Improved Methods for Static Index Pruning

Wei Jiang*, Juan RodrigueZJf and Torsten Suel*
Computer Science and Engineering
New York University
New York, US
*weijiang2009 @ gmail.com, chr365@nyu.edu, itorsten.suel@nyu.edu

Abstract—Static Index Pruning is a performance optimiza-
tion technique for search engines that attempts to identify
and remove index postings that are unlikely to lead to top
results for typical user queries. The goal is to obtain a much
smaller inverted index that can quickly return results that are
(almost) as good as those for the unpruned index. We make two
contributions: First, we improve on previous results for pruned
index size through a careful analysis of both document and
query distribution characteristics. We derive an initial model
based on unigram probabilities that obtains gains over previous
work in some cases, and a bigram-based approach that achieves
some additional improvements. We also devise a simple method
for generating query logs in the absence of real-life queries,
useful in modeling top results. Our second contribution is to
explore, and compare to previously proposed approaches that
perform pruning based on how often documents or postings
appeared in top positions in the past.

Keywords-static pruning; index; search;

I. INTRODUCTION

Search engines face significant performance challenges
due to the huge data sizes and query loads that need to
be supported. The largest engines now crawl, analyze, and
index trillions of web pages, and process billions of queries
per day [1]. One critical cost factor is query processing,
which has to scale with both data size and query load, and
search engines devote huge hardware and energy resources
to this task. There has been lots of research on improving
query processing performance, including work on various
caching techniques, high-performance index compression,
distributed and data-parallel query execution, and a large
category of optimization techniques commonly referred to
as Early Termination, Pruning, or Top-k Query Processing.

In this paper, we focus on one such optimization tech-
nique, Static Index Pruning. In a nutshell, the idea is to
identify, through suitable analysis of the document collection
and query distribution, those index entries (postings) that are
most likely to lead to top search results for typical queries,
and to drop any other postings from the index. The goal
is to obtain a much smaller index that achieves almost the
same result quality as the unpruned index, thus requiring
much less memory and leading to faster query processing
over shorter inverted lists.

To motivate the problem, consider a leading search engine

of today.! Suppose there are about 4 trillion (4 - 102)
documents that have been indexed, with each document
having about 250 index entries on average, or a total of
1015 postings. Suppose the engine receives 5 billion queries
per day with 3.4 terms per query. This implies that at most
170 billion postings in the index lead to a top-10 result per
day, or at most 5.1 - 102 per month — in fact far less once
we consider repetition of queries and postings. Thus, more
than 99.5% of all postings do not result in even a single
top-10 result in a given month. While we obviously cannot
reliably identify the 0.5% of the index that will be used in the
next month, we might hope that we can identify a somewhat
larger subset of the index, say 10%, that contains most of
these postings and achieves comparable result quality as a
full index on common measures of effectiveness.

There has been a fair amount of previous work on
Static Index Pruning [2]-[9], mostly based on ideas such
as keeping all postings above a global impact threshold,
keeping the highest scoring postings in each list or each
document, or keeping postings or entire documents that were
part of top results in past queries. While this has led to some
promising results, we believe that further improvements are
possible. Thus, our goal here is to build on this work,
and to derive a model that can combine these and other
ideas to achieve better trade-offs between index size and
result quality according to standard measures of retrieval
quality. We note that we are dealing with a very feature-
rich environment, with many features that could be used to
estimate how useful a posting is, i.e., how likely it is to lead
to top results for likely queries. Thus, we are considering
pruning as a prediction problem, where we can use suitable
statistical techniques (language modeling, machine learning)
to decide which postings to keep.

The remainder of this paper is organized as follows. In the
next section, we provide some background on indexing and
pruning, and discuss related work. Section III summarizes
our contributions, and Section IV provides technical details
about our approach. Our experimental results are presented
in Section V. Section VI provides some concluding remarks.

IThe following numbers are rough estimates based on public sources and
some discussions.

II. BACKGROUND AND RELATED WORK

In this section, we first provide some background on
inverted index structures, ranked queries, index pruning, and
early termination techniques. We then discuss previous work
related to static index pruning. For additional details on
indexes and queries, we refer to [10,11].

A. Background

Inverted Indexes: Suppose we have a collection D of n
documents dg,dy,...d,—1 where each d; is a sequence of
words (terms). Then an inverted index for D contains one
inverted list Ly for each distinct term ¢ that occurs anywhere
in D. Each inverted list L; is a sequence of postings, where
each posting p contains information about the occurrences
of term ¢ in some document d;.

We assume that a posting contains the document ID
(docID) ¢ of d;, and either the number of occurrences of
t in d; (called frequency) or a precomputed impact score of
term ¢ in d;. Thus, a posting is of the form (i, f) or (i, s).
Postings in each list are usually sorted by their docIDs and
stored in suitable compressed form, but this is not central to
our work here. Also, postings could contain additional data
such as information about the contexts and positions of the
term occurrences in the documents.

Queries and Ranking: We assume that a query is a set
of terms, and that the goal of the system is to return the best
top-k results to the users, say for £ = 10 or 100. This is done
using a ranking function 7(d, ¢) that returns a score for a
document d with respect to query ¢. In particular, we assume
that for a query ¢, we first perform a Boolean filter, typically
a conjunction (AND) or disjunction (OR) of the query terms,
and then compute the score 7(d, ¢) for those documents that
pass the Boolean filter. Throughout this paper, unless stated
explicitly otherwise, we assume disjunctive top-k queries
with k& = 10.

In this paper, as in previous work on static index pruning,
we assume a simple ranking function that can be computed
directly from the inverted index postings of the query terms.
In particular, our experiments use the widely used BM25
ranking function. We note that while current search engines
use highly complex ranking functions with hundreds of
features, they usually rely on a very simple function to
perform a first pass over the inverted lists to identify a
set of promising documents that are further filtered and
reranked using the full ranking function. Performing index
pruning directly for a given complex ranking function is an
interesting problem for future research, but has not been
considered in previous work.

