
Lower Bounds for Shellsort�C. Greg Plaxtony Torsten Suel zDepartment of Computer ScienceUniversity of Texas at AustinAbstractWe show lower bounds on the worst-case complexity of Shellsort. In particular,we give a fairly simple proof of an
(n lg2 n=(lg lg n)2) lower bound for the size ofShellsort sorting networks, for arbitrary increment sequences. We also show an identicallower bound for the running time of Shellsort algorithms, again for arbitrary incrementsequences. Our lower bounds establish an almost tight trade-o� between the runningtime of a Shellsort algorithm and the length of the underlying increment sequence.Proposed running head: Lower Bounds for Shellsort.Contact author: Prof. Greg Plaxton, Department of Computer Science, Univer-sity of Texas at Austin, Austin, Texas 78712{1188.1 IntroductionShellsort is a classical sorting algorithm introduced by Shell in 1959 [15]. The algorithm isbased on a sequence H = h0; : : : ; hm�1 of positive integers called an increment sequence. Aninput �le A = A[0]; : : : ; A[n � 1] of elements is sorted by performing an hj-sort for everyincrement hj in H, starting with hm�1 and going down to h0. Every hj -sort partitions thepositions of the input array into congruence classes modulo hj, and then performs InsertionSort on each of these classes. It is not di�cult to see that at least one of the hj's must beequal to 1 in order for the algorithm to sort all input �les properly. Furthermore, once someincrement equal to 1 has been processed, the �le will certainly be sorted. Hence, we mayassume without loss of generality that h0 = 1 and hj > 1 for all j > 0.The running time of Shellsort varies heavily depending on the choice of the incrementsequenceH. Most practical Shellsort algorithms setH to the pre�x of a single, monotonically�A preliminary version of this paper appeared in [11].ySupported by NSF Research Initiation Award CCR{9111591, and by the Texas Advanced ResearchProgram under Grant No. 003658{480.zSupported by the Texas Advanced Research Program under Grant No. 003658{480, and by an MCDFellowship of the University of Texas at Austin. 1

increasing in�nite sequence of integers, using only the increments that are less than n.Shellsort algorithms based on such increment sequences are called uniform. In a nonuniformShellsort algorithm, H may depend on the input size n in an arbitrary fashion.A general analysis of the running time of Shellsort is di�cult because of the vast numberof possible increment sequences, each of which can lead to a di�erent running time andbehavior of the resulting algorithm. Consequently, many important questions concerninggeneral upper and lower bounds for Shellsort have remained open, in spite of a number ofattempts to solve them. Apart from pure mathematical curiosity, the interest in Shellsortis motivated by the good performance of many of the known increment sequences. Thealgorithm is very easy to implement and outperforms most other sorting methods on smallor nearly sorted input �les. Moreover, Shellsort is an in-place sorting algorithm, so it is veryspace-e�cient.1.1 Previous Results on ShellsortThe original algorithm proposed by Shell was based on the increment sequence given byhm�1 = bn=2c, hm�2 = bn=4c ; : : : ; h0 = 1. However, this choice of H leads to a worstcase running time of �(n2) if n is a power of 2. Subsequently, several authors proposedmodi�cations to Shell's original sequence [9, 5, 8] in the hope of obtaining a better runningtime. Papernov and Stasevich [10] showed that the sequence of Hibbard [5], consisting ofthe increments of the form 2k � 1, achieves a running time of O(n3=2). A common featureof all of these sequences is that they are nearly geometric, meaning that they approximate ageometric sequence within an additive constant.An exception is the sequence designed by Pratt [13], which consists of all increments ofthe form 2i3j. This sequence gives a running time of O(n lg2 n), which still represents thebest asymptotic bound known for any increment sequence. In practice, the sequence is notpopular because it has length �(lg2 n); implementations of Shellsort tend to use O(lg n)-length increment sequences because these result in better running times for �les of moderatesize [6]. In addition, there is no hope of getting an O(n lg n)-time algorithm based on asequence of length !(lg n).Pratt [13] also showed an
(n3=2) lower bound for all nearly geometric sequences. Partlydue to this result, it was conjectured for quite a while that �(n3=2) is the best worst-case running time achievable by increment sequences of length O(lg n). However, in 1982,Sedgewick [14] improved this upper bound to O(n4=3), using an approximation of a geo-metric sequence that is not nearly geometric in the above sense. Subsequently, Incerpi andSedgewick [6] designed a family of O(lg n)-length increment sequences with running timesO(n1+�=plgn), for all � > 0. Chazelle achieves a similar running time with a class of nonuni-form sequences [6]; his construction is based on a generalization of Pratt's sequence.The sequences proposed by Incerpi and Sedgewick are all within a constant factor of ageometric sequence, that is, they satisfy hj = �(�j) for some constant � > 0. Weiss [17, 20]showed that all sequences of this type take time
(n1+�=plgn), but his proof assumed an asyet unproven conjecture on the number of inversions in the Frobenius pattern. Based on this2

