
Algorithms for Low-Latency Remote File Synchronization
Hao Yan�

CIS Department
Polytechnic University
Brooklyn, NY 11201
hyan@cis.poly.edu

Utku Irmaky
Yahoo! Inc.,

2821 Mission College Blvd,
Santa Clara, CA 95054
uirmak@yahoo-inc.com

Torsten Suel
CIS Department

Polytechnic University
Brooklyn, NY 11201

suel@poly.edu

Abstract
The remote file synchronization problem is how to update an

outdated version of a file located on one machine to the current
version located on another machine with a minimal amount of
network communication. It arises in many scenarios including
web site mirroring, file system backup and replication, or web
access over slow links. A widely used open-source tool called
rsync uses a single round of messages to solve this problem
(plus an initial round for exchanging meta information). While
research has shown that significant additional savings in band-
width are possible by using multiple rounds, such approaches
are often not desirable due to network latencies, increasedpro-
tocol complexity, and higher I/O and CPU overheads at the
endpoints.

In this paper, we study single-round synchronization tech-
niques that achieve savings in bandwidth consumption while
preserving many of the advantages of thersyncapproach. In
particular, we propose a new and simple algorithm for file syn-
chronization based onset reconciliationtechniques. We then
show how to integrate sampling techniques into our approach
in order to adaptively select the most suitable algorithm and
parameter setting for a given data set. Experimental results on
several data sets show that the resulting protocol gives signif-
icant benefits overrsync, particularly on data sets with high
degrees of redundancy between the versions.

1 Introduction
Consider the problem of maintaining replicated collections

of files, such as user files, web pages, or documents, over a slow
network. In particular, we have two versions of each file, an
outdated filefold held by one machine, theclient, and a current
file fnew held by another machine, theserver. Neither machine
knows the exact content of the file held by the other machine.
Periodically, the client might initiate a synchronizationopera-
tion that updates its filefold to the current versionfnew. Or
alternatively, a synchronization operation is triggered wheneverfold is accessed at the client. If the amount of data is large,
or the network fairly slow, then it is desirable to perform this
synchronization with a minimum amount of communication.

This remote file synchronization problemarises in a number
of applications. For example, we might want to mirror busy
web and ftp sites (including sites that distribute new versions of
software), or synchronize personal files between two different
machines, say a machine at home and one at work (or a mobile
device). Also, content distribution networks, search engines,
and other large web services often need to update large collec-�Work supported by NSF Awards CNS-0325777 and CCR-0093400, and
the New York State Center for Advanced Technology in Telecommunications
(CATT) at Polytechnic University.yThis work was performed while this author was a graduate student at Poly-
technic University.

tions of data within their distributed architectures. In all of these
applications, there are usually significant similarities between
successive versions of the files, and we would like to exploit
these in order to decrease the amount of data that is transmit-
ted. If the new files differ only very slightly from their previous
versions, then the cost should be very low, while for more sig-
nificant changes, more data may have to be transmitted.

Remote file synchronization has been studied extensively
over the last ten years, and existing approaches can be divided
into single-round and multi-round protocols. Single-round pro-
tocols [32, 12] are preferable in scenarios involving smallfiles
and large network latencies (e.g., web access over slow links).
The best-known single-round protocol is the algorithm usedin
the widely usedrsyncopen-source tool for synchronization of
file systems across machines [32]. (The same algorithm has
also been implemented in several other tools and applications.)

However, in the case of large collections and slow networks
it may be preferable to use multiple rounds to further reduce
communication costs, and a number of protocols have been
proposed; see [27, 6, 5, 9, 22, 16, 30, 20]. Experiments have
shown that multi-round protocols can provide significant band-
width savings over single-round protocols on typical data sets
[30, 16]. However, multi-round protocols have several disad-
vantages in terms of protocol complexity and computing and
I/O overheads at the two endpoints; this motivates the search
for single-round protocols that transmit significantly less data
thanrsyncwhile preserving its main advantages.

In this paper, we focus on the single-round case. We pro-
pose an algorithm for file synchronization based on the use of
set reconciliationtechniques [18]. The communication cost of
our algorithm is often significantly smaller than that ofrsync,
especially for very similar files. However, the basic version of
our algorithm assumes knowledge of some (preferably fairly
tight) upper bound on the number of “differences” between the
versions. To address this issue, we then study how to integrate
sampling techniques into the basic protocol in order to estimate
this difference, and to choose suitable approaches and parame-
ters based on the underlying data set.

Note a few assumptions in our basic setup. We assume that
collections consist of unstructured files that can be modified
in arbitrary ways, including insertion and deletion operations
that change line and page alignments between different ver-
sions. Thus, approaches that identify changed disk blocks or
bit positions or that assume fixed record boundaries do not work
(though such techniques are potentially useful, e.g., for identi-
fying which files have been changed). Note also that the prob-
lem would be much easier if all updates to the files are saved
in a log that can be transmitted to the other machine, or if the
machine holding the current version also has a copy of the out-
dated one. However, in many scenarios this is not the case. We
are also not concerned with issues of consistency in between



synchronization steps, or with the question of how to resolve
conflicts if updates can be concurrently performed at several lo-
cations (see [2, 24] for a discussion). We assume a simple two-
party scenario where it can be easily determined which version
is the most current one.

