on the
depth of any sorting network; the best previous result
of approximately (2.41 — o(1)) logn was established
by Yao in 1980. Our result for size is based on a new
technique that lower bounds the number of “0-1 colli-
sions” in the network; we provide strong evidence that
the technique will lead to even better lower bounds.

I Part of this work was done while the author was at DIMACS.

2XEROX Palo Alto Research Center, 3333 Coyote Hill Road,
Palo Alto, CA 94304. Partially supported by the NSF under
grant CCR-9404113. Email: kahale@parc.xerox.com.

3Department of Mathematics and Laboratory for Computer
Science, MIT, Cambridge, MA 02139. Supported by ARPA
Contracts N00014-91-J-1698 and N00014-92-J-1799. Email:
ftlOmath.mit.edu.

4Department of Computer Science, Stanford University,
Stanford, CA 94305. Supported by an NSF Mathematical Sci-
ences Postdoctoral Research Fellowship. Part of this work was
done while the author was at MIT and supported by ARPA
Contracts N00014-91-J-1698 and N00014-92-J-1799. Email:
yuan@cs.stanford.edu.

5Department of Computer Science, University of Texas at
Austin, Austin, TX 78712. Supported by the Texas Ad-
vanced Research Program under Grant No. ARP-93-003658-
461. Email: plaxton@cs.utexas.edu.

SNEC Research Institute, 4 Independence Way, Princeton,
NJ 08540. This work was done while the author was at the
University of Texas at Austin, and was supported by the Texas
Advanced Research Program under Grant No. ARP-93-003658-
461. Email: torsten@research.nj.nec.com.

"Department of Computer Science, Rutgers University, Pis-
cataway, NJ 08855. Supported by ARPA under contract DABT-
63-93-C-0064. Part of this work was done at the University of
Paderborn, Germany. Email: szemered@cs.rutgers.edu.

Tom Leighton®

Torsten Sue

Yuan Mal*

16 Endre Szemerédi”

1 Introduction

The study of sorting networks has received consider-
able attention over the past several decades. In ad-
dition to providing a simple and elegant framework
for many parallel and sequential sorting algorithms,
sorting networks have also proved to be useful in sev-
eral other applications, such as circuit switching and
packet routing [10, 12, 19].

A comparator network 1s commonly defined as a lev-
eled acyclic circuit of comparators, each having two
input wires and two output wires. One of the out-
put wires is labeled as the maz-output, and receives
the larger of the two input values; the other output is
called the min-output, and receives the smaller value.
We say that an n-input comparator network is a sort-
ing network 1f it produces the same output sequence
on all n! permutations of [n]. (We use [n] to denote the
set {0,...,n—1}.) The depth of a network is defined
as the number of levels, and the size of a network is
defined as the number of comparators in the network.

Thus, sorting networks can be seen as a simple
model for oblivious (i.e., non-adaptive) sorting algo-
rithms, where the depth and size of the network corre-
spond to the parallel running time and the amount of
hardware, respectively, that are needed to implement
the algorithm. A fundamental problem in the study of
sorting networks is the construction of networks that
achieve a small size and/or depth. We refer the read-
ers to [10, 19] for excellent surveys of the history of
this problem.

1.1 Previous results

There is a trivial information-theoretic lower bound of
log(n!) = nlogn — nloge on the number of compar-
isons required by any comparison-based sorting algo-
rithm. (We use “log” for the base 2 logarithm, and
“In” for the natural logarithm.) For the class of non-
oblivious sorting algorithms, this lower bound can be
easily matched, within a lower order term, by simple
and well-known algorithms such as heapsort, merge
sort, or binary-search-based insertion sort. However,

the situation is quite different in the case of sorting
networks.

Two elegant sorting networks of size O(nlog” n) and
depth O(log? n) were described by Batcher [5] in 1968.
Following the work of Batcher, no improvements in
the upper bounds were obtained for a number of years,
and it remained uncertain whether a size of O(nlogn)
or a depth of O(log n) could be achieved by any sorting
network. In fact, Knuth conjectured that sorting net-
works of size O(nlogn) do not exist (see Exercise 51
on page 243 of [10]).

This conjecture was finally disproved in 1983 by Aj-
tai, Komlds, and Szemerédi [1], who described a sort-
ing network with size O(nlogn) and depth O(logn),
commonly referred to as the “AKS network”. How-
ever, even after several improvements in the construc-
tion of the network [2, 18], the constants hidden by
the big-Oh notation remain impractically large.

Overall, the construction of sorting networks with
small size and/or depth seems to be fundamentally
more difficult than the design of fast non-oblivious
sorting algorithms. A natural question to ask is
whether there exists a lower bound for sorting net-
works that is significantly larger than the information-
theoretic bound, thus formally establishing this seem-
ingly apparent difference in complexity between sort-
ing networks and algorithms. However, despite a num-
ber of attempts, not much progress has been made on
this question so far.

In particular, Van Voorhis showed a simple lower
bound of nlogn in [22], and a more difficult lower
bound of nlogn+ (n/2)loglogn+Q(n) in [23]. While
this is the best result known so far, it gives only a
lower order improvement over the trivial information-
theoretic bound of nlogn —nloge. In related work, a
number of bounds have been established for the size of
comparator networks for merging and selection (see [3,
8,9, 11, 16, 20, 21, 24, 25], and see Theorem F on
page 230 of [10] for a result due to Floyd).

