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Abstract
We study the problem of evaluating ranked (top-k)

queries on textual collections ranging from multiple giga-
bytes to terabytes in size. We focus on the case of a global
index organization in a highly distributed environment,
and consider a class of ranking functions that includes
common variants of the Cosine and Okapi measures. The
main bottleneck in such a scenario is the amount of com-
munication required during query evaluation. We pro-
pose several efficient query evaluation schemes and eval-
uate their performance. Our results on real search engine
query traces and over120million web pages show that af-
ter careful optimization such queries can be evaluated at a
reasonable cost, while challenges remain for even larger
collections and more general classes of ranking functions.

1. Introduction

Peer-to-peer (P2P) architectures have received a
tremendous amount of attention over the last five years,
and several classes of applications such as file sharing,
storage, and media streaming have been implemented and
in some cases adopted by large user communities. How-
ever, many other classes of internet applications are still
predominantly provided by more centralized systems. In
particular, one type of application that appears to be very
challenging to implement in a P2P architecture is the ef-
ficient searching of very large textual collections, as re-
quired by web search engines and large-scale digital li-
brary systems. This issue has recently begun to receive
some attention in the research community, but there are
still many obstacles that need to be overcome.

In particular, one of the main obstacles is the efficiency
of top-k query processing in P2P systems, i.e., the prob-
lem of retrieving the highest-scoring say10 or 100 doc-
uments for a given set of query terms under some ap-
propriate scoring function. This problem has been ex-
tensively studied in the Information Retrieval and Web
Search Communities. Query processing consumes a sig-
nificant amount of resources even in the current central-
ized search engines, but additional challenges arise in a
wide-area distributed environment with bandwidth and la-
tency constraints.

In this paper, we study the problem of efficiently ex-
ecuting such top-k queries on textual collections ranging
from multiple gigabytes to terabytes in size. On such large
collections, each of the terms in a typical user query has
hundreds of thousands or even hundreds of millions of oc-
currences in the collection; this results in very long in-
verted list index structures that slow down query process-
ing. As a result, this scenario is quite different from search
in smaller textual collections or in multimedia collections
where each large multimedia object (video, audio) is ac-
companied by only a fairly small amount of textual meta
data. In a nutshell, in the latter scenario the main problem
is to locate the index structures that can be used to retrieve
possible matches for the query (often in very dynamic en-
vironments), while in our case the main challenge is to
compute the top-k results out of many millions of possible
matches once the index data has been located (a hard prob-
lem even in relatively stable wide-area environments).

There are several different ways to organize a text index
(inverted index) structure in a distributed environment, in
particularlocal index organizationandglobal index orga-
nizationand several proposed hybrids. We focus on the
case of a global index organization in a highly distributed
environment, and consider a class of ranking functions
that includes common variants of the widely used Co-
sine and Okapi measures. The main bottleneck in such a
scenario is the amount of communication (bandwidth) re-
quired during query evaluation. Our results on real search
engine query traces and over120 million crawled web
pages show that after careful optimization such queries
can be evaluated at a reasonable cost. On the other hand,
challenges remain for even larger collections and for more
general classes of ranking functions.

2. Technical Background

Text Index Structures: Most Text Information Re-
trieval systems use a text index structure calledinverted
index, which allows efficient retrieval of documents con-
taining a particular set of words (orterms). We assume
that each document (e.g., web page in the case of a search
engine) is identified by a uniquedocument ID(docID),
e.g., assigned through hashing or enumeration. An in-
verted index consists of manyinverted lists, where each

1



inverted listIw contains the IDs of all documents in the
collection that contain the wordw, sorted by document
ID or some other measure, plus possibly some additional
information about each occurrence. Inverted indexes are
usually stored in highly compressed form on disk, and
many compression techniques have been studied [28, 19].