1.1 State of the Art and Related Work

Previous theoretical studies of the communication complex-
ity of the file synchronization problem have shown asymptoti-
cally tight bounds using one or more rounds [21, 22, 6]. How-
ever, the proposed optimal algorithms are not implementable in
practice, as they require the receiver to invert a hash function
over a large domain in order to decode the new version of the
file. In practice, the most widely used protocol for file synchro-
nization is thersyncalgorithm [32], which is employed within a
widely used open-source tool of the same name. A single round
of messages is exchanged for each file, where the client sends
a hash value for each block of some fixed size in the old file,
which the server then uses to compress the new file. Thersync
algorithm does not achieve strong provable bounds on commu-
nication costs, but seems to perform well in practice.

Several researchers have proposed multi-round algorithms
based on a divide-and-conquer approach. The algorithms first
send hashes for large blocks, and then recursively divide any
unmatched blocks into smaller blocks and send hashes for
these, until either a block with matching hash is found on the
other side or the recursion is terminated. The earliest suchalgo-
rithm [27] predatesrsync, and subsequently a number of such
algorithms have been proposed [6, 9, 22, 16, 30]. The algo-
rithms can be efficiently implemented, and their communica-
tion costs are usually within a (poly)logarithmic factor ofop-
timal under common measures of file similarity. As shown in
[30], a highly optimized implementation can give significant
improvements overrsync.

Thus, there is a trade-off between the number of communi-
cation rounds and the bandwidth consumption. Extra rounds
may increase communication latencies for small files, though
these latencies can be hidden on larger collections. Moreover,
multi-round protocols may require multiple passes over thedata
at the endpoints, and typically also have a more complex control
structure. In practice, single-round protocols such asrsyncare
implemented in two rounds, an initial exchange of meta data
(e.g., directory data and MD5 hashes for all files), and then
the actualrsyncalgorithm. Our algorithms also take this form,
maybe best described as “one to two rounds”.

There are two other recent results that try to improve on
rsyncby using only one or two rounds. First, [12] studies sev-
eral optimizations to thersyncapproach, and also proposes a
new approach to file synchronization based on erasure codes.In
particular, it is shown how to simulate a basic multi-round pro-
tocol in a single round of messages, assuming an upper bound
on the difference between the files.

The second result, very closely related to our approach, is the
protocol in [1], which is also based on the use ofset reconcilia-
tion techniques. Theset reconciliationproblem was originally
introduced in [18] in the context of synchronizing structured
data items (e.g., database records). The algorithm in [1] isa
two-round protocol, and it achieves provable bounds with re-
spect to certain measures, but it also has several shortcomings
that we think make it less practical in many scenarios. We dis-
cuss the protocol in [1] and its relationship to our work in more
detail later, after providing the necessary background.

There is a significant amount of related work by the OS and
Systems communities that attempts to detect redundancies in
order to reduce storage or transmission costs, such as theLow
Bandwidth File System[19], storage and backup systems [23, 7,
15, 31, 8], value-based web caching [25, 13], and compression
of network traffic [28]. Most of these schemes operate on a
lower level within network or storage protocols and thus have
no notion of file or document versions. The approaches usually
rely on content-based partitioning techniques such as [14,26,
31], rather than the fixed-size blocks inrsync, in order to divide
the data into blocks.

Finally, a number of researchers have used sampling to es-
timate similarities between files [4, 33, 10, 31]. We employ
fairly standard sampling techniques, and focus on how to engi-
neer these techniques to fit into our application.

2 Contributions of this Paper
We study single-round algorithms for the remote file syn-

chronization problem, and propose new protocols that result in
significant bandwidth savings over previous approaches. Inpar-
ticular, our contributions are:

(1) We present a new single-round algorithm for file synchro-
nization based on set reconciliation.

(2) We explore the use of random sampling techniques in or-
der to engineer a practical protocol based on the new algo-
rithm. In particular, we use sampling in order to estimate
the cost of the protocol, and to choose the best combina-
tion of techniques and parameter settings for the current
data set. We also discuss how these techniques can be
implemented in a setup very similar to the currentrsync
system architecture.

(3) We evaluate our protocols on several data sets. The results
show that our protocols achieve significant improvements
over previous single-round protocols for data sets with sig-
nificant similarity between versions.

The remainder of this paper is organized as follows. We first
provide some technical background onrsync, set reconcilia-
tion, and content-dependent string partitioning. In Section 4
we describe our basic algorithm and evaluate its performance
under certain idealized assumptions. In Section 5, we employ
sampling techniques to derive a realistic protocol that adapts to
characteristics of different data sets. Finally, Section 6provides
some concluding remarks.

3 Technical Preliminaries
3.1 ThersyncAlgorithm

The basic idea inrsyncand most other synchronization al-
gorithms is to split a file into blocks and use hash functions to
compute hashes or “fingerprints” of the blocks. These hashes
are sent to the other machine, which looks for matching blocks
in its own file. In rsync, the client splits its file into disjoint
blocks of some fixed sizeb and sends their hashes to the server.
Note that due to possible misalignments between the files, itis
necessary for the server to consider every window of sizeb infnew for a possible match with a block infold. The complete
algorithm is as follows (slightly simplified):

1. At the client:

(a) Partitionfold into blocksBi = fold[ib; (i + 1)b � 1℄ of some
block sizeb.