so-called Inversion Conjecture, he also showed an
(n1+�=plgn) lower bound for the O(lg n)-length increment sequences of Chazelle. The question of existence of Shellsort algorithmswith running time O(n lg n) remained unresolved.The two classes of increment sequences given by Incerpi and Sedgewick and by Chazelleare of particular interest because they not only establish an improved upper bound forsequences of length O(lg n), but also indicate an interesting trade-o� between the runningtime and the length of an increment sequence. Speci�cally, using a construction describedin [6], it is possible to achieve better asymptotic running times by allowing longer incrementsequences.Another goal in the study of Shellsort is the construction of sorting networks of smalldepth and size. A Shellsort sorting network of depth � 0:6 lg2 n based on increments of theform 2i3j was given by Pratt [13]. Thus, his network came very close to the fastest knownnetwork at that time, due to Batcher [2], with depth � 0:5 lg2 n. In 1983, Ajtai, Koml�os, andSzemer�edi [1] designed a sorting network of depth O(lg n); however, their construction su�ersfrom an irregular topology and a large constant hidden by the O-notation. This situationhas motivated the search for O(lg n)-depth sorting networks with simpler topologies or asmaller multiplicative constant. Shellsort has been considered a potential candidate forsuch a network [16], due to the rich variety of possible increment sequences and the lack ofnontrivial general lower bounds. The lower bounds of Pratt and Weiss also apply to networksize, but they only hold for very restricted classes of increment sequences.Cypher [3] has established an
(n lg2 n= lg lg n) lower bound for the size of Shellsortnetworks. However, his proof technique only works for monotone increment sequences, thatis, sequences that are monotonically increasing. Though this captures a very general classof sequences, it does not rule out the possibility of an O(lg n)-depth network based on somenonmonotone sequence.Recently, and independent of this paper, Poonen [12] has shown a lower bound of
(n lg2 n=(lg lg n)2) that holds for arbitrary Shellsort algorithms. His lower bound has theform of a trade-o� between the running time of a Shellsort algorithm and the length of theunderlying increment sequence. The proof uses techniques from solid geometry and is quiteintricate. A comparison of Poonen's results and the results in this paper will be given in thenext subsection.1.2 Overview of the PaperIn this paper we show lower bounds on the worst-case complexity of Shellsort. In particular,we give a fairly simple proof of an
(n lg2 n=(lg lg n)2) lower bound for the size of Shellsortnetworks, for arbitrary increment sequences. We also establish an identical lower boundfor the running time of Shellsort algorithms, again for arbitrary increment sequences. Asin Poonen's paper, our lower bounds establish a trade-o� between the running time of analgorithm and the length of the underlying increment sequence. This gives lower boundsfor increment sequences of length O(lg n) that come very close to the best known upperbounds. At the other end of the spectrum, the trade-o� implies that no increment sequence3

can match Pratt's upper bound with signi�cantly fewer increments.Our proof technique is based on purely combinatorial arguments, and we believe thatit is signi�cantly simpler than the technique used by Poonen. The technique also leads tocertain improvements in the lower bounds, particularly in the trade-o� between the runningtime and the length of the increment sequence. The result by Poonen, on the other hand, isof independent interest, since it establishes a variant of the Inversion Conjecture of Weiss [20]using a new geometric approach to the Frobenius Problem. The technique used in this paperis not based on a proof of the Inversion Conjecture. Instead, it shows how to \combine"Frobenius patterns to construct permutations with a large number of inversions. This result,together with the idea of dividing an increment sequence into \stages" (also called \intervals"in [12]), leads to the strong lower bounds of this paper.Throughout this paper, we will limit our attention to increment sequences of lengthO(lg2 n=(lg lg n)2). Lower bounds for longer increment sequences are implied by the factthat Shellsort performs at least
(n) comparisons for every increment less than n=2. Theresults of this paper are presented in an \incremental" fashion, starting with a very basicargument for a restricted class of algorithms, and extending the lower bounds to more generalclasses in each of the subsequent sections.The paper is organized as follows. Section 2 illustrates our proof technique by giving asimple and informal argument showing a lower bound for the depth of Shellsort networksbased on monotone increment sequences. Section 3 introduces a number of de�nitions andsimple lemmas, and then proceeds to give a formal proof of a general lower bound for thedepth and size of arbitrary Shellsort networks. Section 4 then establishes a lower bound onthe running time of adaptive Shellsort algorithms based on arbitrary increment sequences.Section 5 contains a discussion of our results and a comparison with the best known upperbounds. Finally, Section 6 lists some open questions for future research.2 The Basic Proof IdeaIn this section we illustrate our proof idea by giving a very simple and informal argumentshowing a polylogarithmic lower bound for the depth of any Shellsort network based on amonotone increment sequence of length at most c lg2 n=(lg lg n)2, for some small c. In thefollowing sections, we will then formalize and extend this technique to obtain more generallower bounds.Let H be a monotone increment sequence with m � c lg2 n=(lg lg n)2 increments. Wenow divide the increment sequence H into a number of stages S0; : : : ; St�1. Every stage Siis a set consisting of all increments hj of H such that ni � hj > ni+1, where n0; : : : ; nt arechosen appropriately. We de�ne the ni by n0 = n and ni+1 = ni= lgk ni, for i � 0 and some�xed integer k. In this informal argument, we will not be concerned about the integralityof the expressions obtained. Note that the ni divide the increment sequence into at leastlgnk lg lgn disjoint stages. There are at least s def= lgn2k lg lgn disjoint stages consisting of incrementshj � n1=2.By averaging, one of these stages, say Si, will contain at most m=s � 2ck lgnlg lgn increments.4

