Efficient Query Evaluation on Large Textual Collections
in a Peer-to-Peer Environment

Jiangong Zhang Torsten Suel

CIS Department
Polytechnic University
Brooklyn, NY 11201

zjg@is. poly.edu suel @oly. edu

Abstract In this paper, we study the problem of efficiently ex-
We study the problem of evaluating ranked (fop- ecuting sgch t(_)ﬂr,- queries on textual_ coI_Iectlons ranging
from multiple gigabytes to terabytes in size. On such large

ueries on textual collections ranging from multiple giga- : . .
d ging P'e 919 %ﬁllecnons, each of the terms in a typical user query has

bytes to terabytes in size. We focus on the case of a glo L
index organization in a highly distributed environmentt,)hundreds O_f thousands qreven_hundreds.ofmllllons of_oc-
urrences in the collection; this results in very long in-

and consider a class of ranking functions that include$

common variants of the Cosine and Okapi measures. Tﬁlgrted list index structures that slow down query process-

mein botteneck in such a soenario s the amourt of conf . 2 S50 - CSen D S R O
munication required during query evaluation. We pro- here each large multimedia object (video, audio) is ac
pose several efficient query evaluation schemes and eval- ge muiti ') video, audio) |

uate their performance. Our results on real search engin&ompamed by only a fairly small amount of textual meta

query traces and over20 million web pages show that af- _data. In a nutshell, in the latter scenario the main problem

ter careful optimization such queries can be evaluated at Y to I_(;(I:ate tr:ehlnd?x st:]ructures th?tt can be us;d to rgtneve
reasonable cost, while challenges remain for even Iarge’?OSSI e matches for the query (often in very dynamic en-

collections and more general classes of ranking functioné’.'ronments)’ while in our case the main challenge. IS to
compute the togkresults out of many millions of possible

i matches once the index data has been located (a hard prob-
1. Introduction lem even in relatively stable wide-area environments).

Peer-to-peer (P2P) architectures have received aThereareseveraldlf'ferentwaystoorgamzeatextmdex

tremendous amount of attention over the last five yearé',nverted index_) structure i!“ a Qistributed environmetmt, !
rticularlocal index organizatiomndglobal index orga-

and several classes of applications such as file sharin%f,l . d | d hvbrids. We f h
storage, and media streaming have been implemented a gationand several proposed hybrids. We focus on the

in some cases adopted by large user communities. HoS¢€ of a global index o_rganization in a highl_y distribu_ted
ever, many other classes of internet applications are sti nwr_onment, and CO”S'dGF a class of ra_nklng functions
at includes common variants of the widely used Co-

predominantly provided by more centralized systems. In.

particular, one type of application that appears to be ve ne ar!d Qkap| measures. The main l_JottIeneck n such a
challenging to implement in a P2P architecture is the e Scenario is the amount of communication (bandwidth) re-

ficient searching of very large textual collections, as reguired during query evaluation. Our results on real search

quired by web search engines and large-scale digital IEngine query traces and over0 m_|II|_on _crawled web .
brary systems. This issue has recently begun to receiP@9es show that after careful optimization such queries
some attention in the research community, but there affn be evaluateo_l at a reasonable cost. .On the other hand,
still many obstacles that need to be overcome. challenges remain for even larger collections and for more

In particular, one of the main obstacles is the efﬁc:ienC)ger]er"’lI classes of ranking functions.
of top-k query process_ing in P2P _systems, i.e., the probz_ Technical Background
lem of retrieving the highest-scoring s&g or 100 doc-
uments for a given set of query terms under some ap- Text Index Structures: Most Text Information Re-
propriate scoring function. This problem has been extrieval systems use a text index structure caltedrted
tensively studied in the Information Retrieval and Wehindex which allows efficient retrieval of documents con-
Search Communities. Query processing consumes a sigining a particular set of words (éermg. We assume
nificant amount of resources even in the current centrathat each document (e.g., web page in the case of a search
ized search engines, but additional challenges arise inemgine) is identified by a uniqudocument ID(doclID),
wide-area distributed environment with bandwidth and lae.g., assigned through hashing or enumeration. An in-
tency constraints. verted index consists of mangverted lists where each

inverted list,, contains the IDs of all documents in the
collection that contain the word, sorted by document

)

ID or some other measure, plus possibly some additional T — —
. . . O | E— O —
information about each occurrence. Inverted indexes are |me—| |@me—| |@E— | e [
usually stored in highly compressed form on disk, and| |=— | |[=—=]| [] [— 0

many compression techniques have been studied [28, 19.
Term-Based Ranking: We assume that each query
consists of a set of words (query terms). The most com
mon way to perform ranking is based on comparing the s -~
words contained in the document and in the query. Morg imegrator integrator
precisely, documents are modeled as unordered bags of
words, apd a ranking function assigns a score to each doc- Figure 2.1 Query processing with a local (left) and
ument with respect to the current query, based on the fre-
guency of each query word in the page and in the overall
collection, the length of the document, and maybe the con-
text of the occurrence (e.g., higher score if in title or boldirst broadcast by a frontend calledery integratorto all
face). Formally, given a query = {to,t1,...t4 1} With nodes; then the top-results from each node are merged
d terms, aranking functionF" assigns to each documentinto a global topk list at the frontend. In a global index
D ascoreF'(D, q). The system then returns the doclIDs oforganization, each node holds the complete inverted lists
thek documents with the highest score. One popular clagser a subset of the words as determined, e.g., by hash-

global (right) index.

