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Abstract tions of data within their distributed architectures. liodthese

The remote file synchronization problem is how to update afpPplications, there are usually significant similaritietvieeen

outdated version of a file located on one machine to the ctirrefUccessive versions of the files, and we would like to exploit
version located on another machine with a minimal amount df€se in order to decrease the amount of data that is transmit

network communication. It arises in many scenarios incigdi €d- If the new files differ only very slightly from their prisus
web site mirroring, file system backup and replication, obwe VEsions, then the cost should be very low, while for more sig
access over slow links. A widely used open-source toolctalldlificant changes, more data may have to be transmitted.
rsyncuses a single round of messages to solve this problem Remote file synchronization has been studied extensively
(plus an initial round for exchanging meta information). Mgh over the last ten years, and existing approaches can beedivid
research has shown that significant additional savings indsa  into single-round and multi-round protocols. Single-rdyumo-
width are possible by using multiple rounds, such approachdocols [32, 12] are preferable in scenarios involving srfis
are often not desirable due to network latencies, incregsed ~ and large network latencies (e.g., web access over slow)link
tocol complexity, and higher 1/0 and CPU overheads at thd he best-known single-round protocol is the algorithm used
endpoints. the widely usedsyncopen-source tool for synchronization of

In this paper, we study single-round synchronization techfll® Systems across machines [32]. (The same algorithm has
niques that achieve savings in bandwidth consumption whif@/SC been implemented in several other tools and applitsjio
preserving many of the advantages of tbgnc approach_ In However, in the case of Iarge collections and slow networks
particular, we propose a new and simple algorithm for file-synit may be preferable to use multiple rounds to further reduce
chronization based oset reconciliatiortechniques. We then communication costs, and a number of protocols have been
show how to integrate sampling techniques into our approachroposed; see [27, 6, 5, 9, 22, 16, 30, 20]. Experiments have
in order to adaptively select the most suitable algorithna an Shown that multi-round protocols can provide significantdxa
parameter setting for a given data set. Experimental resait ~ Width savings over single-round protocols on typical dats s
several data sets show that the resulting protocol givesisig [30, 16]. However, multi-round protocols have several disa
icant benefits oversyng particularly on data sets with high Vvantages in terms of protocol complexity and computing and

degrees of redundancy between the versions. I/O overheads at the two endpoints; this motivates the kearc
. for single-round protocols that transmit significantlydetata
1 Introduction thanrsyncwhile preserving its main advantages.

Consider the problem of maintaining replicated colleation  In this paper, we focus on the single-round case. We pro-
of files, such as user files, web pages, or documents, ovewa sl®0se an algorithm for file synchronization based on the use of
network. In particular, we have two versions of each file, aset reconciliatiortechniques [18]. The communication cost of
outdated filef,;; held by one machine, thaient, and a current our algorithm is often significantly smaller than thatreyng
file f,.., held by another machine, tiserver Neither machine especially for very similar files. However, the basic vensid
knows the exact content of the file held by the other machin@ur algorithm assumes knowledge of some (preferably fairly
Periodically, the client might initiate a synchronizatiopera- tight) upper bound on the number of “differences” between th
tion that updates its filg,;; to the current versiorf,.,,. Or Versions. To address this issue, we then study how to irteegra
alternatively, a synchronization operation is triggerdwwnever sampling techniques into the basic protocol in order tovest
f.14 is accessed at the client. If the amount of data is largdhis difference, and to choose suitable approaches andhpara
or the network fairly slow, then it is desirable to perfornisth ters based on the underlying data set.
synchronization with a minimum amount of communication. Note a few assumptions in our basic setup. We assume that

This remote file synchronization problemnises in a number collections consist of unstructured files that can be matiifie
of applications. For example, we might want to mirror busyin arbitrary ways, including insertion and deletion opienas
web and ftp sites (including sites that distribute new \rsiof ~ that change line and page alignments between different ver-
software), or synchronize personal files between two differ sions. Thus, approaches that identify changed disk blocks o
machines, say a machine at home and one at work (or a mobRé positions or that assume fixed record boundaries do nd wo
device). Also, content distribution networks, search eagj (though such techniques are potentially useful, e.g.,denti-
and other large web services often need to update largeceolldying which files have been changed). Note also that the prob-

lem would be much easier if all updates to the files are saved

*Work supported by NSF Awards CNS-0325777 and CCR-0093400, a ;) 5 |oq that can be transmitted to the other machine, or if the
the New York State Center for Advanced Technology in Teleoomications . . .

(CATT) at Polytechnic University. machine holding the current version also has a copy of the out

i This work was performed while this author was a graduatesstuat Poly- ~ dated one. However, in many scenarios this is not the case. We
technic University. are also not concerned with issues of consistency in between




synchronization steps, or with the question of how to resolv  There is a significant amount of related work by the OS and
conflicts if updates can be concurrently performed at séleera Systems communities that attempts to detect redundarnrcies i
cations (see [2, 24] for a discussion). We assume a simple tworder to reduce storage or transmission costs, such dsothe
party scenario where it can be easily determined which eersi Bandwidth File Systefi9], storage and backup systems [23, 7,

is the most current one. 15, 31, 8], value-based web caching [25, 13], and compnessio
of network traffic [28]. Most of these schemes operate on a
1.1 State of the Art and Related Work lower level within network or storage protocols and thusehav

