Lower Bounds for Shellsort*
C. Greg Plaxton' Torsten Suel’

Department of Computer Science
University of Texas at Austin

Abstract

We show lower bounds on the worst-case complexity of Shellsort. In particular,
we give a fairly simple proof of an Q(nlg”n/(lglgn)?) lower bound for the size of
Shellsort sorting networks, for arbitrary increment sequences. We also show an identical
lower bound for the running time of Shellsort algorithms, again for arbitrary increment
sequences. Our lower bounds establish an almost tight trade-off between the running
time of a Shellsort algorithm and the length of the underlying increment sequence.

Proposed running head: Lower Bounds for Shellsort.

Contact author: Prof. Greg Plaxton, Department of Computer Science, Univer-
sity of Texas at Austin, Austin, Texas 78712-1188.

1 Introduction

Shellsort is a classical sorting algorithm introduced by Shell in 1959 [15]. The algorithm is
based on a sequence H = hg, ..., h,_1 of positive integers called an increment sequence. An
input file A = A[0],..., A[n — 1] of elements is sorted by performing an hj-sort for every
increment h; in H, starting with h,,_; and going down to hg. Every hj-sort partitions the
positions of the input array into congruence classes modulo £, and then performs Insertion
Sort on each of these classes. It is not difficult to see that at least one of the h;’s must be
equal to 1 in order for the algorithm to sort all input files properly. Furthermore, once some
increment equal to 1 has been processed, the file will certainly be sorted. Hence, we may
assume without loss of generality that hg =1 and h; > 1 for all 7 > 0.

The running time of Shellsort varies heavily depending on the choice of the increment
sequence H. Most practical Shellsort algorithms set H to the prefix of a single, monotonically

*A preliminary version of this paper appeared in [11].

TSupported by NSF Research Initiation Award CCR-9111591, and by the Texas Advanced Research
Program under Grant No. 003658-480.

tSupported by the Texas Advanced Research Program under Grant No. 003658-480, and by an MCD
Fellowship of the University of Texas at Austin.

increasing infinite sequence of integers, using only the increments that are less than n.
Shellsort algorithms based on such increment sequences are called uniform. In a nonuniform
Shellsort algorithm, H may depend on the input size n in an arbitrary fashion.

A general analysis of the running time of Shellsort is difficult because of the vast number
of possible increment sequences, each of which can lead to a different running time and
behavior of the resulting algorithm. Consequently, many important questions concerning
general upper and lower bounds for Shellsort have remained open, in spite of a number of
attempts to solve them. Apart from pure mathematical curiosity, the interest in Shellsort
is motivated by the good performance of many of the known increment sequences. The
algorithm is very easy to implement and outperforms most other sorting methods on small
or nearly sorted input files. Moreover, Shellsort is an in-place sorting algorithm, so it is very
space-efficient.

1.1 Previous Results on Shellsort

The original algorithm proposed by Shell was based on the increment sequence given by
hm-1 = |[n/2]|, hpmeo = |n/4],...,ho = 1. However, this choice of H leads to a worst
case running time of O(r?) if n is a power of 2. Subsequently, several authors proposed
modifications to Shell’s original sequence [9, 5, 8] in the hope of obtaining a better running
time. Papernov and Stasevich [10] showed that the sequence of Hibbard [5], consisting of
the increments of the form 2% — 1, achieves a running time of O(n*?). A common feature
of all of these sequences is that they are nearly geometric, meaning that they approximate a
geometric sequence within an additive constant.

An exception is the sequence designed by Pratt [13], which consists of all increments of
the form 2137, This sequence gives a running time of O(nlg®n), which still represents the
best asymptotic bound known for any increment sequence. In practice, the sequence is not
popular because it has length ©(lg?n); implementations of Shellsort tend to use O(lgn)-
length increment sequences because these result in better running times for files of moderate
size [6]. In addition, there is no hope of getting an O(nlgn)-time algorithm based on a
sequence of length w(lgn).

Pratt [13] also showed an Q(n?/?) lower bound for all nearly geometric sequences. Partly
due to this result, it was conjectured for quite a while that ©(n%?) is the best worst-
case running time achievable by increment sequences of length O(lgn). However, in 1982,
Sedgewick [14] improved this upper bound to O(n*/®), using an approximation of a geo-
metric sequence that is not nearly geometric in the above sense. Subsequently, Incerpi and
Sedgewick [6] designed a family of O(lgn)-length increment sequences with running times

O(nHE/V 87y for all € > 0. Chazelle achieves a similar running time with a class of nonuni-
form sequences [6]; his construction is based on a generalization of Pratt’s sequence.
The sequences proposed by Incerpi and Sedgewick are all within a constant factor of a

geometric sequence, that is, they satisfy h; = © (o) for some constant a > 0. Weiss [17, 20]

showed that all sequences of this type take time Q(nHE/V '87) hut his proof assumed an as
yet unproven conjecture on the number of inversions in the Frobenius pattern. Based on this

so-called Inversion Conjecture, he also showed an Q(n'*/V18™) lower bound for the O(lgn)-
length increment sequences of Chazelle. The question of existence of Shellsort algorithms
with running time O(nlgn) remained unresolved.

