
Compressing Term Positions in Web Indexes
Hao Yan

CSE Department
Polytechnic Institute of NYU

Brooklyn, NY 11201
hyan@cis.poly.edu

Shuai Ding
CSE Department

Polytechnic Institute of NYU
Brooklyn, NY 11201

sding@cis.poly.edu

Torsten Suel
CSE Department

Polytechnic Institute of NYU
Brooklyn, NY 11201
suel@poly.edu

ABSTRACTLarge sear
h engines pro
ess thousands of queries per se
ondon billions of pages, making query pro
essing a major fa
torin their operating
osts. This has led to a lot of resear
h onhow to improve query throughput, using te
hniques su
h asmassive parallelism,
a
hing, early termination, and invertedindex
ompression. We fo
us on te
hniques for
ompressingterm positions in web sear
h engine indexes. Most previouswork has fo
used on
ompressing do
ID and frequen
y data,or position information in other types of text
olle
tions. Com-pression of term positions in web pages is
ompli
ated by thefa
t that term o

urren
es tend to
luster within do
umentsbut not a
ross do
ument boundaries, making it harder to ex-ploit
lustering e�e
ts. Also, typi
al a

ess patterns for po-sition data are di�erent from those for do
ID and frequen
ydata. We perform a detailed study of a number of existingand new te
hniques for
ompressing position data in web in-dexes. We also study how to eÆ
iently a

ess position data forranking fun
tions that take proximity features into a

ount.
Categories and Subject DescriptorsH.3.3 [INFORMATION STORAGEANDRETRIEVAL℄:Information Sear
h and Retri eval
General TermsAlgorithms, performan
e
KeywordsInverted index, sear
h engines, index
ompression
1. INTRODUCTIONDue to the rapid growth in the size of the web and thenumber of web users, sear
h engines are fa
ed with signi�
antperforman
e
hallenges. Current
ommer
ial sear
h enginesalready have to pro
ess thousands of queries per se
ond onbillions of do
uments, and the total number of queries issuedis still in
reasing every year. In addition, users expe
t higherand higher result quality in the presen
e of spam and othermanipulation, requiring
onstant tuning of the system.Web sear
h engines use inverted index stru
tures to evalu-ate queries. The sizes of these stru
tures are typi
ally in therange of gigabytes to terabytes, and they are stored in highly
ompressed form on disk or in main memory. Compression ofinverted indexes saves disk spa
e, but more importantly alsoredu
es disk and main memory a

esses, resulting in faster

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’09, July 19–23, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-483-6/09/07 ...$10.00.

query evaluation. Typi
ally, inverted indexes in
lude infor-mation su
h as the do
ument IDs (do
IDs), in-do
ument fre-quen
ies, and in-do
ument positions of term o

urren
es in the
olle
tion. There is a signi�
ant amount of work on invertedindex
ompression; see [28℄ for an overview and [29℄ for a re
entexperimental evaluation of state-of-the-art te
hniques.Most previous work fo
uses on the
ompression of do
IDand frequen
y data, or on the
ompression of positions withinlonger linear texts su
h as books. In
ontrast, we fo
us on po-sition data for web indexes, where ea
h page typi
ally
onsistsof only a few hundred words. This problem is important fortwo reasons. First, the size of the position data is typi
allyseveral times larger than the do
ID and frequen
y data, thushaving a signi�
ant impa
t on query pro
essing eÆ
ien
y. Se
-ond, positions are be
oming in
reasingly important in s
oringfun
tions, as re
ently studied, e.g., in [8, 15, 26, 16, 21℄.An important
onsideration in the
ompression of positiondata is the tenden
y of term o

urren
es to
luster, i.e., if aword o

urs in a parti
ular senten
e on a page, then it is morelikely to o

ur again soon thereafter, in one of the next sen-ten
es. It is important to exploit this
lustering property, andsuitable te
hniques
an a
hieve signi�
antly better
ompres-sion on su
h
lustered o

urren
es than in the uniform
ase.However,
ompression of position information in web indexesdi�ers from the traditionally studied
ase of positions in longertexts in that ea
h page in a web index is a separate do
umentthat may or may not be similar to the previous page (depend-ing on the page ordering used, but also on the properties ofthe
olle
tion). In
ontrast, when
ompressing positions in abook, there are usually signi�
ant similarities between di�er-ent pages in the book, or di�erent se
tions and subse
tions.Thus, in web indexes it is diÆ
ult to identify any
lusteringe�e
ts beyond page boundaries, and the fo
us is on exploitingwhat
lustering exists within ea
h page itself. Compression ofposition data in web indexes also di�ers from the
ase of do
IDand frequen
y
ompression in that additional information su
has page size and term frequen
y is available.In this paper, we fo
us on te
hniques for
ompressing po-sition information in web indexes. We des
ribe several newte
hniques, and perform a detailed experimental evaluation ofexisting and new te
hniques. We also show how to eÆ
ientlyuse
ompressed position data in ranking fun
tions that takeposition information into a

ount. A more detailed des
rip-tion of our
ontributions is given in Se
tion 3, after we providesome ba
kground in Se
tion 2.
2. BACKGROUND AND RELATED WORKWeb sear
h engines as well as many other IR systems arebased on an inverted index, whi
h is a simple and eÆ
ient datastru
ture that allows us to �nd all do
uments that
ontain aparti
ular term. An inverted index I for the
olle
tion
onsistsof a set of inverted lists Iw0 ; : : : ; Iwm�1 where list Iw
ontains aposting for ea
h do
ument
ontaining w. Ea
h posting
ontains

the ID of the do
ument where the word o

urs (do
ID), thenumber of o

urren
es in this do
ument (frequen
y), and thepositions of the o

urren
es within the do
ument (positions)expressed as the number of words pre
eding the o