For the depth of sorting networks, Yao [24] has
shown a lower bound of approximately (2.41 —
o(1))logn. This should be compared with the (2 —
0(1)) log n trivial information-theoretic bound. (Note
that each level of a comparator network contains at
most n/2 comparators.) In fact, Yao’s lower bound
was established for the depth of certain selection net-
works, but it also gives the best result currently
known for the case of sorting. For small values of
n, some computer-aided approaches for finding upper
and lower bounds have been developed [6, 17].

Finally, significantly better upper bounds are known
for comparator networks that sort all but a small

fraction of the n! input permutations. In particular,
Leighton and Plaxton [15] have described a compara-
tor network of size ¢y nlgn and depth c;logn that
sort all but a superpolynomially small fraction of the
n! input permutations, where ¢; & 3.22 and ¢5 &~ 7.44.
Selection and merging networks that work for most in-
put permutations have been studied in [7, 14].

1.2 Contributions of this paper

The main contributions of this paper are as follows:

1. We prove a lower bound of (1.12—0(1)) nlog n for
the size of any n-input sorting network. This is
the first lower bound for size that improves upon
the information-theoretic bound by more than a
lower order term, and it demonstrates that signif-
icantly more comparisons are required for sorting
in the network model than in the more general
comparison-based algorithm model.

2. We extend essentially the same lower bound to
the size of comparator networks that approxi-
mately sort a certain fraction of all input per-
mutations.

3. We prove a lower bound of (¢ — o(1)) logn for the
depth of any sorting network, where ¢ &~ 3.27.
This improves upon a lower bound of approxi-
mately (2.41 — o(1)) log n established by Yao [24]
in 1980.

Our results for size are based on a new lower
bound technique described in Corollary 2.1. Infor-
mally speaking, this technique reduces the problem of
showing a lower bound on the size of a sorting net-
work to that of showing a lower bound on the number
of “0-1 collisions” (that is, the number of comparators
that perform a comparison between a “0” and a “1”
under some 0-1 input sequence).

The number of “0-1 collisions” 1s then lower-
bounded by a potential function argument. The
strength of the resulting lower bound depends on the
choice of a good potential function. In this paper, we
formally establish a lower bound of (1.12—0(1)) nlogn
for the size of any sorting network. We also provide
strong evidence for the existence of better potential
functions, and thus better lower bounds. In particular,
we propose a potential function that we conjecture will
lead to a (¢—o(1)) nlogn lower bound with ¢ ~ 1.266;
this appears to be the best constant achievable under
our potential function argument.

The remainder of this paper is organized as follows.
In Section 2, we describe the reduction to the number

of “0-1 collisions”. Section 3 contains the potential
function argument, and Section 4 describes an exten-
sion to the size of comparator networks that sort a cer-
tain fraction of all input permutations. In Section 5,
we establish the lower bound for depth. Finally, Sec-
tion 6 contains some concluding remarks.

2 A Size Lower Bound Based on
Counting “Collisions”

For each n > 1, let S(n) denote the minimum size
of any m-input sorting network. In this section, we
describe how to lower bound S(n) by another quantity
C'(n), which corresponds to the minimum number of
“collisions” in any n-input sorting network. The main
result of this section is Corollary 2.1, which will be
used in the next section to establish a lower bound on
S(n).

In a certain sense, the technique in this section
can be viewed as a highly nontrivial variant of an
old technique introduced by Floyd [10, Theorem F on
page 230] to lower bound the size of merging networks.
(See [13] for another more sophisticated application of
this technique.) Floyd’s technique roughly proceeds as
follows. Let M (n) denote the minimum size of any n-
input comparator network for merging two sorted lists
of length n/2. Consider an arbitrary n-input merging
network M of size M (n). As argued in [10, Theorem F
on page 230], we may assume without loss of generality
that M is given in such a form that an input sequence
to M may have up to n/4 items to be moved from
My (the upper half of M) to M; (the lower half of
M), and vice versa. Thus, M needs to have at least
n/4 comparators connecting My and M;. In addi-
tion, it is easy to argue that both M, and M must
be merging networks with n/2 inputs each. Thus, we
have

M(n) > 2M(n/2) + n/4, (1)

which solves to give M (n) > (n/4) logn.

It would be nice if we could adapt Floyd’s argu-
ment directly to obtain a lower bound for sorting net-
works of the form (¢ — o(1))n log n for some fixed con-
stant ¢ > 1. Unfortunately, however, direct applica-
tion of Floyd’s argument only yields a trivial lower
bound of (n/2) logn since an input sequence to a sort-
ing network may have up to n/2 items to be moved
from the upper half to the lower half, and vice versa.
Moreover, the triviality of such a lower bound 1s not
due to any underestimate of the number of such com-
parators, since there do exist sorting networks (e.g.,
Batcher’s bitonic sorting network [5]) that have ex-
actly n/2 comparators connecting the upper and lower

halves. Hence, Floyd’s type of argument may not seem
helpful at all in the context of proving nontrivial lower
bounds for sorting networks.

The novelty of our technique is to partition a sorting
network into two subnetworks in a “dynamic” fashion
so that the number of comparators connecting the two
subnetworks is at least (c—o(1))n for some fixed ¢ > 1.
That is, the partition is not fixed in advance, but may
depend on the structure of the sorting network.

