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Abstract

We study the problem of optimally partitioning a two-dimensional array of elements by cutting each
coordinate axis into p (resp., ) intervals, resulting in p x g rectangular regions. This problem arises in
several applications in databases, parallel computation, and image processing. Our main contribution are
new approximation algorithms for these NP-Complete problems that improve significantly over previ-
ously known bounds. The algorithms are fast and simple, work for a variety of measures of partitioning
quality, generalize to dimensions d > 2, and achieve almost optimal approximation ratios. We also
extend previous NP-Completeness results for this class of problems.

1 Introduction

Many problems arising in diverse areas such as parallel computation, databases, and image processing re-
quire the partitioning of a multi-dimensional data set into rectangular partitions, or tiles, such that certain
mathematical constraints are satisfied. Often these constraints take the form of minimizing (or maximizing)
a metric using a fixed number of partitions or, conversely, minimizing the number of partitions while not
exceeding a given value of that metric. As a simple example, in parallel computation, we may want to par-
tition a computational space among a fixed number of nodes such that no node receives significantly more
work than the others.

Figure 1: A 5 x 6 partitioning.

In the paper, we study one important class of such partitioning problems, where the input consists of a
two-dimensional (or higher-dimensional) array of real values, and the partitioning is obtained by dividing
the y-axis into p intervals and the z-axis into ¢ intervals, resulting in p x ¢ tiles. We refer to such a
partitioning as a p x ¢ partitioning; see Figure 1 for an example. For simplicity, we will usually focus on the
two-dimensional case; however, our results also apply to higher dimensions. We start out by motivating the
problem with two example applications.
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Example 1 (Load Balancing): In the context of load partitioning in parallel computation, we are typically
interested in minimizing total completion time, which is determined by the time the last processor finishes
its work. In many scenarios, the workload can be represented by a two- or higher-dimensional array, such
as a matrix that needs to be partitioned, or a two- or three-dimensional space in atmospheric, chemical, or
astrophysical simulations. The input array to our partitioning problem is thus a two- or higher-dimensional
array specifying the amount of work associated with each matrix element or each unit of space in the
simulation. We note that the array may often be sparse, particularly in higher dimensions.

Thus, given a fixed number of nodes, we would like to partition the array into tiles such that no node
receives a disproportionate amount of the work. Formally, we are interested in a partitioning that minimizes
a metric defined as the maximum, over all tiles in the partitioning, of the sum of the elements in the tile
[22, 28]. See the left part of Figure 1, where we partition an array with a 3 x 3 partitioning such that no
tile sums up to more than 9. The total amount of work is 65 and thus [65/9] = 8 provides a trivial lower
bound for the maximum sum of a tile (or 65/9 = 7.222 if we have non-integer values in the input).

Figure 2: A 3 x 3 partitioning (left) and a 3 x 4 partitioning (right) of two different 6 x 6 arrays.

Example 2 (Data Approximation): A slightly different scenario arises in some applications in databases
or image processing. For example, database systems maintain histograms based on rectangular regions
to approximate multi-dimensional data distributions; see, e.g., [1, 15, 16, 17, 20, 26, 30, 31, 32]. These
histograms are then used by the query optimizer to obtain reasonably accurate estimates of query result
sizes, in order to estimate the costs of different execution plans. In the case of an employee database, we
may be given a two-dimensional array that contains for each age and for each salary level the number of
tuples in the database with matching attribute values. To succinctly approximate this array by a histogram,
we are interested in a partitioning that tries to group clusters of points with similar frequencies into tiles.
In image processing, we may be interested in partitioning images into tiles representing areas with fairly
uniform color.

There are several formulations of this problem in the literature, but one popular choice called V-Optimal
histograms [31] involves minimizing the following well-known metric based on the variance in each tile. The
metric is defined as the sum, over all elements in the array, of the square of the difference between its value
and the average value in its tile. In the right part of Figure 1, we show a 3 x 4 partitioning of an array that
attempts to minimize this metric by grouping similar values into tiles. Each uniform tile contributes a value
of zero to the metric, and the values contributed by the 12 tiles are 1/2 +22/4 +1/2 4+ 1/2+ 2+ 4 +
6/94+ 040+ 2+ 04 0 (in row major order) for a total of 15.666. This is in fact the best possible 3 x 4
partitioning, though it may not be obvious.

In this paper, we focus on the problem of partitioning an input array into tiles while minimizing a given
metric, defined on the set of all possible partitionings, that measures the quality of a partitioning. In general,
there are many different metrics of possible interest. We present algorithms and complexity results that hold



for fairly general classes of metrics that satisfy certain conditions defined later, and that include almost all of
the metrics studied in the literature. The two metrics discussed in the examples, which we refer to as MAX-
SUM-ID and SUM-SUM-SQRDEYV, respectively, are probably the most commonly studied ones. They are
also interesting because they are quite different in the intuition they provide to the algorithm designer, and
they capture many aspects of the types of metrics that we consider. We note that a number of heuristic
approaches for these problems have been proposed in different application areas. Most of these approaches
are designed with a particular metric in mind, and many do not provide any provable bounds on the quality
of the solution.

Discussion of Rectangular Partitionings: Rectangular partitionings, i.e., partitionings where each tile
is a simple rectangle, are desirable in many applications due to the simple and regular structure of the tiles
and the fact that they tend to preserve a significant amount of the locality in the underlying computational
domain. Nonetheless, there have been many approaches that use other types of shapes, such as triangles,
hexagons, rectangles with holes or even more complex shapes. From an algorithmic point of view these
problems tend to be quite different from the rectangular case, as are problems that allow a covering, rather
than partitioning, of the array.