Previous theoretical studies of the communication complex0 notion of file or document versions. The approaches ysuall
ity of the file synchronization problem have shown asymptotif€ly on content-based partitioning techniques such asZ@4,
cally tight bounds using one or more rounds [21, 22, 6]. How31l, rath(_ar than the fixed-size blocksrByng in order to divide
ever, the proposed optimal algorithms are not implemeatabl the data into blocks.
practice, as they require the receiver to invert a hash iomct  Finally, a number of researchers have used sampling to es-
over a large domain in order to decode the new version of thignate similarities between files [4, 33, 10, 31]. We employ
file. In practice, the most widely used protocol for file syreh ~ fairly standard sampling techniques, and focus on how td-eng
nization is thesyncalgorithm [32], which is employed within a neer these techniques to fit into our application.
widely used open-source tool of the same name. A single rourrE e .
of messages is exchanged for each file, where the client sends Contributions of this Paper
a hash value for each block of some fixed size in the old file, we study single-round algorithms for the remote file syn-
which the server then uses to compress the new file.rSyre  chronization problem, and propose new protocols that résul
algorithm does not achieve strong provable bounds on commgignificant bandwidth savings over previous approachgsain
nication costs, but seems to perform well in practice. ticular, our contributions are:

Several researchers have proposed multi-round algorithms i , i
based on a divide-and-conquer approach. The algorithnts fird1) We present a new single-round algorithm for file synchro-
send hashes for large blocks, and then recursively divige an  Nization based on set reconciliation.
unmatched blocks into smaller blocks and send hashes fqi2) We explore the use of random sampling techniques in or-
these, until either a block with matching hash is found on the  der to engineer a practical protocol based on the new algo-
other side or the recursion is terminated. The earliest algdt rithm. In particular, we use sampling in order to estimate
rithm [27] predatessyng and subsequently a number of such  the cost of the protocol, and to choose the best combina-
algorithms have been proposed [6, 9, 22, 16, 30]. The algo- tion of techniques and parameter settings for the current
rithms can be efficiently implemented, and their communica-  data set. We also discuss how these techniques can be
tion costs are usually within a (poly)logarithmic factor ag- implemented in a setup very similar to the curresync
timal under common measures of file similarity. As shown in  system architecture.

[30], a h|gh|¥ optimized implementation can give signifitan 3y \ye evaluate our protocols on several data sets. Thetsesul
Improvements oversync show that our protocols achieve significant improvements

Thus, there is a trade-off between the number of communi-  oyer previous single-round protocols for data sets with sig
cation rounds and the bandwidth consumption. Extra rounds pificant similarity between versions.

may increase communication latencies for small files, thoug

these latencies can be hidden on larger collections. Mergov The remainder of this paper is organized as follows. We first
multi-round protocols may require multiple passes ovedtita  provide some technical background myng set reconcilia-

at the endpoints, and typically also have a more complexabnt tion, and content-dependent string partitioning. In Sectd
structure. In practice, single-round protocols suchsgacare we describe our basic algorithm and evaluate its performanc
implemented in two rounds, an initial exchange of meta datander certain idealized assumptions. In Section 5, we gmplo
(e.g., directory data and MD5 hashes for all files), and thesampling techniques to derive a realistic protocol thapésito

the actuarsyncalgorithm. Our algorithms also take this form, characteristics of different data sets. Finally, Sectigmndides
maybe best described as “one to two rounds”. some concluding remarks.

There are two other recent results that try to improve oré . . .
rsyncby using only one or two rounds. First, [12] studies sevsS  1echnical Preliminaries
eral optimizations to thesyncapproach, and also proposes a3.1 ThersyncAlgorithm
new approach to file synchronization based on erasure cbhdes.
particular, it is shown how to simulate a basic multi-roumo-p

tocol in a single round of Messages, assuming an upper bouﬂﬁmpute hashes or “fingerprints” of the blocks. These hashes
on the difference between the files. . are sent to the other machine, which looks for matching [dock
The second result, very closely related to our approacheis t i, jts own file. Inrsyng the client splits its file into disjoint
protocol in [1], which is also based on the usesef reconcilia-  pjocks of some fixed sizeand sends their hashes to the server.
tion techniques. Theet reconciliatiorproblem was originally  Note that due to possible misalignments between the filés, it
introduced in [18] in the context of synchronizing struellir necessary for the server to consider every window of sie

data items (e.g., database records). The algorithm in [&] is ¢ for a possible match with a block ifi,.s. The complete
two-round protocol, and it achieves provable bounds with rez|gorithm is as follows (slightly simplified):

spect to certain measures, but it also has several shorigsmi _

that we think make it less practical in many scenarios. We digl- At the client:

cuss the protocol in [1] and its relationship to our work inmno  (a) Partitionf,;q into blocks B; = f,4[ib, (i + 1)b — 1] of some
detail later, after providing the necessary background. block sizeb.