2.1 Partitioning a sorting network relative to
a given 0—1 input vector

Throughout this subsection, fix n > 1, let A" denote a
given n-input comparator network, and let ¢ denote a
given 0-1 vector of length n. Let k& denote the num-
ber of 0’s in ¢. Input vector ¢ induces a partition of
the comparators of A into three classes: (i) the 0-0
comparators, i.e., those comparators for which both
input wires contain a 0, (ii) the 1-1 comparators, i.e.,
those comparators for which both input wires contain
a 1, and (iii) the 0-1 comparators, i.e., those com-
parators for which one input wire contains a 0 and
the other input wire contains a 1. Let a(N, @) (resp.,
b(N,), c(N, ¢)) denote the number of 0-0 (resp., 1-1,
0-1) comparators in comparator network N on input
vector ¢. We also refer to each 0-1 comparator as a
collision. Thus, ¢(N, ¢) is the number of collisions in
comparator network A on input vector ¢.

Lemma 2.1 If N s a sorting network, then
a(N,6) > S(k) and b(N',6) > S(n — k).

Proof: We only prove that a(N,¢) > S(k); an en-
tirely symmetric argument can be used to establish
the second inequality.

From sorting network A" and 0-1 input vector ¢, we
construct a k-input comparator network Ny as follows:
(i) remove all wires from A that receive a 1 under in-
put @, (ii) remove all 1-1 comparators from A" (which
are now isolated), and (iii) for each 0-1 comparator »
in NV, remove x and connect the only remaining input
of directly to the lone remaining output of . (It is
straightforward to prove that Nj is indeed a k-input
comparator network.) Note that there is a one-to-one
correspondence between the set of comparators in Ny
and the set of 0—0 comparators in . Hence, N is of
size a(N, ¢).

Furthermore, the behavior of Mg on a given permu-
tation of [k] mimics that of the corresponding subnet-
work of A when the same input permutation of [k]
is applied to the k& “O-inputs” (i.e., input wires that
receive a 0 under input ¢) of A, and the input value

k is passed to each of the remaining n — k “l-inputs”.
(By “mimics” we mean that each comparator in N
receives the same pair of input values as the corre-
sponding comparator in A'. The preceding claim is
straightforward to prove by induction on the number
of levels in the network.) Since all such inputs are
sorted by A (which is a sorting network), each of the
k! possible permutations of [k] is mapped to the same
output permutation by Ny, i.e., Ay is a sorting net-
work. We conclude that a(N, @) > S(k), as required.
|

2.2 A lower bound recurrence for S(n)

Let &,, denote the set of all n-input sorting networks.
Let

¢l = AIfIél‘SII,Lwa{lo%i(}nc(N’qs)'

We now show how a lower bound on C'(n) can be used
to obtain a lower bound on S(n).

Lemma 2.2 S(n) > ming<;<n(S(7)+S5(n—i))+C(n).

Proof: Let N denote an n-input sorting network of
size exactly S(n). By the definition of C(n), there
exists a 0—1 input vector ¢ such that c¢(N, ¢) > C(n).
Let & denote the number of 0’s in ¢. By Lemma 2.1,

S(n)

a(N,8) +b(N,) + ¢(N,)
S(k) + S(n — k) + C(n)

min (5(3) +5(n) +C(n).

(AVARAY/

Corollary 2.1 If C(n) > (c — o(1))n, then S(n) >
(¢ —o(1))nlogn.

Proof: The proof is a straightforward induction on
n, using Lemma 2.2 and the convexity of the function

zlogx. A

3 Lower Bounds for C'(n)

This section is devoted to proving the following theo-
rem.

Theorem 1 C(n) > (1.12 — o(1))n.

By Corollary 2.1, we immediately obtain the first main
result of the paper.

Theorem 2 S(n) > (1.12 — o(1))nlog n.

3.1 The expected number of collisions in a
sorting network

Direct analysis of the function C(n) appears to be dif-
ficult. Our lower bound is obtained by considering
instead C'(n), which corresponds to the minimum ex-
pected number of collisions in any n-input sorting net-
work when the input is a random 0-1 vector, that is,
the input is a 0-1 vector drawn uniformly at random
from {0, 1}". Formally, we have

C(n) = AIfIél‘SI‘l

Z e(N,8)] /2" .

#€{0,1}7
By a straightforward averaging argument, we have
Cn) > Tn). (2)

As a result, any lower bound for C'(n) is also a lower
bound for C'(n). In Subsection 3.4, we prove that
C(n) > (1.12 — o(1))n.

3.2 The class of “good” potential functions

We employ a potential function argument to obtain a
lower bound on C(n). The choice of potential func-
tion 1is critical for obtaining the highest possible con-
stant factor in our lower bound. In fact, we have i1den-
tified an infinite sequence of potential functions, de-
fined in Subsection 3.4, which we believe can be used
to establish successively higher lower bounds on C(n).
Our lower bound argument requires that the potential
function be “good”, as defined below:

Definition 3.1 Let ®(p) be a continuous real-valued
Junction defined over the interval [0,1]. We say that
®(p) is a good potential function if and only if the
following conditions hold:

(a) ®(0) = ®(1) = 0,

(b) for0 < p<1,0<qg< 1, andpg <r <
min{p, ¢}, we have

O(p) + P(q) —@(r) —P(p+qg—7) <p+q—2r

While we conjecture that every function in the infi-
nite sequence alluded to above, and defined in Sub-
section 3.4, is a good potential function (see Subsec-
tion 3.5 for further discussion of this conjecture), we
have only proved that the first two functions in the
sequence are good. As a result, there is a significant
gap between the best lower bound that we have been
able to establish on C(n), namely (1.12 — o(1))n, and
the lower bound that would be established if we could
prove that every potential function in the sequence is
good, namely (v* — o(1))n, where v* &~ 1.266.