(b) For each blockBi, compute a hash valuehi = h(Bi) and com-
municate it to the server.

2. At the server:

(a) For each received hashhi, insert an entry(hi; i) into a dictionary,
usinghi as key.

(b) Perform a pass throughfnew, starting at positionj = 0, and
involving the following steps:

(i) Compute the hashh(fnew [j; j+ b�1℄) on the block start-
ing atj, and check the dictionary for any matching hash.

(ii) If found, transmit the indexi of the matching block infold
to the client, increasej by b, and continue.

(iii) If none found, transmit the symbolfnew [j℄ to the client,
increasej by one, and continue.

There are various additional optimizations in the algorithm.
All symbols and indices sent to the client in steps (ii) and (iii)
are also compressed using an algorithm similar togzip; this is
crucial for performance in practice. A 128-bit hash on the entire
file is used to detect any (fairly unlikely) collisions in theblock
hashes, in which case we resendfnew in compressed form. The
block hash functionh() itself is carefully chosen for efficiency
and robustness. In particular, a “rolling” hash function isused
such that the hash off [j+1; j+b℄ can be computed in constant
time from that off [j; j + b� 1℄.

A critical issue inrsyncas well as other single-round algo-
rithms is the choice of the block sizeb, and the best choice de-
pends on both the number and granularity of changes between
the versions. If a single character is changed in each block offold, then no match will be found by the server andrsyncwill
be completely ineffective. On the other hand, if changes are
clustered in a few areas of the file,rsyncwill do well even with
a large block size. Fortunately, the latter case is common in
many applications. In practice,rsyncuses a default block size
of 700 bytes (except for large files where the square root of the
file size is used), though this is clearly not the best choice for
every data set.

Each block hash sent to the server inrsynchas a size of48
bits. Some improvements can be obtained by choosing fewer
bits per hash, depending on the sizes of the files; see, e.g., [32,
30, 12]. Given two files of lengthn, where each hash infold
is compared to the hashes of alln � b + 1 blocks of sizeb infnew, we need aboutlg(n) + lg(n=b) bits per hash to have an
even chance of not having any false match, while aboutd more
bits are needed to get a probability less than1=2d of having any
false match between the files.

Finally, we discuss the structure of thersync open source
tool, based on [34]. Strictly speaking,rsync involves two
roundtrips. First, the client requests synchronization ofa direc-
tory, and the server replies with some meta information which
allows the client to decide which files need to be updated.
Next, synchronization is performed as described. This is im-
plemented in a highly pipelined fashion, where the two end-
points are implemented as separate independent processes that
consume and produce streams of data. Thus, round-trips are
not incurred on a per-file basis, and it might seem reasonableto
add some extra rounds to obtain additional bandwidth savings.
However, this would require either a larger fixed set of con-
sumer/producer processes, or we would have to keep some state
for each file. In our approach, we adhere to this simple struc-
ture, with a first round for exchanging meta data, and one sub-
sequent round where the actual synchronization is performed.

3.2 The Set Reconciliation Problem
We now discuss theset reconciliation problemdefined in

[18, 29] and its relation to file synchronization. In theset rec-
onciliation problem, we have two machinesA andB that each
hold a set of integer valuesSA andSB , respectively. Each host
needs to find out which integer values are in the intersection
and which are in the union of the two sets, using a minimum
amount of communication. The goal is to use an amount of
communication that is proportional to the size of thesymmetric
differencebetween the two sets, i.e., the number of elements in(SA�SB)[(SB�SA). A protocol based on characteristic poly-
nomials [18] achieves this with a single message. We define the
characteristic polynomial�S(Z) of a setS = fx1; x2; :::; xng
as the univariate polynomial�S(Z) = (Z � x1)(Z � x2):::(Z � xn): (1)

An important property of the characteristic polynomial is that
it allows us to cancel out all terms corresponding to elements
in SA \ SB , by considering the ratio between the characteristic
polynomials ofSA andSB�SA(Z)�SB (Z) = �SA\SB(Z) � ��A�SA\SB(Z) � ��B = ��A(Z)��B (Z) : (2)

In order to determine the set of integers held by the other party,
it suffices to determine the ratio of the two polynomials. As ob-
served in [18], if we know the results of evaluating both poly-
nomials at onlyk evaluation points, wherek is the size of the
symmetric difference, then we can determine the coefficients of��A(Z)=��B(Z)). By factoring��A(Z) and��B (Z) we can
recover the elements of�A and�B . Thus, if the difference be-
tween the two sets is small, then only a small amount of data
has to be communicated.

This problem was initially studied in the context of synchro-
nizing structured data items: If we represent each data record by
an integer hash, then we can determine which records already
exist at the recipient. If each hash value consists ofx bits, then
all arithmetic can be performed modulo2x, and thus each eval-
uation point can be communicated inx bits. If a record does
not exist at the recipient, then the entire record is transmitted in
the next step. However, in file synchronization, we want to ex-
ploit similarities between different versions even if the file has
changed to some degree.