of functions is theCosine Measurg28], for example ing. Thus, every node has a smaller number of (longer)
lists, and under the most basic query execution strategy a

F(D.q) = di‘l w(q,t;) - w(D,t;) query ‘chair, table” is first routed to the node holding the

4= p D] ' shorter list, say¢hair”, which then sends its complete list

to the node holding the list fortdble”. Hybrids between
wherew(q, t) = In(1+n/f,), w(D,t) = 1+In fp,, and the two organizations are also known, and performance

fp.: andf; are the frequency of termrin documentD and comparisons of local, global, and hybrid organizations on
in the entire collection, respectively. We note that a querg€entralized parallel systems appear, e.g., in [1, 5, 27].
under such a ranking function can be efficiently evaluated In a nutshell, the main challenge in a local index is
on the collection by traversing the inverted lists of all thethat many nodes need to be contacted for each query, re-
query terms and computing the scores of any encounterédlting in a large number of small messages. On other
documents in passing, using the information embedded iand, a global index may require an amount of data pro-
the index plus some global tables with information on docportional to the length of the shortest inverted list in the

ument sizes and global term frequencies. query to be transmitted, resulting in a few very large mes-
A crucial observation for our work here isth&tD,q) sages. Thus, at least under the naive execution strategies
is the sum (or other simple combination) of scofgs,,, outlined above, a local index is unlikely to scale beyond

in the above casgp; = w(q,t;) - w(D,t;)/\/D]. a few hundred nodes, and a global index unlikely to scale
Many other common ranking functions, such as Okapilpeyond a few million documents. In the local index case,
also share this property. For our purposes, it is often cobere are some optimizations that may allow us to answer
venient to think of each inverted ligt, as a sequence of Many queries by only contacting a carefully chosen subset
items(D, f1..,) whereD is the docID of a document con- Of “promising” nodes [13, 25, 11, 20, 6].
tainingw, sorted by eitheD or f1, ,, (i.e., we may assume In this paper we assume a global index organization.
that thefp ., are precomputed though in a real implemenAs we describe later, there are several techniques that al-
tation this is usually done on the fly). low query execution in this case without transmitting com-
Index Partitioning: In a parallel or distributed search plete inverted lists, and these are the subject of this paper
engine, the inverted index structure is partitioned over &lote that we are not trying to advocate any particular in-
number of machines. There are two basic distributed irdex organization, and there are many scenarios where a lo-
verted index organizations, calléatal andglobalindex cal organization may be preferable. We believe that both
organization. The two index organizations are illustrate@rganizations are of interest and merit further study, and
in Figure 2.1. In a local index organization, each node i1 Some cases hybrid organizations may turn out to be the
assigned a subset of the document collection and create¥erall best choice.
its own inverted index on these documents only. Thus, Possible Architecture of a P2P Search EngineAn
every node has its own (shorter) inverted list for wordsexample of a P2P search engine or IR system with a global
such as thair” or “table”, and a query thair, table” is index organization is shown in Figure 2.2, which is based

on our previous work on the ODISSEA project [23]. In-have to send a small subset of the items in the shortest in-
verted lists are mapped to a set of peers, by employing arerted list in a second round-trip, at which point any false
underlying DHT substrate such as [22, 29, 18]. Queriepositives can be detected. As shown in [12], an order of
are issued by clients outside the P2P system that may anagnitude in bandwidth savings can be obtained by us-
as query integrators or delegate this role to a better coing one or more rounds of Bloom Filter exchanges before
nected node within the P2P system. Clients might alsseending the actual index items. The approach works for a
act as intermediaries (search servers) that forward cuierieery wide range of ranking functions, but requires that all
issued by web clients and relay back the results. In theesults contain all query terms.

case of a web search engine, crawling might be done by It is observed in [15] that additional moderate savings
the peers, ocrawl clientsmight fetch documents and then can be obtained by applying standard compression tech-
insert them into the P2P system. niques to Bloom Filters, resulting i@ompressed Bloom
Filters. In this paper, all Bloom Filters are in compressed
form. We note that for small false positive rates, the best
Compressed Bloom Filter reduces to simply hashing all
elements to a large enough domain, sorting the hash val-
ues, and then compressing the gaps between them using
either arithmetic or Golomb coding.

Top-k Pruning Algorithm: Over the last decade, a
number of algorithms have been proposed in the IR and
database communities that allow computation of kap-
sults without scanning over the entire inverted lists; see
e.g., [7, 8, 16]. The basic idea is to order each inverted list
in a smart fashion, such that we can find the top results by
.) _ scanning only a small part of the list. In particular, Fagin
Figure 2.2 A possible P2P search architecture. [7, 9] described several algorithms that are very useful in

Given a query, a query integrator first retrieves the loca: :
Qur scenario.