Index Pruning: We now discuss the static index pruning
problem in more detail. Given an inverted index, the goal
is to prune as many postings as possible from the index
while still returning good top-k results on incoming queries.
More precisely, we have an inverted index and a set of

training queries, plus potentially other data sources (e.g., n-
gram collections). We can analyse this data to decide which
postings to keep and which to prune, and then the resulting
pruned index is evaluated on a set of testing queries kept
separate from the training queries. A good pruning scheme
is one that obtains a good trade-off between the size of the
pruned index and the quality of the results.

As in previous work, we mostly focus on the percentage
of postings kept as our measure of index size. We note
that this is not the same as physical index size due to
the common use of index compression techniques. Pruning
widens the docID gaps between successive postings and may
thus adversely impact compression; also, pruning policies
may decide to keep more of the shorter or more of the longer
lists. Index size is also not a reliable predictor of increased
query processing speed, as we may decide to keep more
postings in the frequently accessed inverted lists. On the
other hand, if most of the unpruned index is kept on disk,
while the pruned index fits in main memory, the observed
speed-up could be much larger than the reduction in size.

We also need measures to judge the quality of the query
results obtained by the pruned index. There are two common
ways to do this: (1) we can look at what percentage of top-k
results returned by the unpruned index is still returned after
pruning (or a closely related measure such as the symmetric
difference between pruned and unpruned results). (2) We can
use traditional IR measures such as P@10, MAP, or NDCG
that are more lenient in that they do not require the exact
same results to be returned. In our work, we evaluate our
techniques on both types of measures. However, we use the
first type, percentage of results kept, and a related measure,
percentage of result postings kept in the pruned index, as
our objective during the design of our pruning schemes, as
it is easier to reason algorithmically about these.

Early Termination Techniques: Static index pruning is
closely related to a class of optimization techniques for IR
query processing often referred to as early termination (ET).
Formally, an exhaustive query processing algorithm is one
that completely evaluates the given ranking function on all
documents that pass the initial Boolean filter, and any non-
exhaustive algorithm uses early termination. A large number
of ET algorithms have been proposed in the literature. This
includes algorithms that skip over large parts of the inverted
lists during query processing [12]-[19], index tiering meth-
ods that build separate indexes for high- and low-quality
documents and then evaluate most queries only against the
high-quality one [9,20,21], and cascading techniques that
first use a simpler approximation of the full ranking function
to identify candidates for further evaluation [22,23]. Static
index pruning differs in that the decision on what postings
to skip is done ahead of time during index construction.

We call a method safe [17] if it is guaranteed to return
exactly the same results as the exhaustive method. Many of
the above algorithms are safe, but tiering, cascading, and

static index pruning methods are unsafe. For static index
pruning this seems necessary, since for any posting we
should be able to construct a (maybe very unlikely) query
containing the posting term that has this document in the top
results. Thus, if we require safety, no pruning is possible.
Unsafe techniques are usually evaluated in terms of either
standard IR quality measures or the percentage of original
exhaustive results still returned.

Early termination is widely used in current search engines,
and is necessary to support billions of queries per day.
Several ET techniques are commonly used in combination;
in particular, some forms of cascading and index tiering are
probably used by all major commercial search engines. On
the other hand, static index pruning appears to be less widely
used, but we think that improvements in the techniques
could change this. Note that static index pruning, as many
of the ET techniques, should improve with collection size
for constant k (number of results returned); unfortunately
our experiments are limited to a few ten million documents.

B. Related Work

Static index pruning was first introduced by Carmel et
al. [3], and was subsequently studied by a number of other
researchers [2,4]-[9,24]-[30]. We now discuss this work.

Index pruning techniques can be divided into three sets.
Posting oriented pruning techniques that decide whether
to keep individual postings, document oriented pruning
techniques that keep or delete complete documents and list
oriented pruning techniques that keep or remove the inverted
lists.> We can further cluster previous methods into three
classes, as follows:

Rank- and Impact-Based Methods: Several papers con-
sider posting pruning rules based on the impact or within-list
rank of a posting according to some given ranking function,
e.g., BM25 or a Cosine measure. That is, rules are designed
to try to preserve many of the top results obtained by that
ranking function on the full index. In particular, Carmel et
al. proposed two methods, UP, which uses a global cut-off
on the impact scores of postings, and TCP, which selects the
highest impact postings from each inverted list. Biittcher et
al. [25] also evaluated TCP as part of TREC 2006, showing
promising results. Work by Chen and Lee [7] revisited
the UP method, and provided a theoretical foundation for
it. More recent work by Chen et al. [8] improves on [7]
by refining the mathematical foundation and optimization
objective. Nguyen [26] showed how to improve pruning by
combining a number of features to determine which postings
should be kept.

Optimizing Pruned Retrieval Quality: Another set of
approaches tries to select postings for the pruned index such
that retrieval quality, measured in terms of measures such

2Note that spam removal can be seen as falling in the latter category,
but most pruning techniques try to go significantly beyond spam removal.

as P@10 or MAP, is optimized. Thus, in contrast to the
first set of techniques, there is no given ranking function
whose results should be preserved; instead the idea is to try
to directly identify and keep “good stuff”. An example is
the work by Biittcher and Clarke [4], which selects postings
based on KL-divergence; the idea is to select those postings
in a document that are most likely to result in the document
being highly relevant under a query. Approaches by Blanco
and Barreiro [5], de Moura at al., and Thota and Carterette
[29] use language models to select good postings to keep.
Yet other approaches try to remove entire documents [28,30]
or inverted lists [24,31] that are unlikely to be useful.