Now suppose there exists an input permutationA such that, after sorting A by all incrementsin stages S0 to Si, some element is still
(ni) positions away from its �nal position in thesorted �le. SinceH is monotone, we know that from now on only comparisons over a distanceof at most ni+1 positions will be performed. Hence, we can conclude that the element has topass through at least
(ni=ni+1) =
(lgk n) comparators in order to reach its �nal, correctposition.To complete the proof we have to show the existence of a permutation A such that someelement is still \far out of place" after sorting A by all increments in S0 to Si. We will onlygive an informal argument at this point; a formal proof will be given in the next subsection.Consider all permutations of length n of the following form: Every element is in its correct,�nal position, except for the elements in a block of size ni, ranging from some position ato position a + ni � 1 in the permutation. The elements in this block are allowed to bescrambled up in an arbitrary way. It is easy to see that a permutation of this form is alreadysorted by all increments greater than ni, that is, all increments in stages S0 to Si�1. Hence,no exchanges will occur during these stages.We now look at what happens in the block of size ni during stage Si. Note that noelement outside the block will have an impact on the elements in the block. Thus, when wesort the permutation by some increment hj with ni � hj > ni+1, the new position of anyelement only depends on its previous position and on the elements in the at most nihj � lgk niother positions in the block that are in its hj-class. By our assumption, there are at mostm=s � 2ck lgnlg lgn increments in stage Si. Hence, the position of an element after stage Si onlydepends on its position before the stage, which can be arbitrary, and on the elements in atmost �lgk ni�m=s � (lgni) 2ck2 lg nlg lg nother positions. If we choose c such that 4ck2 < 1 � �, for some � > 0, then we get(lg ni) 2ck2 lg nlg lg n � 22ck2 lgn� 24ck2 lgni= o(ni);where the second inequality follows from ni � n1=2. This means that for large n, the positionof an element in the block after sorting by all increments in Si will only depend on theelements in o(ni) other positions in the block. If we assign the smallest elements in theblock to these positions, then an element that is larger than these, but smaller than all otherelements will end up in a position close to the largest elements after stage Si. Hence, thiselement is
(ni) positions away from its �nal position. All in all, we get the following result:Theorem 2.1 Let H be a monotone increment sequence of length at most c lg2 n=(lg lg n)2,and let k be such that 4ck2 < 1 � �, for some � > 0. Then any sorting network based on Hhas depth
 �lgk n�.The above argument is quite informal and does not make use of the full potential of ourproof technique; it has mainly been given to illustrate the basic proof idea and to demonstrate5

its simplicity. The above result implies that we cannot hope to match the O(lg2 n)-depthupper bound of Pratt [13] with any increment sequence of fewer than (1��) lg2 n16(lg lgn)2 increments,thus answering a question left open by Cypher's lower bound [3]. It also implies that wecannot achieve polylogarithmic depth with increment sequences of length o(lg2 n=(lg lg n)2).By extending the argument we will be able to show much stronger lower bounds forshorter increment sequences. More precisely, we can get a trade-o� between depth andincrement sequence length by choosing appropriate values for the integers ni that dividethe increment sequence into stages. We can also extend the result to adaptive Shellsortalgorithms by showing the existence of an input such that not just one, but \a large number"of elements are \far out of place" after the sparse stage Si.3 Lower Bounds for NetworksIn this section, we will show general lower bounds for the depth and size of Shellsort sortingnetworks. We start o� by giving a number of de�nitions and simple lemmas. We then showhow to formalize and generalize the argument of Section 2 to obtain a trade-o� between thedepth of a Shellsort network and the length of the underlying increment sequence. Next,we explain how the results on network depth imply lower bounds on the size of Shellsortnetworks. We conclude this section by extending our results to nonmonotone incrementsequences.3.1 De�nitions and Simple LemmasThis section contains a number of basic de�nitions and associated lemmas. All of the lemmasare quite straightforward and so their proofs have been omitted.We will use �(n) to denote the set of n! permutations over f0; : : : ; n�1g. A 0-1 permuta-tion of length n is an n-tuple over f0; 1g. Thus f0; 1gn denotes the set of 2n 0-1 permutations.Throughout this paper we will assume that the input �les are drawn from �(n). We willuse the letters A, B, and C to denote elements from �(n), and we will use X, Y , and Z todenote 0-1 permutations. We say that a �le A is h-sorted if A[i] � A[i+h], for 0 � i < n�h.The following trivial lemma arises as a special case of the last de�nition.Lemma 3.1 Every �le of length n is h-sorted for any h � n.In the following, let H = h0; : : : ; hm�1 be an increment sequence of length m � 1. Letmin(H) denote the smallest increment in H. We say that a �le is H-sorted if and only if itis hi-sorted for all i such that 0 � i < m.De�nition 3.1 Let template(H;n) denote the 0-1 permutation X obtained by setting X[i]to 1 if and only if there exist nonnegative integers a0; : : : ; am�1 such thati = X0�j<m aj � hj :6