(a) arbitrary (b) hierarchical (©pxq
Figure 3: Families of rectangular partitionings.

There are several different families of rectangular partitionings that are commonly studied. In Figure 1
we show three common families: (a) arbitrary, allowing any partitioning into rectangular tiles, (b) hierarchi-
cal, obtained through recursive cuts, and (c) the p x ¢ partitionings considered in this paper. Thus, p X ¢
partitionings are a subset of the class of hierarchical partitionings, which themselves are a subset of the
arbitrary partitionings. We note that there are obviously worst-case input distributions, e.g., for the metrics
in the two examples, for which any p x ¢ partitioning requires a much larger number of tiles to achieve the
same value of the metric, when compared to hierarchical and arbitrary partitionings. Another concern is
how to choose the values of p and ¢, though our algorithms are efficient enough to allow search heuristics
for finding the best values of p and ¢ on top of them.

However, there are some good reasons why p x ¢ partitionings are preferred in certain scenarios. In the
context of parallel computing, p x ¢ partitionings result in a very simple communication pattern since every
node has exactly 4 horizontal and vertical neighbors. This simplifies the problem, e.g., for compilers that
automatically parallelize code, and in fact p x ¢ partitionings are part of the High Performance Fortran 2.0
standard [14]. Another advantage, important for example in grid files [29] and certain classes of histograms
[1, 12], is that the partitioning is uniquely defined by p — 1 coordinates along the y-axis and ¢ — 1 coordinates
along the x-axis. Thus, tiles can be indexed very efficiently by these coordinates. This simple structure also
enables optimizations for cases where many tiles are empty or almost empty, and so a larger number of tiles
may be acceptable in some applications.



2 Problem Definition

We now formally define the problem we are considering, for the case of a two-dimensional array. General-
ization to the multi-dimensional case is straightforward.

Tiles and Partitionings: We are given an m x n array A[1...m,1...n] containing N = m - n non-
negative real numbers. Note that the array is indexed starting from 1 rather than 0. A tile is any rectangular
subarray Afi...j, k... [Jwith0 <i < j<mand0 < k <! < n. Apartitioning of array A is a partition-
ing of A into tiles; by definition of a partitioning, each element A[z, j] lies within some tile and no two tiles
overlap. We restrict ourselves to p x ¢ partitionings and assume p > ¢ without loss of generality. Formally,
ap x g partitioning is determined by a set of horizontal dividers (rows) hg =0 < h; < ... < h, = m and
a set of vertical dividers (columns) vg = 0 < v; < ... < v, = n. The partitioning consists of p - ¢ tiles
ri;, 0 <i <pand 0 < j < g, where tile r; ; is the set of all entries A[k, ] such that h;_; < k < h; and
vj—1 <l <.

Metrics: A quality metric assigns a value to a particular partitioning. Formally, a quality metric is
defined by an elementary function e() that computes a score for each element in the array, a heft function
h() that combines the scores of the elements in a tile to compute the heft of a tile, and a cumulative function
f() that combines the hefts of the tiles to obtain the overall value of a partitioning.! We are interested in
finding partitionings that minimize the value of the quality metric.

We have already encountered two metrics. In Example 1, e() is the identity function, k() is the sum
function, and f() is the maximum function over all tiles; we refer to this as the MAX-SUM-ID metric. In
Example 2, () is the square of the deviation from the average value in the tile, and k() and f() are both
the sum function; we refer to this as the SUM-SUM-SQRDEYV metric. In general, we use the notation f-h-e
to denote a metric with elementary function e(), heft function &(), and cumulative function f(). Common
choices for e() in applications are the identity function (denoted ID), or the deviation from the arithmetic
average or geometric median in the tile, or the square of the deviation from the arithmetic average (denoted
SQRDEV). Common choices for h() are sum (SUM), maximum (MAX), or sometimes the ratio between
the largest and smallest score in the tile, while f() is almost always? the sum or maximum.

We say that a heft function k() (including a particular choice of e()) is monotonic if we have h(r) <
h(r") for any two tiles r, 7/ with » C ' and any input A. Both of the functions in the examples are mono-
tonic, assuming that all entries are nonnegative in the first example. We say that a metric f() (including a
particular choice of e() and h()) is superadditive if f(P) > f(P’) for any input A and any partitioning P’
that is obtained by refining a partitioning P, i.e., by subdividing one or more tiles of P. In other words, a
superadditive metric has the property that applying additional cuts will never degrade the quality of the par-
titioning. Note that this definition is independent of the types of partitionings (p x g, hierarchical, arbitrary)
that we allow. Both metrics in the examples are superadditive.

Tile Heft Queries: All of the algorithms we describe access the input array using only a single simple
query operation that, given the boundaries of a candidate tile, returns the heft of this tile. We note that
after appropriate preprocessing of the array, this operation can usually be implemented in a highly efficient
manner for most of the common heft functions. For example, the heft functions in the two examples can be
evaluated in constant time by using O (V) extra space to precompute appropriate prefix sums; see, e.g., [17]
for details. Moreover, by performing an amount of preprocessing proportional to the number of non-zero
entries, we can build standard range search data structures for very sparse inputs that allow queries to be
efficiently evaluated (e.g., in logarithmic time for the MAX-SUM-ID metric in two dimensions).

For this reason, we introduce a term ¢ to represent the cost of a heft query, and state all running times
in terms of ¢g. Thus, an implementor can decide what preprocessing to perform for maximum efficiency.

