
Lower Bounds for Sorting NetworksNabil Kahale 1;2 Tom Leighton 3 Yuan Ma 1;4C. Greg Plaxton 1;5 Torsten Suel 1;6 Endre Szemer�edi 7AbstractWe establish a lower bound of (1:12 � o(1))n lognon the size of any n-input sorting network; this isthe �rst lower bound that improves upon the trivialinformation-theoretic bound by more than a lower or-der term. We then extend the lower bound to com-parator networks that approximately sort a certainfraction of all input permutations. We also prove alower bound of (c� o(1)) logn, where c � 3:27, on thedepth of any sorting network; the best previous resultof approximately (2:41 � o(1)) logn was establishedby Yao in 1980. Our result for size is based on a newtechnique that lower bounds the number of \0{1 colli-sions" in the network; we provide strong evidence thatthe technique will lead to even better lower bounds.1Part of this work was donewhile the authorwas at DIMACS.2XEROX Palo Alto Research Center, 3333 Coyote Hill Road,Palo Alto, CA 94304. Partially supported by the NSF undergrant CCR-9404113. Email: kahale@parc.xerox.com.3Department of Mathematics and Laboratory for ComputerScience, MIT, Cambridge, MA 02139. Supported by ARPAContracts N00014-91-J-1698 and N00014-92-J-1799. Email:ftl@math.mit.edu.4Department of Computer Science, Stanford University,Stanford, CA 94305. Supported by an NSF Mathematical Sci-ences Postdoctoral Research Fellowship. Part of this work wasdone while the author was at MIT and supported by ARPAContracts N00014-91-J-1698 and N00014-92-J-1799. Email:yuan@cs.stanford.edu.5Department of Computer Science, University of Texas atAustin, Austin, TX 78712. Supported by the Texas Ad-vanced Research Program under Grant No. ARP-93-003658-461. Email: plaxton@cs.utexas.edu.6NEC Research Institute, 4 Independence Way, Princeton,NJ 08540. This work was done while the author was at theUniversity of Texas at Austin, and was supported by the TexasAdvanced Research Program under Grant No. ARP-93-003658-461. Email: torsten@research.nj.nec.com.7Department of Computer Science, Rutgers University, Pis-cataway, NJ 08855. Supportedby ARPA under contractDABT-63-93-C-0064. Part of this work was done at the University ofPaderborn, Germany. Email: szemered@cs.rutgers.edu.

1 IntroductionThe study of sorting networks has received consider-able attention over the past several decades. In ad-dition to providing a simple and elegant frameworkfor many parallel and sequential sorting algorithms,sorting networks have also proved to be useful in sev-eral other applications, such as circuit switching andpacket routing [10, 12, 19].A comparator network is commonly de�ned as a lev-eled acyclic circuit of comparators, each having twoinput wires and two output wires. One of the out-put wires is labeled as the max-output, and receivesthe larger of the two input values; the other output iscalled the min-output, and receives the smaller value.We say that an n-input comparator network is a sort-ing network if it produces the same output sequenceon all n! permutations of [n]. (We use [n] to denote theset f0; : : : ; n� 1g.) The depth of a network is de�nedas the number of levels, and the size of a network isde�ned as the number of comparators in the network.Thus, sorting networks can be seen as a simplemodel for oblivious (i.e., non-adaptive) sorting algo-rithms, where the depth and size of the network corre-spond to the parallel running time and the amount ofhardware, respectively, that are needed to implementthe algorithm. A fundamental problem in the study ofsorting networks is the construction of networks thatachieve a small size and/or depth. We refer the read-ers to [10, 19] for excellent surveys of the history ofthis problem.1.1 Previous resultsThere is a trivial information-theoretic lower bound oflog(n!) � n logn � n log e on the number of compar-isons required by any comparison-based sorting algo-rithm. (We use \log" for the base 2 logarithm, and\ln" for the natural logarithm.) For the class of non-oblivious sorting algorithms, this lower bound can beeasily matched, within a lower order term, by simpleand well-known algorithms such as heapsort, mergesort, or binary-search-based insertion sort. However,

the situation is quite di�erent in the case of sortingnetworks.Two elegant sorting networks of size O(n log2 n) anddepth O(log2 n) were described by Batcher [5] in 1968.Following the work of Batcher, no improvements inthe upper bounds were obtained for a number of years,and it remained uncertain whether a size of O(n logn)or a depth ofO(logn) could be achieved by any sortingnetwork. In fact, Knuth conjectured that sorting net-works of size O(n logn) do not exist (see Exercise 51on page 243 of [10]).This conjecture was �nally disproved in 1983 by Aj-tai, Koml�os, and Szemer�edi [1], who described a sort-ing network with size O(n logn) and depth O(logn),commonly referred to as the \AKS network". How-ever, even after several improvements in the construc-tion of the network [2, 18], the constants hidden bythe big-Oh notation remain impractically large.Overall, the construction of sorting networks withsmall size and/or depth seems to be fundamentallymore di�cult than the design of fast non-oblivioussorting algorithms. A natural question to ask iswhether there exists a lower bound for sorting net-works that is signi�cantly larger than the information-theoretic bound, thus formally establishing this seem-ingly apparent di�erence in complexity between sort-ing networks and algorithms. However, despite a num-ber of attempts, not much progress has been made onthis question so far.In particular, Van Voorhis showed a simple lowerbound of n logn in [22], and a more di�cult lowerbound of n logn+(n=2) log logn+
(n) in [23]. Whilethis is the best result known so far, it gives only alower order improvement over the trivial information-theoretic bound of n logn�n log e. In related work, anumber of bounds have been established for the size ofcomparator networks for merging and selection (see [3,8, 9, 11, 16, 20, 21, 24, 25], and see Theorem F onpage 230 of [10] for a result due to Floyd).For the depth of sorting networks, Yao [24] hasshown a lower bound of approximately (2:41 �o(1)) logn. This should be compared with the (2 �o(1)) logn trivial information-theoretic bound. (Notethat each level of a comparator network contains atmost n=2 comparators.) In fact, Yao's lower boundwas established for the depth of certain selection net-works, but it also gives the best result currentlyknown for the case of sorting. For small values ofn, some computer-aided approaches for �nding upperand lower bounds have been developed [6, 17].Finally, signi�cantly better upper bounds are knownfor comparator networks that sort all but a small