Using Query Traces: Another natural idea is to use
past queries to decide which postings should be kept. Work
by Lam et al. [2] combines the impact-based approach in
[3] with a query-based approach that looks at how often
a posting appears in the result set. Altingovde et al. [6]
introduce an approach called QueryView (QV) that marks
and keeps postings that were part of top results in past
queries. Another version combines this rule with the TCP
method in [3]. Work by Anagnostopoulos et al. [9] applies a
similar idea to complete documents, by keeping documents
that were often returned as top results in the past.

One advantage of pure query-trace based approaches is
that they make no assumptions about the ranking function,
i.e., that it consists of term-wise components. Instead, they
treat ranking as a black box and only use the results. One
disadvantage is that they require the execution of large
numbers of queries. This can be a problem because few
large query traces are available to academic researchers, and
also because methods that select postings from previous top
results fundamentally do not scale well. This is because the
cost of pruning to a fixed fraction of the index grows with
the square of the document collection, as both the number of
queries needed to mark enough postings as top results, and
the cost per query, usually grow linearly with the collection
size.> This problem is slightly less pronounced for methods
such as [9] that mark complete documents.

Comparison to our Work: Our main approach relates
mostly to the first and last categories. Our goal, or at least
our intermediate goal during algorithm design if not during
final evaluation, is to preserve top results for a given ranking
function such as BM25. We are building on Nguyen’s work
[26] in that we also try to identify additional posting features
that can predict good postings, though we believe statistical
techniques are best for the actual prediction. We also build
on query-based approaches, and in fact use of queries is
central to our methods and their performance.

Our basic approach attempts to estimate the likelihood that
a posting will lead to a top result given a random query; we
call this the promise of a posting. This is actually closely

3Some early termination techniques such as [32] use asymptotically less
than linear time, but are rarely used in search engines.

related to the query-based approach in [6] as follows: if
we could execute an infinite number of training queries and
count how often each posting occurs in the top-k, then after
normalizing these counts would converge to the likelihood
we are trying to estimate.

We also compare our approach to the approaches in [6]
and [9]. Since we do not have access to enough queries,
we implement a language model similar to [33] to generate
artificial queries that are then used for pruning. As discussed
above, convergence of such methods is very slow as each
query only marks about k - @) postings (or k documents)
as top-k, where () is the average query length, and indexes
commonly have many billions or trillions of postings and
documents. Thus, the costs of such methods are very high,
and might be more than what is saved by pruning. This
is also why, as shown in [2,6], hybrid approaches that
incorporate impact- or rank-based heuristics outperform pure
query-based ones when the number of queries is limited.

Our method basically avoids this problem by generalizing
— rather than just picking past top postings, we also pick
other postings that look similar to them according to various
features. As a result, we get very good performance on large
collections while using only a few ten thousand training
queries. When comparing our performance with the ones
based purely on queries [6,9], it also makes sense to think
about it as a complementary method — if there are not enough
queries or enough time to (preferably repeatedly) mark a
sufficient number of postings or documents, one could fill
up the index with other similar postings using our approach.

III. OUR CONTRIBUTIONS

In this paper, we study static index pruning methods that
attempt to achieve a good trade-off between index size and
retrieval quality. Our main contributions are as follows:

o We describe an approach that models the likelihood of
a posting leading to top results under a given query
distribution. The approach uses collection properties and
a set of training queries to obtain good estimates.

o We describe several algorithms that use the approach,
including a basic unigram-based estimator, a method based
on a bigram model of the query distribution, and exten-
sions of these methods that try to cover top results with
postings. All methods can be efficiently parallelized and
are suitable for a MapReduce environment.

e« We perform an experimental evaluation on two large
collection, GOV2 and ClueWeb(09 CatB, that shows some
improvements in the size-quality trade-off over previous
work.

o« We compare our methods with the approaches proposed
by Altingovde et al. [6] and Anagnostopoulos et al. [9],
which select postings and documents based on past top
results. We show that an approach that uses large numbers
of artificial queries based on a language model can do
extremely well, though at a significant preprocessing cost.

IV. OUR PRUNING ALGORITHMS

In this section, we describe our approaches for static
pruning. Recall that we are given an inverted index for a
document collection D and a training set of queries (). Our
objective in the algorithm design is to retain postings such
that we maximize the expected number of top-k results on
the full index that are retained under a randomly chosen
testing query.

In the following, given a posting p we use ¢(p) to denote
the term indexed by p, len(p) to denote the length of the
inverted list containing p, doc(p) to denote the document
that p belongs to, and rank(p) to denote the rank of p in its
inverted list (where rank zero means that p has the highest
impact score in its list). Also, given a query ¢, we say that
a posting p leads to a top-k result d; for ¢ if ¢(p) € ¢ and
doc(p) = d;.

This section is organized in four parts. First, we present
a basic unigram approach, and a more advanced bigram
approach, that attempt to maximize the expected number of
postings in the pruned index that lead to a top-k result under
a random query on the full index. However, maximizing
the number of top postings retained does not necessarily
maximize the number of top results retained by the pruned
index, as discussed below. To address this issue, we then
describe a refinement of the approach that selects postings
to maximize the number of top results covered by postings.
We then discuss how to efficiently implement this approach.
Finally, we describe a query-log approach based on [6] and
[9].

To understand the difference between the two goals above,
maximizing top postings and top results, consider a 3-term
query ¢ = a,b,c and three postings (one from each list)
leading to the same top-k result d;. If one of these postings
is not included in the pruned index, then the pruned index
cannot return d; in the conjunctive query case. Even for
disjunctive queries, the chances of d; still being in the top-
k in the pruned index are greatly reduced. Hence, our goal
should really be to maximize the number of top-k results
completely covered by postings in the pruned index. Thus,
while selecting postings, it matters what other postings are
in the pruned index. A posting becomes more attractive for
selection if a lot of its potential partner postings (postings
leading to the same top-k result under likely queries) are in
the pruned index. Our refinements, presented in Subsection
IV-B, take a simple greedy approach based on this insight.