Recent work in [1] proposed a new algorithm for file syn-
chronization, calledreconciliation puzzles, that uses set recon-
ciliation as a main ingredient. Each machine converts its file
(string) into a multi-set of overlapping pieces, where eachpiece
is created at every offset of the file according to a predetermined
mask. The hosts also create a modified de Bruijn digraph to en-
able decoding of the original string from the multi-set of pieces:
The correct Eulerian path on this digraph determines the order-
ing of the pieces in the original string.

To reconstructfnew, the client needs to know all the pieces
of fnew, plus the Eulerian path on the digraph. Both sides trans-
form their sets of pieces into integer values by concatenating
each piece with the number of times it occurs and hashing the
resulting string. Then the set reconciliation protocol from [18]
is used to reconcile the sets of hash values, at which point the
server knows which pieces are unknown to the client and thus
need to be transmitted. If the two versions are very similar,
then they will have most of their hash values in common, and
the set reconciliation algorithm only needs to transmit a very



small amount of data. Finally, a compact encoding of the Eu-
lerian path is transmitted to the client together with the missing
pieces, resulting in a two-round protocol.

3.3 Content-Dependent File Partitioning
Using a fixed block size as inrsyncmeans that the recipient

has to compute hashes for all possible alignments in its file in
order to find a match. This requires not only more computa-
tion, but also more bits in each hash. In the set reconciliation
approach, the files cannot be simply partitioned into fixed size
blocks for the reconciliation step; chances are that the result-
ing sets would be almost disjoint due to different alignments
of the common content in both versions. In [1], this problem
is avoided by creating many more blocks (pieces) from each
file in order to capture every possible alignment. However, this
significantly increases the size of the resulting sets and graphs,
resulting in extra cost.

We would like a partitioning that allow us to find many com-
mon blocks in similar files and that can be locally applied to
each file. One such technique, based on Karp-Rabin finger-
prints [14], has been extensively used to identify redundant data
during storage or transmission [19, 7, 15, 31, 25, 13]. The basic
idea is very simple: We hash all substrings of some fixed length
, say
 = 20, to integer values, and define a block boundary
before positioni of the file f if the substringf [i; i + 
 � 1℄
hashes to a values mod w, say forw = 200 and somes. Then
we use the blocks defined by these boundaries, which have an
average length of aboutw (under certain assumptions). Since
boundaries are chosen in a local manner, any large substrings
common to both files are partitioned in the same way and result
in identical blocks. After identifying the boundaries using the
above method, we then hash the resulting blocks to integers as
part of the synchronization protocols.
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Figure 3.1. Example of the file partitioning technique in [31].
We are hashing windows of size
 = 3, and then selecting block
boundaries based on these hashes forw = 2.
More recently, several new partitioning techniques have

been proposed, including thewinnowingtechnique in [26], and
the approach in [31] which we refer to here as2-way min. We
focus on the latter technique, defined as follows: We again hash
all substrings of some fixed length
 to integer values. We now
define a block boundary before positioni of the filef if the hashh(f [i; i + 
 � 1℄) associated with positioni is strictly smaller
than the hash values of thew preceding and following posi-
tions. In other words, we choose those positions where the hash
assumes a local minimum (or maximum). The method results
in an average block size of2w and is illustrated in Figure 3.1.

Most applications, such as [19, 25, 7], use the older method
to select the boundaries. However, analysis in [3] and unpub-
lished experiments indicate that the methods in [26, 31] out-
perform this method in redundancy detection.1 To verify this

1We note that a claim in [12] that the winnowing method in [26] does not

expectation, we compared the three methods in terms of their
tradeoff between average block size and the amount of redun-
dancy that is detected between the two versions. The resultsare
shown in Figure 3.2.
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Figure 3.2. Comparison of different partitioning techniques on
various block sizes on thegccdata set.

Clearly, as block size decreases all methods can identify
more redundancy, but a small block size requires more hashes
to be sent from server to client. Note that2-way mindoes bet-
ter thanwinnowing, which does better than the basic approach,
confirming the analysis in [3] on real data. Overall, fixed block
size does best, as should be expected, but note that we need
more bits per hash value in this case, which eliminates the ad-
vantage. We also experimented with other data sets, and with
several other methods not described here that performed almost
as good as2-way min(but none did better).

Thus, we focus on the2-way minmethod in our experiments,
but any of the others would also work at slightly decreased
performance. Note that these methods can be implemented at
speeds of tens to hundreds of MB per second through careful
optimization of the hash computation [31].

We also experimented with two different types of blocks
once the boundaries are identified: Non-overlapping blocks,
and overlapping blocks where each block is extended
 char-
acters into the next block (putting the window with the locally
minimal hash into the intersection). Blocks with significant
overlap are more suitable for use with set reconciliation tech-
niques, since each block can only be followed by another block
that “fits”, i.e., that starts with the last
 characters of the pre-
vious block. In terms of the algorithm in [1], this implies that
the resulting digraph is very sparse and has few Eulerian paths,
allowing for a more concise encoding.