Lemma 3.2 The 0-1 permutation template(H;n) is H-sorted.Lemma 3.3 The number of 1's in the 0-1 permutation template(H;n) is at most& nmin(H)'m :De�nition 3.2 For any 0-1 permutation X of length n0 with 0 � n0 � n, let pad(X;n)denote the 0-1 permutation Y of length n obtained by settingY [i] = (X[i] 0 � i < n0, and1 n0 � i < n.Lemma 3.4 Let X be an arbitrary 0-1 permutation of length n0 with 0 � n0 � n. Then Xis H-sorted if and only if pad(X;n) is H-sorted.De�nition 3.3 For any 0-1 permutationX of length n � 0, and any integer k, let shift(X; k)denote the 0-1 permutation Y of length n obtained by settingY [i] = (0 if i < k, andX[i� k] if k � i < n.Lemma 3.5 For any 0-1 permutationX and any integer k, ifX isH-sorted, then shift(X; k)is also H-sorted.De�nition 3.4 For any 0-1 permutation X of length n � 0, let perm(X) denote the per-mutation Y in �(n) obtained by settingY [i] = jfj : X[j] < X[i] _ (X[j] = X[i] ^ j < i)gj:Lemma 3.6 Let X be an arbitrary 0-1 permutation. Then X is H-sorted if and only ifperm(X) is H-sorted.We say that an element A[j] of a permutation A in �(n) is k places out of position ifjA[j] � jj � k. The following lemma will be used in Section 3.2 to obtain a simple lowerbound on the depth of any Shellsort sorting network.Lemma 3.7 LetX denote any H-sorted 0-1 permutation of length n, let i denote the numberof 1's in X, and let j denote the least index such that X[j] = 1 (if i = 0 then set j = n).Then element perm(X)[j] is n� i� j places out of position.7

3.2 A More General Lower BoundWe will now generalize the proof technique presented in the previous section to obtain atrade-o� between the length of an increment sequence H and the lower bound for the depthof a sorting network based on H. For the sake of simplicity, we assume H to be monotone.It will be shown later that this assumption is not really necessary.As before, we divide the increment sequence into stages S0; : : : ; St�1, such that stageSi contains all increments hj with ni � hj > ni+1. We de�ne the ni by n0 = n andni+1 = jni= lgk nik, but we now assume k to be a function of the input size n and theincrement sequence length m. Note that the number of stages t is determined by our choiceof k. In particular, if we choose k such that�lgk n�s � n1=2;then we get at least s stages that contain only elements that are greater than n1=2. Solvingthis inequality we get k = $ lg n2s lg lg n% : (1)as a possible choice of k. We will now formalize our earlier observation that an element canbe \far out of place" after sorting by all increments up to stage Si, provided that Si contains\few" increments.Lemma 3.8 Let H be an increment sequence for permutations of length n, and supposethat for some integers �; � 0 with 0 < � 0 < � � n there are at most � increments hj with�0 < hj � � in H. If l ��0 m� = o(�), then there exists an input �le A such that: (i) A is sortedby all hj > � 0, and (ii) there exists an element in A that is
(�) places away from its �nalposition.Proof: LetH 0 denote the subsequence ofH consisting of all increments hj such that hj > � 0,let H 00 denote the subsequence of H 0 consisting of all increments hj such that hj � �, and letX = template(H 00; �). We know that X is H 00-sorted by Lemma 3.2. Lemma 3.1 then impliesthat X is also H 0-sorted. Note that jH 00j � � and min(H 00) > � 0. Hence, by Lemma 3.3, thenumber of 1's in X is at most � �� 0�� = o(�):Now let Y = pad(X;n). By Lemma 3.4, the 0-1 permutation Y is H 0-sorted. Furthermore,since the number of 1's in Y is exactly n � � greater than the number of 1's in X, andX[0] = Y [0] = 1, Lemma 3.6 implies that the permutation A def= perm(Y) is H 0-sorted, andby Lemma 3.7 some element of A is
(�) places out of position. 2Note that, in the preceding argument, we could have de�ned Y as shift(pad(X;n); j)for any integer j with 0 � j � n � �. We will make use of this observation to establishCorollary 3.1.1 below. 8