fraction of the n! input permutations. In particular,Leighton and Plaxton [15] have described a compara-tor network of size c1 n lgn and depth c2 logn thatsort all but a superpolynomially small fraction of then! input permutations, where c1 � 3:22 and c2 � 7:44.Selection and merging networks that work for most in-put permutations have been studied in [7, 14].1.2 Contributions of this paperThe main contributions of this paper are as follows:1. We prove a lower bound of (1:12�o(1))n logn forthe size of any n-input sorting network. This isthe �rst lower bound for size that improves uponthe information-theoretic bound by more than alower order term, and it demonstrates that signif-icantly more comparisons are required for sortingin the network model than in the more generalcomparison-based algorithm model.2. We extend essentially the same lower bound tothe size of comparator networks that approxi-mately sort a certain fraction of all input per-mutations.3. We prove a lower bound of (c� o(1)) logn for thedepth of any sorting network, where c � 3:27.This improves upon a lower bound of approxi-mately (2:41� o(1)) logn established by Yao [24]in 1980.Our results for size are based on a new lowerbound technique described in Corollary 2.1. Infor-mally speaking, this technique reduces the problem ofshowing a lower bound on the size of a sorting net-work to that of showing a lower bound on the numberof \0{1 collisions" (that is, the number of comparatorsthat perform a comparison between a \0" and a \1"under some 0{1 input sequence).The number of \0{1 collisions" is then lower-bounded by a potential function argument. Thestrength of the resulting lower bound depends on thechoice of a good potential function. In this paper, weformally establish a lower bound of (1:12�o(1))n lognfor the size of any sorting network. We also providestrong evidence for the existence of better potentialfunctions, and thus better lower bounds. In particular,we propose a potential function that we conjecture willlead to a (c�o(1))n logn lower bound with c � 1:266;this appears to be the best constant achievable underour potential function argument.The remainder of this paper is organized as follows.In Section 2, we describe the reduction to the number

of \0{1 collisions". Section 3 contains the potentialfunction argument, and Section 4 describes an exten-sion to the size of comparator networks that sort a cer-tain fraction of all input permutations. In Section 5,we establish the lower bound for depth. Finally, Sec-tion 6 contains some concluding remarks.2 A Size Lower Bound Based onCounting \Collisions"For each n � 1, let S(n) denote the minimum sizeof any n-input sorting network. In this section, wedescribe how to lower bound S(n) by another quantityC(n), which corresponds to the minimum number of\collisions" in any n-input sorting network. The mainresult of this section is Corollary 2.1, which will beused in the next section to establish a lower bound onS(n).In a certain sense, the technique in this sectioncan be viewed as a highly nontrivial variant of anold technique introduced by Floyd [10, Theorem F onpage 230] to lower bound the size of merging networks.(See [13] for another more sophisticated application ofthis technique.) Floyd's technique roughly proceeds asfollows. Let M (n) denote the minimum size of any n-input comparator network for merging two sorted listsof length n=2. Consider an arbitrary n-input mergingnetworkM of sizeM (n). As argued in [10, Theorem Fon page 230], we may assume without loss of generalitythatM is given in such a form that an input sequenceto M may have up to n=4 items to be moved fromM0 (the upper half of M) to M1 (the lower half ofM), and vice versa. Thus, M needs to have at leastn=4 comparators connecting M0 and M1. In addi-tion, it is easy to argue that both M0 and M1 mustbe merging networks with n=2 inputs each. Thus, wehave M (n) � 2M (n=2) + n=4; (1)which solves to give M (n) � (n=4) logn.It would be nice if we could adapt Floyd's argu-ment directly to obtain a lower bound for sorting net-works of the form (c� o(1))n logn for some �xed con-stant c > 1. Unfortunately, however, direct applica-tion of Floyd's argument only yields a trivial lowerbound of (n=2) logn since an input sequence to a sort-ing network may have up to n=2 items to be movedfrom the upper half to the lower half, and vice versa.Moreover, the triviality of such a lower bound is notdue to any underestimate of the number of such com-parators, since there do exist sorting networks (e.g.,Batcher's bitonic sorting network [5]) that have ex-actly n=2 comparators connecting the upper and lower