22?: (Oef the;;:?é%gﬂ'?{:{ggg Egﬂsr:n Sm_elgslr(tjlr;jn;ita We now describe the first algorithm, callBdgin’s Al-
9. 9 P gorithm (FA). Assume that item$D, fp ,,) in each in-

then uses _th|s data to design a geopary t_—:‘xecutlon plan verted list are sorted in descending order by the value

that specifies how peers communicate with each other dut- : ; :

ing query execution. As we will see, there are many pos.2*" Now simultaneously scan all lists from the begin-
' ' ning, and stop when there akaloclDs that have been en-

sible exgcutlon strategies, and the best choice dependsggumered in every list. Note that for thekelociDs, we
the particular query.

Bloom Filter: A Bloom Filter[3, 4, 15] is a data struc- know their precise scores at this point. Now for any do-

cID encountered in only some of the lists so far, perform a
ture that represents a set of elements and supports mef- . : D
. . : A . . ookup into the other lists to determine its complete score.
bership test queries (i.e., “Is this element in the repr

sented set?”). The advantage of a Bloom Filter is thate;{he claim is that at this point we know all the tapre-

o o sults and their precise scores. The algorithm is illusttate
uses significantly less space than a dictionary or hash ta-

Query
Evaluation

Client

ble of the elements in the set. On the other hand, ther® Figure 2.3.

is a small false positive rate that can be traded off against @@ ©

space (i.e., some elements may be reported as being in the o000 00

set when they are not), and a Bloom Filter cannot retrieve table

a |ISF of tr_le elements in t_he represented set (we can only [Foesle o0 o s o o o o0

test if a given element is in the set). Do @ @ chair
Bloom Filters have been widely used in network appli- scan frontier

cations [4]. In particular, they can be used to efficiently

compute the intersection between two sets stored on dif-
ferent machines. We note that many search engines only
return results that contain all of the query terms. As ob-
served in [17, 12], this means that significant savings can lists. If k = 2, then we can stop at this point. Other doc-
be obtained during query execution under a global indeX |, ents such asandd were encountered in only one list,
organization, by first sending a Bloom Filter of the docIDs anq 4 lookup is used to find them in the other list. Bor

in the shortest inverted list, rather than the complete list the lookup fails becaustdoes not containchair”. (Doc-

to the next node. Many of the doclDs in the shortest list uments not containing a term are shown in outlines at the
will not find a match in the other lists, and thus we only end of each list, but would not be stored in an index.)

Figure 2.3, Fagin's Algorithm on termsc¢hair” and “ta-
ble”. The first4 postings in each list have been scanned,
and2 documentsd andb) have been encountered in both

A variation of the algorithm, called th€hreshold Al- cution plans, particularly for queries with multiple terms
gorithm (TA) [7, 9], performs random lookups into the that deserves to be explored.
other lists to compute the precise score as soon as a newThere has also been a significant amount of recent
doclD is discovered during the scan, and the stopping comvork on query processing under local index organizations
dition is modified as follows: In every step, we combine[6, 11, 20, 26, 25, 13]. Much of this work is concerned
the scores of the last item scanned in each list; we stopith the problem of finding the best results without broad-
if this value is smaller than thé-th largest score com- casting each query to all peers in the network, by selecting
puted thus far. It is easy to show that this also guarante@ssubset of nodes that are particularly promising for the
correct topk results, and that it never stops later (in fact,given query or that are close by. This is typically done us-
usually much earlier) than FA. It is shown in [7] that if ing techniques similar to théatabase selectioproblem
the orderings of the documents in the different lists arstudied in the context of distributed databases and meta
independent, then the algorithm is expected to terminatearch engines; see [14] for a survey of some techniques.
after looking atO(v/kn) entries in each list, where is The problem with this approach is that it implicitly relies
the number of documents in the collection (not the lengtlon the collection to be nicely clustered and the queries to
of the list). In the case ofn lists, the bound becomes be well-behaved with respectto the given clustering, and it
O(n%k%). Thus, for long lists and few query terms, could be argued that for terabyte size data sets and the di-
this can be significantly better than scanning the entite lisverse types of information needs evident in real search en-
If terms are positively correlated, then the result impsove gine traces there are severe limits to such techniques. On
Note that the result is independent of the actual “shapeshe other hand, the results appear to perform well on more
of the distributions of the/p ;,, though refinements could limited data and network sizes, and there are some signif-
potentially exploit special cases such as Zipfians. icant advantages to local index organizations that create

In [23], we applied the Threshold Algorithm to the and maintain index structures at the place where the con-
query processing problem in a P2P environment witlent resides. Finally, we note that a very interesting hd/bri
global index organization. The preliminary results onapproach between local and global index organization was
2-term queries in [23] indicated that for this case, veryrecently proposed in [24].
significant benefits can be obtained even with a fairly I .
straightforward implementation. We note that this ap-4' Contributions of this Paper
proach is limited to ranking functions of the form e study topk query processing on large textual
F(D,q) = Zf;ol fp,; (or some combining functions collections in a wide-area distributed environment with
other than the sum, such as maximum or minimum)global index organization. We refine and combine several
While this does include classes of functions such as Cgrevious approaches and show significant performance
sine and Okapi that are popular in the IR literature, igains. In particular:
does not include the use of term distance (how far aparfl) We address the challenges posed by queries with
are the different terms in the document?) as commonly three and more keywords. Such queries account for
done in web search engines. One the other hand, the ap- a disproportionate fraction of the total cost of query
proach does allow the integration of global measures such processing, and there are many possible and some-
as Pagerank or visit popularity, and it also works for rank- times nonobvious execution plans that can be used.

ing functions with OR semantics, i.e., when we do not 2) We combine the Bloom Filter approach in [17, 12]

require all terms to occur in the results. (In fact, perfor- * and the topk pruning approach used in [23] to obtain
mance tends to improve in these cases.) additional performance gains.