Theorem 3.1 Any Shellsort sorting network based on a monotone increment sequence oflength m has depth
�2 lg n(2+�)pm� ;for all � > 0.Proof: We will partition the increment sequence H into at least s = (1 + �0)pm disjointstages consisting of increments hj with hj � n1=2, for some �0 > 0. By averaging, one ofthese stages, say Si, will contain at most� def= �ms � = $ pm1 + �0%increments. Using Equation 1 we determine k as:k = $ lg n2(1 + �0)pm lg lg n% (2)De�ne � = ni and � 0 = ni+1. We now have� �� 0�� � llgk �m pm1+�0� (lg n) lg n2(1+�0)2 lg lg n= 2 lg n2(1+�0)2� 2 lg �(1+�0)2= o(�):Thus, we can apply Lemma 3.8. According to the lemma, there exists a permutation suchthat an element is
(ni) positions away from its �nal position after stage Si. Since allsubsequent increments are less than or equal to ni+1, this element must pass through atleast
(ni=ni+1) comparators. Using ni � n1=2 and Equation 2, we obtain for su�cientlylarge n nini+1 � lgk ni= (lg ni)j lg n2(1+�0)pm lg lg nk� (lg ni) lg n2(1+�0)(1+�1)pm lg lg n� �2 lg lg nilg lg n � lg n2(1+�0)(1+�1)pm� �2 11+�2 � lg n2(1+�0)(1+�1)pm= 2 lg n(2+�)pm ;where � is chosen to satisfy the inequality (2 + �) � 2(1 + �0)(1 + �1)(1 + �2). 29

3.3 A Lower Bound for Network SizeThe depth lower bound of Theorem 3.1 also implies a lower bound on the size of any Shellsortnetwork based on a monotone increment sequence. We will not give a formal proof of thisresult, since it arises as a special case of the lower bound for the running time of adaptiveShellsort established in the next section. Instead, we will brie
y describe the main idea.Lemma 3.8 shows how to construct an input �le A that is sorted under all incrementsin stages S0 to Si of an increment sequence H such that one element A[z] in A is \far outof place". In fact, as discussed immediately after the proof of Lemma 3.8, we can use themethod of the lemma to construct a set of n � ni \shifted" versions of such an input �leA. In particular, let Aj, 0 � j < n � ni, denote the input �le obtained by setting Y toshift(pad(X;n); j) instead of pad(X;n). Note that A0 = A. Let A0[z] be the element provento be far out of place in A0. By construction, the element Aj[z+ j] is far out of place in Aj.Due to the common structure of the input �les, element Aj[z + j] in �le Aj will never passthrough the same comparator as element Ak[z + k] in Ak, for any j 6= k. Instead, the twoelements will always be exactly k � j positions apart at each level of the sorting network.This implies the result.Corollary 3.1.1 Any sorting network based on a monotone increment sequence of length mhas size
�n � 2 lg n(2+�)pm� ;for all � > 0.We can now compare our result to the lower bound of
(n lg2 n= lg lg n) for networksize given by Cypher [3]. The main di�erence between the two results is that Cypher getsa lower bound that is independent of the length of the increment sequence, while we geta trade-o� between network size and increment sequence length. This makes our lowerbound much stronger for short increment sequences. Our method also implies a lower boundof
(n lg2 n=(lg lg n)2) for increment sequences of arbitrary length, since every incrementincreases the size of a Shellsort network by at least n. This is slightly weaker than Cypher'slower bound. However, Cypher's bound only applies to monotone increment sequences, whileour result also holds for nonmonotone sequences, as will be shown in the next subsection.Another strength of our method is its simplicity and
exibility, which will make it possible toextend our lower bound to adaptive Shellsort algorithms and certain variations of Shellsort.3.4 Nonmonotone Increment SequencesSo far, we have restricted our attention to monotone increment sequences. We will nowshow that this restriction is really unnecessary, and that the same lower bounds also applyto nonmonotone sequences. Recall that we obtained the depth lower bound by showingthe existence of an input permutation such that an element is \far out of place" after the\sparse" stage Si. More precisely, Lemma 3.8 showed the existence of a permutation A thatis already sorted by all increments in stages S0 through Si and that contains such an element.10

Thus, no exchanges are performed by the increments in stages S0 through Si on input A,and the lower bound follows. We will make use of the following well-known lemma (see, forexample, [13]) in order to extend this argument to nonmonotonic increment sequences.Lemma 3.9 For any two increments h; h0, if we h0-sort an h-sorted �le, it stays h-sorted.Now suppose we have a nonmonotone increment sequence H. We can divide H intostages S0; : : : ; St�1 as before, with stage Si containing all increments hj with ni � hj > ni+1.Again, there exists a \sparse" stage Si with few increments, and a permutation sorted byall increments in S def= S0 [� � � [Si such that some element is \far out of place". If wetake A as the input permutation, then by Lemma 3.9 A will stay sorted by all incrementsin S throughout the network. Hence, no exchanges will take place during the applicationsof Insertion Sort corresponding to increments in S. This implies that all of the exchangesneeded to move the \out-of-place" element to its �nal position are performed by incrementshj � ni+1, and the lower bound follows. The same reasoning also applies to the lower boundfor network size, and to the results obtained in the next section. This gives us the followingresult:Corollary 3.1.2 Any sorting network based on an increment sequence of length m has size
�n � 2 lg n(2+�)pm� ;for all � > 0.Note that this result does not rule out the existence of nonmonotone increment sequencesthat perform better than the \corresponding" monotone sequences (that is, the sequencesobtained by sorting the nonmonotone sequences into increasing order). It is an open questionwhether such sequences exist.4 Adaptive Shellsort AlgorithmsThe results obtained so far all rely on the fact, established in Lemma 3.8, that we canconstruct an input �le such that one element is \far away" from its �nal position in thesorted �le. We were able to extend the lower bounds to network size due to the nonadaptivenature of sorting networks. However, the results for network size do not imply a lower boundfor the running time of Shellsort algorithms that are adaptive.In this subsection, we will establish such a lower bound. The high-level structure ofthe proof is the same as that of the depth lower bound in the last section; we only have tosubstitute Lemma 3.8 by a stronger lemma showing that there exists an input �le A suchthat not just one, but \a large number" of the elements in A are \far away" from their �nalposition. This result is formalized in the following lemma, which we will prove later in thissubsection. 11