urren
e.The postings in ea
h inverted list are usually sorted by do
IDand stored in highly
ompressed form on disk.There are several possible layouts of inverted lists. One lay-out is to keep the inverted list Iw as a
ontiguous sequen
eof postings, ea
h of the form (di; fi; pi;0; :::; pi;f�1) [28℄, wherepi;j = k if w is the k-th word in do
ument di. Or we
an breakthe index into
hunks, where ea
h
hunk stores say 128 do
IDs,followed by the
orresponding 128 frequen
y values, followedby all the position information for these 128 postings (usuallymore than 128 values) [4, 29℄. Or we may have separate listsfor do
IDs, frequen
ies, and positions, ea
h sorted in the sameorder. We note that some
ompression s
hemes may naturallyoperate on
hunks of values of the same type, and thus onlyapply to the latter two layouts. In this paper, we do not
areabout the layout for do
IDs and frequen
ies, but assume thatthe positions are kept in a separate list or in separate
hunks.
2.1 Inverted Index CompressionMany di�erent inverted index
ompression te
hniques havebeen proposed in the literature [28℄. Most te
hniques assumethat ea
h list of postings of the form pi = (di; fi; pi;0; :::; pi;f�1)is �rst prepro
essed by taking the di�eren
es (d-gaps) betweenthe do
IDs of any two
onse
utive postings, and between thevalues of any two
onse
utive positions (p-gaps) in the sameposting. More pre
isely, we repla
e ea
h do
ID di with i > 0by di � di�1 � 1, ea
h fi by fi � 1 (sin
e no posting
an havea frequen
y of 0), and ea
h pi;j with j > 0 by pi;j � pi;j�1 � 1.Throughout this paper we assume that we are
ompressingthese modi�ed values.One problem with this approa
h is that in order to
ompressa parti
ular posting, we would have to de
ompress all pre
ed-ing postings and add up their values. To avoid this problem,inverted lists typi
ally store additional short
ut pointers thatallow the query pro
essor to independently de
ompress blo
ksof some limited size. (In the
ase of the se
ond layout forinverted lists above, these blo
ks usually
orrespond to the
hunks in the layout.) We assume that su
h pointers are alsoavailable for position data, allowing us to fet
h the positionsbelonging to a parti
ular posting.Thus, we have the problem of
ompressing sequen
es of in-teger values that tend to be small on average but may followvarious distributions depending on the properties of the do
u-ment
olle
tion. There are many di�erent te
hniques for this,in
luding
lassi
al approa
hes su
h as gamma and delta
od-ing [9℄, LLRUN [10℄ and its variants [20℄, Golomb and Ri
e
oding [28, 30℄, variable-byte
oding [27, 22℄, and more re
entte
hniques su
h as Simple9 [3℄ and its variants [4, 2, 1, 29℄,or PForDelta [31℄. However, these te
hniques have not beenpreviously evaluated for
ompression of positions data in webpage
olle
tions. We now outline a few of these te
hniques.Gamma
oding [9℄ represents a value n >= 0 by a unary
ode for 1+blog(n+1)
 followed by a binary
ode for the lowerblog(n+1)
 bits of n. Gamma
oding is good for
ompressingsmall numbers but relatively ineÆ
ient for large numbers.In Golomb
oding [12, 28℄ an integer n is en
oded in twoparts: a quotient q stored as a unary
ode, and a remainder rin binary form. To en
ode a set of integers, we �rst
hoose aparameter B; a good
hoi
e is B = 0:69�ave, where ave is theaverage of the values to be
oded. Then for ea
h number n we

ompute q = bn=B
 and r = n mod B. If B is a power of two,then log(B) bits are used to store the remainder r; otherwise,either blog(B)
 or dlog(B)e bits are used depending on r. Ri
e
oding is the
ase where B is
hosen as a power of two. Thisallows for a more eÆ
ient implementation through use of bitshifts and masks, while the di�eren
e in size is usually small.Variable-byte
oding [27, 22℄ represents an integer n as asequen
e of bytes. In ea
h byte, we use the lower 7 bits tostore a part of the binary representation of n, and the highestbit as a
ag to indi
ate if the next byte is still part of the
urrent number. Variable-byte
oding is simple to implementand known to be signi�
antly faster than traditional bit-wisemethods su
h as Golomb, Ri
e, Gamma, and Delta
oding[30℄. However, it usually does not a
hieve the same redu
tionin index size as bit-wise methods.Simple9
oding [3℄ is not byte-aligned, but
an be seen as
ombining word alignment and bit alignment. The basi
 ideais to try to pa
k as many integers as possible into one 32-bitword. Simple9 divides ea
h word into 4 status bits and 28 databits, where the data bits
an be divided up in 9 di�erent ways.For example, if the next 7 values are all less than 16, then we
an store them as 7 4-bit values. Or if the next 3 values areless than 512, we
an store them as 3 9-bit values (leaving onedata bit unused). Simple16 is a variation of Simple9 that uses16 instead of 9
ases and thus a
hieves a slightly better use ofea
h 32-bit word [29℄.PForDelta is a re
ent te
hnique proposed in [13, 31℄ for
om-pression in database and IR systems. The basi
 idea is to splita list into
hunks of some �xed size, and then sele
t a value bsu
h that most of the values in the
urrent
hunk (say, 90%)are less than 2b and thus �t into a �xed bit �eld of b bitsea
h. The remaining integers,
alled ex
eptions, are
oded sep-arately. Variants of PForDelta have been shown to outperformvariable-byte
oding in terms of both speed and
ompression.For best results,
hunks should
ontain a number of values thatis a multiple of 32; this guarantees that the bit �elds of ea
h
hunk align with word boundaries.LLRUN [10℄ uses Hu�man instead of unary
oding for theunary parts of the Gamma
ode. The Hu�man
ode is derivedfrom statisti
s over the entire
olle
tion. Thus, LLRUN splitsthe spa
e of integer values into intervals or bu
kets su
h thatea
h number
an be represented by its bu
ket number k andits o�set o within the bu
ket. We note that this idea is alsoadopted in the widely used zlib library [11℄, where the binarypart is referred to as \extra bits". LLRUN was improved in[20℄ by using a separate Hu�man table for ea
h inverted list.
2.2 Adaptive Methods for Index CompressionAs explained earlier, o

urren
es of terms in text tend to be
lustered (or lo
ally homogeneous [17℄) rather than spread outuniformly. Several previous papers [7, 6, 18, 19, 17℄ have pro-posed
ompression methods that exploit this property. How-ever, these methods are usually only able to exploit
lusteredsequen
es of gaps that are long enough, say gaps between wordo

urren
es in books or other
olle
tions that
ontain suÆ-
iently long stret
hes of linearly ordered text. In
ontrast, theaverage web page
ontains a few hundred words, and pagesare ordered in the index via a do
ID that may be assignedbased on
riteria su
h as global page quality or
rawl order.Thus, while
lustering does o

ur within a do
ument, thereare typi
ally only a few o

urren
es of the word, and the nextdo
ument in the ordering is not related to the previous do
u-ment. In addition, previous work did not exploit page-related

information to
ompress positions, but treated all positions asone uniform sequen
e of numbers.Bookstein et al. [7, 6℄ used a
ompression algorithm basedon a multi-state Markov model to exploit
lustering of terms.The basi
 idea of interpolative
oding [19℄ is to �rst en
odethe do
ID in the middle of the list, represented by the gapfrom the start of the list, and then re
ursively
ompress theleft and right halves of the list. This might seem
ounterin-tuitive at �rst glan
e, but if o