halves. Hence, Floyd's type of argumentmay not seemhelpful at all in the context of proving nontrivial lowerbounds for sorting networks.The novelty of our technique is to partition a sortingnetwork into two subnetworks in a \dynamic" fashionso that the number of comparators connecting the twosubnetworks is at least (c�o(1))n for some �xed c > 1.That is, the partition is not �xed in advance, but maydepend on the structure of the sorting network.2.1 Partitioning a sorting network relative toa given 0{1 input vectorThroughout this subsection, �x n � 1, let N denote agiven n-input comparator network, and let � denote agiven 0{1 vector of length n. Let k denote the num-ber of 0's in �. Input vector � induces a partition ofthe comparators of N into three classes: (i) the 0{0comparators, i.e., those comparators for which bothinput wires contain a 0, (ii) the 1{1 comparators, i.e.,those comparators for which both input wires containa 1, and (iii) the 0{1 comparators, i.e., those com-parators for which one input wire contains a 0 andthe other input wire contains a 1. Let a(N ; �) (resp.,b(N ; �), c(N ; �)) denote the number of 0{0 (resp., 1{1,0{1) comparators in comparator network N on inputvector �. We also refer to each 0{1 comparator as acollision. Thus, c(N ; �) is the number of collisions incomparator network N on input vector �.Lemma 2.1 If N is a sorting network, thena(N ; �) � S(k) and b(N ; �) � S(n � k).Proof: We only prove that a(N ; �) � S(k); an en-tirely symmetric argument can be used to establishthe second inequality.From sorting network N and 0{1 input vector �, weconstruct a k-input comparator network N0 as follows:(i) remove all wires from N that receive a 1 under in-put �, (ii) remove all 1{1 comparators fromN (whichare now isolated), and (iii) for each 0{1 comparator xin N , remove x and connect the only remaining inputof x directly to the lone remaining output of x. (It isstraightforward to prove that N0 is indeed a k-inputcomparator network.) Note that there is a one-to-onecorrespondence between the set of comparators in N0and the set of 0{0 comparators in N . Hence, N0 is ofsize a(N ; �).Furthermore, the behavior of N0 on a given permu-tation of [k] mimics that of the corresponding subnet-work of N when the same input permutation of [k]is applied to the k \0-inputs" (i.e., input wires thatreceive a 0 under input �) of N , and the input value

k is passed to each of the remaining n� k \1-inputs".(By \mimics" we mean that each comparator in N0receives the same pair of input values as the corre-sponding comparator in N . The preceding claim isstraightforward to prove by induction on the numberof levels in the network.) Since all such inputs aresorted by N (which is a sorting network), each of thek! possible permutations of [k] is mapped to the sameoutput permutation by N0, i.e., N0 is a sorting net-work. We conclude that a(N ; �) � S(k), as required.2.2 A lower bound recurrence for S(n)Let Sn denote the set of all n-input sorting networks.Let C(n) = minN2Sn max�2f0;1gn c(N ; �):We now show how a lower bound on C(n) can be usedto obtain a lower bound on S(n).Lemma 2.2 S(n) � min0�i�n(S(i)+S(n�i))+C(n):Proof: Let N denote an n-input sorting network ofsize exactly S(n). By the de�nition of C(n), thereexists a 0{1 input vector � such that c(N ; �) � C(n).Let k denote the number of 0's in �. By Lemma 2.1,S(n) = a(N ; �) + b(N ; �) + c(N ; �)� S(k) + S(n � k) +C(n)� min0�i�n(S(i) + S(n � i)) +C(n):Corollary 2.1 If C(n) � (c � o(1))n, then S(n) �(c� o(1))n logn.Proof: The proof is a straightforward induction onn, using Lemma 2.2 and the convexity of the functionx logx.3 Lower Bounds for C(n)This section is devoted to proving the following theo-rem.Theorem 1 C(n) � (1:12� o(1))n.By Corollary 2.1, we immediately obtain the �rst mainresult of the paper.Theorem 2 S(n) � (1:12� o(1))n logn.

3.1 The expected number of collisions in asorting networkDirect analysis of the function C(n) appears to be dif-�cult. Our lower bound is obtained by consideringinstead C(n), which corresponds to the minimum ex-pected number of collisions in any n-input sorting net-work when the input is a random 0{1 vector, that is,the input is a 0{1 vector drawn uniformly at randomfrom f0; 1gn. Formally, we haveC(n) = minN2Sn 0@ X�2f0;1gn c(N ; �)1A/2n :By a straightforward averaging argument, we haveC(n) � C(n): (2)As a result, any lower bound for C(n) is also a lowerbound for C(n). In Subsection 3.4, we prove thatC(n) � (1:12� o(1))n.3.2 The class of \good" potential functionsWe employ a potential function argument to obtain alower bound on C(n). The choice of potential func-tion is critical for obtaining the highest possible con-stant factor in our lower bound. In fact, we have iden-ti�ed an in�nite sequence of potential functions, de-�ned in Subsection 3.4, which we believe can be usedto establish successively higher lower bounds on C(n).Our lower bound argument requires that the potentialfunction be \good", as de�ned below:De�nition 3.1 Let �(p) be a continuous real-valuedfunction de�ned over the interval [0; 1]. We say that�(p) is a good potential function if and only if thefollowing conditions hold:(a) �(0) = �(1) = 0,(b) for 0 � p � 1, 0 � q � 1, and pq � r �minfp; qg, we have�(p) + �(q)� �(r)� �(p+ q � r) � p + q � 2r:While we conjecture that every function in the in�-nite sequence alluded to above, and de�ned in Sub-section 3.4, is a good potential function (see Subsec-tion 3.5 for further discussion of this conjecture), wehave only proved that the �rst two functions in thesequence are good. As a result, there is a signi�cantgap between the best lower bound that we have beenable to establish on C(n), namely (1:12� o(1))n, andthe lower bound that would be established if we couldprove that every potential function in the sequence isgood, namely (
� � o(1))n, where
� � 1:266.