The basic idea imsyncand most other synchronization al-
rithms is to split a file into blocks and use hash functians t



(b) For each blockB;, compute a hash value = h(B;) and com- 3.2 The Set Reconciliation Problem

municate it to the server. We now discuss theet reconciliation problentefined in

2. At the server: [18, 29] and its relation to file synchronization. In thet rec-
onciliation problem we have two machined and B that each
hold a set of integer values, andS g, respectively. Each host
needs to find out which integer values are in the intersection
and which are in the union of the two sets, using a minimum
amount of communication. The goal is to use an amount of
(i) Compute the hash(f,..[j, 7+ b— 1]) onthe block start- communication that is proportional to the size of #yenmetric

ing at;j, and check the dictionary for any matching hash. differencebetween the two sets, i.e., the number of elements in
(i) If found, transmit the index of the matching block if,.s ~ (Sa—SB)U(Sp—Sa4). A protocol based on characteristic poly-

to the client, increasg by b, and continue. nomials [18] achieves this with a single message. We defme th
characteristic polynomia}s(Z) of a setS = {z1,x2,...,x,}
as the univariate polynomial

_ - o _ _ xs(Z2)=(Z — x1)(Z — x2)..(Z — ). Q)
There are various additional optimizations in the algonith
All symbols and indices sent to the client in steps (i) anidl (i An important property of the characteristic polynomialhsitt
are also compressed using an algorithm similagziy; this is it allows us to cancel out all terms corresponding to elesent
crucial for performance in practice. A 128-bit hash onthren in S4 N Sg, by considering the ratio between the characteristic
file is used to detect any (fairly unlikely) collisions in thbock  polynomials ofS 4 andSg
hashes, in which case we resefid,, in compressed form. The

(a) Foreach received hash, insert an entryh;, i) into a dictionary,
usingh; as key.

(b) Perform a pass througf...,, starting at positionj = 0, and
involving the following steps:

(iii) If none found, transmit the symboaf,...,[j] to the client,
increasej by one, and continue.

block hash functiork() itself is carefully chosen for efficiency X54(Z)  Xsanss(Z) - Xa,  Xa.(Z)
. oY S = — . 2)
and robustness. In particular, a “rolling” hash functiomised Xsp(Z)  Xsansp(Z) Xxap  Xag(Z)
such that the hash ¢fj + 1, 7 + b] can be computed in constant
time from that off[j,j + b — 1]. In order to determine the set of integers held by the othdaypar

A critical issue inrsyncas well as other single-round algo- it suffices to determine the ratio of the two polynomials. As o
rithms is the choice of the block sizeand the best choice de- served in [18], if we know the results of evaluating both poly
pends on both the number and granularity of changes betwegamials at onlyk evaluation pointswherek is the size of the
the versions. If a single character is changed in each blbck §ymmetric difference, then we can determine the coeffisieht
f.14, then no match will be found by the server asgincwill ~— xa.(Z)/xa(Z)). By factoringya , (Z) andxa, (Z) we can
be completely ineffective. On the other hand, if changes arcover the elements df 4 andA 5. Thus, if the difference be-
clustered in a few areas of the fitsyncwill do well even with ~ tween the two sets is small, then only a small amount of data
a large block size. Fortunately, the latter case is common ifhas to be communicated.
many applications. In practicesyncuses a default block size  This problem was initially studied in the context of synchro
of 700 bytes (except for large files where the square root of thaizing structured data items: If we represent each datadduo
file size is used), though this is clearly not the best chaice f an integer hash, then we can determine which records already
every data set. exist at the recipient. If each hash value consists bits, then

Each block hash sent to the serversynchas a size ofig  all arithmetic can be performed modwd, and thus each eval-
bits. Some improvements can be obtained by choosing fewgftion point can be communicated.inbits. If a record does
bits per hash, depending on the sizes of the files; see, 823., [ Not exist at the recipient, then the entire record is trattechin
30, 12]. Given two files of length, where each hash ifi,,;  the next step. However, in file synchronization, we want to ex
is compared to the hashes of all- b + 1 blocks of sizeh in ~ ploit similarities between different versions even if the fias
frnew, We need aboui(n) + lg(n/b) bits per hash to have an changed to some degree.

even chance of not having any false match, while akdoubre Recent work in [1] proposed a new algorithm for file syn-
bits are needed to get a probability less th#’ of having any  chronization, calledeconciliation puzzlgghat uses set recon-
false match between the files. ciliation as a main ingredient. Each machine converts igs fil

Finally, we discuss the structure of tihgyncopen source (string) into a multi-set of overlapping pieces, where egielce
tool, based on [34]. Strictly speakingsync involves two is created at every offset of the file according to a predetexch
roundtrips. First, the client requests synchronizatioa direc- mask. The hosts also create a modified de Bruijn digraph to en-
tory, and the server replies with some meta information tvhicable decoding of the original string from the multi-set afges:
allows the client to decide which files need to be updatedlhe correct Eulerian path on this digraph determines thererd
Next, synchronization is performed as described. This is iming of the pieces in the original string.
plemented in a highly pipelined fashion, where the two end- To reconstruct,..,, the client needs to know all the pieces
points are implemented as separate independent prochsases of f,...,, plus the Eulerian path on the digraph. Both sides trans-
consume and produce streams of data. Thus, round-trips doem their sets of pieces into integer values by concatagati
not incurred on a per-file basis, and it might seem reasomi@able each piece with the number of times it occurs and hashing the
add some extra rounds to obtain additional bandwidth savingresulting string. Then the set reconciliation protocohfrfi 8]
However, this would require either a larger fixed set of conis used to reconcile the sets of hash values, at which paént th
sumer/producer processes, or we would have to keep sorae stag¢rver knows which pieces are unknown to the client and thus
for each file. In our approach, we adhere to this simple strugieed to be transmitted. If the two versions are very similar,
ture, with a first round for exchanging meta data, and one sulthen they will have most of their hash values in common, and
sequent round where the actual synchronization is perfdirme the set reconciliation algorithm only needs to transmit ey ve



small amount of data. Finally, a compact encoding of the Euexpectation, we compared the three methods in terms of their
lerian path is transmitted to the client together with thesinig  tradeoff between average block size and the amount of redun-
pieces, resulting in a two-round protocol. dancy that is detected between the two versions. The reselts