"We use the term heft to avoid confusion with the term weight used in our algorithms, which has a completely different meaning.
2In fact, in all applications we are aware of.



The algorithms typically run in time sublinear in the input size IV if we ignore preprocessing, and thus we
can afford to repeatedly run algorithms with different values of p and ¢, for example.

Problem Statement: We are interested in the following two dual optimization problems:
(1) Given an input array A and numbers p and ¢, find a p x ¢ partitioning P of A that minimizes f(P).

(2) Given aninput array A and a real value ¢, find a p x ¢ partitioning P with f(P) < § that minimizes
the number of tiles p - q.

As we will see, these problems are NP-Complete, at least for the most interesting classes of metrics, and thus
we are interested in approximation results. In some applications, we may also be interested in minimizing
the number of dividers rather than the number of tiles. All our upper bounds can be stated either way, with
a t approximation in the dividers typically translating to a ¢? approximation in the number of tiles.

3 Contributions of this Paper

We study the algorithmic complexity of p x ¢ partitioning problems. Our results include new approximation
algorithms for several classes of quality metrics that improve significantly over previous results. In partic-
ular, we consider metrics where the heft function k() is monotonic and the cumulative function f() is the
sum or the maximum function; this covers all applications we are currently aware of. We also extend known
results about NP-Completeness to additional classes of metrics not covered by the known proof. Our main
contributions are as follows:

(1) Algorithms for f() = MAX: Given an array A and a bound ¢, we can compute a p x ¢ partitioning
with value at most ¢ using a number of tiles that is at most (4 + ¢) times the optimum number, for
any e > 0. The best previous result [19] achieved an approximation ratio of O(log? N) in the number
of tiles, or O(log V) in the number of dividers. Given an array A and a bound on the number of
tiles, we can compute a partitioning with value at most 4 times the optimum value for the case of the
MAX-SUM-ID metric. The best previous result [19] achieved an approximation ratio of around 120.
In fact, if we allow slightly more tiles, then we can approximate the optimum value by a factor of at
most 2. The algorithms runintime O((m +n+p- ¢ - tg) - plog(N)).

(2) Algorithms for f() = SUM: Given an array A and a bound §, we can compute a p x ¢ partitioning
with value at most 26 using a number of tiles that is at most (16 + ¢) times the optimum number of
tiles for a partitioning of value é. The algorithm runs in time O((m +n+p-q-tg) - plog(N)). We
are not aware of any previous non-trivial bounds for this problem.

(3) Generalizations: All the algorithms can be extended to higher dimensions, resulting in approximation
ratios linear in the dimension d.

(4) NP-Completeness results: We show that it is NP-Complete to compute an optimal partitioning for
the important SUM-SUM-SQRDEYV metric in Example 2. We also extend the known result for the
MAX-SUM-ID metric in Example 1 [8, 11] that it is NP-Complete to compute a partitioning with a
value less than two times the optimum to several new metrics.

A preliminary version of the results in this paper appeared as part of [27]. Our algorithms are based on
the framework of Bronnimann and Goodrich in [6], and exploit an interesting relationship between p x ¢
partitioning problems and the construction of small e-nets. In particular, the partitioning problem for the
MAX-SUM-ID metric can be reduced to a Set Cover problem with small VC dimension. It is shown
in [6] that such Set Cover problems can be efficiently approximated using e-nets and an elegant analysis
provided by Clarkson in [9]. We show how to translate and expand these ideas to obtain very simple and
fast algorithms for the above general classes of metrics.



4 Related Work

Applications: Rectangular partitioning problems have been studied extensively in application areas in-
cluding databases (e.g., histograms, grid files, index compression), parallel computing (e.g., load balanc-
ing), computer graphics (e.g., spatial data structures), and video compression (e.g., block matching); see
[18, 23, 3, 5, 10] for some discussion. Following are a few examples that explicitly study p x ¢ partitionings.

In databases, several authors [1, 12] have used p x ¢ partitionings to construct histograms in two or more
dimensions. In this case, the metric used is often either MAX-SUM-ID for V-Optimal histograms [31] or
SUM-SUM-SQRDEV for Equi-Depth histograms [32]. In particular, the algorithm for updating a histogram
in [1] uses the structure of p x ¢ partitionings by running an algorithm “along the rows and columns” in a
way that is slightly similar to our approach (though maybe not related in any formal way). Another scenario
in databases is the construction of Grid File index structures for multi-dimensional data, introduced in [29],
where the goal is to limit the number of items in each tile.

A significant amount of work on p x ¢ partitionings has been performed in the area of parallel computing,
often under the term Generalized Block Distribution. In particular, [22, 28] propose heuristic algorithms for
p x ¢ partitionings, discussed further below. The class of p x ¢ partitionings is particularly important in the
context of data-parallel programming languages and environments such as High Performance Fortran [14]
and Vienna Fortran [7], and is in fact part of the HPF 2.0 language specification.

NP-Completeness: For the three-dimensional case, Nicol [28] proved that it is NP-Complete to find the
best partitioning under the MAX-SUM-ID metric, using a reduction from Monotonic 3-SAT. Subsequently,
[8, 11] independently proved the problem to be NP-Complete in two dimensions, based on a reduction from
the Balanced Complete Bipartite Subgraph problem. In fact, the argument implies that given a bound on the
number of tiles, the optimal value of the MAX-SUM-ID metric cannot be approximated to within less than
a factor of 2. We are not aware of previous results for other types of metrics.