The two classes of increment sequences given by Incerpi and Sedgewick and by Chazelle
are of particular interest because they not only establish an improved upper bound for
sequences of length O(lgn), but also indicate an interesting trade-off between the running
time and the length of an increment sequence. Specifically, using a construction described
in [6], it is possible to achieve better asymptotic running times by allowing longer increment
sequences.

Another goal in the study of Shellsort is the construction of sorting networks of small
depth and size. A Shellsort sorting network of depth ~ 0.61g*n based on increments of the
form 213/ was given by Pratt [13]. Thus, his network came very close to the fastest known
network at that time, due to Batcher [2], with depth ~ 0.51g® n. In 1983, Ajtai, Komlés, and
Szemerédi [1] designed a sorting network of depth O(lg n); however, their construction suffers
from an irregular topology and a large constant hidden by the O-notation. This situation
has motivated the search for O(lgn)-depth sorting networks with simpler topologies or a
smaller multiplicative constant. Shellsort has been considered a potential candidate for
such a network [16], due to the rich variety of possible increment sequences and the lack of
nontrivial general lower bounds. The lower bounds of Pratt and Weiss also apply to network
size, but they only hold for very restricted classes of increment sequences.

Cypher [3] has established an Q(nlg®n/lglgn) lower bound for the size of Shellsort
networks. However, his proof technique only works for monotone increment sequences, that
is, sequences that are monotonically increasing. Though this captures a very general class
of sequences, it does not rule out the possibility of an O(lgn)-depth network based on some
nonmonotone sequence.

Recently, and independent of this paper, Poonen [12] has shown a lower bound of
Q(nlg®n/(lglgn)?) that holds for arbitrary Shellsort algorithms. His lower bound has the
form of a trade-off between the running time of a Shellsort algorithm and the length of the
underlying increment sequence. The proof uses techniques from solid geometry and is quite
intricate. A comparison of Poonen’s results and the results in this paper will be given in the
next subsection.

1.2 Overview of the Paper

In this paper we show lower bounds on the worst-case complexity of Shellsort. In particular,
we give a fairly simple proof of an Q(nlg®n/(Iglgn)?) lower bound for the size of Shellsort
networks, for arbitrary increment sequences. We also establish an identical lower bound
for the running time of Shellsort algorithms, again for arbitrary increment sequences. As
in Poonen’s paper, our lower bounds establish a trade-off between the running time of an
algorithm and the length of the underlying increment sequence. This gives lower bounds
for increment sequences of length O(lgn) that come very close to the best known upper
bounds. At the other end of the spectrum, the trade-off implies that no increment sequence

can match Pratt’s upper bound with significantly fewer increments.

Our proof technique is based on purely combinatorial arguments, and we believe that
it is significantly simpler than the technique used by Poonen. The technique also leads to
certain improvements in the lower bounds, particularly in the trade-off between the running
time and the length of the increment sequence. The result by Poonen, on the other hand, is
of independent interest, since it establishes a variant of the Inversion Conjecture of Weiss [20]
using a new geometric approach to the Frobenius Problem. The technique used in this paper
is not based on a proof of the Inversion Conjecture. Instead, it shows how to “combine”
Frobenius patterns to construct permutations with a large number of inversions. This result,
together with the idea of dividing an increment sequence into “stages” (also called “intervals”
n [12]), leads to the strong lower bounds of this paper.

Throughout this paper, we will limit our attention to increment sequences of length
O(lg”n/(lglgn)?). Lower bounds for longer increment sequences are implied by the fact
that Shellsort performs at least Q(n) comparisons for every increment less than n/2. The
results of this paper are presented in an “incremental” fashion, starting with a very basic
argument for a restricted class of algorithms, and extending the lower bounds to more general
classes in each of the subsequent sections.

The paper is organized as follows. Section 2 illustrates our proof technique by giving a
simple and informal argument showing a lower bound for the depth of Shellsort networks
based on monotone increment sequences. Section 3 introduces a number of definitions and
simple lemmas, and then proceeds to give a formal proof of a general lower bound for the
depth and size of arbitrary Shellsort networks. Section 4 then establishes a lower bound on
the running time of adaptive Shellsort algorithms based on arbitrary increment sequences.
Section 5 contains a discussion of our results and a comparison with the best known upper
bounds. Finally, Section 6 lists some open questions for future research.

2 The Basic Proof Idea

In this section we illustrate our proof idea by giving a very simple and informal argument
showing a polylogarithmic lower bound for the depth of any Shellsort network based on a
monotone increment sequence of length at most clg®n/(Iglgn)?, for some small ¢. In the
following sections, we will then formalize and extend this technique to obtain more general
lower bounds.