3.3 Content-Dependent File Partitioning shown in Figure 3.2.

Using a fixed block size as irsyncmeans that the recipient
has to compute hashes for all possible alignments in itsrfile i

order to find a match. This requires not only more computa- Gee

tion, but also more bits in each hash. In the set recondiliati 9%

approach, the files cannot be simply partitioned into fixee si g o - fxed_size_blocks|—|
blocks for the reconciliation step; chances are that theltres 8 92 e wimowing 1
ing sets would be almost disjoint due to different alignnsent ° E 90 AN —kaprabin L
of the common content in both versions. In [1], this problem gg 88y W

is avoided by creating many more blocks (pieces) from each |5 = 86 R

file in order to capture every possible alignment. Howeves, t o 84y T~
significantly increases the size of the resulting sets aaghg, & 23 i

resulting in extra cost. 0 200 400 600 800 1000

We would like a partitioning that allow us to find many com-
mon blocks in similar files and that can be locally applied to
each file. One such technique, based on Karp-Rabin finger- Figure 3.2 Comparison of different partitioning techniques on
prints [14], has been extensively used to identify redubdata various block sizes on thgccdata set.
during storage or transmission [19, 7, 15, 31, 25, 13]. Tlba  clearly, as block size decreases all methods can identify
idea is very simple: We hash all substrings of some fixed kengtyqre redundancy, but a small block size requires more hashes
¢, sayc = 20, to integer values, and define a block boundary, e sent from server to client. Note thatvay mindoes bet-
before position of the file f if the substringf[i,i + ¢ — 1] ter thanwinnowing which does better than the basic approach,

hashes to a valuemod w, say forw = 200 and some. Then  ¢4nfirming the analysis in [3] on real data. Overall, fixeddio
we use the blocks defined by these boundaries, which have 856 goes best, as should be expected, but note that we need

average length of about (under certain assumptions). Sinc€mgre bits per hash value in this case, which eliminates the ad

boundaries are chosen in a local manner, any large substringyniage. We also experimented with other data sets, and with
common to both files are partitioned in the same way and resulbyera| other methods not described here that performessalm
in identical blocks. After identifying the boundaries ugithe good ag-way min(but none did better).

abovef n;]ethod, ;ve then_hash the relzsultmg blocks to integers a Thus, we focus on the-way minmethod in our experiments,
part ofthe synchronization protocols. but any of the others would also work at slightly decreased
performance. Note that these methods can be implemented at
speeds of tens to hundreds of MB per second through careful
[alk]alB[c|F[F]E][F]D]o]M[P]T].] optimization of the hash computation [31].

We also experimented with two different types of blocks

Block Sizes (Bytes)

window of size b for hashin

hash

1 once the boundaries are identified: Non-overlapping blocks
° 21|19 13|26|18 18 25|24 16|”|35 37|“2|~-| and overlapping blocks where each block is extendetiar-
i acters into the next block (putting the window with the |dgal
window of size w minimal hash into the intersection). Blocks with signifitan

overlap are more suitable for use with set reconciliatiainte

nigues, since each block can only be followed by anotheikbloc
Figure 3.1 Example of the file partitioning technique in [31]. that “fits”, i.e., that starts with the lastcharacters of the pre-
We are hashing windows of size= 3, and then selecting block  vious block. In terms of the algorithm in [1], this impliesath
boundaries based on these hashesfet 2. the resulting digraph is very sparse and has few Euleridmspat
More recently, several new partitioning techniques havallowing for a more concise encoding.

been proposed, including thennowingtechnique in [26], and . . o

the approach in [31] which we refer to herezsvay min We 4 AN Algorithm Using Set Reconciliation

focus on the latter technique, defined as follows: We agahha  We now present our new algorithm based on set reconcilica-

all substrings of some fixed lengttto integer values. We now tion. We limit ourselves to a single round of messages batwee

define a block boundary before positioof the file f if the hash  client and server, and measure the communication costrirster

h(f[i,i + ¢ — 1]) associated with positiohis strictly smaller  of the total number of bits exchanged between the parties. We

than the hash values of the preceding and following posi- assume that the client has knowledge of (an upper bound on)

tions. In other words, we choose those positions where thle hathe size of the symmetric difference between the sets ofdsash

assumes a local minimum (or maximum). The method resuln both sides; we address this assumption in the next section

in an average block size @iv and is illustrated in Figure 3.1. The main idea of our algorithm is as follows: We locally par-
Most applications, such as [19, 25, 7], use the older methdition both versions of the file into overlapping blocks usthe

to select the boundaries. However, analysis in [3] and unpul2-way mintechnique, and represent the blocks by their hashes.

lished experiments indicate that the methods in [26, 31} outVe then use a set reconciliation protocol consisting of a sin

perform this method in redundancy detectioo verify this  gle message from client to server, such that the server knows

Block 1 Block 2

1We note that a claim in [12] that the winnowing method in [26kd not  improve on the older method is incorrect and due to an impigatien bug.