urren
es are heavily
lustered,then this divide-and-
onquer approa
h will eventually fo
uson fairly small regions of the
olle
tion that
ontain many o
-
urren
es of a term and
an thus be en
oded very su

in
tly.Interpolative
oding a
hieves good performan
e for
lustereddata but is somewhat slow [28℄.Mo�at and Anh proposed two binary
odes [17℄, RBUC andBASC, for
ompressing lo
ally homogenous sequen
es. RBUCen
odes the next s numbers into s b-bit binary
odes, wherethe shared b,
alled sele
tor, is the number of bits of the binary
ode for the maximum value of those s numbers. RBUC
anbe applied re
ursively to the resulting sequen
e of sele
tors,and s
an be redu
ed at ea
h re
ursive levels by using di�erentes
alations fun
tions. For example, the s in the next level
anbe
omputed by f(s) = 2�s or f(s) = s�s. BASC is an on-linemethod that predi
ts the number of bits bi used to en
ode thenext number xi by using the value of bi�1. In parti
ular, it �rstuses one bit to indi
ate if bi < bi�1, and then en
odes xi as abi�1-bit binary
ode if that is true, and otherwise as a (bi-bi�1)-bit unary
ode followed by (bi-1)-bit binary
ode. A variantof BASC is BASC-smooth, whi
h predi
ts bi by exploiting theaverage b-value used for k previous numbers.One
ommon property of these methods is that they aremore adaptive than the methods dis
ussed further above. Wenow formalize this notion. We say that a method is oblivi-ous if it
ompresses ea
h value on its own, without using any
olle
tion- or list-spe
i�
 statisti
s su
h as the average do
u-ment size in the
olle
tion, or the length of a list. Examplesare Gamma, Delta, and variable-byte
oding. A method is list-adaptive if it
ompresses an inverted list of positions by usingonly statisti
s about the entire list or
olle
tion; examples areGolomb and Ri
e
oding whi
h use the average value in thelist and the length of the list. A method is page-adaptive if it
ompresses the positions for a parti
ular posting using do
u-ment or posting features su
h as the do
ument length or thefrequen
y of the term in the do
ument. An example would bethe simple do
ument-oriented version of Ri
e
oding des
ribedlater, whi
h
hooses a di�erent parameter B for the positionsin ea
h posting based on these features. Finally, fully adaptivemethods may
ompress a position by also taking into a

ountother position values in the same posting that have alreadybeen en
oded; an example would be interpolative
oding whenapplied within a single posting. In general, to properly exploit
lustering of positions within do
uments, it is ne
essary to usepage- or fully adaptive te
hniques. (Note that not all methods
an be
learly
ategorized a

ording to this taxonomy.)Finally, we point out that several authors [5, 23, 25, 24℄ haveproposed to improve index
ompression by reassigning do
IDsto do
uments su
h that
onse
utive do
uments are fairly simi-lar. This essentially indu
es a
lustering e�e
t in the do
ument
olle
tion, allowing for better
ompression of do
IDs and fre-quen
ies. We also tried this approa
h for positions, but it gaveonly very limited improvements. Also relevant is the work byKleinberg [14℄ on modeling burstiness in data streams using aHidden Markov Model, whi
h in
uen
ed some of our ideas.

2.3 Query Processing with Position DataWe now dis
uss how sear
h engines a

ess and use the po-sitional data stored in the index. There are two main uses ofposition data. First, positions are used for queries
ontainingphrases, either spe
i�ed by the user or
reated by the sear
hengine through query transformations. For example, the en-gine might re
ognize that a query
ontains a person name, andrewrite the query into a new query that requires the �rst andlast name to be in
lose proximity in the text. Thus, positionsare used as a �lter. Se
ond, positions
an be used in rank-ing fun
tions to improve result quality. The idea here is thata do
ument
ontaining the sear
h terms in
lose proximity ismore likely to be relevant to the user than a do
ument wherethe terms o

ur in
ompletely di�erent parts of the do
ument.Several resear
hers [8, 15, 26, 16, 21℄ have re
ently proposedranking fun
tions that use proximity to improve result qualityon TREC
olle
tions and tasks. In pra
ti
e, web sear
h enginestend to use ma
hine learning to �nd good ranking fun
tions,and term positions or proximity are important features amongthe hundreds used.We fo
us in this paper on the se
ond use, where positions are
onsidered by the ranking fun
tion; the �rst use typi
ally onlyapplies to a limited subset of the queries. There appears tobe little published work on how to optimize query pro
essingwith position data. One
hallenge is that the position data inthe index is usually several times (3 to 5 times) larger than thedo
ID and frequen
y data, and thus a naive use of positions
ould signi�
antly de
rease system throughput.To avoid this, query pro
essing
an be performed in twostages. First, a simple ranking fun
tion requiring do
IDs andfrequen
ies only (e.g., BM25 or similar) is applied. In the se
-ond stage, position data is fet
hed only for a small subset ofdo
uments (a few hundred or thousand) that s
ored very highon the simple ranking fun
tion. This
hanges the trade-o�between
ompressed size and de
ompression speed somewhat
ompared to the
ase of do
IDs, as we only de
ompress a lim-ited number of positions. In fa
t, as we show later, the CPU
ost of this se
ond phase
an be mu
h smaller than that of the�rst phase, even with fairly slow position de
ompression meth-ods. On the other hand, the
ompressed size of the positiondata has a very signi�
ant impa
t on system
ost: In the
aseof a memory-resident index, smaller
ompressed size means lessmemory is needed. In the
ase of a primarily disk-resident in-dex, disk transfers are redu
ed signi�
antly due to redu
ed listsizes and higher
a
he hit rates, sin
e a larger per
entage of thetotal index data
an be
a
hed in main memory [29℄. (Even ifonly some of the position data has to be fet
hed from ea
h list,disk a

ess
osts will usually be equal to that of fet
hing the
omplete lists, as random lookups are prohibitively expensiveon
urrent disks.)In summary, a

ess to position data is typi
ally performed ina se
ond stage after traversing the lists of do
IDs, only a lim-ited amount of position data is usually retrieved, and a small
ompressed size may be more important than extremely fasta

ess to positions. We evaluate the query pro
essing perfor-man
e of our te
hniques for this
ase in Se
tion 7.
3. CONTRIBUTIONS OF THIS PAPERWe study methods for
ompressing position data in websear
h engine indexes, and des
ribe and evaluate a numberof approa
hes. To our best knowledge, no previous publishedwork has fo
used on the
ase of positions in web pages, asopposed to longer linearly ordered texts. In parti
ular:

(1) We perform a detailed experimental evaluation of manyexisting te
hniques on position data in web indexes.(2) We propose and dis
uss several simple but e�e
tive
om-pression algorithms for position data that take advan-tage of page-wise information, su
h as remaining pagesizes and frequen
ies, and other
ontext information, e.g.,the values of previous positions. We
ompare our algo-rithms to the existing ones, showing the limits of list-oriented te
hniques and the potential of page-adaptiveapproa
hes. We obtain moderate but measurable im-provements in
ompression.(3) We propose statisti
s-based methods to further improve
ompression performan
e by integrating more
ontextfeatures. Our experiments show that these methods
anfurther redu
e the
ompressed size over other algorithms.We also evaluate the tradeo� between integrating morefeatures to redu
e the
ompressed size and the extra
ostfor storing the features.(4) We dis
uss the use of position information in sear
h en-gines, and show how to eÆ
iently a

ess position infor-mation during query exe
ution. We show that rankingfun
tions that take position information into a

ount
anbe evaluated with very moderate additional CPU
osts
ompared to more basi
 ranking fun
tions.
4. POSITION GAP DISTRIBUTIONAny
ompression method is asso
iated with an expli
it orimpli
it probability model for the data to be
ompressed. Forinstan
e, many index
ompression methods assume that d-gaps
onform to a monotoni
ally de
reasing distribution. Inparti
ular, Golomb
oding assumes geometri
 distributions ofd-gaps. In this se
tion, we dis
uss the p-gap distribution ofthe TREC GOV2 data set and how it di�ers from the
ase ofd-gaps and among di�erent terms.

Figure 1: Distribution of p-gaps for four words on theTREC GOV2 data set. On the x-axis is the number ofbits required to represent the p-gaps in binary, and on they-axis is the per
entage of p-gaps that fall in this range.As examples, we sele
t four terms and draw their
orre-sponding p-gap distributions in Figure 1. We show two graphsfor ea
h term, the distribution on real p-gaps and the distribu-tion one would observe if all words were randomly arranged inthe page. We expe
t that in the presen
e of
lustering, thesetwo graphs would behave very di�erently. From Figure 1 we

an see that the real distributions are very di�erent from therandom (i.e., geometri
) distributions. (In fa
t, the distribu-tions for \death" and \hurri
ane" are not even monotoni
allyde
reasing.) The distributions of real gaps for \sheet", \death",and \hurri
ane"are very di�erent from the random gaps, whilethe two distributions for \va

ine" are more similar.A term may o

ur several times in a parti
ular do
ument,and di�erent o

urren
es may behave very di�erently. In Fig-ure 2, we plot the distributions of gaps for �rst o

urren
es,se
ond o

urren
es, and further o

urren
es within a do
u-ment, for the same four words as above. From Figure 2, we
an see that for "sheet", "death", and "hurri
ane", the distribu-tions on gaps of its �rst o

urren
es, se
ond o

urren
es andother o

urren
es are quite di�erent from ea
h other and showbursts at fairly distin
t sizes of gaps. In fa
t, besides the in-dex of the o

urren
e, there are many other fa
tors that maya�e
t the distributions, e.g., do
ument size and in-do
umentfrequen
y. Thus, it seems hard to
apture the true probabilitydistribution of all gaps with a single model.

Figure 2: Distribution of p-gaps for �rst, se
ond, and fur-ther o

urren
es, for the four words from Figure 1
5. OUR ALGORITHMSIn this se
tion, we �rst propose a very simple but e�e
tivealgorithm, Remaining Page-Adaptive Ri
e Coding (RPA-RC),and present its advan
ed version with smoothing based on aregression model (RPA-RC-S). We then propose another algo-rithm, Remaining Page-Adaptive BASC with smoothing (RPA-BASC-S), and perform an experimental
omparison with anumber of baseline algorithms from the literature.
5.1 Page-Adaptive Rice CodingStandard Ri
e
oding determines its parameter B by look-ing at the entire list of integers that need to be
ompressed,thus making it a list-adaptive algorithm. However, during de-
ompression of position data, we already know the number ofpositions in the page (the frequen
y) and the overall page size,and it would be smart to exploit this knowledge for better
om-pression. A fairly obvious way to do this is to sele
t B as thelargest power of 2 su
h that B � jdj=(ft;d +1) where jdj is thesize of the
urrent do
ument and ft;d the frequen
y. We
allthis page-adaptive variant of Ri
e
oding Page-Adaptive Ri
eCoding (PA-RC).A fully adaptive version,
alled Remaining Page-AdaptiveRi
e
oding (RPA-RC), takes this idea one step further and

uses a di�erent B for ea
h position in the posting. In parti
u-lar, rather than taking the size and frequen
y of the
ompletepage, we
onsider the
urrently remaining page size and fre-quen
y of the posting. Thus, after en
oding a position valuep, we dedu
t p from the page size, and 1 from the frequen
y,and then use these updated values to sele
t the B for the nextposition in the posting. If one of the gaps is very large, thenthis implies that subsequent positions o

upy a smaller regiontowards the end of the do
ument, and the method will use asmaller B to en
ode those remaining positions.
5.2 Adaptation with SmoothingHowever, RPA-RC may su�er in the
ase in Figure 3, whi
hshows the lo
ations of o

urren
es in a do
ument of a word.Figure 3: An example of word lo
ations in a do
ument.There are two
lusters of o