Lemma 4.1 Let H be an increment sequence applied to input �les of length n, and supposethat for some integers �; � 0 with 4 � � 0 < � � n there are at most � increments hj with�0 < hj � � in H. If l ��0 m� � �= lg3 �, then there exists an input �le A such that: (i) Ais sorted by all hj > � 0, and (ii) there exist
(n= lg3 �) elements in A that are
(�= lg2 �)places away from their �nal position.Given an increment sequence H, we can establish the lower bound for adaptive Shellsortalgorithms by dividing H into stages in the same way as in the proof of Theorem 3.1, andthen applying the above Lemma 4.1 instead of Lemma 3.8. The lower bound obtained isslightly weaker than the one for network size, since Lemma 4.1 only shows that a polylogfraction of the elements are a polylog fraction of ni�1 out of place. This gives the followingtheorem:Theorem 4.1 Any Shellsort algorithm based on an increment sequence of length m hasrunning time
 nlg5 n � 2 lg n(2+�)pm! ;for all � > 0.We remark that the exponent \5" in the preceding theorem is not the best possible. Itresults from summing the exponents \3" and \2" appearing in the statement of Lemma 4.1,which can be improved to \2" and \1", respectively. We have chosen to weaken theseconstants in order to simplify the proof of Lemma 4.1.Comparing the bound of Theorem 4.1 to previous results we note that the lower boundsof Pratt [13] and Weiss [17] only hold for increment sequences approximating a geometricsequence, while the lower bound of Theorem 4.1 applies to all increment sequences. Also,the bound given by Weiss, which holds for a more general class than Pratt's bound, is basedon an unproven conjecture about the number of inversions in certain input �les.The remainder of this subsection contains the proof of Lemma 4.1. To establish theresult, we will need a few technical lemmas. The �rst two lemmas are straightforward andtheir proofs will be omitted. In particular, Lemma 4.2 is a straightforward generalization ofLemma 3.7.Lemma 4.2 LetX denote any H-sorted 0-1 permutation of length n, let i denote the numberof 1's in X, let n0 be such that 0 � n0 < n � 2i, and let j = P0�k<n0 X[k]. Then at least jelements of perm(X) are n � n0 � i places out of position.De�nition 4.1 For any 0-1 permutationX of length n0 such that 0 � n0 � n, let perm�(X;n)denote the permutation Y in �(n) obtained from Z def= perm(X) by settingY [i] = Z[i mod n0] + � in0� � n0:12

Lemma 4.3 Let X be any 0-1 permutation of length n0 such that 0 � n0 � n. Then X isH-sorted if and only if perm�(X;n) is H-sorted. If i elements of perm(X) are j places outof position, then at least i � bn=n0c elements of perm�(X;n) are j places out of position.In the following, let H be an arbitrary increment sequence. Let � be any integer suchthat � � 4, and de�ne � def= � � 2�= lg2 � and � def= � � �= lg2 �.Lemma 4.4 LetX denote a 0-1 permutation of length � � 4 with X[0] = 1 andP0�i<� X[i] ��= lg3 �. Then there exists an integer k, 0 � k � (���) blg �c, such that the 0-1 permutationY def= shift(X; k) satis�es X0�i<�Y [i] � X��i<� Y [i]:Proof: Suppose, for the sake of contradiction, thatX0�i<� shift(X; k)[i] < X��i<� shift(X; k)[i]holds for all k with 0 � k � (���) blg �c. This implies thatP0�i<��k X[i] < P��k�i<��k X[i].Using Rk def= P0�i<��k X[i], this can be rewritten as Rk < Rk�(���)�Rk, or Rk < 12Rk�(���).Hence, R(���)blg �c < 2�blg �cR0;and from R0 �P0�i<� X[i] � �= lg3 � we getR(���)blg �c < 2lg3 � < 1:This is clearly a contradiction, since X[0] = 1 implies R(���)blg �c � 1. 2In the next lemma, given 0-1 permutations X and Y of length n, we will use or(X;Y)to denote the 0-1 permutation Z obtained by setting bit Z[i] to the logical OR of bits X[i]and Y [i], 0 � i < n. Clearly, if X and Y are H-sorted, then or(X;Y) is also H-sorted.Lemma 4.5 Let X be an H-sorted 0-1 permutation of length � with x def= P0�i<� X[i] ��= lg3 �. Let x0 def= P0�i<�+k X[i] where (x lg �)=2 � k � �=(2 lg2 �). Then there exists anH-sorted 0-1 permutation Y of length � with P0�i<� Y [i] � 2x andX0�i<�+2k Y [i] � 2 1� 1lg �!x0:Proof: We will set Y to Yj def= or(X; shift(X; j)) for some appropriately chosen integer j,1 � j � k. Note that by Lemma 3.5, any such 0-1 permutation Yj is H-sorted, and it iseasy to see that P0�i<� Yj[i] � 2x holds. Let y0j = P0�i<�+2k Yj[i]. It remains to show the13