3 Discussion of Related Work (3) We perform an evaluation on a large data set and
real search engine queries. Our results indicate sig-

We have already discussed much of the relevant previ- nificant benefits from combining several approaches,
ous work on text query processing in P2P systems, and and show that different algorithms should be used de-
thus we now only provide a very brief summary. Our pending on the number of keywords and the lengths
work is most closely related and also motivated by the of the lists.
work on query processing under a global index organiThere are many open problems and a few loose ends left
zation in [17, 12, 10] and by our own previous work inby our work. We expect moderate additional benefits (say,
[23]. Essentially, our goal in this work is to combine the20 — 30%) through a few extra optimizations in the Bloom
optimizations in [17, 12] based on Bloom filters with theFilter and pruning strategies, and plan to include these in
pruning-based algorithms based on [7] that were used @ later version. Our main focus is on total bandwidth con-
[23], and to evaluate the performance of the resulting newumption. We are confident that our approaches are imple-
algorithms on different types of queries. In the processnentable with low CPU cost and reasonable total latency,
we noticed that there was a large space of possible exbut we do not evaluate this aspect here.

5. Policies for Distributed Query Execution the scanned items to the peer other than the leader that
has the shortest list, who will forward it to the other peers
n a chain as in SA. Once a subquery obtains a new re-
sult in the intersection of the leader’s prefix and all other
lists, the new result is forwarded to the query integrator
fvho maintains the current total tdpresults from all sub-
gueries. The threshold used to decide when to stop in TA
is also updated regularly, and the query integrator notifies
all leaders once the termination condition of TA is satis-
5.1. Simple Algorithm (SA) fied, or once one leader reaches the end of its list.

. To control the cost of updating the threshold at the
Recall that the inverted lists are distributed over the d|f-qgtjery integrator, we partition the lists into blocks of a-cer

Iere]?t peelrts mﬂt}he peetr-t:)-peﬁtrfenwro(;‘\ment.. Tto obta(ljn t’l—t in size. Whenever the leader sends a block of items to
Op- TESUILS, € Most straightiorward way 1S 10 Send aly,q hay¢ o de, it attaches the current value at the scan fron-

lists to one node and then evaluate the query as in a statn— .
. : . - tier to allow the query integrator to update the threshold.
dard centralized search engine. While the length of the in-, query 9 P

. Alternatively, this value could also be directly sent te th
verted lists ranges from less than 1 KB to morethan 1 G : o :
it is typically in the tens to hundreds of MB for our collec- Query integrator.) Also, by limiting the rate at which data

. . -~ is sent out, we can make sure that not too much data is in
tion of 120 million pages. So the total cost of transferring.

Il the list Id b hibiti ¢ of the ti 0 intermediate nodes at the time the query integrator stops
a' the Ists would be pronibiive most ot tn€ time. neg\he process, as this data has no impact on the final result.

alternative way is to combine lists step by step in order o .
o ; ! . DTA decreases the query execution cost greatly for

the lengths of the lists; we call this ti&mple Algorithm . ; :
gueries with few terms, but as we will see performance

(1) All peers are arranged in ascending order by th@ejines rapidly for larger numbers of terms. Recall
Iengths_ of the_ rel_evant_llsts they hold. The first peegp 1 this is due to the fact that the total cost of DTA is
send_s its entire list of item&D, fp ;) to the second @(mn% k#), wheren is the number of documents in
peer in the sequence. the collection (not the length of the list) andthe number

(2) The second peer does local lookups on its invertedf terms in the query. In our case,will be 120 million,
list to compute the intersection of the two lists. Afterand thus every time we increase there is a significant
computing the combined scores for the two terms, itncrease in thenn = term.
sends the new result list to the next peer.)]

(3) Each peer repeats this as in Step (2) and adds i?s's' Bloom Circle Threshold Algorithm (BCTA)
scores to the intersection results. The last peer then This is our first new algorithm, and its idea is to im-
returns thet docIDs with the highest scores. prove DTA by integrating Bloom Filters; we call it the