A. Maximizing Retained Postings

The basic idea in this approach is very simple. Let p — k
denote the event that a posting p leads to a top-k result. Our
approach is to estimate for each posting p the probability of
p — k under a random query, and to then select postings
for the pruned index based on this estimate. Observe that

Prlp — k] = Pr[t(p) € q| - Prlp — klt(p) €q]. (1)

We will now show how to separately estimate these two
terms. For the second term, we show two estimations, one
based on a unigram model, and one based on bigrams. Given
such estimates and a posting p, we refer to the estimated
value of Pr[p — k| as the promise of p.

Estimating Pr[t(p) € ¢]: The solution for this part is
straightforward. Using the training query set, we derive the
probability using suitable language modeling techniques. In
fact, a simple approach based on Good-Turing Smoothing
(see, e.g., [34]) performs quite well for unigrams. As we only
have fairly small query traces available, slight improvements
can be obtained using Interpolated Kneser-Ney Smoothing
[35] where we also interpolate with a document model.

Estimating Pr(p — k[t(p) € ¢| (unigram case):
Our first approach, which we call UPP (unigram posting
promise), uses simple statistical techniques to estimate the
probability of a posting p being in the top-k, given that the
query contains ¢(p). This is done by following an approach
proposed in [33], where a small set of training queries is
used to predict this probability. In particular, we create a
training set as follows: for each query, and each posting in
the disjunction of the query terms, we store a set of posting
features and a label — 1 if the posting led to a top-k result on
the query, and 0 otherwise. Then we use this data to learn
to predict how likely a posting is to lead to a top result one
a query containing the posting term.

We considered a number of different posting features, in-
cluding the impact score, len(p), rank(p), the relative rank
rank(p)/len(p), the size of the document, and query-related
features such as the average length of queries containing ¢(p)
or the likelihood that p belongs to the shortest or longest
list in ¢q. We also tried several prediction methods including
logistic regression and regression trees. In the end, we found
that simply using the relative rank and len(p) did very well,
and that a simple bucketing of training data along the two
axes, followed by nearest neighbor smoothing for sparse
buckets, was sufficient and fast given the large amount of
training data obtained from the queries. That is, we created
a few dozen classes of list lengths (e.g., lists shorter than
100, lists between 100 and 120, lists between 120 and 144,
etc.) and a few dozen classes of relative ranks (e.g., above
0.5, between 0.25 and 0.5, etc.), and then stored for each
cell the ratio of positive to all examples. Note that during
pruning, we have to get a prediction for every posting in the
index, and thus lookup speed is very important; here, we
just need a lookup into a small 2-D table.

Estimating Prp — k|t(p) € ¢] (bigram case): The
above case takes a unigram approach in that it considers
a posting p without looking at other terms in the same
document that might give a boost to p. Suppose many queries
that contain “cat” also contain “mouse” or “food”. In that
case, a posting for “cat” located in a document that also
contains “mouse” and “food” would have a higher chance
of leading to a top result than a document not containing

these terms — particularly when the “mouse” and “food”
postings have high impact scores. Thus, a better approach
should model term co-occurrences in queries and documents.
We call this approach BPP (bigram posting promise), and it
is based on the following estimate:

Prip = klt(p) € ql =
p’ €doc(p),p'#p

(Pr(t(p') € qlt(p) € q] - Prlp — Klt(p) € ¢Nt(p') € q(}%)
Thus, we estimate Pr[p — k|t(p) € ¢] by summing over
all other postings in the document. For each other posting
p’, we take the probability that its term appears in a query
already containing ¢(p), multiplied by the probability that
p (and thus also p’) leads to a top result on such a query.
(Note that this approximation assumes that both query terms
need to exist for a document to score in the top.)

To implement this, we need to estimate Pr[t € gNt’ € ¢]
by building a bigram model on the training queries using
interpolated Kneser-Ney. We also need to estimate Pr[p —
klt(p) € ¢Nt(p’) € g]. This is also done in a similar way
as for the unigram model. Now we have two postings p and
p’ that each have features. We again use the list length and
relative rank features, and use the training queries to learn a
4-D lookup table for Pr[p — k|t(p) € ¢Nt(p’) € q]. More
details on the implementation are given in Subsection I'V-C.

B. Maximizing Retained Results

As explained before, one problem with both UPP and
BPP is that they are focused on maximizing the expected
number of retained top postings rather than top results. One
possible fix for this is to change the definition of the promise
of a posting by considering which other postings from the
same document have already been added to the pruned index.
Thus, choosing one posting from a document increases the
promise of other postings in the document that have not been
chosen yet, as it increases the likelihood that multiple (or
all) postings of a top result are covered. For the unigram
model, this is achieved by redefining the promise of p as

Pr{t(p) € q - Prlp — kl|t(p) € q] - (1 + a - SPI(doc(p)))
SPI(d)= Y Prlt(p)) € ql.

p'€PI(d)

3)
SPI(d) is the set of postings from a document d that have
already been selected into the pruned index, and « is a
weight determining how much we want to boost the promise.
Note that SPI(d) is initially zero, and is updated whenever
we pick a posting from d. So we basically increase the
promise of postings that not only have a good chance of
leading to a top result, but where many possible partner
postings (under a unigram model of co-occurrence) have
already been picked, thus encouraging the algorithm to pick
most or all postings for top results. Note that postings are
not guaranteed to be picked in monotonically decreasing

order of promise anymore, since the promise of unpicked
postings increases whenever we pick a posting from the
same document. But the basic intuition is sound: given two
postings with the same unboosted (UPP) promise score, we
should pick the one from the document where many common
query terms have already been picked.