3.3 The potential function argumentIn this subsection, we establish the following lowerbound on C(n).Lemma 3.1 If � is a good potential function, thenC(n) � (�(1=2)� o(1))n.We begin with some de�nitions. A function u fromf0; 1gn to f0; 1g is an increasing function ifu(x0; : : : ; xi�1; 0; xi+1; : : : ; xn�1)� u(x0; : : : ; xi�1; 1; xi+1; : : : ; xn�1);for 0 � i < n. The de�nition of a decreasing functionfrom f0; 1gn to f0; 1g is analogous. We state with-out proof the following classical result (see, e.g., [4,Chapter 6] for a proof).Lemma 3.2 (The FKG inequality)Let X0; : : : ; Xn�1 be i.i.d. unbiased 0{1 randomvariables. If u and v are two decreasing func-tions from f0; 1gn to f0; 1g, then u(X0; : : : ; Xn�1)and v(X0; : : : ; Xn�1) are positively correlated, i.e.,E[uv] � E[u]E[v].Lemma 3.3 Let N be an n-input comparator net-work, and let the input to N be a random 0{1 vector.Then for all pairs of output indices i and j, the eventthat the ith output receives a 0 and the event that thejth output receives a 0 are positively correlated.Proof: This follows from the FKG inequality. To seethis, we need to check that the value of any output isan increasing function of the input sequence. This canbe shown by induction on the number of comparators,since both min and max (the functions applied at eachcomparator) are increasing functions.Let N be a comparator network and let xi (resp.,yi) denote the probability that the ith input (resp.,output) receives a 0 when the input to N is a random0{1 vector. For any potential function �, de�ne theinput potential ofN as �in(N) =P0�i<n�(xi). Sim-ilarly, de�ne the output potential of N as �out(N) =P0�i<n�(yi).Lemma 3.4 Let N 0 be an n-input comparator net-work obtained by appending a comparator x to an n-input comparator network N , and assume that the in-put to N 0 is a random 0{1 vector. Let � be a goodpotential function. Then the probability of a collisionoccurring at x is at least �out(N) ��out(N 0).

Proof: Let p (resp., q) be the probability that the�rst (resp., second) input to comparator x holds 0,and let s denote the probability that both inputs hold0. The probability that the larger output of x is 0 is s,and the probability that the smaller output of x is 0 isp+ q� s. By Lemma 3.3, s � pq. On the other hand,it is clear that s � min(p; q). Hence, Property (b) ofDe�nition 3.1 implies that�out(N) ��out(N 0)= �(p) + �(q)� �(s) ��(p+ q � s)� p+ q � 2s:We conclude the proof by noting that the probabilitythat a collision occurs in comparator x is (p�s)+(q�s) = p+ q � 2s.Corollary 3.1 Let N be any n-input comparator net-work, and assume that the input to N is a random 0{1vector. Let � be a good potential function. Then theexpected number of collisions occurring in N is at least�in(N) � �out(N) = n ��(1=2)� �out(N).Proof: Straightforward by Lemma 3.4 and linearityof expectation.Proof of Lemma 3.1: By Corollary 3.1, it is suf-�cient to prove that for any sorting network N , andany good potential function �, we have�out (N) = o(n): (3)In order to establish Equation (3), we partition theoutputs of N into three groups: (i) the n=2�pn lnnlowest ranked outputs, (ii) the n=2 �pn lnn highestranked outputs, and (iii) the remaining 2pn lnn \mid-dle" outputs. We now bound the contribution of eachgroup of outputs to the sum de�ning �out(N). By astandard Cherno� bound argument [4, Theorem A.1on page 233], each of the outputs in group (i) has anassociated probability of receiving a 0 that is greaterthan or equal to 1�exp(�2 lnn) = 1�1=n2 = 1�o(1).(An output in group (i) can receive a 1 only if the totalnumber of 1's in the random 0{1 input vector exceedsn=2 by at least pn lnn.)Since the potential function � is continuous and�(1) = 0, the contribution of each output in group (i)is �(1�o(1)) = o(1). Hence, the total contribution ofthe outputs in group (i) to �out(N) is o(n). A simi-lar argument shows that the total contribution of theoutputs in group (ii) to �out(N) is o(n). Finally, notethat the contribution of any single output to �out (N)is at most some constant independent of n. Hence,