4 An Algorithm Using Set Reconciliation
We now present our new algorithm based on set reconcilica-

tion. We limit ourselves to a single round of messages between
client and server, and measure the communication cost in terms
of the total number of bits exchanged between the parties. We
assume that the client has knowledge of (an upper bound on)
the size of the symmetric difference between the sets of hashes
on both sides; we address this assumption in the next section.

The main idea of our algorithm is as follows: We locally par-
tition both versions of the file into overlapping blocks using the
2-way mintechnique, and represent the blocks by their hashes.
We then use a set reconciliation protocol consisting of a sin-
gle message from client to server, such that the server knows

improve on the older method is incorrect and due to an implementation bug.



which of the blocks infnew are already known to the client.
Then the server transmitsfnew to the client in two parts: Blocks
not known to the client are encoded using a compression algo-
rithm similar togzip, while the information about the ordering
of blocks within the new file is communicated in an optimized
manner that exploits the fact that for each block there is usu-
ally only a very small number (often just one) of other blocks
that can follow this block (i.e., that start with exactly theright
characters). Here are the details:
0. At both server and client:

(a) Use2-way minto partition the local file into a number of blocks,
and compute a hash for each block. LetS
 andSs be the sets of
hashes at the client and server, respectively.

1. At the client:
(a) Letd be the symmetric difference between the two sets of hashes.

Use the set reconciliation algorithms described in [18] to evalu-
ate the characteristic polynomial onS
 on d randomly selected
points, and transmit the results to the server.

2. At the server:
(a) Use thed evaluations to calculate the symmetric difference be-

tweenS
 andSs, i.e., the hashes inS
 � Ss andSs � S
.
(b) The server goes throughfnew to identify all blocks that are not

known by the client. Any two consecutive blocks not known to
the client are merged into one.

(c) The server now sends to the client the following information in
suitably encoded form:

(i) the number of blocks infnew ,

(ii) a bit vector specifying which of the hashes offold (sorted
by value) also exist infnew ,

(iii) a bit vector specifying which of the blocks infnew (sorted
by position) also exist infold,

(iv) the lengths of all blocks infnew that are not infold,

(v) the interiors of these blocks themselves in suitably coded
form, and

(vi) an encoding of the sequence of matched blocks infnew .

Recall that in the case of fixed block size, we need hash val-
ues of aboutlg(n) + lg(n=b) + k bits ([12]) in order to keep
the chance of a collision below1=2k, wheren is the file size
and b is the (average) block size. However, in the case of a
content-dependent partitioning such as2-way minwe only need2 lg(n=b) + k bits, since each hash is only compared ton=b
blocks on the other side. Thus, we use2 lg(n=b) + k bits per
hash in the set reconciliation protocol. Because fewer bitsper
hash are needed than in the fixed block-size case, this in turnal-
lows profitable use of smaller block sizes. Moreover, the signif-
icant overlap between blocks makes it highly efficient to code
the ordering of the blocks, since each block can only be fol-
lowed by another block that starts with the last
 characters of
the previous block. Overlapping blocks also assure that only
the interior of unmatched blocks must be sent.

4.1 Details on Encoding and Decoding
Now a few more details on the precise encoding of the var-

ious items. The two bit vectors sent from server to client
can be compressed using arithmetic coding, though they are
fairly compact already. The lengths of the unmatched blocks
in fnew are Golomb-coded [35], while the interior parts of
the unmatched blocks are compressed using agzip-like algo-
rithm similar to the one employed inrsync. The sequence of
matched blocks is coded as follows: If the previous block was
not matched, thenlg(x) bits are used to specify the next block,

wherex is the total number of matched blocks. Elselg(y) bits
are used, wherey is the number of possible blocks that can fol-
low the previous one. In many cases,y = 1, and there is a
unique continuation.

Finally, the client reconstructsfnew by determining which
blocks exist in both files, and determining for each such block
which other such blocks can follow it. Then the new blocks
in fnew unknown to the client are decoded, and finally the
matched and new blocks are assembled intofnew based on the
other information received.

4.2 A Variant Based on Golomb Coding
Note that set reconciliation is used in our algorithm simplyas

an efficient way to transmit a set of hashes from client to server,
and that we could easily replace it by another method without
changing anything else. In particular, we propose as an alterna-
tive to simply sort all the client hashes and then send them tothe
server by Golomb-coding (see [35]) the gaps between hash val-
ues, resulting in additional compression. As we will see later,
set reconciliation is a good method for transmitting the hashes
when the two files are very similar, but not suitable for files with
significant differences.

4.3 Comparison to Previous Work
While our approach is based on very similar ideas as the

algorithm in [1], there are several important differences.First,
our method uses a single round, compared to two rounds used in
[1]. Second, we use content-dependent partitioning techniques,
instead of fixed masks, to partition files into blocks. This has
significant benefits since it means that every edit operation(dif-
ference) between the two files can only impact a constant num-
ber (often only one) of blocks and block hashes. In contrast,in
[1] the number of impacted blocks is proportional to the mask
size, which is usually chosen aslgn. As we discuss later, this
in fact results in an asymptotic difference under certain assump-
tions. Third, the overall structure of our method is quite similar
to that ofrsync. This allows an implementation similar torsync
as a set of simple stateless communicating processes. In fact,
our method can be seen as a unified approach that combines
rsyncand the approach in [1].