3.3 The potential function argument

In this subsection, we establish the following lower

bound on 6(71)

Lemma 3.1 If ® s a good potential function, then
Cn) > (9(1/2) — of1)).

We begin with some definitions. A function u from
{0,1}" to {0, 1} is an increasing function if

< xn—l)

B xn—l)a

U(IOa ceey i1, Oa Litly .-
< u(wo, ..

Sxio1, L xig,

for 0 < ¢ < n. The definition of a decreasing function
from {0,1}" to {0,1} is analogous. We state with-
out proof the following classical result (see, e.g., [4,
Chapter 6] for a proof).

Lemma 3.2 (The FKG inequality)

Let Xo,...,Xn_1 be i.i.d unbiased 0-1 random
variables. If u and v are two decreasing func-
tions from {0,1}" to {0,1}, then u(Xo,..., Xn_1)
and v(Xy,...,Xn_1) are positively correlated, i.e.,

Ef[uv] > E[u]E[v].

Lemma 3.3 Let N be an n-input comparator net-
work, and let the input to N be a random 0-1 vector.
Then for all pairs of output indices i and j, the event
that the ith output receives a 0 and the event that the
jth output recewes a 0 are positively correlated.

Proof: This follows from the FKG inequality. To see
this, we need to check that the value of any output is
an increasing function of the input sequence. This can
be shown by induction on the number of comparators,
since both min and max (the functions applied at each
comparator) are increasing functions. ll

Let A be a comparator network and let #; (resp.,
y;) denote the probability that the éth input (resp.,
output) receives a 0 when the input to A is a random
0-1 vector. For any potential function @, define the
input potential of N as ®;,(N) = Y o<icn @(xi). Sim-
ilarly, define the output potential of N as @,y (N) =
2 o<i<n PYi)-

Lemma 3.4 Let N’ be an n-input comparator net-
work obtained by appending a comparator x to an n-
input comparator network N, and assume that the in-
put to N is a random 0-1 vector. Let ® be a good
potential function. Then the probability of a collision
occurring at x is at least @, (N) — Py (N).

Proof: Let p (resp., q) be the probability that the
first (resp., second) input to comparator z holds 0,
and let s denote the probability that both inputs hold
0. The probability that the larger output of z is 0 1s s,
and the probability that the smaller output of « 1s 0 is
p+q—s. By Lemma 3.3, s > pg. On the other hand,
it is clear that s < min(p, ¢). Hence, Property (b) of
Definition 3.1 implies that

q)out(N) - q)out(N/)
®(p) + @(q) — ®(s) —(p+4q—)
p+q—2s.

IN

We conclude the proof by noting that the probability
that a collision occurs in comparator x is (p—s)+(¢—
s)=p+q—2s. 1

Corollary 3.1 Let N be any n-input comparator net-
work, and assume that the input to N is a random 0—1
vector. Let ® be a good potential function. Then the
expected number of collisions occurring in N is al least

Doy (N) = Poue(N) = 1 B(1/2) — @ oo (N).

Proof: Straightforward by Lemma 3.4 and linearity
of expectation. H
Proof of Lemma 3.1: By Corollary 3.1, it is suf-
ficient to prove that for any sorting network A, and
any good potential function ®, we have

D, (N) = on). (3)

In order to establish Equation (3), we partition the
outputs of A into three groups: (i) the n/2 —+v/nlnn
lowest ranked outputs, (ii) the n/2 — v/nlnn highest
ranked outputs, and (iii) the remaining 2v/n In n “mid-
dle” outputs. We now bound the contribution of each
group of outputs to the sum defining ®,,,(N). By a
standard Chernoff bound argument [4, Theorem A.1
on page 233], each of the outputs in group (i) has an
associated probability of receiving a 0 that is greater
than or equal to 1 —exp(—2Inn) = 1—-1/n? = 1—0o(1).
(An output in group (i) can receive a 1 only if the total
number of 1’s in the random 0-1 input vector exceeds
n/2 by at least v/nlnn.)

Since the potential function @ is continuous and
®(1) = 0, the contribution of each output in group (i)
is ®(1—o0(1)) = o(1). Hence, the total contribution of
the outputs in group (i) to @,y (N) is o(n). A simi-
lar argument shows that the total contribution of the
outputs in group (ii) to @4y (A) is o(n). Finally, note
that the contribution of any single output to @,y (N)
1s at most some constant independent of n. Hence,

the total contribution of the outputs in group (iii) to
D,y (N) is O(v/nlogn) = o(n). Together these argu-
ments imply that Equation (3) holds, completing the
proof of Lemma 3.1. B

3.4 A good potential function

In this subsection, we first define an infinite sequence
of potential functions g4, d > 1. Then, we prove that
g2 1s a good potential function. Finally, we use g» to
prove the correctness of Theorem 1.