Let H be a monotone increment sequence with m < clg®n/(lglgn)? increments. We
now divide the increment sequence H into a number of stages So, ..., S;—1. Every stage 5;
is a set consisting of all increments h; of H such that n; > h; > n;4q, where ng, ..., ny are
chosen appropriately. We define the n; by ng = n and n;yy = ni/lgk n;, for 1+ > 0 and some
fixed integer k. In this informal argument, we will not be concerned about the integrality
of the expressions obtained. Note that the n; divide the increment sequence into at least

Ign I def lgn
Flalgn disjoint stages. There are at least s = Flalan

h]‘ Z nl/z.

disjoint stages consisting of increments

2cklgn

] increments.
glgn

By averaging, one of these stages, say 5;, will contain at most m/s <

Now suppose there exists an input permutation A such that, after sorting A by all increments
in stages Sy to 5;, some element is still (n;) positions away from its final position in the
sorted file. Since H is monotone, we know that from now on only comparisons over a distance
of at most n;;11 positions will be performed. Hence, we can conclude that the element has to
pass through at least Q(n;/nit1) = Q(lg¥ n) comparators in order to reach its final, correct
position.

To complete the proof we have to show the existence of a permutation A such that some
element is still “far out of place” after sorting A by all increments in Sy to S;. We will only
give an informal argument at this point; a formal proof will be given in the next subsection.
Consider all permutations of length n of the following form: Every element is in its correct,
final position, except for the elements in a block of size n;, ranging from some position «
to position @ + n; — 1 in the permutation. The elements in this block are allowed to be
scrambled up in an arbitrary way. It is easy to see that a permutation of this form is already
sorted by all increments greater than n,, that is, all increments in stages Sy to S;_1. Hence,
no exchanges will occur during these stages.

We now look at what happens in the block of size n; during stage S;. Note that no
element outside the block will have an impact on the elements in the block. Thus, when we
sort the permutation by some increment h; with n; > h; > n;41, the new position of any
element only depends on its previous position and on the elements in the at most Z—]’ < lg" n;

other positions in the block that are in its hj-class. By our assumption, there are at most

m/s < % increments in stage S;. Hence, the position of an element after stage 5; only

depends on its position before the stage, which can be arbitrary, and on the elements in at

most
2ck2 lg n

(lgk ni)m/s < (1g nz) Iglgn

other positions. If we choose ¢ such that 4ck?* < 1 — ¢, for some ¢ > 0, then we get

2ck?1
) 5 < s
< 24ck2lgn,‘

O(ni)v

where the second inequality follows from n; > n'/2. This means that for large n, the position
of an element in the block after sorting by all increments in .S; will only depend on the
elements in o(n;) other positions in the block. If we assign the smallest elements in the
block to these positions, then an element that is larger than these, but smaller than all other
elements will end up in a position close to the largest elements after stage 5;. Hence, this
element is (n;) positions away from its final position. All in all, we get the following result:

Theorem 2.1 Let H be a monotone increment sequence of length at most clg”n/(lglgn)?,
and let k be such that 4ck* < 1 — ¢, for some ¢ > 0. Then any sorting network based on H
has depth € (lgk n)

The above argument is quite informal and does not make use of the full potential of our
proof technique; it has mainly been given to illustrate the basic proof idea and to demonstrate

its simplicity. The above result implies that we cannot hope to match the O(lg*n)-depth
(1—¢)lg®n
16(1glgn)?
thus answering a question left open by Cypher’s lower bound [3]. It also implies that we

cannot achieve polylogarithmic depth with increment sequences of length o(lg” n/(Iglgn)?).

upper bound of Pratt [13] with any increment sequence of fewer than increments,

By extending the argument we will be able to show much stronger lower bounds for
shorter increment sequences. More precisely, we can get a trade-off between depth and
increment sequence length by choosing appropriate values for the integers n; that divide
the increment sequence into stages. We can also extend the result to adaptive Shellsort
algorithms by showing the existence of an input such that not just one, but “a large number”
of elements are “far out of place” after the sparse stage 5;.

3 Lower Bounds for Networks

In this section, we will show general lower bounds for the depth and size of Shellsort sorting
networks. We start off by giving a number of definitions and simple lemmas. We then show
how to formalize and generalize the argument of Section 2 to obtain a trade-off between the
depth of a Shellsort network and the length of the underlying increment sequence. Next,
we explain how the results on network depth imply lower bounds on the size of Shellsort
networks. We conclude this section by extending our results to nonmonotone increment
sequences.

3.1 Definitions and Simple Lemmas

This section contains a number of basic definitions and associated lemmas. All of the lemmas
are quite straightforward and so their proofs have been omitted.

We will use II(n) to denote the set of n! permutations over {0,...,n—1}. A 0-1 permuta-
tion of length n is an n-tuple over {0, 1}. Thus {0, 1}" denotes the set of 2" 0-1 permutations.

Throughout this paper we will assume that the input files are drawn from Il(n). We will
use the letters A, B, and C to denote elements from II(n), and we will use X, Y, and 7 to
denote 0-1 permutations. We say that a file A is h-sorted if A[i] < Ale+h],for 0 <i <n—h.
The following trivial lemma arises as a special case of the last definition.