urren
es in Figure 3 that areseparated by a wide gap. In the �rst
luster of o

urren
es,the remaining average gap for its last o

urren
e is large, eventhough its gap with its previous o

urren
e is small, whi
h isvery useful information ignored by RPA-RC. To deal with thisproblem, we integrate the information about the previous gapinto our method and build a regression model as follows:Bt = (1� p)� gt�1 + p� rtwhere Bt is the value of B in Ri
e
oding for tth gap, rt isthe remaining average gap for t-th gap and gt�1 is the value ofprevious gap. The se
ond term in the model is used to tune theerror of predi
tion by using the remaining average gap. Whenp = 0, it means that the
urrent expe
ted average gap Bt isequal to the previous gap gt�1, while p = 1 means it is equalto the remaining average gap rt.We note that BASC
oding [17℄ also exploits the previousbi�1 to predi
t the next bi. An extension of BASC
alledBASC-smooth uses the average value of k previous bs to predi
tthe next b. As shown in [17℄, this a
hieves better
ompressionthan the basi
 BASC. Motivated by this, we repla
e the gt�1in the above regression model with the previous average gap.The modi�ed model is
alled Remaining Page-Adaptive Ri
eCoding with Smoothing (RPA-RC-S).On the other hand, list-wise BASC-smooth
an also be mod-i�ed to be page-adaptive as follows: First, unlike list-wiseBASC in [17℄, where the value of b is initialized for the en-tire list as a �xed number, say 2, or 4, or 8, page-wise BASC-smooth initializes it as the average gap of its
orrespondingpage. Se
ond, for page-wise BASC-smooth, only the previousgaps within the same posting need to be
he
ked to
al
ulatethe previous average b, thus avoiding the noise
aused by pre-vious postings. More interestingly, motivated by RPA-RC-S,where we tune the predi
tions by the remaining page informa-tion, we
an tune the predi
tion of BASC-smooth by using thefollowing model:bt = (1� p)� avgt�1 + p� rbtwhere bt is the expe
ted number of bits to en
ode the
urrentgap into a binary
ode, avgt�1 is the average number of bits toen
ode previous gaps, and rbt is the number of bits to en
odethe remaining average gap. Thus, when p = 0, the
urrent gapis en
oded by the same number of bits used for the previousgap, while when p = 1, it is en
oded by the number of bits for

the remaining average gap. We
alled this variant RemainingPage-Adaptive BASC with Smoothing (RPA-BASC-S).
5.3 Multidimensional AdaptationMost of the above page-adaptive methods
ompress the
ur-rent position by exploiting two-dimensional (2D)
ontext fea-tures: the page size (or the remaining page size) and the fre-quen
y. In fa
t, from experiments in later se
tions, we will seethat most page-adaptive methods are already mu
h better thannon-parametri
 or list-adaptive methods by taking advantageof these two features. Intuitively, we expe
t that the more
on-text features we use, the better the
ompression performan
ewe
an get. For example, the above regression-based methodsimprove the
ompression performan
e slightly by adding as anadditional feature the previous gap (or previous average gap).However, as dis
ussed in Se
tion 4, di�erent terms may be-have so di�erently that it is hard to make a good predi
tion ofthe next value based on a single model. In his
ase, it might bebetter to augment general statisti
s-based
ompression meth-ods su
h as, e.g., Hu�man
oding, with
ontext information toimprove
ompression.The basi
 idea is as follows: For ea
h inverted list, we �rst
lassify all p-gaps into one of a moderate number of bu
kets,depending on four
ontext features: The remaining do
umentsize rsize, the remaining frequen
y rfreq, the previous p-gapprev1, and the previous previous p-gap prev2. To do so, wedivide the values of ea
h feature into a small number of binssu
h that two p-gaps are in the same bu
ket if they fall intothe same bin for all features. We then apply for ea
h bu
ket aseparate model, in one of the following two ways:Optb-4D: For ea
h bu
ket, we determine the optimal valueof b under Ri
e
oding, by trying all 32 possible values and
hoosing the one leading to the smallest
ompressed size. Dur-ing de
ompression, for ea
h position, we �rst determine whi
hbu
ket the position belongs to and then retrieve the
orre-sponding b from a global table.Hu�-4D and LLRUN-4D: Hu�-4D is similar to Optb-4D ex
ept that it stores an entire Hu�man table (instead ofjust the best value of b) for ea
h bu
ket, and uses this tableto en
ode the positions in the bu
ket. LLRUN-4D is similarto Hu�-4D ex
ept that it builds the Hu�man tables only forthe unary parts of gamma
odes of the positions. In otherwords, the di�eren
e is that ea
h Hu�man table in LLRUN-4Duses (slightly) fewer
odewords than a Hu�man table in Hu�-4D (whi
h employs a more �ne-grained s
heme for sele
ting
odeword boundaries in the Hu�man tables).Note that while su
h multidimensional models
an easilybe extended to use more features, this does not ne
essarilyresult in smaller
ompressed sizes. This is be
ause the resultingmodels (Hu�man tables, or b values) need to be stored togetherwith the
ompressed indexes, and this
ost in
reases qui
klywith additional features.
6. EXPERIMENTAL RESULTSWe �rst des
ribe our experimental setup. We used the TRECGOV2 data set of 25.2 million web pages
rawled from the govtop-level domain. We sele
ted 1000 random queries from thesupplied query logs; these queries
ontain 2171 unique terms.On average, there were 4:85 million postings with 20:72 mil-lion positions in the inverted lists asso
iated with ea
h query.Limited experiments involving de
ompression speed are pro-vided in Se
tion 7 in the
ontext of a query pro
essor thatuses position data.

Throughout the paper, we report the
ompressed size of theposition data per query, that is, the amount of
ompressedposition data in MB asso
iated with the inverted lists of anaverage query. This is a rough measure of the amount ofdata per query that has to be transferred from disk in the
ase of a purely disk-based index, under the assumption thatonly
omplete lists are transferred. (We believe that this isrealisti
 given the performan
e
hara
teristi
s of
urrent harddisks, whi
h strongly dis
ourage performing multiple seeks forsmaller amounts of data.)
6.1 Compression ResultsIn Figure 4, we
ompare the average
ompressed size ofthe position data per query of various methods on the TRECGOV2 data set. We show results for the following obliviousor list-adaptive methods: Gamma, variable-byte (vbyte), Sim-ple9, Simple16 as des
ribed in [29℄, the version of PForDeltades
ribed in [29℄, list-adaptive Ri
e
oding (list-Ri
e), list-adaptive ri
eVT as des
ribed in [28℄ (list-ri
eVT), list-LLRUN[10℄ (building one Hu�man table for ea
h list), RBUC andBASC [17℄ (where in RBUC we
hoose the es
alation fun
tionas f(s) = s � s and where BASC is the basi
 version withoutsmoothing). We also show results for four page-adaptive orfully adaptive methods: a page-oriented version of interpola-tive
oding [18, 19℄ (page-IPC) that is applied to the posi-tions in ea
h posting, a page-oriented version of ri
eVT (page-ri
eVT), PA-RC, and RPA-RC. We also show the list-wise en-tropy (whi
h of
ourse does not
onstitute a lower bound).