This idea can be easily extended to the bigram approach,
by adding to the promise according to BPP (2) an additional
term:

Prit(p) € q]-a- >
p’ €PI(doc(p)),p'#p

(Prlt(p') € qlt(p) € q] - Prp — klt(p) € ¢Nt(p) € q(]é)l)
Note that this basically gives extra weight, as determined
by «, to promise derived from those partner postings p’
that have already been picked into the pruned index. As
in the unigram case, a postings promise increases over time
as other postings are picked from the same document.

We refer to these two methods for boosting the promise
as UPP-a and BPP-q, respectively. Note that UPP-0 and
BPP-0 are the basic methods without boost.

C. Efficient Implementation

We now describe how these methods can be efficiently
implemented. The crucial observation is that the order in
which the postings in one document are selected into the
pruned index does not depend on any other document, and
does not depend on how many postings are picked overall.
Our implementation consists of the following steps:

« Language Modeling: We build a query language model
based on the training queries and a sample of the docu-
ments, using interpolated Kneser-Ney based on the library
in [36]. For bigrams, we observed that a linear interpola-
tion between a query and a document model does not work
well, as it tends to overestimate the frequency of pairs that
are very common in the collection but rare in the query
trace. Thus, the pruned index would contain too many
such postings. Instead, we binned bigrams into 40 classes
according to their frequencies in the training queries and
documents, and did a separate linear interpolation in each
bin to minimize perplexity. This step is very efficient and
can easily be done on a single machine.

o Learning the Tables: Here, we execute the training
queries on our collection, and use the results to derive
the 2-D table for the unigram and the 4-D table for the
bigram model. For the unigram model, for each query, and
each posting in a list participating in the query, we check if
the posting makes it into the top-10 results. This gives us
for each cell in the table the probability whether a posting
falling into the cell will make it into the top-10. For the
bigram model, for each query, and each pair of postings in
lists participating in the query, we do the same. However,
to limit the impact of long queries with many term pairs,

we weighted by the number of term pairs. Afterwards, we
smoothed the resulting 2-D and 4-D tables to deal with
sparse cells. This step is also highly efficient and mainly
involves executing a few ten thousand queries and then
updating the counts in the cells for each posting or pair,
which takes a few hours.

Document Analysis: This step is the most expensive, but
is easily performed in a MapReduce environment, as each
document can be analyzed in isolation. For each document,
we determine the order in which postings would be picked
into a pruned index, and their promise score at the time
they are picked. In UPP and BPP, this involves computing
the promise of each posting and then sorting in decreasing
order of promise. For UPP, the cost is clearly O(nlgn)
where n is the number of postings in the document.
However, for BPP the cost becomes O(n?) as for each
posting we need to sum over all other postings in the
document. Note that BPP also requires n? lookups into
the 4-D table and the language model.

For UPP-a and BPP-a, we first compute the initial
promise of each posting as in UPP-O and BPP-0. Then
we repeatedly pick the posting with highest promise,
and update the promises of all unpicked postings in the
document. For UPP-q, this update can be done by simply
updating the SPI(d) value of the document, since the
order in which postings are selected within a document is
not changed compared to UPP-0; thus complexity stays
O(nlgn). For BPP-o, for each posting p’ picked, we
need to loop over all unpicked postings p and increase
its promise by Pr[t(p) € ¢] - o - Prt(p’) € q|t(p) €
q)- Pr[p — k|t(p) € gNt(p’) € q]. The total cost is again
O(n?).

Posting Selection: The input of this step is, for each
document, a sequence of postings in the order they should
be picked, and the promise score of each posting at the
time it is picked. For UPP-0 and BPP-0, this step is just
a selection operation, where we pick the postings with
the highest promise across all documents. For UPP-a: and
B PP —q, where promise is not monotonically decreasing,
we use a greedy approach using a heap, with promise
value as key. We pick the posting with the highest promise
overall and replace it by the next posting from the same
document, until enough postings have been picked. (We
note that we can use other approaches that try to look
ahead into the promise curve of a document, but this does
not seem to change results measurably.) This step is also
very fast.

D. Simple Query-Log Based Approaches

As described before, work in [6] and [9] describe query-

log based approaches for posting pruning and document

pruning, respectively. The basic underlying idea in both

approaches is to count for each posting, for each document,

the number of hits (i.e., how often it has appeared in top

Table I

Dataset GOV2 Clueweb09 B
postings 6,451,948,010 17,075,485,964
terms 37,728,619 86,532,822
documents 25,205,179 50,220,423
avg document length 256 340

results in the past), and use this to retain the right items.
Given a large enough sample of queries, these methods can
obtain a good estimate of the likelihood that a posting or
document is in the top-k for a random query (by dividing
the hits by the number of queries). However, this requires
a lot of queries, and computation to execute the queries.
This is most severe for the posting pruning method, and [6]
addresses this by keeping any posting that has been a top
result even once, by looking at top-1000 results to achieve
better coverage, and by blending the approach with other
methods.

For our data, we have a much more limited query set,
making a comparison difficult. To allow a comparison to [6]
and [9], we use the toolkit in [36] to create a query language
model as described in [33], to generate and execute large
numbers of artificial queries, and finally look at the number
of hits to decide what to keep (and in some case normalizing
these scores suitably). We refer to these methods as doc hits
and post hits.

V. EXPERIMENTAL RESULTS

In this section, we provide experimental results evaluating
our proposed UPP and BPP methods, the doc-hits and post
hits query-log based methods in [6] and [9], and some
previous techniques.