the total contribution of the outputs in group (iii) to�out(N) is O(pn logn) = o(n). Together these argu-ments imply that Equation (3) holds, completing theproof of Lemma 3.1.3.4 A good potential functionIn this subsection, we �rst de�ne an in�nite sequenceof potential functions gd, d � 1. Then, we prove thatg2 is a good potential function. Finally, we use g2 toprove the correctness of Theorem 1.We �rst inductively de�ne an in�nite sequence ofreal functions fd (d � 1) over the interval [0; 1]:fd(p) = (p� p2 if d = 1fd�1(p2)+fd�1(2p�p2)2 + p� p2 if d > 1.In particular,f2(p) = 2p� 3p2 + 2p3 � p4:We next de�ne a sequence of constants
d (d � 1) as
d = fd(1=2)2(2fd(1=2)� fd(1=4)� fd(3=4))= fd(1=2)4(fd(1=2)� fd(1=4)) ;where the latter equality follows from the observationthat fd(p) = fd(1 � p) for all d � 1 and 0 � p � 1.For example,
1 = 1 and
2 = 28=25 = 1:12: (4)Given fd and
d, potential function gd is de�ned asgd(p) =
dfd(p)=fd(1=2): (5)It is straightforward to prove that g1 is a good po-tential function. However a direct application of g1only yields a trivial lower bound of (1 � o(1))n lognfor S(n). To obtain a nontrivial lower bound, we needto prove that gd is a good potential function for somed � 2. In fact, numerical experiments suggest thatgd(1=2) � gd�1(1=2) for all d > 1. Hence, we couldhope to prove better and better lower bounds on S(n)by proving that gd is a good potential function forlarger and larger values of d. In particular, we conjec-ture that all of the gd's are good potential functions(see Subsection 3.5).Lemma 3.5 The potential function g2 is good.Proof: The function g2 is clearly continuous. Thus,it remains only to verify that Properties (a) and (b) of

De�nition 3.1 hold for g2. Property (a) is immediate.Before addressing Property (b), observe thatf 002 (p) = �6 + 12p� 12p2= �6(p2 + (1� p)2)� 0for 0 � p � 1. Thus, f2 and g2 are both concave.To verify Property (b), we need to show thatg2(p) + g2(q) � g2(r)� g2(p+ q � r)� p+ q � 2r (6)holds for all p, q, and r such that 0 � p; q � 1 and pq �r � minfp; qg. Note that the di�erence between theright-hand side and the left-hand side of Equation (6)is a concave function in r, as its second derivative isequal to g002 (r)+ g002 (p+ q� r) � 0, since g2 is concave.Thus, in order to show that Equation (6) holds forpq � r � min(p; q), it su�ces to show that it holdsfor r = pq and for r = min(p; q). The second case isstraightforward, and so we are left to verify that thequantity p+ q � 2pq � g2(p)� g2(q)+ g2(pq) + g2(p + q � pq) (7)is nonnegative. Letting p = (u + v + 1)=2 and q =(u� v + 1)=2, this quantity becomes150 (3u2 + 18u4 � 20u6 � u8 + 69v2 +108u2v2 + 36u4v2 + 4u6v2 � 14v4 �12u2v4 � 6u4v4 � 4v6 + 4u2v6 � v8):Since 0 � p � 1 and 0 � q � 1, we have juj � 1 andjvj � 1. Thus, we have 20u6+u8 � 21u4 � 3u2+18u4and 14v4 + 12u2v4 + 6u4v4 + 4v6 + v8 � 37v2. Thisimplies that the negative terms in the above expressionare dominated by the positive terms. Hence, the aboveexpression is nonnegative, as desired.Proof of Theorem 1: By Equations (4) and (5),g2(1=2) = 1:12. Hence, the correctness of the theoremfollows from Equation (2) and Lemmas 3.1 and 3.5.3.5 A seemingly valid and optimal potentialfunctionWe say that an n-input comparator network n�-approximately sorts all but an � fraction of the n! in-put permutations if there exists a �xed permutation� : [n]! [n] and a �xed set of n� output wires S such

that, on at least (1��)n! of all input permutations, therank of the input item that �nishes in output i will bein the interval [�(i)�n� ; �(i)+n�] for all i 62 S, where �is a constant less than 1. Because the output potentialof an n-input comparator network that approximatelysorts all but a polynomially small fraction of the n!permutations is o(n), our lower bound argument forC(n) can be adapted to show the following.Lemma 3.6 The expected number of collisions inan n-input comparator network that n�-approximatelysorts all but a polynomially small fraction of the n!input permutations (where � is a constant less than 1)is at least (1:12� o(1))n.The following result is proved in [15].Theorem 3 (Leighton-Plaxton) There exists a�xed permutation � : [n] ! [n] and a �xed set ofn� output positions S in an n-player butter
y tour-nament such that if the n players start in random po-sitions, then with probability at least 1 � O(2�n�) therank of the player �nishing in output i is in the inter-val [�(i)� n�; �(i) + n�] for all i 62 S.On the other hand, a direct calculation shows thatthe expected number of collisions in an n-input but-ter
y when the input is a random 0{1 vector is(
� � o(1))n, where
� � 1:266: (8)This leads us to ask whether the constant 1:12 inLemma 3.6 can be improved. We conjecture that, in-deed, Lemma 3.6 is valid if 1:12 is replaced by
�. Weprovide below evidence supporting this conjecture, al-though we do not yet know of a formal proof.We observe that fd(p) is equal to the expected num-ber of collisions in a butter
y of depth d, divided bythe number of inputs, where the inputs are i.i.d. 0{1 random variables, each of which is equal to 0 withprobability p. (In the following, we refer to this as theexpected number of collisions per input.) This observa-tion can be shown by induction on d. The case d = 1follows easily. Assume now that the induction hypoth-esis holds for d�1. The expected number of collisionsper input in the �rst level of the butter
y is p � p2.The rest of the butter
y consists of two sub-butter
iesof depth d � 1. The inputs to the �rst sub-butter
yare i.i.d. 0{1 random variables, each of which is equalto 0 with probability 2p � p2. The expected numberof collisions per input in this sub-butter
y is equal tofd�1(2p� p2). Similarly, the expected number of col-lisions per input in the second sub-butter
y is equal