existence of an integer j0, 1 � j0 � k, such that y0j0 � 2(1 � 1= lg �)x0. We will accomplishthis by means of an averaging argument. We haveX1�j�k y0j � 2kx0 � x02!:(Here, �x02� is the sum, over all i, of the number of ways the ith \1" in X can coincide witha \1" in some shift(X; j).) Hence, by averaging, there exists a j0, 1 � j0 � k, such thaty0j0 � 2kx0 � �x02�k� 2x0 � x0 � 1lg �� 2 1� 1lg �!x0;where the second inequality follows from k � (x lg �)=2 and x0 � x. Now choose Y = Yj0 . 2Lemma 4.6 Let Y be an H-sorted 0-1 permutation of length � with P0�i<� Y [i] � �= lg3 �and X0�i<�Y [i] � X��i<� Y [i]:Then there exists an H-sorted 0-1 permutation Z of length � such that P0�i<� Z[i] � �= lg3 �and X0�i<� Z[i] =
(�= lg3 �):Proof: We will \transform" the given 0-1 permutation Y into a 0-1 permutation of thedesired form by a sequence of applications of Lemma 4.5. Let Y0 def= Y . The jth applicationof Lemma 4.5 will be used to obtain Yj from Yj�1, j � 1. Let yj = P0�i<� Yj[i], and lety0j = P0�i<�+2jy0 lg� Yj [i]. Note that y00 � P0�i<� Y [i] � y0=2. Then Lemma 4.5 implies thatyj � 2jy0, and y0j � "2 1� 1lg �!#j y00for j � lg � � lg y0 � 3 lg lg � (the latter inequality ensures that � + 2jy0 lg � � �). Settingj0 to blg � � lg y0 � 3 lg lg �c, and making use of the inequality y00 � y0=2, we �nd thatyj0 � �= lg3 � and, hence, y0j0 =
(yj0) =
(�= lg3 �):Hence, we can choose Z = Yj0 . 2Given the above lemmas, we are now ready to proceed with the proof of Lemma 4.1.14

Proof: Let H 0 denote the subsequence of H consisting of exactly those increments hj suchthat hj > � 0, let H 00 denote the subsequence of H 0 consisting of exactly those increments hjsuch that hj � �, and letX = template(H 00; �). We know that X isH 00-sorted by Lemma 3.2.Note that jH 00j � � and min(H 00) > � 0. Hence, by Lemma 3.3, we haveX0�i<� X[i] � � �� 0�� � �lg3 � :By Lemmas 3.5 and 4.4, the existence of X implies the existence of a 0-1 permutation Y oflength � such that Y is H 00-sorted andX0�i<�Y [i] � X��i<� Y [i]:The existence of Y then establishes, via Lemma 4.6, the existence of a 0-1 permutation Z oflength � such that:� Z is H 00-sorted,� P0�i<� Z[i] � �= lg3 �, and� P0�i<� Z[i] =
(�= lg3 �).By Lemma 3.1 and Lemma 3.6 we know that B = perm(Z) is H 0-sorted, and Lemma 4.2implies that B contains
(�= lg3 �) elements that are
(�= lg2 �) places out of position. LetA = perm�(Z; n). By Lemma 4.3, A is H 0-sorted and contains
(n= lg3 �) elements that are
(�= lg2 �) places out of position. 25 DiscussionIn this paper, we have given a fairly simple proof of a lower bound of
(n lg2 n=(lg lg n)2) forthe size of any Shellsort network, thus ruling out the existence of a network of size O(n lg n)based on a nonmonotone increment sequence. By extending our argument to the case ofadaptive algorithms, we have also established a general lower bound for Shellsort that holdsfor arbitrary increment sequences.Our lower bound can be further generalized to a fairly large class of \Shellsort-like"algorithms, including the Shaker Sort algorithm of Incerpi and Sedgewick [7, 19] as wellas other algorithms proposed by Knuth [8] and Dobosiewicz [4]. Poonen [12] has formallyde�ned a class of such algorithms, called Shellsort-type algorithms, and has shown howto extend his lower bound to this class. We will not elaborate further on such possibleextensions, and instead refer the reader to the presentation in [12].The lower bound of Theorem 4.1 establishes a trade-o� between the running time ofa Shellsort algorithm and the length of the underlying increment sequence. We will nowcompare this lower bound trade-o� with the best known upper bound trade-o� given by thenonuniform increment sequences of Chazelle (see the non-uniform case of Theorem 3 in [6]).15