We used GOV2 and Clueweb09 CatB as our experimental
dataset, but due to the space limitation of this paper, we show
most of our results based on GOV2, while providing some
selected results for Clueweb09 Cat B. For the experiments
with GOV2 dataset, we report P@Q10 results using TREC
topic queries 701 to 850, with average query length 3.11. We
also utilized the 100K queries from the TREC 06 efficiency
task track, with average query length 4.11 terms. We use
95% of the queries for training, and 5% for testing. We
use these testing queries to report results on how many top
postings and results from the unpruned index are kept, while
training queries are used for computing language models
and lookup tables. For the experiments with ClueWeb09
CatB, we used 200 judged topic queries from the TREC
Web Tracks 2009 to 2012, with an average query length
of 2.5 terms, to report PQ@Q10. An additional 174K queries
from the TREC Million Query Track, with an average query
length being 3.56 terms, were used for training (95%) and
testing (5%). We use partial BM25 scores as posting impact
score. Table I summarizes the statistics of these datasets. A
discussion about the methods used in this paper and the way
we generalize query view and query covering follows:

« Uniform Pruning (UP): A global impact score threshold
is computed for each level of index size, and only postings
above the threshold are included in the pruned index.

e Term Centric Pruning (TCP): This method computes an

impact score threshold per inverted list, and keeps only

postings above the thresholds. The thresholds are chosen
by sorting each inverted list by their impact score, and
choosing the appropriate level accordingly.

QueryView (QV): We use the training query set and

collect the set of top-100 postings returned. This set of

postings form the query view. These postings are ‘“pro-
tected”, and thus will not be pruned.

Uniform Pruning with Query View (UP-QV): We first

perform QV, and then apply a uniform pruning (UP)

method to choose the rest of the postings in the pruned
index.

Term Centric Pruning with Query View (TCP-QV): We

first perform QV, and then apply a term centric pruning

(TCP) method to choose the rest of the postings in the

pruned index.

Doc Hits (DH): We use a large amount of artificial queries

generated by our language model to collect the top-10

results and the hit frequency of documents. We then select
documents based on decreasing order of hit frequency.

« Doc Hits/Doc Size(DH/S): This method modifies DH by

dividing the number of hits by the size of the document,

to give priority to smaller documents.

Posting Hits (PH): We use a large amount of artificial

queries generated by our language model in order to

collect the top-10 posting hits. We then select postings
based on decreasing order of the hit frequency.

Unless explicitly stated otherwise, all experiments are for

top-10 results under OR semantics. We mostly focus our

work on cases where we prune 90% or more of all postings,
which we think is the most interesting range, though we also
provide numbers for a few larger pruned indexes.

Figure 1 shows that UPP-« outperforms the four baseline
(UP, TCP, UP-QV, TCP-QV) methods by a large margin,
for all three evaluation metrics (top postings kept, top
results kept, and P@10). In particular, we see that we can
prune more than 90% of the index and still get results for
P@10 that are close to those for the unpruned index. As
expected, DH, DH/S, and especially PH, do quite well in
all three evaluation metrics. PH does best overall for results
and postings kept, and at low index sizes for P@10, but
as discussed above, these methods have limitations —the
significant amount of queries needed in order to get a precise
estimation of doc or posting hits, and the high computational
power required to achieve good coverage. For cases where
either the query size or the computational effort required to
measure hits is limited, UPP and BPP methods are preferred.

Next, in Figure 2 we look at the UPP-a methods and show
the effect of varying o under OR and AND semantics, in
order to increase the number of results kept. We show no real

¢ BPP-10
< DHIS
% DH

% PH

postings kept - OR

> TCP-QV
15% < uP-av
“ TCP
0% # P
1% 2% 3% 5% 6% 7% 10% 15% 30% 50%
index size
(a)

results kept - OR

1% 2% 3% 5% 6% 7% 10% 15% 30% 50%
index size
50%
40%
& 30%
o 4 UPP-5
o -+ BPP-0
Q, . > BPP-10
o 20% % pHis
% DH
& PH
10% s TCP-QV
< up-av
“ TCP
0% il
1% 2% 3% 5% 6% 7% 10% 15% 30% 50%

index size

(©
Figure 1. Quality measures for all methods

improvement for results kept under OR semantics, but there
is a visible improvement for AND queries, which require
all postings leading to a top result to be kept in the pruned
index. For P@10, Figure 2 also shows a significant boost of
the UPP-a methods over UPP-0. We also observed a smaller
but still clear improvement in PQ10 for OR queries (shown
as part of the next figure). Overall, the o refinement appears
to perform what it was designed for, though we were hoping
for clearer improvements for the OR case.

In Figure 3 we compare UPP and BPP via varying o on
all three evaluation metrics. BPP does slightly better than
UPP on the number of top postings kept, confirming our
intuition. However, for top results kept UPP outperforms
BPP, while for PQ@10 there are improvements under BPP,
especially as the index size grows. The behaviour for top
results kept can be explained by a drawback of the BPP

results kept - OR

15% “ UPP-10
UPP-5
0% - UPP-0
1% 2% 3% 5% 6% 7% 10% 15% 30% 50%
index size
()

results kept - AND

“ UPP-100
4 UPP-50
- UPP-10
> UPP-1
% < UPP-0

1% 3% 5% 10% 15% 30% 50%
index size

(b)

40%

P@10 - AND

< UPP-100
10% £ UPP-50
- uPP-10
»¢ UPP-1
0% < UPP-0

1% 3% 5% 10% 15% 30% 50%
index size

(©)