Lemma 3.1 FEvery file of length n is h-sorted for any h > n.
In the following, let H = hq,...,h,_1 be an increment sequence of length m > 1. Let
min(H) denote the smallest increment in H. We say that a file is H-sorted if and only if it

is h;-sorted for all 7 such that 0 <17 < m.

Definition 3.1 Let template(H,n) denote the 0-1 permutation X obtained by setting X|[i]

to 1 if and only if there exist nonnegative integers ag, ..., a1 such that
1= Z aj - h]‘.
0<5<m

Lemma 3.2 The 0-1 permutation template(H,n) is H-sorted.

Lemma 3.3 The number of 1’s in the 0-1 permutation template(H,n) is at most

|

Definition 3.2 For any 0-1 permutation X of length n' with 0 < n' < n, let pad(X,n)
denote the 0-1 permutation Y of length n obtained by setting

L) X[0<e<, and
Y[l]_{l n <i<n.

Lemma 3.4 Let X be an arbitrary 0-1 permutation of length n' with 0 < n’ < n. Then X
is H-sorted if and only if pad(X,n) is H-sorted.

Definition 3.3 For any 0-1 permutation X of length n > 0, and any integer k, let shift(X, k)
denote the 0-1 permutation Y of length n obtained by setting

4~} 0 if 1t <k, and
Y[l]_{ X[i—k] ifk<i<n.

Lemma 3.5 For any 0-1 permutation X and any integer k, if X is H-sorted, then shift(X, k)
is also H-sorted.

Definition 3.4 For any 0-1 permutation X of length n > 0, let perm(X) denote the per-
mutation Y in II(n) obtained by setting

Y] =Hg: X[l < X[V (X[] = X[A G <)}

Lemma 3.6 Let X be an arbitrary 0-1 permutation. Then X is H-sorted if and only if
perm(X) is H-sorted.

We say that an element A[j] of a permutation A in II(n) is k places out of position if
|A[j] — j| = k. The following lemma will be used in Section 3.2 to obtain a simple lower
bound on the depth of any Shellsort sorting network.

Lemma 3.7 Let X denote any H-sorted 0-1 permutation of length n, let © denote the number
of 1’s in X, and let j denote the least index such that X[j] =1 (if 1 = 0 then set j = n).
Then element perm(X)[j] is n — ¢ — j places out of position.

3.2 A More General Lower Bound

We will now generalize the proof technique presented in the previous section to obtain a
trade-off between the length of an increment sequence H and the lower bound for the depth
of a sorting network based on H. For the sake of simplicity, we assume H to be monotone.
It will be shown later that this assumption is not really necessary.

As before, we divide the increment sequence into stages Sy,...,5;_1, such that stage
S; contains all increments h; with n; > h; > n;1;. We define the n; by ng = n and
Nit1 = {ni/lgk niJ, but we now assume k to be a function of the input size n and the
increment sequence length m. Note that the number of stages ¢ is determined by our choice
of k. In particular, if we choose k such that

(1g"n)" < n'/2,
then we get at least s stages that contain only elements that are greater than n'/2. Solving
lgn
E=|—"—|. 1
{23 lglg nJ (1)

as a possible choice of k. We will now formalize our earlier observation that an element can
be “far out of place” after sorting by all increments up to stage .S;, provided that 5; contains

this inequality we get

“few” increments.

Lemma 3.8 Let H be an increment sequence for permutations of length n, and suppose
that for some integers v, with 0 < v/ < v < n there are at most yu increments h; with

vV <h;j<vinH.If [ﬁv = o(v), then there exists an input file A such that: (i) A is sorted
by all h; > v/, and (ii) there exists an element in A that is Q(v) places away from its final
position.

Proof: Let H' denote the subsequence of H consisting of all increments h; such that k; > 1/,
let H"” denote the subsequence of H’ consisting of all increments h; such that h; < v, and let
X = template(H",v). We know that X is H"-sorted by Lemma 3.2. Lemma 3.1 then implies
that X is also H'-sorted. Note that |H”| < g and min(H") > ¢/. Hence, by Lemma 3.3, the

number of 1’s in X is at most .
v
[—-‘ = o(v).

I//
Now let Y = pad(X,n). By Lemma 3.4, the 0-1 permutation Y is H'-sorted. Furthermore,
since the number of 1’s in YV is exactly n — v greater than the number of 1’s in X, and
X[0] = Y[0] = 1, Lemma 3.6 implies that the permutation A = perm(Y) is H'-sorted, and
by Lemma 3.7 some element of A is Q(v) places out of position. a

Note that, in the preceding argument, we could have defined Y as shift(pad(X,n),)
for any integer 7 with 0 < 5 < n —v. We will make use of this observation to establish
Corollary 3.1.1 below.

Theorem 3.1 Any Shellsort sorting network based on a monotone increment sequence of

length m has depth
lgn
[9) (2 (2+€)\/E) ,

for all ¢ > 0.