Term-Based Ranking: We assume that each query
consists of a set of words (query terms). The most com-
mon way to perform ranking is based on comparing the
words contained in the document and in the query. More
precisely, documents are modeled as unordered bags of
words, and a ranking function assigns a score to each doc-
ument with respect to the current query, based on the fre-
quency of each query word in the page and in the overall
collection, the length of the document, and maybe the con-
text of the occurrence (e.g., higher score if in title or bold
face). Formally, given a queryq = ft0; t1; : : : td�1g withd terms, aranking functionF assigns to each documentD a scoreF (D; q). The system then returns the docIDs of
thek documents with the highest score. One popular class
of functions is theCosine Measure[28], for exampleF (D; q) = d�1Xi=0 w(q; ti) � w(D; ti)pjDj ;
wherew(q; t) = ln(1+n=ft), w(D; t) = 1+ln fD;t, andfD;t andft are the frequency of termt in documentD and
in the entire collection, respectively. We note that a query
under such a ranking function can be efficiently evaluated
on the collection by traversing the inverted lists of all the
query terms and computing the scores of any encountered
documents in passing, using the information embedded in
the index plus some global tables with information on doc-
ument sizes and global term frequencies.

A crucial observation for our work here is thatF (D; q)
is the sum (or other simple combination) of scoresfD;ti ,
in the above casefD;ti = w(q; ti) � w(D; ti)=pjDj.
Many other common ranking functions, such as Okapi,
also share this property. For our purposes, it is often con-
venient to think of each inverted listIw as a sequence of
items(D; fD;w)whereD is the docID of a document con-
tainingw, sorted by eitherD orfD;w (i.e., we may assume
that thefD;w are precomputed though in a real implemen-
tation this is usually done on the fly).

Index Partitioning: In a parallel or distributed search
engine, the inverted index structure is partitioned over a
number of machines. There are two basic distributed in-
verted index organizations, calledlocal andglobal index
organization. The two index organizations are illustrated
in Figure 2.1. In a local index organization, each node is
assigned a subset of the document collection and creates
its own inverted index on these documents only. Thus,
every node has its own (shorter) inverted list for words
such as “chair” or “ table”, and a query “chair, table” is
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Figure 2.1. Query processing with a local (left) and
global (right) index.

first broadcast by a frontend calledquery integratorto all
nodes; then the top-k results from each node are merged
into a global top-k list at the frontend. In a global index
organization, each node holds the complete inverted lists
for a subset of the words as determined, e.g., by hash-
ing. Thus, every node has a smaller number of (longer)
lists, and under the most basic query execution strategy a
query “chair, table” is first routed to the node holding the
shorter list, say “chair”, which then sends its complete list
to the node holding the list for “table”. Hybrids between
the two organizations are also known, and performance
comparisons of local, global, and hybrid organizations on
centralized parallel systems appear, e.g., in [1, 5, 27].

In a nutshell, the main challenge in a local index is
that many nodes need to be contacted for each query, re-
sulting in a large number of small messages. On other
hand, a global index may require an amount of data pro-
portional to the length of the shortest inverted list in the
query to be transmitted, resulting in a few very large mes-
sages. Thus, at least under the naive execution strategies
outlined above, a local index is unlikely to scale beyond
a few hundred nodes, and a global index unlikely to scale
beyond a few million documents. In the local index case,
there are some optimizations that may allow us to answer
many queries by only contacting a carefully chosen subset
of “promising” nodes [13, 25, 11, 20, 6].

In this paper we assume a global index organization.
As we describe later, there are several techniques that al-
low query execution in this case without transmitting com-
plete inverted lists, and these are the subject of this paper.
Note that we are not trying to advocate any particular in-
dex organization, and there are many scenarios where a lo-
cal organization may be preferable. We believe that both
organizations are of interest and merit further study, and
in some cases hybrid organizations may turn out to be the
overall best choice.

Possible Architecture of a P2P Search Engine:An
example of a P2P search engine or IR system with a global
index organization is shown in Figure 2.2, which is based



on our previous work on the ODISSEA project [23]. In-
verted lists are mapped to a set of peers, by employing an
underlying DHT substrate such as [22, 29, 18]. Queries
are issued by clients outside the P2P system that may act
as query integrators or delegate this role to a better con-
nected node within the P2P system. Clients might also
act as intermediaries (search servers) that forward queries
issued by web clients and relay back the results. In the
case of a web search engine, crawling might be done by
the peers, orcrawl clientsmight fetch documents and then
insert them into the P2P system.