The total cost oSAmainly depends on the length of the Bloom Circle Threshold AlgorithniBCTA). As before,
shortest list, since the number of items in the intersectiosach query is split inte» independent subqueries, one for
tends to decrease rapidly with each intersected list. each query term. But instead of sending out the actual
o . items in the prefix of the leader node block by block, we
5.2. Distributed Threshold Algorithm (DTA) first circulate a Compressed Bloom Filter of each block
Since theSimple Algorithntransfers the entire short- between a select subset of the other peers, and then only
est list to the second peer, its cost is at least the length eénd items in the prefix likely to be in the intersection.
the shortest list multiplied by the number of bytes neededhus, we have two phases, a Bloom Filter Circle phase
to present each item. If all inverted lists for the queryand a second phase as in DTA; these are overlapped.
are large SAis very inefficient. To ameliorate the prob- After the Bloom Filter of the first block of the leader’s
lem, we introduce another algorithm called Distributed prefix arrives at the next node, it is processed as follows.
Threshold Algorithn{DTA). Note that each block usually contains far fewer items than
DTA is based on th@hreshold Algorithnproposed in any of the complete lists; this implies that the optimal
[7] and applied to P2P query processing in [23], and itompressed Bloom Filter for this case uses only a single
decreases the total cost of query evaluation using prufrash function, with Golomb coding of the resulting filter
ing techniques. A query integrator in DTA, upon receiv-for good and fast compression. Thus, we can perform re-
ing a query withm terms, splits it intom independent verse lookups from the decompressed Bloom Filter (rep-
subqueries and issues each one to a corresponding peesented as a sorted list of hash values) into the inverted
called the leader of this subquery. All subqueries executest at the receiving peer, assuming that the inverted list
in parallel. Each subquery scans only the prefix of the inis organized to efficiently support such lookups. Any hash
verted list located at the leader, and continually forwardsalue (bit) in the Bloom Filter that does not find a match is

In this section, we describe several different policie
for distributed query evaluation. We first give tBemple
Algorithm (SA) and theDistributed Threshold Algorithm
(DTA) as our basic algorithms. Then we present thre
more advanced policies called tBlom Circle Threshold
Algorithm (BCTA), theBloom Petal Threshold Algorithm
(BPTA), and theSimple Bloom Petal AlgorithfSBPA).

erased, resulting in improved compression as the thinnetbr each peer in the circle. Each petal consists of a Bloom
out Bloom Filter is forwarded to each subsequent peersilter sent to the peer, and a thinned-out aotnpacted
that participates in this circle. Thus, the time spent oBloom Filter returned to the leader. Byompactedwe
each block is proportional to the size of the block and nomean that the peer uses the fact that the thinned-out Bloom
the size of the inverted list at the receiving peer. Filter is a subset of the Bloom Filter that was sent by the
As it turns out, it is sufficient to circulate the Bloom leader; this allows us to improve compression in the reply
Filters to only a subset of the peers, say th® 3 peers by removing all positions that were already zero in the
with the shortest inverted lists other than the leader. Onaeceived Bloom Filter from the domain.
the thinned-out Bloom Filter returns to the leader, only Thus, Bloom Filters are exchanged between leader and
the surviving items are sent to the peers along the chapeers in a number of petals, where in each petal we can
as in DTA. At the same time, of course, additional Bloomchoose the optimal domain size of the hash function based
Filters are already circulating. As before, the query inteen the length of the inverted list at that peer. We call
grator maintains the current tdpresults and eventually the resulting scheme thBloom Petal Threshold Algo-
stops the process. rithm. Note that in principle we could use several rounds
of Bloom Filter exchanges between the leader and each
peer, but this does not seem to have much benefit in the
asymmetric case of a small block or prefix of items being
intersected with a typically much larger complete list.

N Subquery poQuery

[Block 1] Block 2] Block 3 List Al
W

\ [5.5. Simple Bloom Petal Algorithm (SBPA)
et 8 T o
AN Bloom Filter Passed | *°°F This algorithm is actually quite similar to the approach
PR e T S I based on Bloom Filters proposed in [17, 12], and should
o - Real Data have similar performance. We present it last since we de-
” g cided to adopt some of the communication structure of the
just described BPTA algorithm into it.
Figure 5.1 Bloom Circle Threshold Algorithm on a sub- The Simple Bloom Petal Algorithis derived from the
query of a5-term query, with coordinator’, leaderA, Simple Algorithm. Thus, instead of creating subqueries

and peers labele} to £ in ascending order of the length that each scan the prefix of one of the lists, we compute
of their inve_rtepl Iists.A first circulates a Bloom Filter of again the complete intersection between the shortest list
each block in its prefix td3 andC', and then sends any gnq the other lists with no attempt at tépruning. How-
remaining items in the block through all the peersto the o0 " instead of sending the entire shortest list, we first
coordinator as in DTA. . -
perform a few rounds of Bloom Filter exchanges with the
An example of BCTA on &-term query is shown in other peers, by forming a number of petals with other
Figure 5.1. There are a number of choices to be made REers; starting with the peer with the second-shortest in-
the implementation. We need to decide how many peepéerted list. For. each pe'FaI we choose the optimal si;e of
should participate in the initial Bloom Filter Circle, and the hash function domain based on the number of items
how many bits to use for the domain of the hash functioninvolved on both sides. After all Bloom Filter steps have
A small domain results in a smaller Bloom Filter but alsoP€en performed, we start sending the surviving items in
more false positives that result in increased communicdP® shortestlist along the path of the other peers, as in the
tion in the second phase. In the second phase, we courimple Algorithm. Thus, we use the petal structure from

decide to first send the remaining elements to those ped?§ TA, but the second phase follows the simple algorithm.
not participating in the Bloom Filter Circle, but this is not

performance critical anymore.
5.4. Bloom Petal Threshold Algorithm (BPTA) _ In this secti_on, we provide an gxperimental evalua-
tion of the various presented algorithms. Due to space
One problem with BCTA is that the inverted lists of theconstraints, we can only present our main observations.
peers participating in the Bloom Filter Circle may be ofWe start out with a description of the experimental setup.
very different size. To avoid too many false positives, théVe used real search queries selected from a large log of
domain of the hash function for the Bloom Filter shouldqueries issued to the Excite search engine from 9:00 to
be chosen somewhat larger than the longest list into which6:69 PST on December 20, 1999. We ignored queries
reverse lookups are performed. But doing so increases théth stopwords and with words that do not appear in our
size of the Bloom Filter, and the increased domain is onlglata collection (e.g., very unusual words or typos). The
needed at the last peer in the circle. Thus, it makes sentble below shows the percentage of queries with different
to separate the Bloom Filter Circle into several petals, oneumbers of terms in the complete trace.