which of the blocks inf,.,, are already known to the client. wherez is the total number of matched blocks. Elgéy) bits
Then the server transmifs.,, to the client in two parts: Blocks are used, whergis the number of possible blocks that can fol-
not known to the client are encoded using a compression algmw the previous one. In many casges,= 1, and there is a
rithm similar togzip, while the information about the ordering unique continuation.

of blocks within the new file is communicated in an optimized Finally, the client reconstructg,.., by determining which
manner that exploits the fact that for each block there is uslocks exist in both files, and determining for each suchlbloc
ally only a very small number (often just one) of other blockswhich other such blocks can follow it. Then the new blocks
that can follow this block (i.e., that start with exactly tight in frew Unknown to the client are decoded, and finally the
characters). Here are the details: matched and new blocks are assembled jhtg, based on the

0. At both server and client: other information received.

(@) Use2-way minto partition the local file into a number of blocks, 4.2 A Variant Based on Golomb Coding

and compute a hash for each block. ISetand S, be the sets of h iliation di lgorithm si
hashes at the client and server, respectively. Note that set reconciliation is used in our algorithm singsy

1. At the client: an efficient way to transmit a set of hashes from client toeserv

(a) Letd be the symmetric difference between the two sets of hashe@nd that we could easily replace it by another method without

Use the set reconciliation algorithms described in [18Male  changing anything else. In particular, we propose as amalte
ate the characteristic polynomial ¢h on d randomly selected tive to simply sort all the client hashes and then send thetimeto

points, and transmit the results to the server. server by Golomb-coding (see [35]) the gaps between hash val
2. At the server: ues, resulting in additional compression. As we will seerlat
() Use thed evaluations to calculate the symmetric difference beSet reconciliation is a good method for transmitting theheas
tweensS., andS., i.e., the hashes ifi, — S, andS, — S.. when the two files are very similar, but not suitable for filegw

(b) The server goes through.., to identify all blocks that are not significant differences.
known by the client. Any two consecutive blocks not known to4,3  Comparison to Previous Work
the client are merged into one.

(c) The server now sends to the client the following inforioratin
suitably encoded form:

While our approach is based on very similar ideas as the
algorithm in [1], there are several important differencesst,
our method uses a single round, compared to two rounds used in
(i) the number of blocks iff,c., [1]. Second, we use content-dependent partitioning tegtas,
instead of fixed masks, to partition files into blocks. This ha
significant benefits since it means that every edit operétidn
ference) between the two files can only impact a constant num-
ber (often only one) of blocks and block hashes. In conthast,
[1] the number of impacted blocks is proportional to the mask

(ii) a bit vector specifying which of the hashes ff. (sorted
by value) also exist itfrcw,

(iii) a bit vector specifying which of the blocks ify..., (sorted
by position) also exist itf,;4,

(iv) the lengths of all blocks irfy.c., that are not info.a, size, which is usually chosen &sn. As we discuss later, this

(V) the interiors of these blocks themselves in suitablyetbd in fact results in an asymptotic difference under certasuagp-
form, and tions. Third, the overall structure of our method is quitaitar

(vi) an encoding of the sequence of matched blocks,in, . to that ofrsync This allows an implementation similar tsync

Recall that in the case of fixed block size, we need hash va®S & Set of simple stateless communicating processes. tin fac
ues of aboutg(n) + lg(n/b) + k bits ([12]) in order to keep OUr method can be seen as a unified approach that combines
the chance of a collision belowy/2*, wheren is the file size rsyncand the approach in [1]. . .
andb is the (average) block size. However, in the case of a There are also several more minor differences. Because of
content-dependent partitioning suct?aay minwe only need the similarity torsyng we have the choice of usi_ng reconcilia-
21g(n/b) + k bits, since each hash is only comparedhyty  tion or Golomb coding for the hashes, depending on the char-
blocks on the other side. Thus, we usk(n/b) + k bits per ~ acteristics of the data. Our method also includes compmessi
hash in the set reconciliation protocol. Because fewerpats for unmatched literals; in our experience this makes a vigry s
hash are needed than in the fixed block-size case, this imturn hificant difference in practice on many data sets. Finallg, w
lows profitable use of smaller block sizes. Moreover, thaisig Use a simpler approach for specifying and coding the seguenc
icant overlap between blocks makes it highly efficient toecod Of blocks (i.e., the Eulerian path in [1]) whose running time
the ordering of the blocks, since each block can only be foldoes not depend significantly on the number of paths in the
lowed by another block that starts with the lastharacters of graph. Note that the actual number of round-trips of course
the previous block. Overlapping blocks also assure that onddepends on the set reconciliation protocol that is used. -A re
the interior of unmatched blocks must be sent. cent recursive protocol in [17] gives a significant reduttio
4.1 Details on Encoding and Decoding computational cost at the receiver at the cost of additicoad-

: : . munication rounds, when compared to the basic single-rgessa
Now a few more details on the precise encoding of the vampproach in [18].

ious items. The two bit vectors sent from server to client . .