Peer-to-Peer

Query

Evaluation

Table

queries

Peer

A

Peer

B

Peer

C

Peer

D

Peer

E

Client
Client

Search

Server

Client

queries

queries

Chair

Door

Figure 2.2. A possible P2P search architecture.
Given a query, a query integrator first retrieves the loca-

tions of the relevant inverted lists plus maybe certain meta
data (e.g., collection statistics) through DHT lookups, and
then uses this data to design a goodquery execution plan
that specifies how peers communicate with each other dur-
ing query execution. As we will see, there are many pos-
sible execution strategies, and the best choice depends on
the particular query.

Bloom Filter: A Bloom Filter [3, 4, 15] is a data struc-
ture that represents a set of elements and supports mem-
bership test queries (i.e., “Is this element in the repre-
sented set?”). The advantage of a Bloom Filter is that it
uses significantly less space than a dictionary or hash ta-
ble of the elements in the set. On the other hand, there
is a small false positive rate that can be traded off against
space (i.e., some elements may be reported as being in the
set when they are not), and a Bloom Filter cannot retrieve
a list of the elements in the represented set (we can only
test if a given element is in the set).

Bloom Filters have been widely used in network appli-
cations [4]. In particular, they can be used to efficiently
compute the intersection between two sets stored on dif-
ferent machines. We note that many search engines only
return results that contain all of the query terms. As ob-
served in [17, 12], this means that significant savings can
be obtained during query execution under a global index
organization, by first sending a Bloom Filter of the docIDs
in the shortest inverted list, rather than the complete list,
to the next node. Many of the docIDs in the shortest list
will not find a match in the other lists, and thus we only

have to send a small subset of the items in the shortest in-
verted list in a second round-trip, at which point any false
positives can be detected. As shown in [12], an order of
magnitude in bandwidth savings can be obtained by us-
ing one or more rounds of Bloom Filter exchanges before
sending the actual index items. The approach works for a
very wide range of ranking functions, but requires that all
results contain all query terms.

It is observed in [15] that additional moderate savings
can be obtained by applying standard compression tech-
niques to Bloom Filters, resulting inCompressed Bloom
Filters. In this paper, all Bloom Filters are in compressed
form. We note that for small false positive rates, the best
Compressed Bloom Filter reduces to simply hashing all
elements to a large enough domain, sorting the hash val-
ues, and then compressing the gaps between them using
either arithmetic or Golomb coding.

Top-k Pruning Algorithm: Over the last decade, a
number of algorithms have been proposed in the IR and
database communities that allow computation of top-k re-
sults without scanning over the entire inverted lists; see
e.g., [7, 8, 16]. The basic idea is to order each inverted list
in a smart fashion, such that we can find the top results by
scanning only a small part of the list. In particular, Fagin
[7, 9] described several algorithms that are very useful in
our scenario.

We now describe the first algorithm, calledFagin’s Al-
gorithm (FA). Assume that items(D; fD;w) in each in-
verted list are sorted in descending order by the valuefD;w. Now simultaneously scan all lists from the begin-
ning, and stop when there arek docIDs that have been en-
countered in every list. Note that for thesek docIDs, we
know their precise scores at this point. Now for any do-
cID encountered in only some of the lists so far, perform a
lookup into the other lists to determine its complete score.
The claim is that at this point we know all the top-k re-
sults and their precise scores. The algorithm is illustrated
in Figure 2.3.
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Figure 2.3. Fagin’s Algorithm on terms “chair” and “ta-
ble”. The first4 postings in each list have been scanned,
and2 documents (a andb) have been encountered in both
lists. If k = 2, then we can stop at this point. Other doc-
uments such as
 andd were encountered in only one list,
and a lookup is used to find them in the other list. Ford,
the lookup fails becaused does not contain “chair”. (Doc-
uments not containing a term are shown in outlines at the
end of each list, but would not be stored in an index.)



A variation of the algorithm, called theThreshold Al-
gorithm (TA) [7, 9], performs random lookups into the
other lists to compute the precise score as soon as a new
docID is discovered during the scan, and the stopping con-
dition is modified as follows: In every step, we combine
the scores of the last item scanned in each list; we stop
if this value is smaller than thek-th largest score com-
puted thus far. It is easy to show that this also guarantees
correct top-k results, and that it never stops later (in fact,
usually much earlier) than FA. It is shown in [7] that if
the orderings of the documents in the different lists are
independent, then the algorithm is expected to terminate
after looking atO(pkn) entries in each list, wheren is
the number of documents in the collection (not the length
of the list). In the case ofm lists, the bound becomesO(nm�1m k 1m ). Thus, for long lists and few query terms,
this can be significantly better than scanning the entire list.
If terms are positively correlated, then the result improves.
Note that the result is independent of the actual “shapes”
of the distributions of thefD;ti , though refinements could
potentially exploit special cases such as Zipfians.