6. Experimental Evaluation

Lrofems | 1 | 2 [3 [4 [5[5 [>6] gymedaboutasmuchbandwidth as SA and it would have
[% of queries | 18.50 | 34.58 | 20.54 | 11.23 | 7.05 | 4.09 | 4.01 | : .

been smarter to just focus on the shortest list.
Table 6.1 Percentage of queries withterms. 16, 000

ESimple Algorithm
WDistributed Threshold Algorithm
OSimple Bloom Petal Algorithm

Since the communication cost of one-term queries in _ 14,000
our environmentis trivial, we did not include these queries £ ; i,
in our experiments. From Table 6.1 we can see that nearl §
96% of all queries have at mostterms. For our exper-
iments, we sampled queries from the traces such that w
have500 queries for each number of terms frahto 6,
and 500 queries with more than six terms, for a total of
3000 queries. The results are of course properly weightec < ,) ||
by frequencies when we report average performance nun 0 ‘
bers for all (including single-term) queries. The document 2 3 4 5 6 6
set we use consists of abd@0 millon web pages crawled Number of Terms in Query
by the PolyBot web crawler [21] in October of 2002, with Figure 6.1 Comparison of SA, DTA, and SBPA.

a total uncompressed size of abaut TB. The total size We can see this result more clearly in Figure 6.1, which

pf a_highly compressed inverted index on the collection, ;< shows the performance of the Simple Bloom Petal
is slightly above200 GB, and for the average query theAIgorithm. As we see, SBPA is much better than SA, due

shortest inverted list contains almost a million elements. to its use of Bloom Filters. While SBPA also looks much

After mapping the docIDs to a reasonable domain,. Wietter than DTA, we note that DTA is still best farand
expect that each iteiD, f,¢) can be represented in 3 query terms, and once we add Bloom Filters into the

about8 bytes under suitable compression and with neglipyra approach to get the BCTA and BPTA policies the
gible collision rate; thus we char@ebytes for each trans- comparison will become much closer again

mission of a complete item. Note that in our evaluation, pgat.q evaluating BCTA and BPTA, we performed ex-

we simulate all algorithms in a centralized e”Vironmenberiments on the optimal choice of the hash domain in
and report numbers on the bandwidth consumption of th§CTA; details are omitted due to space constraints. We

various methods.

10, 000

8, 000

6,000

4,000

Average Cost Per Que:

observed that, as discussed in the motivation for BPTA,

6.1. Evaluation of All Algorithms there was often no clear way to optimally choose the hash
domain if two or more peers participate in the Bloom Cir-
[Fofterms | shortest | longest | DTAprefix | DTAcost | SAcost | cle. However, on average the best strategy used up to three
2 992 | 6,812 10 160 | 7,938 peers in the Bloom Circle and chose the hash domain as
3 887 | 10,947 33 819 | 8,669
a 874 | 18.300 96 | 3205 | 8922 about four times the length of the longest list in the circle.
5 707 | 25,429 T77 | 7,368 | 7,167 s 500
6 501 | 25,964 263 | 13,206 | 5,088 ' e
> 6 318 | 26,733 225 | 14,007 | 3,119 com Ghrele Threshold Hgorftin

3,000 (— MBloom Petal Threshold Algorithm —
Table 6.2 Comparison of the Distributed Treshold Al-
gorithm and the Simple Algorithm on top-10 queries (all
numbers in KB or thousands of elements).

DOsimple Bloom Petal Algorithm
2,500

2,000

In Table 6.2, we compare the cost of SA and DTA. The
second column shows the average length of the shortest ir
verted list participating in the query, which decrease wit
the number of query terms since with more terms there™ m L]
is a better chance of having at least one rare term. Con
versely, the length of the longest list, shown in the third 0 e
column, increases with the number of terms. The fourth ’ ’ Nu;ber o T;ms N Qu:ry * -
column shows the number of elements in each prefix, in)
thousands, that are scanned before the query integrator Figure 6.2 Comparison of BCTA, BPTA, and SBPA.
stops execution of DTA, and the fifth column shows the Figure 6.2 compares the total costs of BCTA, BPTA,
bandwidth consumption of DTA in KB. Finally, the last and SBCA. Note that the Bloom Petal Threshold Algo-
column shows the cost of SA. Not surprisingly, DTA doegithm consistently outperforms the Bloom Circle Thresh-
much better for few query terms, while SA becomes bettesld Algorithm due to the better choice of hash domains,
for 5 and more terms. Of course, DTA never scans furthethough only by a moderate amount. Both methods
than the length of the shortest list, but when it does reacdiso now outperform the Simple Bloom Petal Algorithm
the end of the list, each of the subqueries in DTA has cor(which is comparable in performance to the Bloom Filter