Proof: We will partition the increment sequence H into at least s = (1 4 ¢)/m disjoint
stages consisting of increments h; with h; > n'/2, for some ¢ > 0. By averaging, one of
these stages, say .5;, will contain at most

= {%J - L\J/ZOJ

increments. Using Equation 1 we determine k as:

"= {2(1 + éol)g\;ﬁlg 1gnJ .

Define v = n; and v/ = n;4;. We now have
I

2] < e

14

lgn
S (lg n)2(1+60)21g1gn
Ign
= 92(1+e)?
lgv
< 2(+4e)?

= o(v).

Thus, we can apply Lemma 3.8. According to the lemma, there exists a permutation such
that an element is (n;) positions away from its final position after stage S;. Since all
subsequent increments are less than or equal to n;y;, this element must pass through at

least Q(n;/n;41) comparators. Using n; > n'/? and Equation 2, we obtain for sufficiently
large n
1 - 1gk n;
i1
Eemrend
— (g) 1+eg)vmlglgn
> (gn) 1+€o)(1-ll-iln)\/ﬁlglgn
S (211ggllgg7;,) (1+€g) (17-l|-61)\/_
> (1+€2) (1+e0)(1161)\/5
= 2 2-|-€
where ¢ is chosen to satisfy the inequality (2 + 6) > 2(1 4+ €)1 + &) (1 + €2). O

3.3 A Lower Bound for Network Size

The depth lower bound of Theorem 3.1 also implies a lower bound on the size of any Shellsort
network based on a monotone increment sequence. We will not give a formal proof of this
result, since it arises as a special case of the lower bound for the running time of adaptive
Shellsort established in the next section. Instead, we will briefly describe the main idea.

Lemma 3.8 shows how to construct an input file A that is sorted under all increments
in stages Sp to S; of an increment sequence H such that one element A[z] in A is “far out
of place”. In fact, as discussed immediately after the proof of Lemma 3.8, we can use the
method of the lemma to construct a set of n — n; “shifted” versions of such an input file
A. In particular, let A;, 0 < 7 < n — n;, denote the input file obtained by setting Y to
shift(pad(X,n),) instead of pad(X,n). Note that Ag = A. Let Ag[z] be the element proven
to be far out of place in Ag. By construction, the element A;[z + j] is far out of place in A;.
Due to the common structure of the input files, element A;[z + j] in file A; will never pass
through the same comparator as element Ag[z + k] in Ay, for any j # k. Instead, the two
elements will always be exactly & — 7 positions apart at each level of the sorting network.
This implies the result.

Corollary 3.1.1 Any sorting network based on a monotone increment sequence of length m
has size

0 (n : 2<2+le>nﬁ) :
for all ¢ > 0.

We can now compare our result to the lower bound of Q(nlg®n/lglgn) for network
size given by Cypher [3]. The main difference between the two results is that Cypher gets
a lower bound that is independent of the length of the increment sequence, while we get
a trade-off between network size and increment sequence length. This makes our lower
bound much stronger for short increment sequences. Our method also implies a lower bound
of Q(nlg®n/(Iglgn)?) for increment sequences of arbitrary length, since every increment
increases the size of a Shellsort network by at least n. This is slightly weaker than Cypher’s
lower bound. However, Cypher’s bound only applies to monotone increment sequences, while
our result also holds for nonmonotone sequences, as will be shown in the next subsection.
Another strength of our method is its simplicity and flexibility, which will make it possible to
extend our lower bound to adaptive Shellsort algorithms and certain variations of Shellsort.

3.4 Nonmonotone Increment Sequences

So far, we have restricted our attention to monotone increment sequences. We will now
show that this restriction is really unnecessary, and that the same lower bounds also apply
to nonmonotone sequences. Recall that we obtained the depth lower bound by showing
the existence of an input permutation such that an element is “far out of place” after the
“sparse” stage 5;. More precisely, Lemma 3.8 showed the existence of a permutation A that
is already sorted by all increments in stages 5o through 5; and that contains such an element.

10

Thus, no exchanges are performed by the increments in stages Sp through 5; on input A,
and the lower bound follows. We will make use of the following well-known lemma (see, for
example, [13]) in order to extend this argument to nonmonotonic increment sequences.

Lemma 3.9 For any two increments h,h', if we h'-sort an h-sorted file, it stays h-sorted.

Now suppose we have a nonmonotone increment sequence H. We can divide H into
stages So, ..., 5i—1 as before, with stage 5; containing all increments h; with n; > h; > n;44.
Again, there exists a “sparse” stage S; with few increments, and a permutation sorted by
all increments in S & Sy U --- U S; such that some element is “far out of place”. If we
take A as the input permutation, then by Lemma 3.9 A will stay sorted by all increments
in S throughout the network. Hence, no exchanges will take place during the applications
of Insertion Sort corresponding to increments in S. This implies that all of the exchanges
needed to move the “out-of-place” element to its final position are performed by increments
hj < niy1, and the lower bound follows. The same reasoning also applies to the lower bound
for network size, and to the results obtained in the next section. This gives us the following
result:

Corollary 3.1.2 Any sorting network based on an increment sequence of length m has size
Ign
Q (n . 2(2+6)\/ﬁ) ,
for all ¢ > 0.