Algorithmic Results: Several authors [22, 24, 28] have independently proposed heuristic algorithms
for the MAX-SUM-ID metric based on the following simple approach: Perform alternate scans along the
different axes, and during each scan choose the best possible cuts along this axis given the current cuts along
the other axes. The algorithm terminates when no changes in the partitioning occur anymore. The approach
appears to perform well in many cases, and it is shown in [4] that one such algorithm approximates the
minimum value of the metric within a factor of O(,/p) for a p x p partitioning. This bound is also tight for
this class of algorithms.

In [19], an algorithm is given that achieves a constant approximation factor of about 120 in the value of
the metric. For the dual problem of minimizing the number of tiles, a reduction to Set Cover is given in [19]
that achieves a O(log?® N) factor approximation (or a O(log N') approximation of the number of dividers as
stated in [19]). Almost all of the algorithms are proposed for the case of the MAX-SUM-ID metric, though
some of the results also extend to other MAX metrics. We are not aware of any previous provable results
for SUM metrics.

Techniques: Our algorithms are inspired by and closely related to the algorithms for Set Cover with
bounded VC dimension in [6], which are based on the use of e-nets [13]. The analysis of the algorithms
uses an argument presented by Clarkson in [9] and is also similar to those in [21, 33].

5 Approximation Algorithms

In this section, we describe our algorithms, which are all based on the same basic approach. We first focus
on the case of f() = MAX, and later extend the result to f() = SUM. As mentioned before, the algorithms
are closely related to the framework for approximating Set Cover for set systems with bounded Vapnik-
Chervonenkis (VC) dimension described by Brénnimann and Goodrich [6], and their analysis is based on
an argument given by Clarkson in [9]. However, in order to get the best bounds on approximation ratio and



running time, and to keep them as simple as possible, we give the algorithms and their analysis directly in
the context of p x ¢ partitionings rather than trying to cast them into the notation in [6]. A brief discussion
of the relation of the algorithms to the results in [6] is given in Subsection 5.3.

5.1 Preliminaries

As before, we assume an m x n array A with N = m - n, and with array coordinates indexed from 1. We
denote by X7 the set of m rows, and by X ¢ the set of n columns, of the m x n array A. For each tile r; ;
of ap x ¢ partitioning H, we define a corresponding subset R? . i of XP consisting of all rows that intersect
73, but excluding the last intersecting row of the tile. Similarly, we define a subset Rq of X7 consisting of
all columns that intersect r; ;, but excluding the last intersecting column. Recall thatp > q.

We also use a weight function w, to be defined later, that assigns a real-valued weight w(x) to each
r € XP U X9, and define w(Y) = 35,y w(y) for any subset Y of X? U X9 In particular, we define
the row weight of a tile r; ; as w(Rp]) and the column weight as w(Rq]) We define the row weight of a
partitioning H as w(HP), where H? = {h; | 0 < i < p} is the set of horizontal dividers of H, excluding
ho. Similarly, we define the column weight of H as w(H?), where H? = {v; | 0 < j < g} is the set of
vertical dividers of H, excluding vg. Note that these weights are different from the heft of a tile, or the value
of a partitioning under a given quality metric.

Definition 5.1 Given a weight function w, we say that a partitioning H is (o, aq)-good if every tile r; ; of
H satisfies w(R} ;) < oy - w(XP) and w(R{ ;) < g - w(X9).

We remark that (o, oy )-good partitionings correspond to the e-nets used in [6] and originally introduced
in [13], which have found many applications in approximation algorithms and computational geometry.

5.2 Approximating the Number of Tiles for MAX Metrics

We now present approximation results for the p x g-partitioning problem where the cumulative function is
MAX, i.e., the heft of a partition is the largest heft of any of the tiles. We also require the heft function to
be monotonic, i.e., the heft of a tile does not decrease if we grow its size, which is true for most interesting
cases.3

The Algorithm: Suppose that we are given a maximum value ¢ for the metric f() and thus for the
heft of each tile of the solution, and assume that for some pg and ¢q there exists a pg X go partitioning Hy
with value at most 6. (The values of py and g will be guessed using binary search.) We will show that the
following very simple algorithm computes a p x ¢ partitioning with heft at most §, p < [(2+ €) - po], and
q < [(2+¢€)-qo], for any chosen e > 0.

Algorithm MAX-pxq.
(1) Set the weights of all elements of X? U X9 to 1.
(2) Repeat the following three steps:

(a) Compute an (ay, ag)-good p x ¢ partitioning H, for p = [(2+¢€)po], ap = 1/p and ¢ =
[(2+€)ql, ag =1/q.

(b) Find atile r; ; in H such that f(r; ;) > ¢. If none exists, terminate and return H as solution.

(c) Multiply the weights of all elements in Rp U Rq by 8= (1+¢/2).

3 An interesting exception is the case considered in Section 6 where f() = MAX, k() = MAX, and e() is the difference between
the value of the element and the average value in the tile.



Analysis of the Algorithm. We now analyze the performance of the algorithm in three steps: (1) We show
how Step (2a) can be implemented and bound the number of tiles of the resulting (., a4)-good partitioning,
(2) we bound the number of iterations in Step (2), and (3) we analyze the running time of each iteration.
Theorem 1 then gives the main result of this subsection.

Lemma 5.1 For any p and ¢, there exists a (1/p,1/q)-good p x ¢ partitioning.

Proof: Simply set p — 1 horizontal dividers one after the other, starting at the top, and repeatedly choosing
the next divider h; as the first element where the sum of the weights of all rows encountered after h;_1
surpasses 1/p - w(XP). Note that this divider is the last row of the newly defined row of tiles, and that the
weight of this last row is not counted towards the weights of the tiles, according to our definition of Rﬁj.
Choose the vertical dividers v; in an analogous fashion. |

Lemma 5.2 The loop in Step (2) of MAX-pxq terminates after O(p log N) iterations.