In [23], we applied the Threshold Algorithm to the
query processing problem in a P2P environment with
global index organization. The preliminary results on2-term queries in [23] indicated that for this case, very
significant benefits can be obtained even with a fairly
straightforward implementation. We note that this ap-
proach is limited to ranking functions of the formF (D; q) = Pd�1i=0 fD;ti (or some combining functions
other than the sum, such as maximum or minimum).
While this does include classes of functions such as Co-
sine and Okapi that are popular in the IR literature, it
does not include the use of term distance (how far apart
are the different terms in the document?) as commonly
done in web search engines. One the other hand, the ap-
proach does allow the integration of global measures such
as Pagerank or visit popularity, and it also works for rank-
ing functions with OR semantics, i.e., when we do not
require all terms to occur in the results. (In fact, perfor-
mance tends to improve in these cases.)

3 Discussion of Related Work

We have already discussed much of the relevant previ-
ous work on text query processing in P2P systems, and
thus we now only provide a very brief summary. Our
work is most closely related and also motivated by the
work on query processing under a global index organi-
zation in [17, 12, 10] and by our own previous work in
[23]. Essentially, our goal in this work is to combine the
optimizations in [17, 12] based on Bloom filters with the
pruning-based algorithms based on [7] that were used in
[23], and to evaluate the performance of the resulting new
algorithms on different types of queries. In the process,
we noticed that there was a large space of possible exe-

cution plans, particularly for queries with multiple terms,
that deserves to be explored.

There has also been a significant amount of recent
work on query processing under local index organizations
[6, 11, 20, 26, 25, 13]. Much of this work is concerned
with the problem of finding the best results without broad-
casting each query to all peers in the network, by selecting
a subset of nodes that are particularly promising for the
given query or that are close by. This is typically done us-
ing techniques similar to thedatabase selectionproblem
studied in the context of distributed databases and meta
search engines; see [14] for a survey of some techniques.
The problem with this approach is that it implicitly relies
on the collection to be nicely clustered and the queries to
be well-behaved with respect to the given clustering, and it
could be argued that for terabyte size data sets and the di-
verse types of information needs evident in real search en-
gine traces there are severe limits to such techniques. On
the other hand, the results appear to perform well on more
limited data and network sizes, and there are some signif-
icant advantages to local index organizations that create
and maintain index structures at the place where the con-
tent resides. Finally, we note that a very interesting hybrid
approach between local and global index organization was
recently proposed in [24].

4. Contributions of this Paper

We study top-k query processing on large textual
collections in a wide-area distributed environment with
global index organization. We refine and combine several
previous approaches and show significant performance
gains. In particular:
(1) We address the challenges posed by queries with

three and more keywords. Such queries account for
a disproportionate fraction of the total cost of query
processing, and there are many possible and some-
times nonobvious execution plans that can be used.

(2) We combine the Bloom Filter approach in [17, 12]
and the top-k pruning approach used in [23] to obtain
additional performance gains.

(3) We perform an evaluation on a large data set and
real search engine queries. Our results indicate sig-
nificant benefits from combining several approaches,
and show that different algorithms should be used de-
pending on the number of keywords and the lengths
of the lists.

There are many open problems and a few loose ends left
by our work. We expect moderate additional benefits (say,20�30%) through a few extra optimizations in the Bloom
Filter and pruning strategies, and plan to include these in
a later version. Our main focus is on total bandwidth con-
sumption. We are confident that our approaches are imple-
mentable with low CPU cost and reasonable total latency,
but we do not evaluate this aspect here.



5. Policies for Distributed Query Execution

In this section, we describe several different policies
for distributed query evaluation. We first give theSimple
Algorithm (SA) and theDistributed Threshold Algorithm
(DTA) as our basic algorithms. Then we present three
more advanced policies called theBloom Circle Threshold
Algorithm(BCTA), theBloom Petal Threshold Algorithm
(BPTA), and theSimple Bloom Petal Algorithm(SBPA).