Note that this result does not rule out the existence of nonmonotone increment sequences
that perform better than the “corresponding” monotone sequences (that is, the sequences
obtained by sorting the nonmonotone sequences into increasing order). It is an open question
whether such sequences exist.

4 Adaptive Shellsort Algorithms

The results obtained so far all rely on the fact, established in Lemma 3.8, that we can
construct an input file such that one element is “far away” from its final position in the
sorted file. We were able to extend the lower bounds to network size due to the nonadaptive
nature of sorting networks. However, the results for network size do not imply a lower bound
for the running time of Shellsort algorithms that are adaptive.

In this subsection, we will establish such a lower bound. The high-level structure of
the proof is the same as that of the depth lower bound in the last section; we only have to
substitute Lemma 3.8 by a stronger lemma showing that there exists an input file A such
that not just one, but “a large number” of the elements in A are “far away” from their final
position. This result is formalized in the following lemma, which we will prove later in this
subsection.

11

Lemma 4.1 Let H be an increment sequence applied to input files of length n, and suppose
that for some integers v, with 4 < V' < v < n there are at most yu increments h; with

V< h; <vin H. If [ﬁv < v/1g’v, then there exists an input file A such that: (i) A
is sorted by all h; > ', and (ii) there exist Q(n/1gv) elements in A that are Q(v/1g* 1)
places away from their final position.

Given an increment sequence H, we can establish the lower bound for adaptive Shellsort
algorithms by dividing H into stages in the same way as in the proof of Theorem 3.1, and
then applying the above Lemma 4.1 instead of Lemma 3.8. The lower bound obtained is
slightly weaker than the one for network size, since Lemma 4.1 only shows that a polylog
fraction of the elements are a polylog fraction of n;,_; out of place. This gives the following
theorem:

Theorem 4.1 Any Shellsort algorithm based on an increment sequence of length m has

running time
lgn
0 % 9TRaVE |
lg”n

for all ¢ > 0.

We remark that the exponent “5” in the preceding theorem is not the best possible. It
results from summing the exponents “3” and “2” appearing in the statement of Lemma 4.1,
which can be improved to “2”7 and “17, respectively. We have chosen to weaken these
constants in order to simplify the proof of Lemma 4.1.

Comparing the bound of Theorem 4.1 to previous results we note that the lower bounds
of Pratt [13] and Weiss [17] only hold for increment sequences approximating a geometric
sequence, while the lower bound of Theorem 4.1 applies to all increment sequences. Also,
the bound given by Weiss, which holds for a more general class than Pratt’s bound, is based
on an unproven conjecture about the number of inversions in certain input files.

The remainder of this subsection contains the proof of Lemma 4.1. To establish the
result, we will need a few technical lemmas. The first two lemmas are straightforward and
their proofs will be omitted. In particular, Lemma 4.2 is a straightforward generalization of
Lemma 3.7.

Lemma 4.2 Let X denote any H-sorted 0-1 permutation of length n, let © denote the number
of I'sin X, let n' be such that 0 < n' <n —2i, and let j = Xocpep X[K]. Then at least j
elements of perm(X) are n —n’' — 1 places out of position.

Definition 4.1 For any 0-1 permutation X of length n’ such that 0 < n' < n, let perm*(X,n)
denote the permutation Y in 1l(n) obtained from Z = perm(X) by setting

Y[i] = Z[i mod n'] + FJ .

n/

12

Lemma 4.3 Let X be any 0-1 permutation of length n' such that 0 < n’ < n. Then X is
H-sorted if and only if perm*(X,n) is H-sorted. If i elements of perm(X) are j places out
of position, then at least 1 - |n/n’| elements of perm*(X,n) are j places out of position.

In the following, let H be an arbitrary increment sequence. Let v be any integer such
that v > 4, and define o = v — 2v/1g” v and = v — v/1g” v.

Lemma 4.4 Let X denote a 0-1 permutation of length v > 4 with X[0] = 1 and Ygc;, X[1] <
v/1g’ v. Then there exists an integer k, 0 < k < (v—a) |lgv|, such that the 0-1 permutation

Y = shift(X, k) satisfies
S Vi = Y Vi

0<i<e a<li<y

Proof: Suppose, for the sake of contradiction, that

S oshift(X, k)i < > shift(X, k)[d]
0<i<e a<li<y
holds for all k£ with 0 < &k < (v—a) [lgr]. This implies that Yo, X[1] < o g<ici—r X[1].
Using Ry = >o<ica—k X [1], this can be rewritten as Ry < Rj_(,—q) — Ry, or Ry < TRy (v—a)-
Hence,