can be compressed using arithmetic coding, though they afe4 Communication Complexity

fairly compact already. The lengths of the unmatched blocks We now discuss the asymptotic communication complexity
in fnew are Golomb-coded [35], while the interior parts of of our algorithm and compare it to that of other approaches. |
the unmatched blocks are compressed usingiplike algo- the discussion, we assume two filgs., and f,;; of lengthn
rithm similar to the one employed isync The sequence of each with edit distanck, where the allowed edit operations are
matched blocks is coded as follows: If the previous block washange, insertion, and deletion of single characters angeso
not matched, thely(x) bits are used to specify the next block, of blocks of characters. (More general edit distance measur



also allow copies and deletions of blocks, but these areyttic

analyze as distances between files are not symmetric.) There GCC
a well known lower bound of2(k1gn) bits of communication 7 2000
in the worst case, and a matching upper bound was established | £ 1288 . rsyne
in [21]. However, that algorithm cannot be implemented effi- D 1400 = gol
ciently in practice as it requires the inversion of certaastn = 1200 k=Y “e recon
h . . . o * —4-opt_recon_gol
functions at the receiver. The practical multi-round aithons £ 1000 - u* \”\D\_ﬂ
for synchronizationin [27, 16, 22, 6, 30] achieve a commanic g 800 - e =
tion complexity ofO (kg nlg(n/k)) bits usinglg(n/k) com- 600 - ]
munication rounds. A recent result in [12] matches this libun ‘2‘88 i
with a single round. Thus, there remains a logarithmic gap be 0
tween the lower bound and the best practical protocols. 0 200 400 600 800 1000
The analysis of the algorithm based on set reconciliation in Block Sizes (Bytes)

. . 2 . . .
[1] implies a bound ofO(k1g” ) bits with two round-trips Figure 4.1 Comparison of algorithms on thygcdata set. The

for average-case files, i.e., 'ghe_case W.here one fl|§ is create graphs from top (worst) to bottom are rsync, FBS, Golomb, rec
at random while the other file is any file of edit distance at onciliation, and the optimal combination of the last two.

mostk. (This is for the case of a mask length &{lgn).)
Our algorithm, in contrast, can be shown to achieve a bound

of O(k1gn) bits in a single round on such average-case files; HTML

this is due to our use of content-dependent partitioning-tec

nigues to define overlapping blocks — as a result each edit op- 10000

eration only affects a constant number of blocks. We note tha | _ 399 s’

this type of average-case analysis is somewhat problemstic € 7000 [+ 1 oo

many string processing problems are much easier on randomly |& 6000 \ﬂ\ﬂgwuewum

generated strings (which are unlikely to have any largeatsuk < oot

substrings). Thus, we do not give further details here asréhi 5 3000 .

sult is only of limited theoretical interest. A practicagalithm = 2000

with the same bound in the worst case, on the other hand, would 1008

be a major result. 0 200 400 600 800 1000 1200
Block Sizes (Bytes)

4.5 Preliminary Experimental Results
Figure 4.2 Comparison of algorithms on thHaml data set.

The graphs from top (worst) to bottom are rsync, FBS, Golomb,
reconciliation, and the optimal combination of the last two

We now present some preliminary experimental results that
show the potential of the new algorithm. For the experiments
we used thgccandemacsdata sets also used in [30, 12, 11],
consisting of versions 2.7.0 and 2.7.1gafcand versions 19.28
and 19.29 oemacs The newer versions giccandemacson- ~ approach, which itself outperforms FBS. Moreover, the new
sist of 1002 and 1286 files, and each collection has a size gtethods achieve their optimum at smaller block sizes the, FB
around 27 MB. We also ran additional experiments orithel ~ as they communicate fewer bits per hash. In particular, @blo
data sets that were used in [30], consisting of a set of tem-thoSaves over FBS both by using fewer bits per hash, and by gortin
sand pages crawled randomly from the web, and the same pagél Golomb-coding the hashes before transmission. However
recrawled two days later. Each set of pages has a total size ¥t reconciliation is better than Golomb on almost all fites]
around 140MB, with about 14KB per page on average. Somi@us the approach that chooses the best of the two does only
of the files are not updated at all between crawls, while stheimarginally better than always using set reconciliation.tdn
change only slightly. For each data set, we measured the cdat, the best approach fgcc needs about60 KB, compared
of updating all files in the older version to the newer one. W0 about760 KB for FBS; and the best approach fuml needs
assume that only files that have changed are updated, while #out2500 KB, compared to abou)18 KB for FBS. Thus, the
changed files are detected through an MD5 hash on the entR&periments show that our basic algorithm performs very wel
file that is exchanged before the algorithm, at a costdfytes  on fairly similar data sets.
per file.

In Figure 4.1 and 4.2, we compare the performance of the
following five approaches on two data setg,c and html:

GCC
900

The algorithm based on set-reconciliation, the varianetam 800

Golomb-coded hashes in Subsection 4.2, a combinationséthe - 700

two that magically always chooses the best of the two depend- % 600

ing on the datarsyng and an optimization afsyncfrom [12] x 5%

. . o 400 Odelta

called FBS which was shown to always (at least slightly) out- € 300 W auxiliaryData
performrsyncthrough various minor improvements. For each F 200 Dreconciliation
algorithm, we did multiple runs with different block sizemd 100

plot the average resulting block size versus the total coniimu 0

Cation cost. 0 200 400 800 1000

Block Sizes (Bytes)

Figure 4.3. Costs of the different data structures transmitted
in the reconciliation-based protocol, focc

We see that for botlgcc and html, the approach based on
reconciliation does significantly better than the Golonasdd