1,500

1,000 il

Average Cost Per Query (KB)

900
method in [12]) for queries with up td terms. We also EPolicy 1 Cost

show the costs of the different phases of the algorithms, Dtinion Gt
indicating that the first Bloom Filter steps in BCTA and

BPTA typically dominate the total cost, as one would ex-

pect. Finally, when averaged over the entire query distri-
bution, which contains many short queries, the methods
based on topg: pruning outperform SBPA by a factor Bf

=
=]
3

=3
S
S

@
S
3

'S
S
=3

Average Cost Per Query (KB)

300 E—
6.2. Selecting the Best Approach for Each Query 200
As we have seen, BPTA appears to perform best for '® I
gueries with up tel terms while SBPA is better for longer 0 LZI]+ . s S s . "
gueries. This motivates the simple policy for selecting the Nomber of Terms in Query

best method for each query shown in Table 6.3, which also Figyre 6.3 Comparison of different selection policies.
specifies the best setting of the number of Bloom Filter _ _ _
petals and the size of the hash domains for the Bloom FiRueries withd or more terms are responsible for a dispro-
ters. (A value oft bits means that the domain is chosen aportionate amount of the total cost.

24 times the length of the longer inverted list.) ©
[# of terms| algorithm | BF steps] BF bits | % __ By o o daslos
2 BPTA 1 5 ®
3 BPTA 2 4
4 BPTA 3 4 3 %
5 SBPA 4 2 S
6 SBPA 5 2 &
> 6 SBPA 5 2 ’
Table 6.3 Selecting the best algorithms and parameters. 10
| #ofterms | shortest list (K) | algorithm | BF steps| BF bits | ?
2 <30 SBPA 1 3 0 \ \ s ;] "
2 > 30 BPTA 1 5 Number of Terms in Query
3 < 100 SBPA 2 2 . .
Figure 6.4. Average cost versus frequency of queries
3 > 100 BPTA 2 4 with different numbers of terms
4 < 300 SBPA 3 2 '
4 > 300 BPTA 3 4 Finally, in Figure 6.5, we provide an estimate on how
> < 4,000 SBPA 4 2 these numbers would change for a collection Witfillion
2 > i:”UOU BPTA g 2 web pages, i.e25 times our test set. The cost of SBPA
SBPA would increase approximately linearly, while the behavior
> 6 All SBPA 5 2

- : . of BPTA is more complicated but much better than lin-
Table 6.4 Animproved selection policy. ear in the collection size far and3 query terms. Details

A second policy proposed in Table 6.4 also takes th8'€ omitted due to space constraints, but we observe an
length of the shortest inverted list into account. In Fig-2verage cost of over MB per query that would be unac-
ure 6.3 we compare the two policies to an optimal but inS€Ptable in most scenarios.
feasible policy that always chooses the right algorithm ang Concluding Remarks
set of parameters for each query. We see that both policies
come quite close to the optimal, with the second policy While our results show a reasonable cost for query pro-
doing slightly better as it takes the length of the shortestessing with up td 20 million web pages, there are still
inverted list into account. The optimal approach requirea number of challenges that need to be overcome before
about191 KB of bandwidth for the average query, while large-scale P2P web search engines can become a real-
the second policy has a cost of aba@u8 KB. Some im- ity. We note first that some additional optimizations in the
provements in the policy might be possible foand5 Bloom filter implementation, plus some optimizations in
terms, where there is still a gap between the optimal anithe pruning schemes such as earlier termination and vari-
the feasible policies. able scan speeds depending on the relative list lengths,

In Figure 6.4 we compare the frequency of queries wittshould result in additional benefits in the range of maybe
a particular number of terms with their total impact on the20 — 30%. Some extra benefits would result from the use
average cost. As we see, while most queries are shodf caching techniques [2] or hybrid organizations such as

20

HPolicy 1 Cost [6]
OMinimum Cost

16 —

(7]
(8]
El

-
X)

Average Cost Per Query (MB)

(10]

{—en 1%

2 3 4 5 6
Number of Terms in Query

T

AlL

[11]

>6
(12]

Figure 6.5. Estimated cost of policies dhbillion pages.
[13]

[24]. However, the cost of query processing dhbillion
pages would likely remain high.

Another challenge is how to support ranking functions[15]
that use the distance between query terms in the doc i6]
ment, as commonly done in current web search engines.
We have some initial promising ideas in this direction that
we plan to explore. Finally, there are a number of chal-[17]
lenges other than query processing, such as index updatgs;
and dynamic changes in the network topology that a real
system would have to deal with. Even if large-scale P2P
search becomes feasible, it is not clear that it would bglg
preferable to a centralized architecture. On the other han
we hope that some of the same techniques will turn out to
be useful for real search problems on more moderate (bL{EO]
still large) widely distributed textual collections.