There are also several more minor differences. Because of
the similarity torsync, we have the choice of using reconcilia-
tion or Golomb coding for the hashes, depending on the char-
acteristics of the data. Our method also includes compression
for unmatched literals; in our experience this makes a very sig-
nificant difference in practice on many data sets. Finally, we
use a simpler approach for specifying and coding the sequence
of blocks (i.e., the Eulerian path in [1]) whose running time
does not depend significantly on the number of paths in the
graph. Note that the actual number of round-trips of course
depends on the set reconciliation protocol that is used. A re-
cent recursive protocol in [17] gives a significant reduction in
computational cost at the receiver at the cost of additionalcom-
munication rounds, when compared to the basic single-message
approach in [18].

4.4 Communication Complexity
We now discuss the asymptotic communication complexity

of our algorithm and compare it to that of other approaches. In
the discussion, we assume two filesfnew andfold of lengthn
each with edit distancek, where the allowed edit operations are
change, insertion, and deletion of single characters and moves
of blocks of characters. (More general edit distance measures



also allow copies and deletions of blocks, but these are tricky to
analyze as distances between files are not symmetric.) Thereis
a well known lower bound of
(k lgn) bits of communication
in the worst case, and a matching upper bound was established
in [21]. However, that algorithm cannot be implemented effi-
ciently in practice as it requires the inversion of certain hash
functions at the receiver. The practical multi-round algorithms
for synchronization in [27, 16, 22, 6, 30] achieve a communica-
tion complexity ofO(k lgn lg(n=k)) bits usinglg(n=k) com-
munication rounds. A recent result in [12] matches this bound
with a single round. Thus, there remains a logarithmic gap be-
tween the lower bound and the best practical protocols.

The analysis of the algorithm based on set reconciliation in
[1] implies a bound ofO(k lg2 n) bits with two round-trips
for average-case files, i.e., the case where one file is created
at random while the other file is any file of edit distance at
most k. (This is for the case of a mask length of�(lgn).)
Our algorithm, in contrast, can be shown to achieve a bound
of O(k lgn) bits in a single round on such average-case files;
this is due to our use of content-dependent partitioning tech-
niques to define overlapping blocks – as a result each edit op-
eration only affects a constant number of blocks. We note that
this type of average-case analysis is somewhat problematicas
many string processing problems are much easier on randomly
generated strings (which are unlikely to have any large repeated
substrings). Thus, we do not give further details here as this re-
sult is only of limited theoretical interest. A practical algorithm
with the same bound in the worst case, on the other hand, would
be a major result.

4.5 Preliminary Experimental Results

We now present some preliminary experimental results that
show the potential of the new algorithm. For the experiments,
we used thegccandemacsdata sets also used in [30, 12, 11],
consisting of versions 2.7.0 and 2.7.1 ofgccand versions 19.28
and 19.29 ofemacs. The newer versions ofgccandemacscon-
sist of 1002 and 1286 files, and each collection has a size of
around 27 MB. We also ran additional experiments on thehtml
data sets that were used in [30], consisting of a set of ten thou-
sand pages crawled randomly from the web, and the same pages
recrawled two days later. Each set of pages has a total size of
around 140MB, with about 14KB per page on average. Some
of the files are not updated at all between crawls, while others
change only slightly. For each data set, we measured the cost
of updating all files in the older version to the newer one. We
assume that only files that have changed are updated, while un-
changed files are detected through an MD5 hash on the entire
file that is exchanged before the algorithm, at a cost of16 bytes
per file.

In Figure 4.1 and 4.2, we compare the performance of the
following five approaches on two data sets,g

 and html:
The algorithm based on set-reconciliation, the variant based on
Golomb-coded hashes in Subsection 4.2, a combination of these
two that magically always chooses the best of the two depend-
ing on the data,rsync, and an optimization ofrsyncfrom [12]
called FBS which was shown to always (at least slightly) out-
performrsync through various minor improvements. For each
algorithm, we did multiple runs with different block sizes,and
plot the average resulting block size versus the total communi-
cation cost.

We see that for bothgcc andhtml, the approach based on
reconciliation does significantly better than the Golomb-based
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Figure 4.1. Comparison of algorithms on thegccdata set. The
graphs from top (worst) to bottom are rsync, FBS, Golomb, rec-
onciliation, and the optimal combination of the last two.
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Figure 4.2. Comparison of algorithms on thehtml data set.
The graphs from top (worst) to bottom are rsync, FBS, Golomb,
reconciliation, and the optimal combination of the last two.

approach, which itself outperforms FBS. Moreover, the new
methods achieve their optimum at smaller block sizes than FBS,
as they communicate fewer bits per hash. In particular, Golomb
saves over FBS both by using fewer bits per hash, and by sorting
and Golomb-coding the hashes before transmission. However,
set reconciliation is better than Golomb on almost all files,and
thus the approach that chooses the best of the two does only
marginally better than always using set reconciliation. Into-
tal, the best approach forgcc needs about460 KB, compared
to about760 KB for FBS; and the best approach forhtmlneeds
about2500KB, compared to about3018KB for FBS. Thus, the
experiments show that our basic algorithm performs very well
on fairly similar data sets.
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Figure 4.3. Costs of the different data structures transmitted
in the reconciliation-based protocol, forgcc.