We first inductively define an infinite sequence of
real functions fy (d > 1) over the interval [0, 1]:

ifd=1
+p—p? ifd>1.

falp) = { g;f;Hf;—l(?p—pQ)
In particular,
f2(p) = 2p = 3p* + 2p° — p*.
We next define a sequence of constants v4 (d > 1) as
fa(1/2)
2(2fa(1/2) = fa(1/4) — fa(3/4))

fa(1/2)
A(fa(1/2) = fa(1/4))
where the latter equality follows from the observation

that f4(p) = fa(l —p) foralld > 1 and 0 < p < 1.
For example,

Yd =

v1 =1 and v = 28/25 = 1.12. (4)
Given f; and ~g4, potential function g4 is defined as
9a(p) = vafa(p)/ fa(1/2). (5)

It is straightforward to prove that ¢; 1s a good po-
tential function. However a direct application of ¢
only yields a trivial lower bound of (1 — o(1))nlogn
for S(n). To obtain a nontrivial lower bound, we need
to prove that g4 is a good potential function for some
d > 2. In fact, numerical experiments suggest that
9a(1/2) > g4-1(1/2) for all d > 1. Hence, we could
hope to prove better and better lower bounds on S(n)
by proving that g4 is a good potential function for
larger and larger values of d. In particular, we conjec-
ture that all of the g4’s are good potential functions
(see Subsection 3.5).

Lemma 3.5 The potential function g2 ts good.

Proof: The function g5 is clearly continuous. Thus,
it remains only to verify that Properties (a) and (b) of

Definition 3.1 hold for g2. Property (a) is immediate.
Before addressing Property (b), observe that

11

9 (p) = —6+4+12p— 12p2
= —6(p"+(1-p)?)
< 0

for 0 < p < 1. Thus, f5 and g» are both concave.
To verify Property (b), we need to show that

g2(p) + 92(q9) — 92(r) —g2(p+ ¢ — 1)
< ptg-—2r (6)

holds for all p, ¢, and r such that 0 < p,q < 1 and pg <
7 < min{p, ¢}. Note that the difference between the
right-hand side and the left-hand side of Equation (6)
is a concave function in r, as its second derivative is
equal to ¢5(r)+ g5 (p+q—r) <0, since gz is concave.
Thus, in order to show that Equation (6) holds for
pg < r < min(p, q), it suffices to show that it holds
for r = pq and for » = min(p, ¢). The second case is
straightforward, and so we are left to verify that the
quantity

p+a—2pg—g2(p) — 92(q)
+ 92(pq) + g2(p + ¢ — pq) (7)

is nonnegative. Letting p = (v 4+ v + 1)/2 and ¢ =
(u— v+ 1)/2, this quantity becomes

1
50 (3u? 4+ 18u* — 20u’ — u® + 69v? +

108u2v? + 36utv? + 4ubv? — 14v* —

12u?v? — 6utv? — 405 + 4u?v® — oB).

Since 0 <p <1l and 0 < ¢ <1, we have |u| < 1 and
|v] < 1. Thus, we have 20u® +u® < 21u* < 3u?+18u?
and 14v* + 12u?v* + 6utv? + 405 + v® < 3702, This
implies that the negative terms in the above expression
are dominated by the positive terms. Hence, the above
expression is nonnegative, as desired. Hll

Proof of Theorem 1: By Equations (4) and (5),
g2(1/2) = 1.12. Hence, the correctness of the theorem
follows from Equation (2) and Lemmas 3.1 and 3.5. l

3.5 A seemingly valid and optimal potential
function

We say that an n-input comparator network n’-

approximately sorts all but an ¢ fraction of the n! in-
put permutations if there exists a fixed permutation
7 : [n] — [n] and a fixed set of n® output wires S such

that, on at least (1—¢)n! of all input permutations, the
rank of the input item that finishes in output ¢ will be
in the interval [7(i)—n®, 7 (i)+n’] for all i ¢ S, where §
is a constant less than 1. Because the output potential
of an n-input comparator network that approximately
sorts all but a polynomially small fraction of the n!
permutations is o(n), our lower bound argument for
C(n) can be adapted to show the following.

Lemma 3.6 The expected number of collisions in
an n-input comparator network that n’-approzimately
sorts all but a polynomially small fraction of the n!
input permutations (where & is a constant less than 1)
is at least (1.12 — o(1))n.

The following result is proved in [15].

Theorem 3 (Leighton-Plaxton) There exists a
fired permutation 7 : [n] — [n] and a fived set of
nd output positions S in an n-player butterfly tour-
nament such that if the n players start in random po-
sitions, then with probability at least 1 — O(2™"") the
rank of the player finishing in output i is in the inter-
val [n(i) —n®, 7(i) + nd] for alli & S.

On the other hand, a direct calculation shows that
the expected number of collisions in an n-input but-
terfly when the input is a random 0-1 vector is
(v* = o(1))n, where

v~ 1.266. (8)

This leads us to ask whether the constant 1.12 in
Lemma 3.6 can be improved. We conjecture that, in-
deed, Lemma 3.6 is valid if 1.12 1s replaced by v*. We
provide below evidence supporting this conjecture, al-
though we do not yet know of a formal proof.