Figure 2. Quality measures for UPP at varying values of «

method: it tends to promote postings in longer lists but
with lower impact factors into the pruned index, based on
their popularity as partners for other higher scoring posting.
(The average impact score of postings selected by BPP
was significantly lower than for those selected by UPP.)
These postings are often not essential, in that the higher
scoring partners would be able to make it into the top results
without these postings. To fix this problem, a correction
factor which we call essentiality factor of a posting has
been introduced. The essentiality factor helps lower the
promise of low-impact postings, thus hopefully mitigating
this problem, but we were unable to obtain results in time
for this submission. We also suspect that results for BPP
are still hampered by limits of the bigram language model.
One basic problem here is the limited amount of training
queries we have available, as many bigrams never occur

postings kept - OR

1% 2% 3% 5% 6% 7% 10% 15% 30% 50%
index size

(a)

results kept - OR

1% 2% 3% 5% 6% % 10% 15% 30% 50%
index size

(b)

40%

1% 2% 3% 5% 6% 7% 10% 15% 30% 50%
index size

(©
Figure 3. Quality measures for UPP and BPP methods

in the training queries. A slight improvements may still
be possible on the currently available queries, using better,
possibly non-linear interpolation with the document model.
We also note that the document analysis phase of BPP, as
described in Section IV-C, with a cost per document that is
quadratic in its number of postings, took a significant amount
of computational resources (a few hundred CPU core-hours
for the GOV2 collection with 25M documents), though, as
noted before, this work is highly parallelizable. We also
believe we can improve BPP by, e.g., only considering
important posting pairs (say, with bigram probability above
a threshold), but this is left for future work. In contrast, the
cost of the UPP methods is only moderately larger than that
of indexing.

Finally, we show some selected results for the ClueWeb(09
CatB data set. Table II shows that on this data set, our

methods again, attain some improvements over previous
methods. Note that the PQ10 results are generally lower
for ClueWeb09 than for GOV2, as the queries are considered
tougher.

In summary, our experimental results show that our meth-
ods can outperform previous methods and achieve fair results
even if more than 90% of all postings are pruned away.
Previous works have also been presented and it is shown to
perform well, with the limitation that significant amounts of
queries and computational expense are required.

VI. CONCLUSIONS

In this paper, we have proposed several new algorithms
for static pruning of inverted indexes and a comparison
with query view [6] and query covering [9]. Our approach
attempts to estimate the likelihood that postings result in
top results, based on various posting features and collection
and query trace statistics. Our experimental results show that
the new algorithms achieve measurable improvements over
previous work.

There are several extensions that we plan to include in
the extended version of this paper. This includes experiments
with other bigram language models that might obtain slightly
better pruning, and other extensions and optimizations of
our approach such as hybrid unigram/bigram methods and
the use of more posting features for estimating Pr[p — kJ.
We plan to also study the index size / query cost trade-off
under different cost models and for actual query processing
algorithms.

Acknowledgement This research was supported by NSF
Grant IIS-1117829 Efficient Query Processing in Large
Search Engines, and by a grant from Google.

REFERENCES

[1] Google, “How search works: The story inside search,”
http://www.google.com/insidesearch/howsearchworks/thestory/.

[2] H. T. Lam, R. Perego, and F. Silvestri, “On using query
logs for static index pruning,” in Proceedings of the 2010
IEEE/WIC/ACM International Conference on Web Intelli-
gence and Intelligent Agent Technology - Volume 01.

[3] D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici,
Y. S. Maarek, and A. Soffer, “Static index pruning for
irsystems,” in Proc. of the 24th Annual Int. ACM SIGIR Conf.
on Research and Development in Information Retrieval, 2001.

[4] S. Biittcher and C. Clarke, “A document-centric approach to
static index pruning in text retrieval systems,” in Proc. of the
15th ACM CIKM, 2006.

[5] R. Blanco and A. Barreiro, “Probabilistic static pruning of
inverted files,” ACM Transactions on Information Systems,
vol. 28, 2010.

[6] I. Altingovde, R. Ozcan, and O. Ulusoy, “Static index pruning
in web search engines: Combining term and document popu-
larities with query views,” ACM Transactions on Information
Systems, vol. 30, 2012.

[7] R. Chen and C. Lee, “An information-theoretic account of
static index pruning,” in Proc. of the 36th Annual Int. ACM
SIGIR Conf. on Research and Development in Information
Retrieval, 2013.

(8]

(9]

[10]
(11]

[12]

[13]