Proof: The analysis is similar to that of Lemma 3.4 of [6], which itself is based on the argument in [9].
The basic idea is to upperbound the total weight w(X?) of all the rows, and to lowerbound the total weight
w(HE) of the horizontal dividers of the (unknown) optimal partitioning H, during the course of the al-
gorithm. Since H} is a subset of X7, clearly w(X?) > w(HE). This implies that the algorithm has to
terminate before the lower bound for w(H?) becomes larger than the upper bound for w(X?); the same
approach is used for the columns and vertical dividers.

Note that the weight w(X?) is initially m, and that it increases by at most a factor of (1 + m)
in each iteration, since in each iteration we multiply the weights of exactly one of the sets R;’-’J by a factor
of (1 + €¢/2), and this set Rﬁj has a total weight of at most T(2_+iW - w(XP) due to the definition of
(ap, ag)-goodness. Thus, after k iterations, we can upperbound w(X?) as follows:

where exp() denotes the exponential function with basis e. Similarly, we get

ek

w(Xq) < exp <m

+mm0.

Now consider the py x go partitioning Hy of heft at most 4 that we assume to exist. Note that any tile r; ;
that is selected in Step (2b) has a heft larger than §, and hence Hy must cut r; ;, due to the monotonicity of
the heft function. This implies that in each iteration at least one horizontal or one vertical divider of H has
its weight increased by a factor of (1 + €/2). Now suppose that after k iterations, we have had at least k/2
increases in the horizontal dividers; the other case is symmetric. Then we have

wHE) = > (1+¢/2)%

hiGHg

with 3" z; > k/2, where z; denotes the number of times the weight of the corresponding divider h; € H
has been multiplied by (1 + ¢/2). Using the convexity of the exponential function with base (1 + €¢/2), we
can lower-bound this as

In(1 +€/2) - k

w(HE) > po - (14 ¢/2)M@0) = exp ( 2po

+lalp)).



Since HY is a subset of X?, we must have w(HE) < w(XP), which implies that

In(1+¢€/2) k ek
— +1 < —
2po nlpo) < 2:(2+¢€)-po

which, using the inequality In(1 + €/2) > 5 for 0 < e < 1, implies that

+ In(m),

In(m/po)
In(1+¢€/2) — 55

Thus, if the horizontal dividers were increased at least k/2 times in k iterations, then the process must
terminate after at most O(p log INV) iterations. Similarly, if the vertical dividers were increased at least & /2
times, then we get

k<pg-

= O(plog N).

In(n/qo)

k< qo -
=0 I 4 e/2) - o=

= O(qlog N).
]

Lemma 5.3 Each iteration in Step (2) runs in time O(n + m + p - ¢ - tg), where t is the time needed to
compute the heft of a tile.

Proof: If we assume that the weights w(z) can be presented in a single machine word of O(log N) bits,
then Steps (2a) and (2c) clearly run in time O(n + m). In Step (2b), we have to compute the heft of at most
p - q tiles to find a tile with heft more than ¢, requiring time p - ¢ - t¢.

Note that the number of bits needed for the weights may increase linearly with the number of iterations.
However, since the weights w(x) are of the form 3¢ for some 4, we can implement Step (2c) by simply
increasing the exponent 4 of the weight. We can then obtain the actual weight by a lookup into a precomputed
table of the 37 as needed. For Step (2a) it actually suffices to approximate the sum of the rows between two
dividers to within a small constant factor; this results in an extra (1 + ¢’) factor in the number of dividers,
which can be absorbed into the current (1 + ¢€) factor. This approximation can be easily achieved by using
O(log n)-bit floating point numbers for the 3¢ and being careful about the order of the additions. (In fact,
discussion in [6] for a similar scenario suggests that this may not be much of a problem in practice.) |

Theorem 1 For any ¢ and any ¢ > 0, a p x ¢ partitioning H with heft at most 4, p < (2 + €)po, and
g < (2 + €)go can be computed in time O((n +m +p - ¢ - tg) - plog N), where p - go is the minimum
number of tiles such that there exists a py x pg partitioning with heft at most 4, and ¢, is the time needed to
compute the heft of any tile.

Proof: We perform binary search for the value of pg, starting at po = 2. For each choice of py we perform
a binary search for ¢, starting with go = 2, and for each such pair (po, go), we run algorithm MAX-pxq.
If the algorithm does not terminate after the number of iterations stated in Lemma 5.2, then we know that
there is no py x gq partitioning with heft at most 4, and we increase g, and eventually pg once go becomes
larger than pg, by some small factor (1 + €’). The total running time is dominated by the time used to run
MAX-pxq on the largest pg and gg; this implies the stated bound. |

As explained before, in many cases the heft of each tile can be computed in O(1) time, by performing
O(N) steps of preprocessing. In particular, this is true for the case of the MAX-SUM-ID metric, which is
probably the most important of the metrics covered by Theorem 1, and we get the following corollary. Note
that, for the case of p = O((IN/ log N)/3), this gives a linear time bound.

Corollary 1.1 In the case of the MAX-SUM-ID metric, for any § and any ¢ > 0, a p x ¢ partitioning H
with heft at most §, p < (2 + €)po, and g < (2 + €)qo can be computed in time O(N + p? - glog N), where
Po - o 1S the minimum number of tiles such that there exists a pg x go partitioning with heft at most 6.