20

22

24

26

28

30

gam
m

a

vb
yt

e

si
m

ple
9

si
m

ple
16

PForD
el

ta

lis
t-R

ic
e

lis
t-R

ic
eV

T

R
B
U
C

B
A
SC

lis
t-L

LR
U
N

pag
e-

IP
C

pag
e-

ric
eV

T

PA
-R

C

R
PA

-R
C

en
tr
opy

C
o

m
p

re
s
s
e

d
 S

iz
e
 (

M
B

/q
u

e
ry

)

Figure 4: Compressed size per query for a variety of base-line methods on the TREC GOV2 data set.From Figure 4 we
an see that all oblivious (non-parametri
)or list-adaptive methods, in
luding all methods ex
ept list-LLRUN to the left of page-IPC, do signi�
antly worse thanthe page-adaptive methods on the right side of and in
lud-ing page-IPC, by 10 to 15%. Se
ond, although list-LLRUN
an a
hieve
omparable
ompression performan
e as the page-adaptive methods, it is a semi-stati
 method that has to �rst
al
ulate the statisti
s information of all positions in the listbefore it
an start en
oding, while the page-adaptive methodsdo not need to do so. We also note that while page-wise in-terpolative
oding (page-IPC) a
hieves the best result (20.92MB/q), it is only slightly better than RPA-RC (21.00 MB/q)but slower in de
ompression [18, 19℄. Overall, RPA-RC is afairly simple on-line method, and performs mu
h better thanall other methods in Figure 4 ex
ept page-IPC.In Figure 5 we show the performan
e of the two regres-sion models for di�erent values of p (where p = 0 means us-ing only the previous gaps, while p = 1 means using onlythe remaining page information). From Figure 5, we observethat even without remaining page information, page-adaptiveBASC-smoothing a
hieves mu
h better
ompression (21.06 MB/q)

than its list-adaptive version (22.75 MB/q) in Figure 4. Se
-ond, both models a
hieve their best results when using bothtypes of information. In parti
ular, RPA-RC-S a
hieves itsbest result (20.98 MB/q) for p = 0:95, while RPA-BASC-Sgets its best result (20.94 MB/q) for p = 0:2 and p = 0:1.Third, the remaining average gap has more impa
t on RPA-RC-S than on RPA-BASC-S, while the previous average gapa�e
ts the latter more. The reason is that if the
urrent gapto be en
oded is very large while the previous average gap wasfairly small, then the unary part of the Ri
e
ode for RPA-RC-S would be very large. In order to avoid this problem, RPA-RC-S exploits the remaining average gap to tune the wrongpredi
tion from the previous gaps.
20

21

22

23

0 0.1 0.2 0.5 0.9 0.95 1

Probability

C
o

m
p

re
s

s
e

d
 S

iz
e

(M
B

/q
u

e
ry

)

RPA-BASC-S

RPA-RC-S

Figure 5: Compressed size per query for RPA-RC-S andRPA-BASC-S on the TREC GOV2 data set.However, overall we see that using only the remaining-pageinformation (without the previous gaps) is already a fairly good
hoi
e, sin
e both methods a
hieve reasonably good
ompres-sion performan
e in this
ase. Thus, the bene�t due to regres-sion is only very limited.
18

20

22

24

26

28

30

O
ptb

-6
D

O
ptb

-5
D

R
PA

-B
A
SC

-S

O
ptb

-4
D

H
uff-

4D

LLR
U
N
-4

D

C
o

m
p

re
s

s
e

d
 S

iz
e

 (
M

B
/q

u
e

ry
)

data

total

Figure 6: Compressed size per query for RPA-BASC-S,Optb-4D, Optb-5D, Optb-6D, Hu�-4D and LLRUN-4D.In Figure 6, we
ompare the best method from Figure 5,RPA-BASC-S, with Optb-4D, Optb-5D, Optb-6D, Hu�-4D andLLRUN-4D. (Optb-5D and Optb-6D are variants of Optb-4Dthat use one and two additional previous gaps as 5th and 6thfeatures.) We plot two lines in Figure 6, one for the
om-pressed size without taking the extra
ost for storing the Hu�-man tables or b-values for ea
h bu
ket into a

ount, and one forthe
ompressed size in
luding this extra
ost. From Figure 6,we
an see that although Optb-6D
ould get better
ompres-sion if we do not
onsider the extra
ost, in reality it is mu
hworse. Overall, LLRUN-4D a
hieves the smallest
ompressedsize among the methods, a
hieving about 19:58 MB per query.Hu�-4D has similar performan
e but su�ers slightly for usingtoo many
odewords in its Hu�man tables.Finally, we list in Table 1 the exa
t
ompressed sizes of themethods with the best
ompression performan
e.
7. QUERY PROCESSINGAs dis
ussed, for typi
al web data the position data in theindex is signi�
antly larger (by a fa
tor of 3 to 5) than the do-

Table 1: Compressed sizes (MB/q) for sele
ted methods.data extra
ost total sizelist-LLRUN 21.52 N/A 21.52page-IPC 20.92 N/A 20.92RPA-RC-S 20.99 N/A 20.99RPA-BASC-S 20.94 N/A 20.94Optb-4D 20.57 0.05 20.62Hu�-4D 19.00 0.63 19.63LLRUN-4D 19.53 0.05 19.58
ID and frequen
y data. To minimize de
ompression
ost, aneÆ
ient query pro
essor should try to avoid a

essing the posi-tion data for all postings in the interse
tion (or other Boolean�lter) of the inverted lists. Instead, postings in the interse
-tion are �rst s
ored without taking position information intoa

ount, and then position data is fet
hed only for the K mostpromising postings, for some suÆ
iently large K.Thus, while queries typi
ally de
ompress substantial partsof the do
ID data of the inverted lists (though with someamount of skipping), a

esses to position data in memory arebest thought of as random a

esses to individual postings. Onthe other hand, we still have to �rst fet
h the
omplete posi-tion data for any inverted list lo
ated on disk, sin
e randomlookups are extremely ineÆ
ient with
urrent hard disks. Thisfundamentally
hanges the trade-o� between
ompressed sizeand de
oding speed, in that size be
omes relatively more im-portant than speed. In this se
tion we des
ribe how to performrandom lookups into the position data, and then evaluate thequery pro
essing performan
e of our
ompression s
hemes un-der this modi�ed trade-o�.
7.1 Position Look-Up StructureTo eÆ
iently a

ess the
ompressed position data asso
iatedwith a parti
ular posting, we need a suitable look-up stru
ture.We now des
ribe this stru
ture for the
ase of Ri
e
oding (orany other method that
ompresses ea
h integer individually),and then outline how to modify the stru
ture for methods su
has PForDelta.We employ a fairly standard hierar
hi
al look-up stru
ture,where position data is divided into
hunks. In parti
ular, weorganize the position data for N1 postings into one
hunk, andstore for ea
h su
h
hunk one do
ID and one pointer to thebeginning of the
hunk in un
ompressed form. Within ea
h
hunk, we organize data into sub-
hunks of N2 postings ea
h,and for ea
h sub-
hunk we store its o�set from the beginningof the
hunk in
ompressed form, using variable-byte
ompres-sion. This allows us to a