We observe that fg(p) is equal to the expected num-
ber of collisions in a butterfly of depth d, divided by
the number of inputs, where the inputs are 1.i.d. 0—
1 random variables; each of which is equal to 0 with
probability p. (In the following, we refer to this as the
expected number of collisions per input.) This observa-
tion can be shown by induction on d. The case d = 1
follows easily. Assume now that the induction hypoth-
esis holds for d — 1. The expected number of collisions
per input in the first level of the butterfly is p — p?.
The rest of the butterfly consists of two sub-butterflies
of depth d — 1. The inputs to the first sub-butterfly
are 1.1.d. 0—1 random variables, each of which is equal
to 0 with probability 2p — p?. The expected number
of collisions per input in this sub-butterfly i1s equal to
Ja—1(2p — p?). Similarly, the expected number of col-
lisions per input in the second sub-butterfly is equal

to fa—1(p?). Thus, the expected number of collisions
per input in the entire butterfly is

2 .2
ooyt g Jam1lp)+j;d_1(2p P _ o).

The proof of Theorem 3, together with the above
interpretation of fq(p), shows that fy(p) is uniformly
bounded in d for all p € [0,1]. For fixed p € [0, 1],
the sequence f4(p) is increasing and bounded, and so
it converges to a real number f(p). (It is possible to
define the function ¢ in a similar fashion, but it turns
out that g(p) = f(p) forall p € [0, 1].) Tt can be shown
that f is a continuous function of p. Note that f is the
limit, as n goes to infinity, of the expected number of
collisions per input in an n-input butterfly. It follows
from the recursive definition of f; that f satisfies the
functional equation

2 2

fp) =p—pit fp)+J;(2p P
We have written a computer program based on this
functional equation that evaluates f(p) to a high de-
gree of precision for a large number of evenly-spaced
values of p in [0,1]. We have also written a program
to evaluate f; for any given d. The function values
generated by our programs lead us to the following
conjecture.

Conjecture 1 The functions g4, ford > 2, and f are
good potential functions.

If Conjecture 1 holds, then the constant 1.12 occur-
ring in our lower bounds can be improved to f(1/2) =
4+ & 1.266.

4 Lower Bounds for Networks Approx-
imately Sorting Some Permutations

In this section, we extend our size lower bound for
sorting networks to comparator networks that approx-
imatedly sort a certain fraction of all input permuta-
tions. Throughout the section, we assume that @ is a
good potential function. For example, we can think of
® as the function g, defined in Section 3.

Lemma 4.1 Let N be an n-input comparator network
such that for all but en! of the n! input permutations,
all but B of the n input items are output to a position
that is within A of the correct position in a sorted
order. Then, the expected number of collisions when a
random 0-1 vector is input to N is at least

d(1/2yn—0 (en—i—?B—i—QA—i—Q\/nlnn—l—n%).

Proof Sketch: By Corollary 3.1, we need only show
that

By (N) < O (en—l— 2B + 2A + 2\/n1nn+n%) .

This 1s done in a manner that is similar to the proof
of Lemma 3.1. Specifically, we bound the probability
that an output is incorrect, making use of the fact that
most input permutations are mostly near-sorted. The
full proof will appear in the final version of the paper.

Theorem 4 For any € > 0, let N be an n-input com-
parator network such that for all but en! of the n! input
permutations, all but B < n€ of the n input items are
output to within A < n® of the correct position in a
sorted order. Then, N must have size at least

®(1/2)nlogn — O(enlogn) — O(nloglogn).

Proof Sketch: The proof is analogous to that of
Theorem 2 except that we must use Lemma 4.1 in-
stead of Lemma 3.1 and we need to be much more
careful with the recursion. In particular, we will need
to find an alternative argument to Lemma 2.2. Our
approach will be to explicitly examine the behavior of
the network on input sequences that have a restricted
number of random 0-1 inputs as well as a specified
number of —oco and +oco inputs. In this way, we will
be able to obtain a better handle on the number of
comparators that compare inputs in various regions.

In particular, we will manipulate the numbers and
locations of oo inputs to focus attention on how to
derive lower bounds on the size of various subnetworks
of the network. The lower bound is then derived by re-
peated applications of Lemma 4.1 on the subnetworks
in combination with an averaging argument.

The full details will be presented in the final version
of the paper. l

Theorem 5 Let N be an n-input comparator network
that for at least dn! of the n! input permutations sorts
all but n® of the input items to within n® of their cor-
rect position. Then, N must have size at least

®(1/2)nlogn — O(enlogn) —
O(nloglog(1/6)) — O(nloglogn).

In particular, if § > e="", then N' must have size at

least

®(1/2)nlogn — O(enlogn) — O(nloglogn).

Proof Sketch: The proof is derived by examining
the performance of A" on various subsets of its in-
puts. An averaging argument is used to show that
if N works for at least some input sequences of length
n, then most of the various subnetworks of A work
for most inputs. Then, Theorem 4 1s applied to the
subnetworks to obtain the lower bound. The full proof
will appear in the final version of the paper.

5 A Lower Bound on Depth

In this section, we prove a lower bound of approx-
imately (3.27 — o(1))logn on the depth of any n-
input sorting network. Our lower bound argument
is an extension of the approach employed by Yao in
[24]. More precisely, Yao established a lower bound of
(1/(2 —log3) — o(1)) logn for the depth of certain se-
lection networks; as a direct corollary, this also implies
an identical lower bound for the depth of any sorting
network. In the following, we show how to improve
the lower bound in the case of sorting networks.