Next, in Figure 4.3, we look at the various contributions to
the overall transmission cost, for thegccdata. Most of the cost
is due to the transmission of blocks infnew that do not appear
in fold (calleddeltain the figure). This cost of course increases
with the block size. On the other hand, the cost of sending the
evaluations in the actual set reconciliation operation increases
for smaller blocks. The other data structures sent from server
to client, i.e., the bit vectors, block lengths, and the encoding
of the Eulerian path segments, make up only a small part of the
overall cost (labeled asauxiliary), while the cost of the MD5
hash of each file is negligible.

4.6 Effect of Similarity on Performance
We expect the reconciliation-based algorithm to significantly

outperform other methods on fairly similar files, but less onfiles
with more significant changes. We verified this conjecture by
creating artificial data sets with varying degrees of similarity, by
morphingthegccdata with other unrelated data through a sim-
ple Markovian copy process. The results, shown in Figure 4.4,
clearly show that the relative advantage of reconciliationover
Golomb coding is most significant when the files are fairly sim-
ilar.
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Figure 4.4. Comparison of Golomb and reconciliation meth-
ods for data with varying degrees of similarity. A value ofk
on the x-axis means that about a1=2k fraction of the content of
each file has been changed (where each changed region has an
expected length of5 characters).

However, the situation is different on data sets with fairly
different files, e.g.,emacs, where the two versions are substan-
tially less similar than forgcc or html. In this case, shown in
Figure 4.5, the FBS algorithm wins out against both Golomb
and reconciliation, and even does slightly better than the opti-
mal combination of the other two for the best block size (about3120 KB vs. 3200 KB). Note that in the case ofemacs, fairly
small block sizes are best for all algorithms, since larger block
sizes are not sufficient for identifying the limited amount of re-
dundancy between the two sets. Also, Golomb is on average
slightly better than reconciliation (as expected from the previ-
ous figure).

To summarize, the results indicate that the new approach has
significant potential for collections with fairly similar versions.
However, to make the algorithm practical, we still need to find
a way to estimate the symmetric difference, and ideally alsoto
adaptively choose either the Golomb or set reconciliation strat-
egy based on the underlying data.

5 Integrating Sampling into the Algorithm
Recall that in the previous section, we assumed that the

client knows a good upper bound on the size of the symmetric
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Figure 4.5. Comparison of different algorithms onemacsdata.
The graphs from top (worst) to bottom are for rsync, reconcili-
ation, Golomb, the optimal combination, and FBS.

difference between the two sets of hashes. However, such infor-
mation is usually not available in practice. In order to overcome
this problem, we propose to use random sampling to estimate
the symmetric difference. This can be done during the first ex-
change of meta data in thersyncframework, and it also allows
us to choose either set reconciliation or Golomb coding depend-
ing on the degree of similarity between the files.

5.1 A More Practical Algorithm
Our goal is to estimate the symmetric differenced between

the sets of hashes offold andfnew by exchanging suitable sam-
ples before running the algorithm. We note that this can be done
without increasing the number of round-trips within anrsync-
like structure, by sending samples from server to client (instead
of from client to server) during the first exchange of meta data
(such as MD5 and directory info). This allows the client to
estimate the number of evaluations that have to be sent to the
server, at some cost in bandwidth.

Our goal is not merely to estimate the differenced, but to
provide an upper bound that is correct with fairly high proba-
bility. If our estimate ford is too low, then the server will be
unable to derive the set difference from thed evaluation points
sent by the client; in this case we assume that the server sends
the entirefnew in compressed form resulting in a significant ex-
tra cost. Thus, we cannot use a “best estimate” ford but need
to pad this such that the probability of an underestimate is very
small, say less than0:1%. The important point here is that a
larger sample size can decrease costs by allowing us to provide
a much tighter upper bound ford than a very small sample.

We choose as our sample the subset of those hashes that arex mod 2y for somex andy. We can decrease the transmission
cost of the sample by sending fewer bits per sampled hash. In
particular, we do not have to send they bits used to select the
sample (since the other side will only compare the sample to its
own hashesx mod 2y), and we can further reduce the cost of
each hash by removing additional bits and later correcting for
the expected number of resulting collisions. (Note that this is
somewhat similar to using a compressed Bloom filter for this
purpose.)

In the end, we found that using aboutlg(S)+8 bits per sam-
ple element performed best, whereS is the number of samples.
The samples were then sorted and again Golomb coded, for a
net cost of slightly more than9 bits per sample element. Sample
size was chosen based on the number of blocks in the file. For
files of size less than a few KB, no sampling was done, and the



Golomb-based algorithm was used instead of set reconciliation.
Since samples are sent together with the MD5 and directory
information, they are sent even for those files that were com-
pletely unchanged. (We also experimented with an alternative
technique for estimate the difference between the sets based on
a reduction to Hamming distance as described in [6], but the
observed differences were small and thus we omit the results
from this paper.)