5.1. Simple Algorithm (SA)

Recall that the inverted lists are distributed over the dif-
ferent peers in the peer-to-peer environment. To obtain the
top-k results, the most straightforward way is to send all
lists to one node and then evaluate the query as in a stan-
dard centralized search engine. While the length of the in-
verted lists ranges from less than 1 KB to more than 1 GB,
it is typically in the tens to hundreds of MB for our collec-
tion of 120 million pages. So the total cost of transferring
all the lists would be prohibitive most of the time. One
alternative way is to combine lists step by step in order of
the lengths of the lists; we call this theSimple Algorithm:
(1) All peers are arranged in ascending order by the

lengths of the relevant lists they hold. The first peer
sends its entire list of items(D; fD;t) to the second
peer in the sequence.

(2) The second peer does local lookups on its inverted
list to compute the intersection of the two lists. After
computing the combined scores for the two terms, it
sends the new result list to the next peer.

(3) Each peer repeats this as in Step (2) and adds its
scores to the intersection results. The last peer then
returns thek docIDs with the highest scores.

The total cost ofSAmainly depends on the length of the
shortest list, since the number of items in the intersection
tends to decrease rapidly with each intersected list.

5.2. Distributed Threshold Algorithm (DTA)

Since theSimple Algorithmtransfers the entire short-
est list to the second peer, its cost is at least the length of
the shortest list multiplied by the number of bytes needed
to present each item. If all inverted lists for the query
are large,SA is very inefficient. To ameliorate the prob-
lem, we introduce another algorithm called theDistributed
Threshold Algorithm(DTA).

DTA is based on theThreshold Algorithmproposed in
[7] and applied to P2P query processing in [23], and it
decreases the total cost of query evaluation using prun-
ing techniques. A query integrator in DTA, upon receiv-
ing a query withm terms, splits it intom independent
subqueries and issues each one to a corresponding peer
called the leader of this subquery. All subqueries execute
in parallel. Each subquery scans only the prefix of the in-
verted list located at the leader, and continually forwards

the scanned items to the peer other than the leader that
has the shortest list, who will forward it to the other peers
in a chain as in SA. Once a subquery obtains a new re-
sult in the intersection of the leader’s prefix and all other
lists, the new result is forwarded to the query integrator
who maintains the current total top-k results from all sub-
queries. The threshold used to decide when to stop in TA
is also updated regularly, and the query integrator notifies
all leaders once the termination condition of TA is satis-
fied, or once one leader reaches the end of its list.

To control the cost of updating the threshold at the
query integrator, we partition the lists into blocks of a cer-
tain size. Whenever the leader sends a block of items to
the next node, it attaches the current value at the scan fron-
tier to allow the query integrator to update the threshold.
(Alternatively, this value could also be directly sent to the
query integrator.) Also, by limiting the rate at which data
is sent out, we can make sure that not too much data is in
intermediate nodes at the time the query integrator stops
the process, as this data has no impact on the final result.

DTA decreases the query execution cost greatly for
queries with few terms, but as we will see performance
declines rapidly for larger numbers of terms. Recall
that this is due to the fact that the total cost of DTA is�(mnm�1m k 1m ), wheren is the number of documents in
the collection (not the length of the list) andm the number
of terms in the query. In our case,n will be 120 million,
and thus every time we increasem there is a significant
increase in themnm�1m term.

5.3. Bloom Circle Threshold Algorithm (BCTA)

This is our first new algorithm, and its idea is to im-
prove DTA by integrating Bloom Filters; we call it the
Bloom Circle Threshold Algorithm(BCTA). As before,
each query is split intom independent subqueries, one for
each query term. But instead of sending out the actual
items in the prefix of the leader node block by block, we
first circulate a Compressed Bloom Filter of each block
between a select subset of the other peers, and then only
send items in the prefix likely to be in the intersection.
Thus, we have two phases, a Bloom Filter Circle phase
and a second phase as in DTA; these are overlapped.