Theorem 6 Any n-input sorting network has depth
at least (1/(1 —log(a—1)) —o(1))logn =~ (3.27 —
o(1)) logn, where a = (3 + \/5)/2

We point out that this lower bound only applies to
networks that sort all input permutations. For net-
works that sort a certain fraction of all input permu-
tations, a lower bound of (2.24 — o(1)) logn follows
directly from Theorem 5. We are not aware of any
previous results for this case.

Throughout this section, we assume that all com-
parator networks are given in Knuth’s standard form
[10], where the network consists of n horizontal lines
numbered from 0 to n — 1, and a set of comparators,
such that every comparator outputs the larger of its
two input values to the higher-numbered line. Tt is well
known that every comparator network can be trans-
formed into such a standard form, without increasing
its size or depth.

We say that an n-input comparator network is an
(n, k)-selection network if, on all input permutations,
the network outputs the smallest & values on the first
k output wires of the network, and the largest n — k
values on the last n— k& output wires. An n-input com-
parator network is called an (n,k, A)-approzimate-
selection network if, on all input permutations, the
network outputs the smallest k& values on the first
k 4+ |A] output wires, and the largest n — k values
on the last n — k + | A] output wires.

The next lemma is essentially due to Yao [24],
who established a similar result for the case of

(n,t)-selection, whereas our lemma is for (n,t,t)-
approximate-selection. For ease of notation, we use
T(n,t,t) to denote the smallest depth of any (n,?,1)-
approximate-selection network.

Lemma 5.1 For anyt <n,

2 [log(t + 1)] (9)

llogt]
> % Z ([log(t +1)] —) (T(n,.t,t)).

N 2
1=0

Proof Sketch: The proof is almost identical to that
of Theorem 4.1 in [24]. To prove Theorem 4.1 of [24],
Yao assigned a weight to each segment of a wire in the
network and argued that at most ¢ output segments in
an (n,t)-selection network could have weight less than
or equal to |logt]. (A wire of a comparator network is
viewed as being partitioned into d+ 1 segments, where
d denotes the depth of the network.) The only change
needed in our proof is that an (n,t,t)-approximate-
selection network may have up to 2¢ (as opposed to
t) output segments with weight less than or equal to
[logt]. This is also why we have an extra factor of 2
on the left-hand side of Equation (9), compared with
Equation (16) of [24]. W

The next lemma is given as Exercise 25 on page 239
of Knuth’s book [10] (see page 639 for a solution).

Lemma 5.2 Let w be any wire of a comparator net-
work. If w contains value i under input permutation
mi, and value j >t under input permutation m;, then
for any k with ¢ < k < j there exists an input permu-
tation my, such that w contains value k under 7.

The next lemmais the key to extending Yao’s depth
lower bound for selection to a larger lower bound for
sorting.

Lemma 5.3 Given any sorting network C and any
B with 0 < B < 1, let Cs be the network ob-
tained from C by removing all comparators located in
the last |Blogn| levels. Then Cg is an (n,n” n’)-
approrimate-selection network.

Proof: Assume for contradiction that Cs is not
an (n,n? nf)-approximate-selection network. Thus,
there exist 4, € [n] with |j —i| > n”, and an input
permutation m such that j appears on output wire ¢
of Cs under m. We assume j > ¢; the case ¢+ > j is
symmetric.

Since Cg is given in standard form, the value 7 will
appear on output wire ¢ under the identity permu-
tation. By Lemma 5.2, this means that each of the

li —i| + 1 > n” values between i and j appears on
output wire ¢ under some input permutation.

However, since every comparator has a fan-out of
two, at most 20719871 < nf of the output wires of C
are reachable from output wire ¢ of Cs. This implies
that C cannot sort every input permutation, which
contradicts our assumption that C is a sorting network.

Lemma 5.3 implies that the depth of any sorting
network is at least Flogn larger than the depth of an
(n,n? nf)-approximate-selection network.

Proof Sketch of Theorem 6: At a high level, we
prove the claimed lower bound as follows. Let ¢ =
n®, where « is a constant to be chosen later. We
first apply Lemma 5.1 to obtain a depth lower bound
of (Age — o(1)) log n for any (n, n®, n)-approximate-
selection network, where A, is a constant depending
on «). Then, by Lemma 5.3, we obtain a depth lower
bound of (Aya+a—o(1)) log n for any sorting network.
Finally, we choose a particular a to maximize the value
of Aja+ a.

For a = 1/(3(2 — log3)) ~ 0.80, as computed
by Yao [24], Lemma 5.1 implies a lower bound of
(3a—o(1)) logn = (2.41 — o(1)) log n on the depth of
any (n,n®, n®)-approximate-selection network. This,
together with Lemma 5.3, immediately implies a lower
bound of (4o — o(1))logn = (3.21 — o(1))logn on
the depth of any sorting network. Such a choice of
a indeed yields the best lower bound for selection
networks (or (n,t,t)-approximate-selection networks)
attainable from Lemma 5.1. For sorting networks,
however, we need to choose a different « so that the
lower bound of the form ((Aq 4+ 1)a — o(1))logn is
maximized. The calculations are similar to those of
Yao [24], and will be included in the full paper. B

6 Concluding Remarks

We have established new lower bounds for the size
and depth of sorting networks. Furthermore, we have
extended our size lower bound to obtain essentially
the same bound for comparator networks that only
approximately sort a small fraction of the n! input
permutations. The size lower bound is obtained by
counting the number of “0-1 collisions” in a compara-
tor network. In particular, we have lower-bounded
the number of 0-1 collisions by a potential function
argument. The particular potential function we have
exploited in the paper (i.e., g2) leads to a lower bound
of (1.12—0(1)) nlogn. Using the same potential func-
tion, we can also establish a constant factor slightly

larger than 1.12 by: (i) showing that the expression of
Equation (7) is 0 only at the point (p,q) = (1/2,1/2),
and (ii) establishing an upper bound on the drop in
potential at each comparator. Moreover, we have pro-
vided strong evidence that another potential function,
the function f defined in Section 3.5, will yield a lower
bound of v*nlogn, v* & 1.266, which appears to be
the best bound achievable by any potential function
in the context of counting the expected number of 0-1
collisions.