5.3 Relationship to Set Cover

We now discuss the relation of our algorithm to the work in [19] and [6]. A simple reduction of the p x p
partitioning problem to the Set Cover problem was given in [19], resulting in an approximation ratio of
O(log N) for the value of p, and thus of O(log? N) for the minimum number of tiles, using the well known
greedy algorithm for Set Cover. This bound can be improved to O(log?p) by using the algorithm for
approximating Set Cover for the case of bounded VC-dimension in [6], and observing that the set system
generated by the reduction in [19] has VC-dimension 4. By additionally using a construction of an e-net
for this set system along the lines of our Lemma 5.1, one can obtain an approximation ratio of 16 for p
(and thus 256 for the number of tiles) and a running time of O(N?’/2 -plog N). In order to get near-linear
running time, we have described a modified algorithm that operates directly on the data distribution without
materializing the set system used for the reduction to Set Cover, which could be of size ©(N3/2) in the
worst case. The approximation ratio of (2 4 ¢) for p (or (4 + €) for the number of tiles) is then obtained by
tightening the analysis of [6] in several places.

5.4 Approximating the Metric for MAX-SUM-ID

For the important special case of the MAX-SUM-ID metric, which arises when partitioning data or work
evenly among the tiles, we can also get significantly improved results for the problem of approximating the
minimal value of any p x ¢ partitioning given p and ¢. The best previous result in [19] achieved a running
time of O(N2) and an approximation ratio of around 120. We can show the following results.

Theorem 2 Let ¢y be the minimum heft of any pg x ¢o partitioning under the MAX-SUM-ID metric. Then,
intime O(N + p? - ¢log N), we can compute

(a) ap x ¢ partitioning with heft § < 469, p < (2 + €)po, and ¢ < (2 + €)qo, and
(b) ap x g partitioning with heft § < 28y, p < (1 + €)po, and ¢ < (1 + €)qo,

for any chosen ¢ > 0.

Proof: These results are based on a fairly simple observation: If we modify Algorithm MAX-pxg such that
in Step (2b) we search for a tile with heft more than 494, then we can conclude that the optimum solution
H, must cut this tile at least 3 times in order to get a heft of at most §;. (Note that both horizontal and
vertical cuts are counted.) This means that Step (2c) guarantees a larger increase in the weight of H since
at least three dividers of H are increased. We can then adjust the choice of the parameters p, ¢, and « in the
algorithmto p = [(2/3 + €)po], ¢ = [(2/3 + €)qo], and 8 = (1 + 3¢/2) to get the result.

Similarly, if we search for a tile with heft more than 249, then Hy must cut this tile at least 2 times in
order to get a heft of at most dy. In this case, we adjust the choice of the parameters to p = [(1 + €)po]|,
g = [(1+€)qo], and 8 = (1 + €) to get the result. We note that other choices of parameters, like 64y,
p=1[(1/2+ €)po],and ¢ = [(1/2 + €)qq], are also possible. [ |

Thus, these results come quite close to the limit of 2 on the approximability shown in [8, 11]. In fact,
we can choose € = 1/(2pg) to get a weight of at most 25y with a (pg + 1) X (go + 1) partitioning in part (b);
this results in an additional factor of p? in the number of iterations of Algorithm MAX-pxg, and an additional
factor of p in the running times of Steps (2a) and (2c) in each iteration. (In practice, the running times are
probably not this bad.) While these result are limited to MAX-SUM-ID, the argument could potentially be
adapted to other metrics, provided one can argue that a tile with heft by some multiple higher than ¢ requires
a certain number of cuts to be brought down to é. We note that this would for example not be the case for a
metric such as MAX-SUM-SQRDEYV (i.e., SUM-SUM-SQRDEV with f() = MAX) which illustrates one
of the challenges in metrics involving variance within tiles.
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5.5 Extensions to Higher Dimensions and Sparse Data

All results in this subsection can be very easily extended to the case of d dimensions, with the approximation
factor growing with the dimension. For example, we get an approximation ratio of d + ¢ and a running time
of O((n + p? - tg) - plog N) for the result in Theorem 1. The modifications in the algorithm and proofs
are straightforward. For example, in the case of an p x ¢ x r partitioning, we define X?, X9, and X", and
(ap, g, ay)-goodness. We choose p = [(3+ €)po], ¢ = [(3 + €)qo], and r = [(3 + €)r¢] in the algorithm.
After k iterations in the proof of Lemma 5.2, the dividers along at least one of the three dimensions must
have been increased at least k/3 times, allowing us to lower-bound the total weight of those dividers as
before.

Input data in higher dimensions is often sparse, and thus we would like to implement the algorithm to
run in time proportional to the number of non-zero elements rather than the total size of the array A. For
MAX-SUM-ID and similar metrics, this can be done by inserting all non-zero elements into a standard
geometric data structure for range search that can then efficiently answer heft queries; the details depend
on the particular metric. For example, for MAX-SUM-ID, a cost of O(log?®~! t) per heft query, where t is
the number of non-zero elements, can be obtained with a data structure based on range trees. The structure
takes space O(t - log?~! ) and can be built in time O(t - log?~! ). We refer to Section 3 of [2] for an
excellent survey of theoretical results and practical approaches to this problem. Additional optimizations
could exploit the fact that the heft queries in each iteration have a regular structure corresponding toa p x ¢
partitioning, and that we really only need to find one tile with heft more than ¢ in each iteration.

5.6 Upper Bounds for SUM Metrics

We now present approximation results for the case where the cumulative metric is the SUM metric. We
again require the heft function to be monotonic. The algorithm follows the approach from the previous
subsection. In contrast to the MAX case, we are not aware of any direct reduction of the SUM case to the
Set Cover problem, and thus it may be surprising that the same approach applies.