After the Bloom Filter of the first block of the leader’s
prefix arrives at the next node, it is processed as follows.
Note that each block usually contains far fewer items than
any of the complete lists; this implies that the optimal
compressed Bloom Filter for this case uses only a single
hash function, with Golomb coding of the resulting filter
for good and fast compression. Thus, we can perform re-
verse lookups from the decompressed Bloom Filter (rep-
resented as a sorted list of hash values) into the inverted
list at the receiving peer, assuming that the inverted list
is organized to efficiently support such lookups. Any hash
value (bit) in the Bloom Filter that does not find a match is



erased, resulting in improved compression as the thinned-
out Bloom Filter is forwarded to each subsequent peers
that participates in this circle. Thus, the time spent on
each block is proportional to the size of the block and not
the size of the inverted list at the receiving peer.

As it turns out, it is sufficient to circulate the Bloom
Filters to only a subset of the peers, say the1 to 3 peers
with the shortest inverted lists other than the leader. Once
the thinned-out Bloom Filter returns to the leader, only
the surviving items are sent to the peers along the chain
as in DTA. At the same time, of course, additional Bloom
Filters are already circulating. As before, the query inte-
grator maintains the current top-k results and eventually
stops the process.
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Figure 5.1. Bloom Circle Threshold Algorithm on a sub-
query of a5-term query, with coordinatorF , leaderA,
and peers labeledB toE in ascending order of the length
of their inverted lists.A first circulates a Bloom Filter of
each block in its prefix toB andC, and then sends any
remaining items in the block through all the peers to the
coordinator as in DTA.

An example of BCTA on a5-term query is shown in
Figure 5.1. There are a number of choices to be made in
the implementation. We need to decide how many peers
should participate in the initial Bloom Filter Circle, and
how many bits to use for the domain of the hash function.
A small domain results in a smaller Bloom Filter but also
more false positives that result in increased communica-
tion in the second phase. In the second phase, we could
decide to first send the remaining elements to those peers
not participating in the Bloom Filter Circle, but this is not
performance critical anymore.

5.4. Bloom Petal Threshold Algorithm (BPTA)

One problem with BCTA is that the inverted lists of the
peers participating in the Bloom Filter Circle may be of
very different size. To avoid too many false positives, the
domain of the hash function for the Bloom Filter should
be chosen somewhat larger than the longest list into which
reverse lookups are performed. But doing so increases the
size of the Bloom Filter, and the increased domain is only
needed at the last peer in the circle. Thus, it makes sense
to separate the Bloom Filter Circle into several petals, one

for each peer in the circle. Each petal consists of a Bloom
Filter sent to the peer, and a thinned-out andcompacted
Bloom Filter returned to the leader. Bycompactedwe
mean that the peer uses the fact that the thinned-out Bloom
Filter is a subset of the Bloom Filter that was sent by the
leader; this allows us to improve compression in the reply
by removing all positions that were already zero in the
received Bloom Filter from the domain.

Thus, Bloom Filters are exchanged between leader and
peers in a number of petals, where in each petal we can
choose the optimal domain size of the hash function based
on the length of the inverted list at that peer. We call
the resulting scheme theBloom Petal Threshold Algo-
rithm. Note that in principle we could use several rounds
of Bloom Filter exchanges between the leader and each
peer, but this does not seem to have much benefit in the
asymmetric case of a small block or prefix of items being
intersected with a typically much larger complete list.

5.5. Simple Bloom Petal Algorithm (SBPA)

This algorithm is actually quite similar to the approach
based on Bloom Filters proposed in [17, 12], and should
have similar performance. We present it last since we de-
cided to adopt some of the communication structure of the
just described BPTA algorithm into it.

TheSimple Bloom Petal Algorithmis derived from the
Simple Algorithm. Thus, instead of creating subqueries
that each scan the prefix of one of the lists, we compute
again the complete intersection between the shortest list
and the other lists with no attempt at top-k pruning. How-
ever, instead of sending the entire shortest list, we first
perform a few rounds of Bloom Filter exchanges with the
other peers, by forming a number of petals with other
peers, starting with the peer with the second-shortest in-
verted list. For each petal we choose the optimal size of
the hash function domain based on the number of items
involved on both sides. After all Bloom Filter steps have
been performed, we start sending the surviving items in
the shortest list along the path of the other peers, as in the
Simple Algorithm. Thus, we use the petal structure from
BPTA, but the second phase follows the simple algorithm.