Next, in Figure 4.3, we look at the various contributions to

the overall transmission cost, for tgecdata. Most of the cost FHAeS

is due to the transmission of blocks fi.,, that do not appear 5000

in f,4 (calleddeltain the figure). This cost of course increases 4500 |+

with the block size. On the other hand, the cost of sending the | _ | W

evaluations in the actual set reconciliation operatiomeases § 4000 ——

for smaller blocks. The other data structures sent fromeserv < 3500 |

to client, i.e., the bit vectors, block lengths, and the eling = ffggc

of the Eulerian path segments, make up only a small part of the | = *® = recon

overall cost (labeled asuxiliary), while the cost of the MD5 2500 -e-gol

hash of each file is negligible. so00 ‘ ‘ 4 opt_recon_gol

4.6 Effect of Similarity on Performance 0 200 400 000 800 1000

Block Sizes (Bytes)

We expect the reconciliation-based algorithm to signifilyan
outperform other methods on fairly similar files, but lesditas
with more significant changes. We verified this conjecture by
creating artificial data sets with varying degrees of sirtilaby
morphingthegccdata with other unrelated data through a sim- .
ple Markovian copy process. The results, shown in Figure 4.4lifference between the two sets of hashes. However, suah inf
clearly show that the relative advantage of reconciliapear ~Mationis usually not available in practice. In order to @oene

Golomb coding is most significant when the files are fairly-sim this problem, we propose to use random sampling to estimate
ilar. the symmetric difference. This can be done during the first ex

change of meta data in tmgyncframework, and it also allows
us to choose either set reconciliation or Golomb coding dépe

Figure 4.5. Comparison of different algorithms @macslata.
The graphs from top (worst) to bottom are for rsync, reconcil
ation, Golomb, the optimal combination, and FBS.

GCC

3000 ing on the degree of similarity between the files.

2500 5.1 A More Practical Algorithm
2000 ~+-golomb Our goal is to estimate the symmetric differentletween
2 \\\ “=-recon the sets of hashes ¢f;; and f,,.., by exchanging suitable sam-

¥ 1500

ples before running the algorithm. We note that this can Imedo
without increasing the number of round-trips within @ync
like structure, by sending samples from server to clierdtéad

Traffic

1000

500 of from client to server) during the first exchange of metadat
0 (such as MD5 and directory info). This allows the client to
5 s 7 ity o 10 estimate the number of evaluations that have to be sent to the
Figure 4.4. Comparison of Golomb and reconciliation meth- ~ S€TVer, at some costin bandW'dt_h- .
ods for data with varying degrees of similarity. A value /of Our goal is not merely to estimate the differentebut to

on the x-axis means that about &2 fraction of the content of provide an upper bound that is correct with fairly high proba
each file has been changed (where each changed region has arbility. If our estimate ford is too low, then the server will be
expected length of characters). unable to derlye the set difference from thevaluation points
S ) _sent by the client; in this case we assume that the servessend
) HOWeV-er, the situation is different on daFa sets with fa|r|ythe entirefnew in Compressed form resu'ting in asignificant ex-
different files, e.g.emacswhere the two versions are substan-ra cost. Thus, we cannot use a “best estimate’fout need
tially less similar than fogccor html. In this case, shown in g pad this such that the probability of an underestimateig v
Figure 4.5, the FBS algorithm wins out against both Golomlymall, say less thaf.1%. The important point here is that a
and reconciliation, and even does slightly better than fite 0 |arger sample size can decrease costs by allowing us todgovi
mal combination of the other two for the best block size (abouy much tighter upper bound fdrthan a very small sample.
3120 KB vs. 3200 KB). Note that in the case afmacs fairly We choose as our sample the subset of those hashes that are
small block sizes are best for all algorithms, since lardeclo .\, 2v for somes andy. We can decrease the transmission
sizes are not sufficient for identifying the limited amoufit® <t of the sample by sending fewer bits per sampled hash. In
. 0 S€ Veragfarticular, we do not have to send théits used to select the
slightly better than reconciliation (as expected from thevb  gample (since the other side will only compare the samplisto |
ous figure). o own hashes: mod 2v), and we can further reduce the cost of
~ To summarize, the results indicate that the new approach hagch hash by removing additional bits and later correctimg f
significant potential for collections with fairly similaevsions.  the expected number of resulting collisions. (Note that thi
However, to make the algorithm practical, we still need td fin somewhat similar to using a compressed Bloom filter for this
a way to estimate the symmetric difference, and ideally tdso purpose.)
adaptively choose either the Golomb or set reconciliatitat-s In the end, we found that using abagts) -+ 8 bits per sam-
egy based on the underlying data. ple element performed best, whefds the number of samples.
. PR . The samples were then sorted and again Golomb coded, for a
5 Integrating Sampling into the Algorithm net cost of slightly more thahbits per sample element. Sample
Recall that in the previous section, we assumed that th&ze was chosen based on the number of blocks in the file. For
client knows a good upper bound on the size of the symmetriiles of size less than a few KB, no sampling was done, and the



Golomb-based algorithm was used instead of set reconailiat Bpadding
Since samples are sent together with the MD5 and directory |mgmems 60
information, they are sent even for those files that were com-  |Z2mP' 4,
pletely unchanged. (We also experimented with an alteraati Baudlary (o
technique for estimate the difference between the setsllmase
a reduction to Hamming distance as described in [6], but the
observed differences were small and thus we omit the results
from this paper.)

Once we have an estimate t@rwe can also use this in order
to decide whether to use reconciliation or Golomb coding to
transmit the hashes. While such a hybrid approach did nai see &

GCC

400
300
200
100

Traffic (K Bytes)

to give much benefitin the ideal case considered in the pusvio & &
section, it is actually more useful now. The reason is that th I

required padding fodl increases the cost of the reconciliation-
based approach, and sometimes it is now better to use Golomb
coding (which does not rely of) where with exact knowledge

of d we would choose reconciliation.