The Algorithm. Suppose that we are given a maximum value é¢ for the heft of the solution, and assume
that there exists a py x g partitioning Hy with heft at most 3. Then the following algorithm computes a
p X g partitioning with heft at most 28, p < (4 +€) - po, and ¢ < (4 + €) - qo, for any chosen € > 0.

Algorithm SUM-pxgq.
(1) Set the weights of all elements of XP U X9 to 1.
(2) Repeat the following three steps:

(a) Compute an (ay, ag)-good p x ¢ partitioning H, for p = [(4+€)po], o = 1/p and ¢ =
[(4+€)q], g =1/q.

(b) If the value of the partitioning is at most 24, terminate and return H as solution. Otherwise,
select a tile r; ; at random such that the probability of picking a tile is proportional to its heft.

(c) Multiply the weights of all elements in Rﬁ”j U Rf’j by 5= (1+¢/2).
The following lemma provides the main insight underlying the analysis.

Lemma 5.4 With probability at most % the tile chosen in Step (2b) is not cut by Hy.

Proof: Let U be the set of tiles that are not cut by Hy. Then the hefts of the tiles in U sum up to at most
do, since otherwise the monotonicity of the heft function would imply that H has a value of more than &y.
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Since the sum of the hefts of all the tiles is at least 24, and each tile is chosen with probability proportional
to its heft, the probability of choosing a tile from U is at most % |

The lemma directly implies that the weight of Hy is increased in Step (2c) with probability at least %
This results in a slightly weaker lower bound for w(H?) and w(H{) as compared to the MAX case in the
previous subsection. To deal with this weaker lower bound, we use the factor (4 + ¢) instead of (2 + ¢) in
the number of dividers in Step (2a). The remainder of the analysis is then along the lines of the analysis for
the MAX case, and we get the following result.

Theorem 3 For any dp and any € > 0, a p x ¢ partitioning H with heft at most 24, p < (4 + €)po, and
g < (4 + €)qo can be computed in expected time O((n + m +p - q - tg) - plog N), where pg - qo is the
minimum number of tiles such that there exists a pg x pg partitioning with heft at most 9, and ¢, is the time
needed to compute the heft of any tile.

Discussion and Extensions. We point out that the algorithm can be made deterministic by modifying
Steps (2b) and (2c) as follows: Instead of choosing one particular tile at random, we compute for each “row
of tiles” ¢ the fraction w; of the total value of the current partitioning that is due to the hefts in this row of
tiles. We then multiply the horizontal dividers in each row of tiles ¢ by (1 4+ w; - €/2), and repeat the same
thing for the “stacks of tiles” along the columns.

Note that this approach again gives a trade-off between the approximation of the error and the approx-
imation of the number of dividers. For example, we can modify the algorithm to approximate the value of
the partitioning by a factor of 1.5 and the number of dividers by (6 + €). As before, in many cases ¢ can be
implemented in O(1) steps by performing appropriate preprocessing, including the SUM-SUM-SQRDEV
metric. The result also extends to higher dimensions as described before.

6 NP-Completeness Results

We now extend the known NP-Completeness results. For the special case of the MAX-SUM-ID metric,
Charikar, Chekuri, Feder, and Motwani [8] and Grigni and Manne [11] have shown using very similar
constructions that it is NP-Complete to approximate the minimum heft of any p x p partitioning to within
a factor of less than 2. We extend this result to several other metrics using a construction very similar to
those in [8, 11], with reductions from the following two NP-Complete problems. (We note that these two
problems are closely related and can be easily reduced to each other as shown, e.g., in [11].)

e Balanced Bipartite Vertex Cover (k-BBVC): Given a bipartite graph G and an integer k, does there
exist a vertex cover containing exactly & vertices from each side of the partition?

e Balanced Complete Bipartite Subgraph (k-BCBS): Given a bipartite graph G and an integer &,
does G contain a bipartite clique containing exactly k vertices from each side of the partition?

Our first result concerns the following types of MAX metrics. Let DEVAVG and DEVGEO be the
elementary functions defined as (the absolute amount of) the deviation between an element and the arith-
metic average and geometric median, respectively, in its tile.* Also recall that SQRDEV is the square of
DEVAVG, i.e., the elementary function in SUM-SUM-SQRDEYV. Consider metrics with these elementary
functions, with the heft function being either MAX or SUM, and with the cumulative function being MAX.
As an example, if the heft function is MAX and the elementary function is DEVAVG then we are trying to
find a partitioning that minimizes the maximum deviation of any element from the average in its tile. For
these metrics we show the following.

“The geometric median of a set of numbers is defined as 222tmin where maz and min are the maximum and minimum
elements of the set.
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Theorem 4 Given a data distribution A and a value for p, it is NP-Complete to approximate the minimum

heft of any p x p partitioning within a factor
(@) less than 2 for e() = DEVAVG or ¢() = DEVGEDO, h() = MAX, and f() = MAX,

SQRDEV, h() = MAX, and f() = MAX,

(c) less than 4 for e DEVAVG or ¢() = DEVGEO, h() = SUM, and f() = MAX, and

9
(b) less than 4 for e()
0
0

(b) less than 8 for e() = SQRDEV, h() = SUM, and f() = MAX.