to fd�1(p2). Thus, the expected number of collisionsper input in the entire butter
y isp� p2 + fd�1(p2) + fd�1(2p� p2)2 = fd(p):The proof of Theorem 3, together with the aboveinterpretation of fd(p), shows that fd(p) is uniformlybounded in d for all p 2 [0; 1]. For �xed p 2 [0; 1],the sequence fd(p) is increasing and bounded, and soit converges to a real number f(p). (It is possible tode�ne the function g in a similar fashion, but it turnsout that g(p) = f(p) for all p 2 [0; 1].) It can be shownthat f is a continuous function of p. Note that f is thelimit, as n goes to in�nity, of the expected number ofcollisions per input in an n-input butter
y. It followsfrom the recursive de�nition of fd that f satis�es thefunctional equationf(p) = p� p2 + f(p2) + f(2p � p2)2 :We have written a computer program based on thisfunctional equation that evaluates f(p) to a high de-gree of precision for a large number of evenly-spacedvalues of p in [0; 1]. We have also written a programto evaluate fd for any given d. The function valuesgenerated by our programs lead us to the followingconjecture.Conjecture 1 The functions gd, for d > 2, and f aregood potential functions.If Conjecture 1 holds, then the constant 1.12 occur-ring in our lower bounds can be improved to f(1=2) =
� � 1:266.4 Lower Bounds for Networks Approx-imately Sorting Some PermutationsIn this section, we extend our size lower bound forsorting networks to comparator networks that approx-imatedly sort a certain fraction of all input permuta-tions. Throughout the section, we assume that � is agood potential function. For example, we can think of� as the function g2 de�ned in Section 3.Lemma 4.1 Let N be an n-input comparator networksuch that for all but �n! of the n! input permutations,all but B of the n input items are output to a positionthat is within � of the correct position in a sortedorder. Then, the expected number of collisions when arandom 0{1 vector is input to N is at least� (1=2)n�O ��n+ 2B + 2�+ 2pn lnn + n 13� :

Proof Sketch: By Corollary 3.1, we need only showthat�out(N) � O��n+ 2B + 2�+ 2pn lnn+ n 13� :This is done in a manner that is similar to the proofof Lemma 3.1. Speci�cally, we bound the probabilitythat an output is incorrect, making use of the fact thatmost input permutations are mostly near-sorted. Thefull proof will appear in the �nal version of the paper.Theorem 4 For any � > 0, let N be an n-input com-parator network such that for all but �n! of the n! inputpermutations, all but B � n� of the n input items areoutput to within � � n� of the correct position in asorted order. Then, N must have size at least�(1=2)n logn�O(�n logn) �O(n log logn):Proof Sketch: The proof is analogous to that ofTheorem 2 except that we must use Lemma 4.1 in-stead of Lemma 3.1 and we need to be much morecareful with the recursion. In particular, we will needto �nd an alternative argument to Lemma 2.2. Ourapproach will be to explicitly examine the behavior ofthe network on input sequences that have a restrictednumber of random 0{1 inputs as well as a speci�ednumber of �1 and +1 inputs. In this way, we willbe able to obtain a better handle on the number ofcomparators that compare inputs in various regions.In particular, we will manipulate the numbers andlocations of �1 inputs to focus attention on how toderive lower bounds on the size of various subnetworksof the network. The lower bound is then derived by re-peated applications of Lemma 4.1 on the subnetworksin combination with an averaging argument.The full details will be presented in the �nal versionof the paper.Theorem 5 Let N be an n-input comparator networkthat for at least �n! of the n! input permutations sortsall but n� of the input items to within n� of their cor-rect position. Then, N must have size at least�(1=2)n logn �O(�n logn) �O(n log log(1=�))�O(n log logn):In particular, if � � e�n�, then N must have size atleast�(1=2)n logn�O(�n logn) �O(n log logn):