Expressing the running time as a function of the increment sequence length m we obtain thefollowing bounds: Lower Bound: T � nlg5 n � n 1(2+�)pmUpper Bound: T � mn � n 2pmNote that both the factor 1= lg5 n in the lower bound and the factor m in the upper boundare only signi�cant for increment sequences of length
(lg2 n=(lg lgn)2). In every other case,the upper and lower bounds di�er only by a factor of 4 + � in the exponent. In the lowerbound trade-o� shown by Poonen, the constant in the exponent is 1=432 instead of 1=(2+�).We can also express the length of the increment sequence as a function of the runningtime. In this case, for m = o(lg2 n=(lg lg n)2), the lower and upper bounds are only aconstant factor apart. This means that, for a given T , the length of the increment sequenceof Chazelle that achieves running time T is only a factor of 16 + � larger than the minimumlength possible under our lower bound trade-o�. (For Poonen's result, this factor would bemuch larger.) In other words, one cannot hope to match the running time of Chazelle'ssequences with signi�cantly shorter increment sequences.6 Open QuestionsThe primary remaining challenge in the study of Shellsort seems to be the virtual nonex-istence of both upper and lower bounds for the average case complexity. A result for aparticular increment sequence is given by Knuth [8], who determines an average case run-ning time of
(n3=2) for Shell's original sequence. Increment sequences of the form (h; 1)and (h; k; 1) were investigated by Knuth [8] and Yao [21], respectively. Weiss [18] conductedan extensive empirical study and conjectured that Shellsort will on average not perform sig-ni�cantly better than in the worst case. Any general upper and lower bound for the averagecase would certainly be very interesting.It would be nice to close the remaining gap between the upper and lower bounds. Ourlower bound trade-o� comes quite close to the known upper bounds, but there is certainlystill room for improvement.Finally, one might try to �nd interesting \Shellsort-like" algorithms that are not coveredby our proof technique, and that lead to improved running times.AcknowledgementsWe thank Mark Weiss for helpful comments.References[1] M. Ajtai, J. Koml�os, and E. Szemer�edi. Sorting in c log n parallel steps. Combinatorica,3:1{19, 1983. 16

[2] K. E. Batcher. Sorting networks and their applications. In Proceedings of the AFIPSSpring Joint Computer Conference, vol. 32, pages 307{314, 1968.[3] R. E. Cypher. A lower bound on the size of Shellsort sorting networks. SIAM J.Comput., 22:62{71, February 1993.[4] W. Dobosiewicz. An e�cient variation of Bubble Sort. Information Processing Letters,11:5{6, 1980.[5] T. N. Hibbard. An empirical study of minimal storage sorting. Communications of theACM, 6:206{213, 1963.[6] J. Incerpi and R. Sedgewick. Improved upper bounds on Shellsort. Journal of Computerand System Sciences, 31:210{224, 1985.[7] J. Incerpi and R. Sedgewick. Practical variations of Shellsort. Information ProcessingLetters, 26:37{43, 1987.[8] D. E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, Reading,MA, 1973.[9] R. Lazarus and R. Frank. A high-speed sorting procedure. Communications of theACM, 3:20{22, 1960.[10] A. Papernov and G. Stasevich. A method for information sorting in computer memories.Problems of Information Transmission, 1:63{75, 1965.[11] C. G. Plaxton, B. Poonen, and T. Suel. Improved lower bounds for Shellsort. InProceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science,pages 226{235, October 1992.[12] B. Poonen. The worst case in Shellsort and related algorithms. Journal of Algorithms,15:101{124, 1993.[13] V. R. Pratt. Shellsort and Sorting Networks. PhD thesis, Stanford University, Depart-ment of Computer Science, December 1971. Also published by Garland, New York,1979.[14] R. Sedgewick. A new upper bound for Shellsort. Journal of Algorithms, 7:159{173,1986.[15] D. L. Shell. A high-speed sorting procedure. Communications of the ACM, 2:30{32,1959.[16] J. S. Vitter and P. Flajolet. Average-case analysis of algorithms and data structures.In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A: Al-gorithms and Complexity, pages 431{524. Elsevier/MIT Press, 1990.[17] M. A. Weiss. Lower Bounds for Shellsort. PhD thesis, Princeton University, Departmentof Computer Science, June 1987.[18] M. A. Weiss. Empirical study of the expected running time of Shellsort. The ComputerJournal, 34:88{91, 1991.[19] M. A. Weiss and R. Sedgewick. Bad cases for Shaker-sort. Information ProcessingLetters, 28:133{136, 1988. 17

[20] M. A. Weiss and R. Sedgewick. Tight lower bounds for Shellsort. Journal of Algorithms,11:242{251, 1990.[21] A. C. C. Yao. An analysis of (h; k; 1)-Shellsort. Journal of Algorithms, 1:14{50, 1980.

18