Since the potential function argument is based on
lower bounds for C'(n), which corresponds to the ex-
pected number of 0-1 collisions, we believe that a still
better constant, larger than ~*, is also possible by
proving lower bounds for C'(n), which corresponds to
the maximum number of 0-1 collisions.

Acknowledgements

We thank Andrew Yao for stimulating discussions on
this research and helpful conversations on his work
n [24], and we thank Friedhelm Meyer auf der Heide
and Ran Raz for helpful comments.

References

[1] M. Ajtai, J. Komlés, and E. Szemerédi. Sorting in
clog n parallel steps. Combinatorica, 3:1-19, 1983.

[2] M. Ajtai, J. Komlés, and E. Szemerédi.
and expanders. In Proceedings of the 33rd Annual
IEEE Symposium on Foundations of Computer Sci-
ence, pages 686—689, October 1992.

Halvers

[3] V. E. Alekseyev. Sorting algorithms with minimum
memory. Kibernetika, 5:99-103, 1969.

[4] N. Alon and J. H. Spencer. The Probabilistic Method.
Wiley-Interscience, New York, NY, 1991.

[5] K. E. Batcher. Sorting networks and their applica-
tions. In Proceedings of the AFIPS Spring Joint Com-
puter Conference, volume 32, pages 307-314, 1968.

[6] W. D. Hillis. Co-evolving parasites improve simulated
evolution as an optimization procedure. Physica D,
42:228-234, 1990.

[7] T. Ikeda. A probabilistic selection network with but-
terfly networks. In ISAAC "98, Lecture Notes in Com-
puter Science, volume 762, pages 267-276, 1993.

[8] M. Jimbo and A. Maruoka. Selection networks with
8nlog n size and O(log n) depth. In ISAAC 92, Lec-
ture Notes in Computer Science, volume 650, pages
165-174, 1992.

9] N. Kahale. Figenvalues and expansion of regular
g g
graphs. Technical Report 93-70R, DIMACS, Rutgers
University, 1993.

[10] D. E. Knuth. The Art of Computer Programming,
Volume 3: Sorting and Searching. Addison-Wesley,
Reading, MA, 1973.

[11] E. A. Lamagna. The complexity of monotone net-
works for certain bilinear forms, routing problems,
sorting, and merging. [EFFE Trans. Comput., 28:773—
782, 1979.

[12] T. Leighton. Introduction to Parallel Algorithms
and Architectures: Arrays, Trees, and Hypercubes.
Morgan-Kaufmann, San Mateo, CA, 1992.

[13] T. Leighton and Y. Ma. Tight bounds on the size
of fault-tolerant merging and sorting networks with
destructive faults. In Proceedings of the 5th Annual
ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 30—41, July 1993.

[14] T. Leighton, Y. Ma, and T. Suel. On probabilistic net-
works for selection, merging, and sorting. Manuscript,
1994.

[15] T. Leighton and C. G. Plaxton. A (fairly) simple cir-
cuit that (usually) sorts. In Proceedings of the 31st
Annual TEFE Symposium on Foundations of Com-
puter Science, pages 458-469, October 1990.

[16] P. B. Miltersen, M. S. Paterson, and J. Tarui. The
asymptotic complexity of merging networks. In Pro-
ceedings of the 33rd Annual TEFE Symposium on
Foundations of Computer Science, pages 236-246, Oc-
tober 1992.

[17] I. Parberry. A computer-assisted optimal depth lower
bound for nine-input sorting networks. Mathematical
Systems Theory, 24:101-116, 1991.

[18] M. S. Paterson. Improved sorting networks with
O(log N) depth. Algorithmica, 5:75-92, 1990.

[19] N. Pippenger. Communication networks. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science, Volume A: Algorithms and Complexity,
pages 805-833. North-Holland, Amsterdam, 1990.

[20] N. Pippenger. Selection networks. STAM J. Comput.,
20:878-887, 1991.

[21] N. Pippenger and L. G. Valiant. Shifting graphs and
their applications. J. Assoc. Comput. Mach., 23:423—
432, 1976.

[22] D. C. Van Voorhis. An improved lower bound for
sorting networks. ITFEE Trans. Comput., 21:612-613,
1972.

[23] D. C. Van Voorhis. Toward a lower bound for sort-
ing networks. In R. E. Miller and J. W. Thatcher,
editors, The Complexity of Computer Computations,
pages 119-129. Plenum Press, New York, NY, 1972.

[24] A. C. Yao. Bounds on selection networks. STAM J.
Comput., 9:566-582, 1980.

[25] A. C. Yao and F. F. Yao. Lower bounds on merg-
ing networks. J. Assoc. Comput. Mach., 23:423-432,
1976.