Riymalign) < 2717 Ry,
and from Ry < Yocic, X[i] < v/lg’ v we get

2
R oller < — < 1.
(v—a)|lgv] 1g3y

This is clearly a contradiction, since X[0] =1 implies R(,—a|1g,) > 1. O

In the next lemma, given 0-1 permutations X and Y of length n, we will use or(X,Y)
to denote the 0-1 permutation Z obtained by setting bit Z[i] to the logical OR of bits X[i]
and Yi], 0 <7 < n. Clearly, if X and Y are H-sorted, then or(X,Y) is also H-sorted.
Lemma 4.5 Lel X be an H-sorted 0-1 permutation of length v with © = Yo, X[i] <
v/1gv. Let o' = Yocicarr X[i] where (zlgr)/2 < k < v/(21g*v). Then there exists an
H-sorted 0-1 permutation Y of length v with Yo<;c, Y[i] < 2z and

Y Y] >2 (1— li) ',

0<i<a+2k gV

Proof: We will set Y to Y; & or(X, shift(X,j)) for some appropriately chosen integer j,
1 <5 < k. Note that by Lemma 3.5, any such 0-1 permutation Y; is H-sorted, and it is
easy to see that Y o<, Yj[i] < 22 holds. Let y! = 3 o<;catar Y5[7]. It remains to show the

13

existence of an integer jo, 1 < jo < k, such that y} > 2(1 —1/lgv)z’. We will accomplish
this by means of an averaging argument. We have

!
Z y; > 2ka' — (:;;)

1<5<k

(Here, (2/) is the sum, over all 7, of the number of ways the ¢th “1” in X can coincide with

a “1” in some shift(X, j).) Hence, by averaging, there exists a jo, 1 < jo <k, such that

. 2k’ (g)
Y, = L
/ —_
> 2 — * !
- lg v

1
> 2(1-)
lg v

where the second inequality follows from k& > (lgr)/2 and @’ < x. Now choose Y =Y. O
Lemma 4.6 Let Y be an H-sorted 0-1 permutation of length v with Y o<, Yi] < v/ lg® v
and
Y[> > Y[
0<i<e a<li<y
Then there exists an H-sorted 0-1 permutation Z of length v such that Y o<, Z[1] <v/ lg® v

and
S Zlil = Qv/1g’v).

0<i<p

Proof: We will “transform” the given 0-1 permutation Y into a 0-1 permutation of the
desired form by a sequence of applications of Lemma 4.5. Let Yy = Y. The jth application
of Lemma 4.5 will be used to obtain Y; from Y;_;, j > 1. Let y; = Yo, Yj[i], and let

Yi = Yocicat2iy lgy Yil1]- Note that yo > Yo, Y]] 2 yo/2. Then Lemma 4.5 implies that

y; < 2yp, and
1 J
211 — — !
(lgV)] Yo

for 7 <lgv —lgys — 3lglgv (the latter inequality ensures that a + 2/yolgr < 3). Setting
Jo to |lgv —lgyo —3lglgr|, and making use of the inequality y; > yo/2, we find that

/

y; =

y;, < v/lg’v and, hence,
Viy = Qyi) = v/ 1g’v).

Hence, we can choose Z =Y. O

Given the above lemmas, we are now ready to proceed with the proof of Lemma 4.1.

14

Proof: Let H' denote the subsequence of H consisting of exactly those increments h; such
that h; > 1/, let H"” denote the subsequence of H' consisting of exactly those increments h;
such that h; < v, and let X = template(H",v). We know that X is H”-sorted by Lemma 3.2.
Note that |H"| < g and min(H") > /. Hence, by Lemma 3.3, we have

> X< |4] =

0<i<y

By Lemmas 3.5 and 4.4, the existence of X implies the existence of a 0-1 permutation ¥ of
length v such that Y is H”-sorted and

> Y= > Y

0<i<e a<li<y

The existence of Y then establishes, via Lemma 4.6, the existence of a 0-1 permutation Z of
length v such that:

o 7 is H"-sorted,
o Socics Zli] < v/1g* v, and

o Yocicp Zli] = v /g’ v).

By Lemma 3.1 and Lemma 3.6 we know that B = perm(Z) is H'-sorted, and Lemma 4.2
implies that B contains Q(r/lg” /) elements that are Q(v/1g*) places out of position. Let
A = perm*(Z,n). By Lemma 4.3, A is H'-sorted and contains Q(n/lg” v) elements that are
Q(v/1g* v) places out of position. O

5 Discussion

In this paper, we have given a fairly simple proof of a lower bound of Q(n lg®n/(Iglgn)?) for
the size of any Shellsort network, thus ruling out the existence of a network of size O(nlgn)
based on a nonmonotone increment sequence. By extending our argument to the case of
adaptive algorithms, we have also established a general lower bound for Shellsort that holds
for arbitrary increment sequences.

Our lower bound can be further generalized to a fairly large class of “Shellsort-like”
algorithms, including the Shaker Sort algorithm of Incerpi and Sedgewick [7, 19] as well
as other algorithms proposed by Knuth [8] and Dobosiewicz [4]. Poonen [12] has formally
defined a class of such algorithms, called Shellsort-type algorithms, and has shown how
to extend his lower bound to this class. We will not elaborate further on such possible
extensions, and instead refer the reader to the presentation in [12].