6. Experimental Evaluation

In this section, we provide an experimental evalua-
tion of the various presented algorithms. Due to space
constraints, we can only present our main observations.
We start out with a description of the experimental setup.
We used real search queries selected from a large log of
queries issued to the Excite search engine from 9:00 to
16:69 PST on December 20, 1999. We ignored queries
with stopwords and with words that do not appear in our
data collection (e.g., very unusual words or typos). The
table below shows the percentage of queries with different
numbers of terms in the complete trace.



# of terms 1 2 3 4 5 6 > 6
% of queries 18.50 34.58 20.54 11.23 7.05 4.09 4.01

Table 6.1. Percentage of queries withx terms.

Since the communication cost of one-term queries in
our environment is trivial, we did not include these queries
in our experiments. From Table 6.1 we can see that nearly96% of all queries have at most6 terms. For our exper-
iments, we sampled queries from the traces such that we
have500 queries for each number of terms from2 to 6,
and500 queries with more than six terms, for a total of3000 queries. The results are of course properly weighted
by frequencies when we report average performance num-
bers for all (including single-term) queries. The document
set we use consists of about120millon web pages crawled
by the PolyBot web crawler [21] in October of 2002, with
a total uncompressed size of about1:8 TB. The total size
of a highly compressed inverted index on the collection
is slightly above200 GB, and for the average query the
shortest inverted list contains almost a million elements.

After mapping the docIDs to a reasonable domain, we
expect that each item(D; fD;t) can be represented in
about8 bytes under suitable compression and with negli-
gible collision rate; thus we charge8 bytes for each trans-
mission of a complete item. Note that in our evaluation,
we simulate all algorithms in a centralized environment
and report numbers on the bandwidth consumption of the
various methods.

6.1. Evaluation of All Algorithms

# of terms shortest longest DTA prefix DTA cost SA cost

2 992 6,812 10 160 7,938
3 887 10,947 33 819 8,669
4 874 18,300 96 3,205 8,922
5 707 25,429 177 7,368 7,167
6 591 25,964 263 13,206 5,988> 6 318 26,733 225 14,007 3,119

Table 6.2. Comparison of the Distributed Treshold Al-
gorithm and the Simple Algorithm on top-10 queries (all
numbers in KB or thousands of elements).

In Table 6.2, we compare the cost of SA and DTA. The
second column shows the average length of the shortest in-
verted list participating in the query, which decreases with
the number of query terms since with more terms there
is a better chance of having at least one rare term. Con-
versely, the length of the longest list, shown in the third
column, increases with the number of terms. The fourth
column shows the number of elements in each prefix, in
thousands, that are scanned before the query integrator
stops execution of DTA, and the fifth column shows the
bandwidth consumption of DTA in KB. Finally, the last
column shows the cost of SA. Not surprisingly, DTA does
much better for few query terms, while SA becomes better
for 5 and more terms. Of course, DTA never scans further
than the length of the shortest list, but when it does reach
the end of the list, each of the subqueries in DTA has con-

sumed about as much bandwidth as SA and it would have
been smarter to just focus on the shortest list.

Figure 6.1. Comparison of SA, DTA, and SBPA.

We can see this result more clearly in Figure 6.1, which
also shows the performance of the Simple Bloom Petal
Algorithm. As we see, SBPA is much better than SA, due
to its use of Bloom Filters. While SBPA also looks much
better than DTA, we note that DTA is still best for2 and3 query terms, and once we add Bloom Filters into the
DTA approach to get the BCTA and BPTA policies the
comparison will become much closer again.

Before evaluating BCTA and BPTA, we performed ex-
periments on the optimal choice of the hash domain in
BCTA; details are omitted due to space constraints. We
observed that, as discussed in the motivation for BPTA,
there was often no clear way to optimally choose the hash
domain if two or more peers participate in the Bloom Cir-
cle. However, on average the best strategy used up to three
peers in the Bloom Circle and chose the hash domain as
about four times the length of the longest list in the circle.

Figure 6.2. Comparison of BCTA, BPTA, and SBPA.