ess any posting by de
ompressingat most N2 postings of position data. In parti
ular, to �ndthe position data for a parti
ular do
ID, we �rst sear
h for theright
hunk using binary sear
h on the array of un
ompresseddo
IDs (one per
hunk). Sin
e we have already de
ompressedthe do
ID data itself, we know the index of the posting withinthe
hunk (i.e., the global index modulo N1) and thus the
orre
t sub-
hunk, whi
h we
an then de
ompress. We usedN1 = 128 and N2 = 8 in the following.For PForDelta and other
ompression methods that
om-press bat
hes of numbers, the look-up stru
ture has some mi-nor di�eren
es
ompared to the above. In the
ase of PForDelta,we
ompress 128 integers at a time, whi
h does not align withposting boundaries. As a result, we need to store two ratherthan one
ompressed integer for ea
h sub-
hunk, to store ano�set within a �eld of 128 integers. For other methods su
has Simple9 that
ompress a variable number of integers at the

Table 2: Spa
e overhead and performan
e of thelookup stru
ture for K = 100.PA-RC RPA-RC PForDelta Optb-4DSpa
e per query 0.77M 0.77M 1.51M 0.77MSpa
e for L1 0.15M 0.15M 0.3M 0.15MSpa
e for L2 0.62M 0.62M 1.21M 0.62MDe
oded ints 13524 13524 43895 13524Total time 0.63ms 0.91ms 0.31ms 1.70msDe
ode time 0.38ms 0.66ms 0.10ms 1.50msSeek time 0.25ms 0.25ms 0.21ms 0.20msPosition size 21.37M 21.18M 23.67M 20.61MTable 3: Per
ent of queries that a
hieve the same top-m results as an exhaustive evaluation.K = 10 20 50 100 150 200m = 10 34.9% 79.3% 94.8% 97.3% 97.8% 98.2%m = 50 NA NA 27.0% 77.5% 87.8% 91.8%same time, some other minor adjustments are needed. The�rst-level stru
ture remains basi
ally the same in either
ase.Table 2 shows the lookup performan
e and size of this stru
-ture, where we performK = 100 lookups ea
h for 1000 queries.The total time per 100 lookups
onsists of the de
oding time forthe sub-
hunks, plus the seek time for sear
hing the �rst-levelarray and de
ompressing the se
ond-level pointers. As we seefrom the results, the lookup stru
ture adds between 0:77 and1:51 MBs to the more than 20 MB of position data per query.We de
ode between 138 and 438 integers per lookup; this issin
e for ea
h lookup, we need to de
ode an entire sub-
hunkfor ea
h query term. We also see that there is a trade-o� be-tween
ompressed size and time, but the overall look-up timeper query is at most 1:7 ms even for the method a
hievingthe smallest size (Optb-4d). We expe
t some additional speedgains with proper tuning.
7.2 Proximity-Aware ScoringWe now look at the use of our lookup stru
ture in the
on-text of ranking fun
tions su
h as [8, 15, 26, 16, 21℄ that taketerm proximity, and thus positions, into a

ount. In parti
ular,we use the s
oring model proposed by Buett
her and Clarkein [8℄, also used in [21℄, whi
h gives signi�
ant improvementsin result quality over BM25-based s
oring. In this model, theBM25 s
oring fun
tion is
ombined with a proximity s
ore forea
h query term that depends on how far this term is from ano

urren
e of some other query term. Given a query, we �rst
ompute a proximity s
ore for ea
h query term that depends onthe distan
e of this term's o

urren
es to the adja
ent queryterm's o

urren
es. The s
ore for a do
ument is then
om-puted by a linear
ombination of the standard BM25 s
oreand a total proximity s
ore
omputed from the a

umulatedproximity s
ores.We now show how this s
oring fun
tion
an be very eÆ-
iently approximated using our lookup stru
ture as follows:We �rst
ompute the top-K results under the standard BM25s
ore, by a

essing only do
ID and frequen
y values. Then forthese K results, we fet
h position information in all lists in or-der to
ompute the proximity s
ore and thus the full rankingfun
tion. As we show, using values of K at most 200, we
an
ompute the
orre
t top-m results for m = 10 and m = 50almost all the time.The results are shown in Tables 3 and 4. In parti
ular,Table 3 shows how likely we are to get exa
tly the same top-mresults as an exhaustive evaluation, while Table 4 shows what

Table 4: Per
ent of
orre
t top-m results returned.K = 10 20 50 100 150 200m = 10 83.7% 95.5% 98.8% 99.3% 99.4% 99.5%m = 50 NA NA 88.5% 97.2% 98.6% 99.1%per
entage of returned results really belongs into the top-m.For example, using K = 100 we get exa
tly the same top-10results as an exhaustive evaluation for 97:3% of all queries,while 99:3% of all results returned for K = 100 are in fa
t
orre
t top-10 results. Thus, about 100 lookups per query aretypi
ally enough to mat
h the quality of the s
oring fun
tion in[8℄, justifying our
laim that a

ess patterns for position dataare very di�erent from those for do
IDs and frequen
ies.
8. DISCUSSION AND CONCLUSIONSIn this paper, we have studied
ompression te
hniques forposition data in web indexes. We proposed two simple bute�e
tive te
hniques, Remaining Page-Adaptive Ri
e Codingwith Smoothing (RPA-RC-S) and Remaining Page-AdaptiveBASC with Smoothing (RPA-BASC-S). We also proposed sev-eral statisti
s-based methods (Optb-4d, Hu�-4d, and LLRUN-4d) and show that they a
hieve even better
ompression per-forman
e. Finally, we studied the eÆ
ient use of position in-formation during query exe
ution.Overall, our improvements in
ompressed size are fairly mod-erate. We believe that the lessons learned from this work areas follows: First, word positions in web pages do not seem tofollow simple distributions that
ould be easily exploited. Se
-ond, additional
ontext, su
h as do
ument size, frequen
y, andnearby previous gaps, is highly useful, but there is a trade-o�between the bene�ts of more features and the
ost of storingmore
omplex models. Third, during query pro
essing, a

essto position data should be performed in a se
ond stage aftertraversing the lists of do
IDs su
h that only a limited amountof position data is retrieved; in this
ase, a small
ompressedsize may be more important than extremely fast a