(14]
[15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

Table II
QUALITY MEASURES FOR UPP AND BASELINES ON THE CLUEWEBQ9 CATB DATASET

100% 10% 9% 8% 7% 6% 5% 4% 3% 2% 1%
Postings preserved UPP-3 1.000 0.822 0.811 0.798 0.783 0.765 0.742 0.713 0.677 0.629 0.541
UPP-0 1.000 0.818 0.806 0.793 0.777 0.760 0.736 0.712 0.676 0.623 0.532
UP 1.000 0321 0299 0.272 0243 0216 0.182 0.148 0.120 0.095 0.068
TCP 1.000 0.575 0552 0.527 0504 0481 0442 0407 0361 0295 0.206
Results preserved UPP-3 1.000 0.679 0.667 0.653 0.635 0.617 0.593 0563 0.529 0490 0.424
UPP-0 1.000 0.672 0.659 0.644 0.629 0.608 0.589 0.560 0.530 0488 0.419
UP 1.000 0389 0366 0.338 0307 0275 0.237 0.199 0.165 0.135 0.106
TCP 1.000 0.643 0.621 0.597 0.572 0548 0510 0472 0422 0355 0.253
P@10 UPP-3 0276 0266 0.264 0.262 0258 0.257 0.257 0251 0.243 0236 0214
UPP-0 0276 0263 0.260 0.261 0260 0.253 0.251 0246 0.244 0.235 0.212
UpP 0276 0.184 0.180 0.174 0.164 0.156 0.136 0.121 0.109 0.083 0.063
TCP 0276 0.277 0274 0275 0273 0272 0266 0.257 0245 0223 0.203
R.-C. Chen, C.-J. Lee, and W. B. Croft, “On divergence Int. ACM SIGIR Conf. on Research and Development in
measures and static index pruning,” in Proceedings of the Information Retrieval, 2011.
2015 International Conference on The Theory of Information [24] R. Blanco and l. Barreiro, “Static pruning of terms in inverted
Retrieval, 2015. files,” in ECIR 2007. Springer, 2007.
A. Anagnostopoulos, L. Becchetti, I. Mele, S. Leonardi, and [25] S. B. Charles Clarke and P. Yeung, “Index pruning and
P. Sankowski, “Stochastic query covering,” in Proc. 4th ACM result reranking: Effects on ad-hoc retrieval and named page
Int. Conf. on Web Search and Data Mining, 2011. finding,” in TREC 2006.
J. Zobel and A. Moffat, “Inverted files for text search en- [26] L. Nguyen, “Static index pruning for ir systems: A posting-
gines,” ACM Computing Surveys, vol. 38, no. 2, 2006. based approach,” in Proceedings of LSDS-IR, CEUR Work-
R. Baeza-Yates and B. Ribeiro-Neto, Modern Information shop, 2009.
Retrieval. Addision Wesley, 1999. [27] E. S. de Moura, C. F. dos Santos, D. R. Fernandes, A. S.
M. Persin, J. Zobel, and R. Sacks-Davis, “Filtered document Silva, P. Calado, and M. A. Nascimento, “Improving web
retrieval with frequency-sorted indexes,” J. of the American search efficiency via a locality based static pruning method,”
Society for Information Science, vol. 47, 1996. in .Proceedmgs of the 14th international conference on World
H. Turtle and J. Flood, “Query evaluation: strategies and opti- Wide Web. ACM, 2002 : L o
mizations,” Information Processing and Management, vol. 31, [28] L. Zheng and L. J. Cox, “Entropy-based static index pruning;
no. 6, 1995. in Advances in Information Retrieval, ser. Lecture Notes in
R. Fagin, “Combining fuzzy information: an overview,” 2002. Computer Science. Springer]‘5:er¥1n.Heldelberg, 2009.
X. Long and T. Suel, “Optimized query execution in large [29] S dL' Thotz_l and.Blul. CaIrte.rettle},l Wlltlhlr}—docqme’r}t. te;r:il—bas‘ed
search engines with global page ordering,” in Proc. of the Index pruning wit S.tatlstlca ypothesis testing, " in Advances
29th Int. Conf. on Very Large DBs, 2003. — g’fo\;’”m"’” Retrieval. Springer, 2011.
A. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien i 1shwakarma', K. 1. Lakhtaria, D Bhatnagar, and A'.K'
“Efﬁcient’ 1’ i . ’t Jevel i trieval ’ Sharma, “An efficient approach for inverted index pruning
ont query evaluation usmig a two-level retrieval pro based on document relevance,” in 2014 Fourth International
;;Zil’;gler;nf;;oc.zolg;he [2th ACM Conf. on Inf. and Knowl. Conference on Communicati(;n Systems and Network Tech-
? ; « . . . nologies.
;asi;r?ilxgrigdin’zccz;f;ke%?ti?;:;;lu Efnzrg;;?}%;; [31] g Skoblg:lts%/n, F. Junl;]ueira, V.fPlachlouras, hand R.dBaedza—
’ ’ . - ates, “ResIn: a combination of results caching and index
Conf: on Research am‘i‘ Development in Inf. Remeyal, 20(,)7’ pruning for high-performance web search engines,” in SIGIR
S. Ding anq T. Suel,. Faster tOP'k do.cument re.trleval L}smg conference on Research and development in information
block-max indexes,” in Proceedings of the 34th international retrieval. 2008.
ZAOCJA;[52'10G111R conference on Research and development in IR [32] R. Fagin’, “Combining fuzzy information from multiple sys-
> c . o tems,” in ACM SIGMOD International Conference on Man-
K. Qhakrabam, S. Chaudhurl, and V. Ganti, I'nte{yzjll-based agement of Data and ACM Symposium on Principles of
pruning f(;lr ;op—léprj(zcessbng ovgr compresseg(;llslts, in Proc. Database Systems, 1996.
of the 27th Int. Conf. on Data Engineering, : [33] Q. Wang, C. Dimopoulos, and T. Suel, “Fast first-phase
K. Risvik, Y. Aasheim, and M. L@al, “M‘%ltl'“er architecture candidate generation for cascading rankers,” in Proceedings
g(())r()‘geb search engines,” in /st Latin American Web Congress, of the 39th International ACM SIGIR Conference on Research
: and Development in Information Retrieval, 2016.
G. Leung, N. Quadrianto, A. Smola, and K. Tsioutsiouliklis, [34] S.F. Chen and J. Goodman, “An empirical study of smoothing
“Optimal web-scale tiering as a flow problem,” in Advances techniques for language modeling.” 1996.
gllgeurgl I"folrmlf_llti? ProcessglgCSgstelﬁs 2_13’(221?10.C L [35] R. Kneser and H. Ney, “Improved backing-off for m-gram
. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, language modeling,” 1995.
Z. Zheng, and J. Degenhardt, “Early exit optimizations for [36] P. Nguyen, J. Gao, and M. Mahajan, “MSRLM: a scalable

additive machine learned ranking systems,” in Proc. of the
ACM Int. Conf. on Web Search and Data Mining, 2010.

L. Wang, J. Lin, and D. Metzler, “A cascade ranking model
for efficient ranked retrieval,” in Proc. of the 34th Annual

language modeling toolkit,” Microsoft Research, Tech. Rep.,
2007.