Figure 6.2 compares the total costs of BCTA, BPTA,
and SBCA. Note that the Bloom Petal Threshold Algo-
rithm consistently outperforms the Bloom Circle Thresh-
old Algorithm due to the better choice of hash domains,
though only by a moderate amount. Both methods
also now outperform the Simple Bloom Petal Algorithm
(which is comparable in performance to the Bloom Filter



method in [12]) for queries with up to4 terms. We also
show the costs of the different phases of the algorithms,
indicating that the first Bloom Filter steps in BCTA and
BPTA typically dominate the total cost, as one would ex-
pect. Finally, when averaged over the entire query distri-
bution, which contains many short queries, the methods
based on top-k pruning outperform SBPA by a factor of2.

6.2. Selecting the Best Approach for Each Query

As we have seen, BPTA appears to perform best for
queries with up to4 terms while SBPA is better for longer
queries. This motivates the simple policy for selecting the
best method for each query shown in Table 6.3, which also
specifies the best setting of the number of Bloom Filter
petals and the size of the hash domains for the Bloom Fil-
ters. (A value of4 bits means that the domain is chosen as24 times the length of the longer inverted list.)

# of terms algorithm BF steps BF bits

2 BPTA 1 5
3 BPTA 2 4
4 BPTA 3 4
5 SBPA 4 2
6 SBPA 5 2> 6 SBPA 5 2

Table 6.3. Selecting the best algorithms and parameters.

# of terms shortest list (K) algorithm BF steps BF bits

2 � 30 SBPA 1 3
2 > 30 BPTA 1 5
3 � 100 SBPA 2 2
3 > 100 BPTA 2 4
4 � 300 SBPA 3 2
4 > 300 BPTA 3 4
5 � 4; 000 SBPA 4 2
5 > 4; 000 BPTA 4 5
6 All SBPA 5 2> 6 All SBPA 5 2

Table 6.4. An improved selection policy.

A second policy proposed in Table 6.4 also takes the
length of the shortest inverted list into account. In Fig-
ure 6.3 we compare the two policies to an optimal but in-
feasible policy that always chooses the right algorithm and
set of parameters for each query. We see that both policies
come quite close to the optimal, with the second policy
doing slightly better as it takes the length of the shortest
inverted list into account. The optimal approach requires
about191 KB of bandwidth for the average query, while
the second policy has a cost of about218 KB. Some im-
provements in the policy might be possible for4 and 5
terms, where there is still a gap between the optimal and
the feasible policies.

In Figure 6.4 we compare the frequency of queries with
a particular number of terms with their total impact on the
average cost. As we see, while most queries are short,

Figure 6.3. Comparison of different selection policies.

queries with4 or more terms are responsible for a dispro-
portionate amount of the total cost.

Figure 6.4. Average cost versus frequency of queries
with different numbers of terms.

Finally, in Figure 6.5, we provide an estimate on how
these numbers would change for a collection with3 billion
web pages, i.e.,25 times our test set. The cost of SBPA
would increase approximately linearly, while the behavior
of BPTA is more complicated but much better than lin-
ear in the collection size for2 and3 query terms. Details
are omitted due to space constraints, but we observe an
average cost of over3 MB per query that would be unac-
ceptable in most scenarios.

7. Concluding Remarks

While our results show a reasonable cost for query pro-
cessing with up to120 million web pages, there are still
a number of challenges that need to be overcome before
large-scale P2P web search engines can become a real-
ity. We note first that some additional optimizations in the
Bloom filter implementation, plus some optimizations in
the pruning schemes such as earlier termination and vari-
able scan speeds depending on the relative list lengths,
should result in additional benefits in the range of maybe20� 30%. Some extra benefits would result from the use
of caching techniques [2] or hybrid organizations such as



Figure 6.5. Estimated cost of policies on3 billion pages.

[24]. However, the cost of query processing on3 billion
pages would likely remain high.

Another challenge is how to support ranking functions
that use the distance between query terms in the docu-
ment, as commonly done in current web search engines.
We have some initial promising ideas in this direction that
we plan to explore. Finally, there are a number of chal-
lenges other than query processing, such as index updates
and dynamic changes in the network topology that a real
system would have to deal with. Even if large-scale P2P
search becomes feasible, it is not clear that it would be
preferable to a centralized architecture. On the other hand,
we hope that some of the same techniques will turn out to
be useful for real search problems on more moderate (but
still large) widely distributed textual collections.
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