1 2 3
A 01 Z Z
ZZ 01 12 Zz
Z Z 12
BOl 01 zZ Z
Gadget 1  Gadget 2 12 12 zZ 7
COl 01 Z Z
12112 Z Z
JONGSOL 22
Z Z
Z Z
JOGSOL 2 2
Z Z
JOMN O 22
Z Z
Bipartite Graph Z Z

Figure 4: Reduction from the £-BBVC problem to a p x p partitioning problem, for a bipartite graph on 6
vertices. All elements not shown have a value of 0, and Z is some fairly large number.

Proof: We reduce the k-BBVC problem on a graph with [ vertices on each side to a p x p partitioning
problem with p = k+ 2]+ 1 on an n x n array with n = 41 + 2, as follows. As shown in Figure 4, we place
21+ 1 copies of Gadget 1 along the diagonal, where Z is some fairly large number. Note that under all of the
above metrics, this means that a good partitioning must cut each axis into 2 + 1 intervals of size 2 in order to
separate the Z values from the 0 values surrounding them, since any tile containing both a Z and a 0 would
result in a very large value of the metric. Next, we use copies of Gadget 2, one for each edge, to construct
an adjacency matrix for the bipartite graph in the upper left corner, of size 2 x 2. At this point, shown in
Figure 6, we can now choose k more cuts along each axis. Note that there exists a balanced bipartite vertex
cover with & vertices on each side of the partition iff we can stab all copies of Gadget 2 using these 2k cuts.

Suppose e() = DEVAVG or e¢() = DEVGEDO, h() = MAX, and f() = MAX. If we manage to stab all
copies of Gadget 2 using these & cuts, then the maximum heft of any tile is at most 1/2. If we cannot stab
one of the copies of Gadget 2, then that copy is a tile with heft 1. The argument is essentially the same for
the other metrics. Finally, it is straightforward to show that these problems are contained in the class NP. H

We note that metrics with e() = DEVAVG are not always monotonic and so our upper bounds do
not apply in this case. For the other metrics, the above result shows that we cannot hope to generalize
our results on approximating the value of the metric in Subsection 5.4 to arbitrary MAX metrics. In fact,
it is not difficult to construct other, somewhat artificial, monotonic metrics for which no constant factor
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approximation is possible. Thus, the upper bound results for general MAX metrics in Subsection 5.2 are
necessarily limited to approximations of the number of tiles, since the achievable approximation in the value
of the metric depends on the particular metric.

For the result on the SUM-SUM-SQRDEYV metric, we use a reduction from £-BCBS. The construction
is almost identical, except that the value 2 in Gadget 2 is replaced by a 0. Again, Gadget 1 enforces cuts into
intervals of size 2 along both axes. Note that if we cut the modified Gadget 2 once, there is no reduction
in the value of the metric. However, if we manage to cut it twice, then there is a reduction of the value
from 1 to 0 for that particular 2 x 2 box, and this is the only way to further reduce the value of the metric.
Thus, using & cuts along each axis, we are able to cut k2 copies of Gadget 2 twice iff there exists a k-BCBS
subgraph in the input graph. This gives up the following result:

Theorem 5 Given a data distribution A and a value for p, it is NP-Complete to compute a p x p partitioning
that minimizes the SUM-SUM-SQRDEV metric.

Note however that both the BBVC and BCBS problems are in polynomial time if we allow % vertices
on one side and &, vertices on the other side of the partition where k = k1 + ko. Thus, we have not shown
the NP-Hardness of minimizing the total number of dividers for a given value of the metric in the case where
we can allocate dividers to the axes as desired. Concerning the problem of minimizing the number of tiles
p - q, asimple argument from [11] can be used to show that this problem is NP-Hard even if we can allocate
dividers to the axes as desired.

7 Concluding Remarks

In this paper, we have presented new algorithms for p x ¢ partitionings that significantly improve upon
previous results. We have also extended known NP-Completeness results to additional metrics.

The new algorithms are simple and fast and we believe that they should perform well in practice. For
best results, we recommend that the new algorithms be combined with the previously described heuristics
in [4, 22, 24, 28]. These heuristics start from an initial configuration and attempt to greedily improve the
partitioning; thus, by using the output of our algorithms as initial configuration we are guaranteed to get
partitionings that are at least as good as our algorithms. In fact, intuitively we expect that our algorithms,
while achieving provable bounds, are probably not good at picking “exactly the right cut” (i.e., recognizing
the precise position of ridges or edges in the data distributions) and thus a local heuristic might result in
significant improvements. An experimental evaluation of these issues remains to be done.

There are also several theoretical open problems. For MAX metrics, there are still small constant fac-
tor gaps between our upper bounds and the inapproximability results, but it seems our analysis cannot be
strengthened enough to narrow these gaps. For SUM metrics, we have only proven a somewhat awkward
result that approximates both the number of partitions and the value of the metric. This is due to the very
different nature of these metrics, for which combining two tiles can result in a dramatically higher value of
the metric.

Another open problem is to show an inapproximability result for the SUM-SUM-SQRDEYV metric. We
currently can only show simple NP-Completeness but would intuitively expect it to be at least as difficult to
approximate SUM-SUM-SQRDEV as MAX-SUM-ID. It would also be interesting to show inapproxima-
bility results for the number of tiles, or stronger inapproximability results for higher dimensions.

Finally, it would be of interest to investigate how the approach in this paper can be adapted to the
incremental maintenance of partitionings, or the incremental construction of partitionings such as in the
self-tuning histograms in [1]. In particular, the algorithms in [1] also use only a single query operation
to access the input distribution, though in their case the queries are determined by an outside user access
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pattern. There are other similarities between our algorithms and those in [1], which are based on gradient
descent methods in machine learning [25].
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