ess.There are a number of remaining open
hallenges
on
erningposition data in web indexes. It would be ni
e to �nd ways tosigni�
antly improve our results, or to exploit page reorderingfor better position
ompression. More generally, it is an inter-esting question whether there are other organizations for po-sition data, di�erent from the standard inverted-list organiza-tions, that allow eÆ
ient query pro
essing while enabling bet-ter
ompression. For instan
e, one
ould even
onsider storingthe parsed do
uments themselves in highly
ompressed formand a

essing these during a position data lookup, instead ofkeeping the positions in inverted lists.
9. REFERENCES[1℄ V. Anh. Impa
t-based do
ument retrieval. PhD Thesis, TheUniversity of Melbourne, Amsterdam, Netherlands, April 2004.[2℄ V. Anh and A. Mo�at. Index
ompression using �xed binary
odewords. In Pro
. of the 15th Int. Australasian DatabaseConferen
e, pages 61{67, 2004.[3℄ V. Anh and A. Mo�at. Inverted index
ompression usingword-aligned binary
odes. Information Retrieval, 8(1):151{166,Jan. 2005.[4℄ V. Anh and A. Mo�at. Improved word-aligned binary
ompressionfor text indexing. IEEE Transa
tions on Knowledge and DataEngineering, 18(6):857{861, 2006.[5℄ D. Blandford and G. Blello
h. Index
ompression throughdo
ument reordering. In Pro
. of the Data CompressionConferen
e, pages 342{351, 2002.[6℄ A. Bookstein, S. Klein, and T. Raita. Modeling word o

urren
esfor the
ompression of
on
ordan
es. ACM Transa
tions ofInformation Systems, 15(3):254{290, 1997.

[7℄ A. Bookstein, S. Klein, and T. Raita. Markov models for
lustersin
on
ordan
e
ompression. In Pro
. of the Data CompressionConferen
e, Mar
h, 1994.[8℄ S. Buett
her, C. Clarke, and B. Lushman. Term proximity s
oringfor ad-ho
 retrieval on very large text
olle
tions. In Pro
. of the29th Annual Int. ACM SIGIR Conf. on Resear
h andDevelopment in Information Retrieval, 2006.[9℄ P. Elias. Universal
odeword sets and representations of theintegers. IEEE Transa
tions on Information Theory,12(3):194{203, Mar. 1975.[10℄ A. Fraenkel and S. Klein. Novel
ompression of sparse bit-strings {preliminary report. Combinatorial Algorithms on Words,12:169{183, 1985.[11℄ J. Gailly. zlib
ompression library. Available athttp://www.gzip.org/zlib/.[12℄ S. Golomb. Run-length en
odingds. IEEE Transa
tions onInformation Theory, 12(3):399{401, 1966.[13℄ S. Heman. Super-s
alar database
ompression between ram and
pu-
a
he. MS Thesis, Centrum voor Wiskunde en Informati
a(CWI), Amsterdam, Netherlands, July 2005.[14℄ J. Kleinberg. Bursty and hierar
hi
al stru
ture in streams. InPro
. of the 8th ACM SIGKDD Int. Conf. on KnowledgeDis
overy and Data Mining, 2002.[15℄ D. Metzler and W. B. Croft. A markov random �eld model forterm dependen
ies. In Pro
. of the 28th Annual Int. ACM SIGIRConf. on Resear
h and Development in Information Retrieval,2005.[16℄ G. Mishne and M. Rijke. Boosting web retrieval through queryoperations. In Pro
. of the 27th European Conferen
e on IRResear
h, 2005.[17℄ A. Mo�at and V. Anh. Binary
odes for lo
ally homogeneoussequen
es. Information Pro
essing Letters, 99(5):75{80, Sept.2006.[18℄ A. Mo�at and L. Stuiver. Exploiting
lustering in inverted �le
ompression. Pro
. of the Data Compression Conferen
e, pages82{91, 1996.[19℄ A. Mo�at and L. Stuiver. Binary interpolative
oding for e�e
tiveindex
ompression. Information Retrieval, 3(1):25{47, 2000.[20℄ A. Mo�at and J. Zobel. Parameterised
ompression for sparsebitmaps. In Pro
. of the 15th Annual Int. ACM SIGIR Conf. onResear
h and Development in Information Retrieval, 1992.[21℄ R. S
henkel, A. Bros
hart, S. Hwang, M. Theobald, andG. Weikum. EÆ
ient text proximity sear
h. In 14th StringPro
essing and Information Retrieval Symposium, 2007.[22℄ F. S
holer, H. Williams, J. Yiannis, and J. Zobel. Compression ofinverted indexes for fast query evaluation. In Pro
. of the 25thAnnual SIGIR Conf. on Resear
h and Development inInformation Retrieval, pages 222{229, Aug. 2002.[23℄ W. Shieh, T. Chen, J. Shann, and C. Chung. Inverted �le
ompression through do
ument identi�er reassignment.Information Pro
essing and Management: an InternationalJournal, 39(1):117{131, O
t. 2003.[24℄ F. Silvestri, S. Orlando, and R. Perego. Assigning identi�ers todo
uments to enhan
e the
lustering property of fulltext indexes.In Pro
. of the 27th Annual Int. ACM SIGIR Conf. on Resear
hand Development in Information Retrieval, pages 305{312, 2004.[25℄ F. Silvestri, R. Perego, and S. Orlando. Assigning do
umentidenti�ers to enhan
e
ompressibility of web sear
h engineindexes. In Pro
. of the 19th ACM Symp. on Appliled Comp,pages 600{605, 2004.[26℄ T. Tao and C. Zhai. An exploration of proximity measures ininformation retrieval. In Pro
. of the 30th Annual Int. ACMSIGIR Conf. on Resear
h and Development in InformationRetrieval, 2007.[27℄ H. Williams and J. Zobel. Compressing integers for fast �le a

ess.Computer Journal, 42(3):193{201, 1999.[28℄ I. H. Witten, A. Mo�at, and T. C. Bell. Managing Gigabytes:Compressing and Indexing Do
uments and Images. MorganKaufmann, se
ond edition, 1999.[29℄ J. Zhang, X. Long, and T. Suel. Performan
e of
ompressedinverted list
a
hing in sear
h engines. In 17th InternationalWorld Wide Web Conferen
e (WWW), April 2008.[30℄ J. Zobel and A. Mo�at. Inverted �les for text sear
h engines.ACM Computing Surveys, 38(2), 2006.[31℄ M. Zukowski, S. Heman, N. Nes, and P. Bon
z. Super-s
alarram-
pu
a
he
ompression. In Pro
. of the Int. Conf. on DataEngineering, 2006.