Once we have an estimate ford, we can also use this in order
to decide whether to use reconciliation or Golomb coding to
transmit the hashes. While such a hybrid approach did not seem
to give much benefit in the ideal case considered in the previous
section, it is actually more useful now. The reason is that the
required padding ford increases the cost of the reconciliation-
based approach, and sometimes it is now better to use Golomb
coding (which does not rely ond) where with exact knowledge
of d we would choose reconciliation.

In Figure 5.1, we compare the following four methods on the
gcc data sets: (1) FBS with no sampling, (2) the idealized al-
gorithm from the previous section that “knows”d without sam-
pling and chooses the best of Golomb and set reconciliation,(3)
an algorithm that tries to make this choice based on sampling,
and (4) an algorithm that always uses set reconciliation (except
for very small files) and that uses sampling only to selectd.
Both sampling-based methods do significantly better than FBS,
though not quite as well as the idealized algorithm due to the
overheads of sampling and padding. Overall, the best method
with sampling achieves about533 KB, versus760 KB for FBS.
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Figure 5.1. Performance of sampling-based methods ongcc.

In Figure 5.2, we see the contributions of the various data
structures to the overall transmission cost for three blocksizes
and three of the methods (excluding FBS, whose internals we
have not introduced here). We note that the cost of the sam-
pling itself is fairly low, while the cost due to padding is more
significant. Note that in the two methods that can choose from
either Golomb or reconciliation, the cost of the evaluations for
the best estimates ford (i.e., excluding padding) is very small2

and hardly visible (the second color from the top in the figure).
For emacs, we observed that the method that uses sampling

plus the best of Golomb or reconciliation does somewhat worse
than FBS (3361 KB vs. 3120 KB for FBS), as expected. The
figure is omitted due to space constraints.

5.2 A Hybrid Method with FBS
From the above experiments, we can see that FBS sometimes

performs better than methods based on variable block sizes on
2This is not the same as the cost for reconciliation in the ideal method in

Figure 4.3, since we are more likely to choose reconciliation over Golomb in
cases where we underestimate the difference between the hash sets.
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Figure 5.2. Costs of various parts of the three algorithms on
gcc, for w values of100, 210, and300, with resulting average
block sizes of199, 405, and589, respectively. (Colors in the
charts and on the right are in the same order.)

fairly different files. To address this problem, we investigated
a hybrid method that combines set reconciliation, Golomb, and
FBS. In particular, using our sampling-based estimate of the
similarity between the two files, the new hybrid applies FBS
on files with similarity below some threshold, and chooses be-
tween Golomb and reconciliation otherwise. In Figure 5.3, we
compare this new hybrid to the previous methods as well as to
an idealized version of the new hybrid that always chooses the
best of the methods without sampling.
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Figure 5.3. A hybrid algorithms with FBS onemacsdata.

From Figure 5.3, we observe that the new hybrid algorithm
with sampling does only very slightly better than FBS, while
the idealized version of it does significantly better. On theother
hand, when we ran experiments ongcc, adding FBS into the hy-
brid made almost no difference at all both in the idealistic and
sampling-based case; this is because ingccmost files are very
similar and thus FBS is almost never a good choice. However,
this does not mean that the new hybrid is not useful. In fact, the
point here is that this hybrid performs well over many different
types of data sets, matching the best method in each particular
case. Also, results for the idealized case onemacsindicate that
additional benefits could be achieved through improved sam-
pling techniques.

5.3 Estimating a Good Block Size
One problem with single-round synchronization algorithms

is that performance depends on the choice of the block size. It
would be nice if we could also use our sample in order to se-
lect a good block size; unfortunately this sounds easier than it



is. We experimented with several approaches for this. There
are two main problems: First, we may need to sample hashes
for several block sizes in order to select the best one, increas-
ing the sample size. Second, to choose a good block size, it
does not suffice to estimate the number of blocks that are in
common. Instead, we also need to know the compressibility of
the unmatched parts offnew, since there is a trade-off between
the size and number of blocks and the size of the unmatched
parts of the file. Our results indicate that this compressibility
ranges widely within our data sets, from a factor of2 to more
than10, which means that simply dividing the size of the un-
matched parts by an “average compression factor” of, say,4 for
gzipmethods does not work. Note that this problem of choos-
ing a good block size is not unique to our new methods, but also
exists inrsyncand all previous single-round methods.

6 Concluding Remarks
In this paper, we have described and evaluated new algo-

rithms for remote file synchronization that use a single commu-
nication round. We also proposed and explored the use of ran-
dom sampling techniques for further optimizations. Our results
show that significant improvements in communication costs can
be achieved in many cases, assuming the files are quite similar.

We believe that the lessons learned from this work are as
follows: First, while earlier approaches [12] based on content-
dependent block partitioning did not do as well as the fixed-
block partitioning inrsync, the newer partitioning techniques in
[26, 31] do much better and provide an interesting alternative to
fixed-size blocks. Second, using set reconciliation techniques
with overlapping content-dependent partitioning is a promis-
ing approach that does well on collections where versions are
quite similar. Third, sampling techniques can efficiently decide
whether set reconciliation should be used and how many eval-
uations to send, but it is not easy to use sampling to decide on
the best block size, due to the significant variations in the com-
pressiblity of the unmatched blocks.
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