Proof Sketch: The proof is derived by examiningthe performance of N on various subsets of its in-puts. An averaging argument is used to show thatif N works for at least some input sequences of lengthn, then most of the various subnetworks of N workfor most inputs. Then, Theorem 4 is applied to thesubnetworks to obtain the lower bound. The full proofwill appear in the �nal version of the paper.5 A Lower Bound on DepthIn this section, we prove a lower bound of approx-imately (3:27 � o(1)) logn on the depth of any n-input sorting network. Our lower bound argumentis an extension of the approach employed by Yao in[24]. More precisely, Yao established a lower bound of(1=(2� log 3)� o(1)) logn for the depth of certain se-lection networks; as a direct corollary, this also impliesan identical lower bound for the depth of any sortingnetwork. In the following, we show how to improvethe lower bound in the case of sorting networks.Theorem 6 Any n-input sorting network has depthat least (1=(1� log(a� 1))� o(1)) logn � (3:27 �o(1)) logn; where a = (3 +p5)=2.We point out that this lower bound only applies tonetworks that sort all input permutations. For net-works that sort a certain fraction of all input permu-tations, a lower bound of (2:24 � o(1)) logn followsdirectly from Theorem 5. We are not aware of anyprevious results for this case.Throughout this section, we assume that all com-parator networks are given in Knuth's standard form[10], where the network consists of n horizontal linesnumbered from 0 to n � 1, and a set of comparators,such that every comparator outputs the larger of itstwo input values to the higher-numbered line. It is wellknown that every comparator network can be trans-formed into such a standard form, without increasingits size or depth.We say that an n-input comparator network is an(n; k)-selection network if, on all input permutations,the network outputs the smallest k values on the �rstk output wires of the network, and the largest n � kvalues on the last n�k output wires. An n-input com-parator network is called an (n; k;�)-approximate-selection network if, on all input permutations, thenetwork outputs the smallest k values on the �rstk + b�c output wires, and the largest n � k valueson the last n� k + b�c output wires.The next lemma is essentially due to Yao [24],who established a similar result for the case of

(n; t)-selection, whereas our lemma is for (n; t; t)-approximate-selection. For ease of notation, we useT (n; t; t) to denote the smallest depth of any (n; t; t)-approximate-selection network.Lemma 5.1 For any t � n,2 t dlog(t+ 1)e (9)� n2T (n;t;t) blog tcXi=0 (dlog(t + 1)e � i)�T (n; t; t)i �:Proof Sketch: The proof is almost identical to thatof Theorem 4.1 in [24]. To prove Theorem 4.1 of [24],Yao assigned a weight to each segment of a wire in thenetwork and argued that at most t output segments inan (n; t)-selection network could have weight less thanor equal to blog tc. (A wire of a comparator network isviewed as being partitioned into d+1 segments, whered denotes the depth of the network.) The only changeneeded in our proof is that an (n; t; t)-approximate-selection network may have up to 2t (as opposed tot) output segments with weight less than or equal toblog tc. This is also why we have an extra factor of 2on the left-hand side of Equation (9), compared withEquation (16) of [24].The next lemma is given as Exercise 25 on page 239of Knuth's book [10] (see page 639 for a solution).Lemma 5.2 Let w be any wire of a comparator net-work. If w contains value i under input permutation�i, and value j > i under input permutation �j, thenfor any k with i � k � j there exists an input permu-tation �k such that w contains value k under �k.The next lemma is the key to extending Yao's depthlower bound for selection to a larger lower bound forsorting.Lemma 5.3 Given any sorting network C and any� with 0 � � � 1, let C� be the network ob-tained from C by removing all comparators located inthe last b� lognc levels. Then C� is an (n; n�; n�)-approximate-selection network.Proof: Assume for contradiction that C� is notan (n; n�; n�)-approximate-selection network. Thus,there exist i; j 2 [n] with jj � ij > n�, and an inputpermutation � such that j appears on output wire iof C� under �. We assume j > i; the case i > j issymmetric.Since C� is given in standard form, the value i willappear on output wire i under the identity permu-tation. By Lemma 5.2, this means that each of the

jj � ij + 1 > n� values between i and j appears onoutput wire i under some input permutation.However, since every comparator has a fan-out oftwo, at most 2b� lognc � n� of the output wires of Care reachable from output wire i of C�. This impliesthat C cannot sort every input permutation, whichcontradicts our assumption that C is a sorting network.Lemma 5.3 implies that the depth of any sortingnetwork is at least � logn larger than the depth of an(n; n�; n�)-approximate-selection network.Proof Sketch of Theorem 6: At a high level, weprove the claimed lower bound as follows. Let t =n�, where � is a constant to be chosen later. We�rst apply Lemma 5.1 to obtain a depth lower boundof (A��� o(1)) logn for any (n; n�; n�)-approximate-selection network, where A� is a constant dependingon �). Then, by Lemma 5.3, we obtain a depth lowerbound of (A��+��o(1)) log n for any sorting network.Finally, we choose a particular � to maximize the valueof A��+ �.For � = 1=(3(2 � log 3)) � 0:80, as computedby Yao [24], Lemma 5.1 implies a lower bound of(3�� o(1)) logn � (2:41� o(1)) logn on the depth ofany (n; n�; n�)-approximate-selection network. This,together with Lemma 5.3, immediately implies a lowerbound of (4� � o(1)) logn � (3:21 � o(1)) logn onthe depth of any sorting network. Such a choice of� indeed yields the best lower bound for selectionnetworks (or (n; t; t)-approximate-selection networks)attainable from Lemma 5.1. For sorting networks,however, we need to choose a di�erent � so that thelower bound of the form ((A� + 1)�� o(1)) logn ismaximized. The calculations are similar to those ofYao [24], and will be included in the full paper.6 Concluding RemarksWe have established new lower bounds for the sizeand depth of sorting networks. Furthermore, we haveextended our size lower bound to obtain essentiallythe same bound for comparator networks that onlyapproximately sort a small fraction of the n! inputpermutations. The size lower bound is obtained bycounting the number of \0{1 collisions" in a compara-tor network. In particular, we have lower-boundedthe number of 0{1 collisions by a potential functionargument. The particular potential function we haveexploited in the paper (i.e., g2) leads to a lower boundof (1:12�o(1))n logn. Using the same potential func-tion, we can also establish a constant factor slightly