Acknowledgements:We thank Xiaohui Long for help
in preparing the data and query sets. This work was sup'
ported by NSF CAREER Award CCR-0093400, NSF ITR
Award CNS-0325777, and the New York State Center for(22]
Advanced Technology in Telecommunications (CATT) at
Polytechnic University. Any opinions, findings and con- 53
clusions, or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect
those of the National Science Foundation. [24]

[14]

References

[1] C. Badue, R. Baeza-Yates, B. Ribeiro-Neto, and N. Zividbis- [25]
tributed query processing using partitioned inverted filks9th
Symp. on String Processing and Information Retrie2aD2.
B. Bhattacharjee, S. Chawathe, V. Gopalakrishnan, Rehée,
and B. Silaghi. Efficient peer-to-peer searches using tresul
caching. InProc. of the 2nd Int. Workshop on Peer-to-Peer Sys-
tems 2003.
B. Bloom. Space/time trade-offs in hash coding with atidle
errors.Communications of the ACM3(7):422-426, 1970.
[4] A.Broder and M. Mitzenmacher. Network applications tddm
filters: A survey. InProc. of the 40th Annual Allerton Conf. on
Communication, Control, and Computingages 636—646, 2002.
B. Cahoon, K. McKinley, and Z. Lu. Evaluating the perfante
of distributed architectures for information retrievalings a va-
riety of workloads. IEEE Transactions on Information Systems
18(1):1-43, Jan. 2000.

2] [26]

[27]

(3]
(28]

[29]
(5]

F. Cuenca-Acuna and T. Nguyen. Text-based content lseard
retrieval in ad hoc p2p communities. Boc. of The Int. Workshop
on Peer-to-Peer Computinglay 2002.

R. Fagin. Combining fuzzy information from multiple fgms.
In Proc. of ACM Symp. on Principles of Database Systerf86.
R. Fagin. Combining fuzzy information: an overvie8IGMOD
Record 31(2):109-118, June 2002.

R. Fagin, A. Lotem, and M. Naor. Optimal aggregation aitons
for middleware. IrProc. of ACM Symp. on Principles of Database
Systems2001.

0. Gnawali. A keyword-set search system for peer-terpeet-
works. Master’s thesis, Massachusetts Inst. of Techno@@§2.
A. Kronfol. FASD: a fault-tolerant, adaptive, scalaptistributed
search engine. June 2002. Unpublished manuscript.

J. Li, B. Loo, J. Hellerstein, F. Kaashoek, D. Kargerddh Mor-
ris. On the feasibility of peer-to-peer web indexing. Rroc. of
the 2nd Int. Workshop on Peer-to-Peer Syste2i93.

B. Mayank, R. Bayardo, S. Rajagopalan, and E. ShekitakeMt
fresh, make it quick — searching a network of personal weleser
In Proc. of the 12th Int. World-Wide Web Cqr#003.

W. Meng, C. Yu, and K. Liu. Building efficient and effeoti
metasearch engineACM Computer Survey84(1), Mar. 2002.
M. Mitzenmacher. Compressed bloom filtetEEE/ACM Trans.
on Networking 10(5):604-612, 2002.

M. Persin, J. Zobel, and R. Sacks-Davis. Filtered doentme-
trieval with frequency-sorted indexeslournal of the American
Society for Information Sciencé7(10):749-764, May 1996.

P. Reynolds and A. Vahdat. Efficient peer-to-peer keylgearch-
ing. February 2002. Unpublished manuscript.

A. Rowstron and P. Druschel. Pastry: Scalable, digtet ob-
ject location and routing for large-scale peer-to-peetesys. In
IFIP/ACM Int. Conf. on Distributed Systems Platfornmages
329-350, Nov. 2001.

] F. Scholer, H. Williams, J. Yiannis, and J. Zobel. Coegsion

of inverted indexes for fast query evaluation. Rroc. of the 25th
Annual SIGIR Conf. on Research and Development in Infoomati
Retrieval pages 222-229, Aug. 2002.

Y. Shen and D. L. Lee. An mdp-based peer-to-peer seawies
network. InProc. of the 3th International Conf. on Web Informa-
tion Systems Engineeringages 269-278, Dec. 2002.

21] V. Shkapenyuk and T. Suel. Design and implementatice fogh-

performance distributed web crawler. Pnoc. of the Int. Conf. on
Data EngineeringFebruary 2002.

I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Baish-
nan. Chord: A scalable peer-to-peer lookup service forrite
applications. IrProc. of ACM SIGCOMM Conferenc2001.

T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis, M. Khartazi
X. Long, and K. Shanmugasundaram. ODISSEA: A peer-to-peer
architecture for scalable web search and informationentti In
Int. Workshop on the Web and Databases (WehR8)3.

C. Tang and S. Dwarkadas. Hybrid global-local indexiogeffi-
cient peer-to-peer information retrieval. Bmoc. of the 1st Symp.
on Networked Systems Design and Implementapages 211—
224, March 2004.

C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer infaonate-
trieval using self-organizing semantic overlay networksProc.

of ACM SIGCOMM pages 175-186, August 2003.

C. Tang, Z. Xu, and M. Mahalingam. pSearch: Informatien
trieval in structured overlays. IRroc. of ACM HotNets;12002.

A. Tomasic and H. Garcia-Molina. Performance of inedrin-
dices in distributed text document retrieval systemsPioc. of
the 2nd Int. Conf. on Parallel and Distributed InformatiogsS
tems (PDIS)1993.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Imageglorgan
Kaufmann, second edition, 1999.

B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: Anasfruc-
ture for fault-tolerant wide-area location and routing.cfieical
Report UCB//CSD-01-1141, UC Berkeley, Computer Science Di
vision, April 2000.