In Figure 5.1, we compare the following four methods on the
e ot et 2 e SeA1220 iy aifrent . To adcress s probem, v nvest
pling and chooses the best of Golomb and set reconciligt®n, a hybrid method that c_omblnes set rgconmhatlon, Qolomu, a
an algorithm that tries to make this choice based on samplinfgBS: N particular, using our sampling-based estimate ef th
and (4) an algorithm that always uses set reconciliatioogpi |m|_Iar|ty _betvye_en fche two files, the new hybrid applies FBS
for very small files) and that uses sampling only to seléct on files with similarity below some threshold, and chooses be

Both sampling-based methods do significantly better tha®, F8 WWeen Gotlﬁ_mb andhr%c%n::ilit?]tion otherwise.trl]n (Ij:igure 5'"8' Wt
though not quite as well as the idealized algorithm due to thgompare this new nybrid to the previous metnods as wetw as to

overheads of sampling and padding. Overall, the best meth(gﬁ' ifle?tlihzed v?rr]sign oft:]he ?ew h)1_l3rid that always chooses th
with sampling achieves abobi33 KB, versusr60 KB for FBS. estofthe methods without sampling.

Figure 5.2 Costs of various parts of the three algorithms on
gcg for w values of100, 210, and300, with resulting average
block sizes of199, 405, and589, respectively. (Colors in the
charts and on the right are in the same order.)
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In Figure 5.2, we see the contributions of the various data Figure 5.3. A hybrid algorithms with FBS oemacgdata.
structures to the overall transmission cost for three bkizks From Figure 5.3, we observe that the new hybrid algorithm

and three of the methods (excluding FBS, whose internals Wgith sampling does only very slightly better than FBS, while
have not introduced here). We note that the cost of the sanhe idealized version of it does significantly better. Ondtteer
plllng _|tself is fairly Iovv_, while the cost due to padding is 0 hand, when we ran experimentsger, adding FBS into the hy-
significant. Note that in the two methods that can choose frofgrid made almost no difference at all both in the idealistid a
either Golomb or reconciliation, the cost of the evaluatiéor sampling-based case; this is becausgdamost files are very
the best estimates fa (i.e., excluding padding) is very small  similar and thus FBS is almost never a good choice. However,
and hardly visible (the second color from the top in the figure thjs does not mean that the new hybrid is not useful. In fhet, t
Foremacswe observed that the method that uses samplingoint here is that this hybrid performs well over many diéier
plus the best of Golomb or reconciliation does somewhatevorgypes of data sets, matching the best method in each particul
than FBS 8361 KB vs. 3120 KB for FBS), as expected. The case. Also, results for the idealized caseeamacsdndicate that
figure is omitted due to space constraints. additional benefits could be achieved through improved sam-

5.2 A Hybrid Method with FBS pling techniques.

From the above experiments, we can see that FBS sometinfess Estimating a Good Block Size
performs better than methods based on variable block sizes 0 One problem with single-round synchronization algorithms
2This is not the same as the cost for reconciliation in thelidezthod in 'S that performance depends on the choice of the block size. |

Figure 4.3, since we are more likely to choose reconcitiatier Golomb in ~ Would be nice if we could also use our sample in Ord_er to se-
cases where we underestimate the difference between theséiss lect a good block size; unfortunately this sounds easier tha




is. We experimented with several approaches for this. Thefe1] J. Hunt, K.-P. Vo, and W. Tichy. Delta algorithms: An einial analysis.
are two main problems: First, we may need to sample hashes ACM Trans. on Software Engineering and Methodojagy1998.
for several block sizes in order to select the best one, asere [12] U. Irmak, S. Mihaylov, and T. Suel. Improved single-naliprotocols for
ing the sample size. Second, to choose a good block size, it remote file synchronization. IRroc. of the IEEE INFOCOM Conference
does not suffice to estimate the number of blocks that are in March 2005.
common. Instead. we also need to know the compressibility (5*3] U. Irmak and T. Suel. Hierarchical substring cachingefficient content
the unmatched parts gf,..,, since there is a trade-off between S&Ztg'?gﬁgfgr:gxgsr‘z%vggth clients. IRroc. of the 14th Int. World Wide
the size and number of blocks and the size of the unmatch ﬂ . ) . )

ts of the file. O Its indicate that thi bsibi ? ] R.Karp and M. Rabin. Efficient randomized pattern-rhatg algorithms.
parts o 'de |I e. . h,ur reSlé sin |cafe a f 1S Corggre BI0I IBM J. of Research and DevelopmgB1(2):249-260, 1987.
ranges wi .ey within our at.a sets,_ r_or_n a aCtO_rZ more [15] P. Kulkarni, F. Douglis, J. LaVoie, and J. Tracey. Rediamcy elimination
than 10, which means that simply dIVIdln_g the size of the un-" " yithin large collections of files. IWSENIX Annual Technical Conference
matched parts by an “average compression factor” of 4sfoy, 2004.
gzipmethods does not work. Note that this problem of chooS16] J. Langford. Multiround rsync. January 2001. Unpubnmscript.

ing a good block size is not unique to our new methods, but al§@7] v. Minsky and A. Trachtenberg. Practical set recoatitin. Boston Uni-
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