The lower bound of Theorem 4.1 establishes a trade-off between the running time of
a Shellsort algorithm and the length of the underlying increment sequence. We will now
compare this lower bound trade-off with the best known upper bound trade-off given by the
nonuniform increment sequences of Chazelle (see the non-uniform case of Theorem 3 in [6]).

15

Expressing the running time as a function of the increment sequence length m we obtain the

following bounds:

Lower Bound: T > lgf,}n . CF9vm
2
Upper Bound: T < mn - nvm

Note that both the factor 1/1g”n in the lower bound and the factor m in the upper bound
are only significant for increment sequences of length Q(lg” n/(Iglgn)?). In every other case,
the upper and lower bounds differ only by a factor of 4 4+ ¢ in the exponent. In the lower
bound trade-off shown by Poonen, the constant in the exponent is 1/432 instead of 1/(2+¢).

We can also express the length of the increment sequence as a function of the running
time. In this case, for m = o(lg’n/(lglgn)?), the lower and upper bounds are only a
constant factor apart. This means that, for a given 7', the length of the increment sequence
of Chazelle that achieves running time 7' is only a factor of 16 + € larger than the minimum
length possible under our lower bound trade-off. (For Poonen’s result, this factor would be
much larger.) In other words, one cannot hope to match the running time of Chazelle’s
sequences with significantly shorter increment sequences.

6 Open Questions

The primary remaining challenge in the study of Shellsort seems to be the virtual nonex-
istence of both upper and lower bounds for the average case complexity. A result for a
particular increment sequence is given by Knuth [8], who determines an average case run-
ning time of Q(n*?) for Shell’s original sequence. Increment sequences of the form (h, 1)
and (h,k, 1) were investigated by Knuth [8] and Yao [21], respectively. Weiss [18] conducted
an extensive empirical study and conjectured that Shellsort will on average not perform sig-
nificantly better than in the worst case. Any general upper and lower bound for the average
case would certainly be very interesting.

It would be nice to close the remaining gap between the upper and lower bounds. Our
lower bound trade-off comes quite close to the known upper bounds, but there is certainly
still room for improvement.

Finally, one might try to find interesting “Shellsort-like” algorithms that are not covered
by our proof technique, and that lead to improved running times.

Acknowledgements

We thank Mark Weiss for helpful comments.

References

[1] M. Ajtai, J. Komlds, and E. Szemerédi. Sorting in clogn parallel steps. Combinatorica,
3:1-19, 1983.

16

2]

[12]

[13]

[14]
[15]

[16]

K. E. Batcher. Sorting networks and their applications. In Proceedings of the AFIPS
Spring Joint Computer Conference, vol. 32, pages 307-314, 1968.

R. E. Cypher. A lower bound on the size of Shellsort sorting networks. SIAM J.
Comput., 22:62-71, February 1993.

W. Dobosiewicz. An efficient variation of Bubble Sort. Information Processing Letters,

11:5-6, 1980.

T. N. Hibbard. An empirical study of minimal storage sorting. Communications of the

ACM, 6:206-213, 1963.

J. Incerpi and R. Sedgewick. Improved upper bounds on Shellsort. Journal of Computer
and System Sciences, 31:210-224, 1985.

J. Incerpi and R. Sedgewick. Practical variations of Shellsort. Information Processing

Letters, 26:37-43, 1987.

D. E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, Reading,
MA, 1973.

R. Lazarus and R. Frank. A high-speed sorting procedure. Communications of the
ACM, 3:20-22, 1960.

A. Papernov and G. Stasevich. A method for information sorting in computer memories.
Problems of Information Transmission, 1:63-75, 1965.

C. G. Plaxton, B. Poonen, and T. Suel. Improved lower bounds for Shellsort. In
Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science,
pages 226-235, October 1992.

B. Poonen. The worst case in Shellsort and related algorithms. Journal of Algorithms,

15:101-124, 1993.

V. R. Pratt. Shellsort and Sorting Networks. PhD thesis, Stanford University, Depart-
ment of Computer Science, December 1971. Also published by Garland, New York,
1979.

R. Sedgewick. A new upper bound for Shellsort. Journal of Algorithms, 7:159-173,
1986.

D. L. Shell. A high-speed sorting procedure. Communications of the ACM, 2:30-32,
1959.

J. S. Vitter and P. Flajolet. Average-case analysis of algorithms and data structures.
In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A: Al-
gorithms and Complexity, pages 431-524. Elsevier/MIT Press, 1990.

M. A. Weiss. Lower Bounds for Shellsort. PhD thesis, Princeton University, Department
of Computer Science, June 1987.

M. A. Weiss. Empirical study of the expected running time of Shellsort. The Computer
Journal, 34:88-91, 1991.

M. A. Weiss and R. Sedgewick. Bad cases for Shaker-sort. [Information Processing
Letters, 28:133-136, 1988.

17

[20] M. A. Weiss and R. Sedgewick. Tight lower bounds for Shellsort. Journal of Algorithms,
11:242-251, 1990.

[21] A. C. C. Yao. An analysis of (h, k,1)-Shellsort. Journal of Algorithms, 1:14-50, 1980.

18