larger than 1:12 by: (i) showing that the expression ofEquation (7) is 0 only at the point (p; q) = (1=2; 1=2),and (ii) establishing an upper bound on the drop inpotential at each comparator. Moreover, we have pro-vided strong evidence that another potential function,the function f de�ned in Section 3.5, will yield a lowerbound of
�n logn,
� � 1:266, which appears to bethe best bound achievable by any potential functionin the context of counting the expected number of 0{1collisions.Since the potential function argument is based onlower bounds for C(n), which corresponds to the ex-pected number of 0{1 collisions, we believe that a stillbetter constant, larger than
�, is also possible byproving lower bounds for C(n), which corresponds tothe maximum number of 0{1 collisions.AcknowledgementsWe thank Andrew Yao for stimulating discussions onthis research and helpful conversations on his workin [24], and we thank Friedhelm Meyer auf der Heideand Ran Raz for helpful comments.References[1] M. Ajtai, J. Koml�os, and E. Szemer�edi. Sorting inc log n parallel steps. Combinatorica, 3:1{19, 1983.[2] M. Ajtai, J. Koml�os, and E. Szemer�edi. Halversand expanders. In Proceedings of the 33rd AnnualIEEE Symposium on Foundations of Computer Sci-ence, pages 686{689, October 1992.[3] V. E. Alekseyev. Sorting algorithms with minimummemory. Kibernetika, 5:99{103, 1969.[4] N. Alon and J. H. Spencer. The Probabilistic Method.Wiley-Interscience, New York, NY, 1991.[5] K. E. Batcher. Sorting networks and their applica-tions. In Proceedings of the AFIPS Spring Joint Com-puter Conference, volume 32, pages 307{314, 1968.[6] W. D. Hillis. Co-evolving parasites improve simulatedevolution as an optimization procedure. Physica D,42:228{234, 1990.[7] T. Ikeda. A probabilistic selection network with but-ter
y networks. In ISAAC '93, Lecture Notes in Com-puter Science, volume 762, pages 267{276, 1993.[8] M. Jimbo and A. Maruoka. Selection networks with8n log n size and O(log n) depth. In ISAAC '92, Lec-ture Notes in Computer Science, volume 650, pages165{174, 1992.[9] N. Kahale. Eigenvalues and expansion of regulargraphs. Technical Report 93-70R, DIMACS, RutgersUniversity, 1993.

[10] D. E. Knuth. The Art of Computer Programming,Volume 3: Sorting and Searching. Addison-Wesley,Reading, MA, 1973.[11] E. A. Lamagna. The complexity of monotone net-works for certain bilinear forms, routing problems,sorting, and merging. IEEE Trans. Comput., 28:773{782, 1979.[12] T. Leighton. Introduction to Parallel Algorithmsand Architectures: Arrays, Trees, and Hypercubes.Morgan-Kaufmann, San Mateo, CA, 1992.[13] T. Leighton and Y. Ma. Tight bounds on the sizeof fault-tolerant merging and sorting networks withdestructive faults. In Proceedings of the 5th AnnualACM Symposium on Parallel Algorithms and Archi-tectures, pages 30{41, July 1993.[14] T. Leighton, Y. Ma, and T. Suel. On probabilistic net-works for selection, merging, and sorting. Manuscript,1994.[15] T. Leighton and C. G. Plaxton. A (fairly) simple cir-cuit that (usually) sorts. In Proceedings of the 31stAnnual IEEE Symposium on Foundations of Com-puter Science, pages 458{469, October 1990.[16] P. B. Miltersen, M. S. Paterson, and J. Tarui. Theasymptotic complexity of merging networks. In Pro-ceedings of the 33rd Annual IEEE Symposium onFoundations of Computer Science, pages 236{246, Oc-tober 1992.[17] I. Parberry. A computer-assisted optimal depth lowerbound for nine-input sorting networks. MathematicalSystems Theory, 24:101{116, 1991.[18] M. S. Paterson. Improved sorting networks withO(logN) depth. Algorithmica, 5:75{92, 1990.[19] N. Pippenger. Communication networks. In J. vanLeeuwen, editor, Handbook of Theoretical ComputerScience, Volume A: Algorithms and Complexity,pages 805{833. North-Holland, Amsterdam, 1990.[20] N. Pippenger. Selection networks. SIAM J. Comput.,20:878{887, 1991.[21] N. Pippenger and L. G. Valiant. Shifting graphs andtheir applications. J. Assoc. Comput. Mach., 23:423{432, 1976.[22] D. C. Van Voorhis. An improved lower bound forsorting networks. IEEE Trans. Comput., 21:612{613,1972.[23] D. C. Van Voorhis. Toward a lower bound for sort-ing networks. In R. E. Miller and J. W. Thatcher,editors, The Complexity of Computer Computations,pages 119{129. Plenum Press, New York, NY, 1972.[24] A. C. Yao. Bounds on selection networks. SIAM J.Comput., 9:566{582, 1980.[25] A. C. Yao and F. F. Yao. Lower bounds on merg-ing networks. J. Assoc. Comput. Mach., 23:423{432,1976.

