Compressing Term Positions in Web Indexes

Hao Yan
CSE Department
Polytechnic Institute of NYU
Brooklyn, NY 11201

hyan@cis.poly.edu

ABSTRACT

Large search engines process thousands of queries per second
on billions of pages, making query processing a major factor
in their operating costs. This has led to a lot of research on
how to improve query throughput, using techniques such as
massive parallelism, caching, early termination, and inverted
index compression. We focus on techniques for compressing
term positions in web search engine indexes. Most previous
work has focused on compressing docID and frequency data,
or position information in other types of text collections. Com-
pression of term positions in web pages is complicated by the
fact that term occurrences tend to cluster within documents
but not across document boundaries, making it harder to ex-
ploit clustering effects. Also, typical access patterns for po-
sition data are different from those for docID and frequency
data. We perform a detailed study of a number of existing
and new techniques for compressing position data in web in-
dexes. We also study how to efficiently access position data for
ranking functions that take proximity features into account.

Categories and Subject Descriptors

H.3.3 [INFORMATION STORAGE AND RETRIEVAL|:

Information Search and Retri eval

General Terms

Algorithms, performance

Keywords

Inverted index, search engines, index compression

1. INTRODUCTION

Due to the rapid growth in the size of the web and the
number of web users, search engines are faced with significant
performance challenges. Current commercial search engines
already have to process thousands of queries per second on
billions of documents, and the total number of queries issued
is still increasing every year. In addition, users expect higher
and higher result quality in the presence of spam and other
manipulation, requiring constant tuning of the system.

Web search engines use inverted index structures to evalu-
ate queries. The sizes of these structures are typically in the
range of gigabytes to terabytes, and they are stored in highly
compressed form on disk or in main memory. Compression of
inverted indexes saves disk space, but more importantly also
reduces disk and main memory accesses, resulting in faster

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SGIR 09, July 19-23, 2009, Boston, Massachusetts, USA.

Copyright 2009 ACM 978-1-60558-483-6/09/07 ...$10.00.

Shuai Ding
CSE Department
Polytechnic Institute of NYU
Brooklyn, NY 11201

sding@cis.poly.edu

Torsten Suel
CSE Department
Polytechnic Institute of NYU
Brooklyn, NY 11201

suel@poly.edu

query evaluation. Typically, inverted indexes include infor-
mation such as the document IDs (doclDs), in-document fre-
quencies, and in-document positions of term occurrences in the
collection. There is a significant amount of work on inverted
index compression; see [28] for an overview and [29] for a recent
experimental evaluation of state-of-the-art techniques.

Most previous work focuses on the compression of doclD
and frequency data, or on the compression of positions within
longer linear texts such as books. In contrast, we focus on po-
sition data for web indexes, where each page typically consists
of only a few hundred words. This problem is important for
two reasons. First, the size of the position data is typically
several times larger than the docID and frequency data, thus
having a significant impact on query processing efficiency. Sec-
ond, positions are becoming increasingly important in scoring
functions, as recently studied, e.g., in [8, 15, 26, 16, 21].

An important consideration in the compression of position
data is the tendency of term occurrences to cluster, i.e., if a
word occurs in a particular sentence on a page, then it is more
likely to occur again soon thereafter, in one of the next sen-
tences. It is important to exploit this clustering property, and
suitable techniques can achieve significantly better compres-
sion on such clustered occurrences than in the uniform case.

However, compression of position information in web indexes
differs from the traditionally studied case of positions in longer
texts in that each page in a web index is a separate document
that may or may not be similar to the previous page (depend-
ing on the page ordering used, but also on the properties of
the collection). In contrast, when compressing positions in a
book, there are usually significant similarities between differ-
ent pages in the book, or different sections and subsections.
Thus, in web indexes it is difficult to identify any clustering
effects beyond page boundaries, and the focus is on exploiting
what clustering exists within each page itself. Compression of
position data in web indexes also differs from the case of docID
and frequency compression in that additional information such
as page size and term frequency is available.

In this paper, we focus on techniques for compressing po-
sition information in web indexes. We describe several new
techniques, and perform a detailed experimental evaluation of
existing and new techniques. We also show how to efficiently
use compressed position data in ranking functions that take
position information into account. A more detailed descrip-
tion of our contributions is given in Section 3, after we provide
some background in Section 2.

2. BACKGROUND AND RELATED WORK

Web search engines as well as many other IR systems are
based on an inverted index, which is a simple and efficient data
structure that allows us to find all documents that contain a
particular term. An inverted indezx I for the collection consists
of a set of wnverted lists L, ..., L, , wherelist [,, contains a
posting for each document containing w. Each posting contains

the TD of the document where the word occurs (docID), the
number of occurrences in this document (frequency), and the
positions of the occurrences within the document (positions)
expressed as the number of words preceding the occurrence.
The postings in each inverted list are usually sorted by doclD
and stored in highly compressed form on disk.

There are several possible layouts of inverted lists. One lay-
out is to keep the inverted list [, as a contiguous sequence
of postings, each of the form (d;, fi, pio, ..., pi,f—1) [28], where
pi,j = k if w is the k-th word in document d;. Or we can break
the index into chunks, where each chunk stores say 128 docIDs,
followed by the corresponding 128 frequency values, followed
by all the position information for these 128 postings (usually
more than 128 values) [4, 29]. Or we may have separate lists
for doclDs, frequencies, and positions, each sorted in the same
order. We note that some compression schemes may naturally
operate on chunks of values of the same type, and thus only
apply to the latter two layouts. In this paper, we do not care
about the layout for docIDs and frequencies, but assume that
the positions are kept in a separate list or in separate chunks.

2.1 Inverted Index Compression

Many different inverted index compression techniques have
been proposed in the literature [28]. Most techniques assume
that each list of postings of the form p; = (ds, fi, pio, ..., Pi,f—1)
is first preprocessed by taking the differences (d-gaps) between
the docIDs of any two consecutive postings, and between the
values of any two consecutive positions (p-gaps) in the same
posting. More precisely, we replace each doclD d; with ¢ > 0
by di —d;—1 — 1, each f; by fi — 1 (since no posting can have
a frequency of 0), and each p; ; with j > 0 by pij —pij—1 — L.
Throughout this paper we assume that we are compressing
these modified values.

One problem with this approach is that in order to compress
a particular posting, we would have to decompress all preced-
ing postings and add up their values. To avoid this problem,
inverted lists typically store additional shortcut pointers that
allow the query processor to independently decompress blocks
of some limited size. (In the case of the second layout for
inverted lists above, these blocks usually correspond to the
chunks in the layout.) We assume that such pointers are also
available for position data, allowing us to fetch the positions
belonging to a particular posting.

Thus, we have the problem of compressing sequences of in-
teger values that tend to be small on average but may follow
various distributions depending on the properties of the docu-
ment collection. There are many different techniques for this,
including classical approaches such as gamma and delta cod-
ing [9], LLRUN [10] and its variants [20], Golomb and Rice
coding [28, 30], variable-byte coding [27, 22], and more recent
techniques such as Simple9 [3] and its variants [4, 2, 1, 29],
or PForDelta [31]. However, these techniques have not been
previously evaluated for compression of positions data in web
page collections. We now outline a few of these techniques.

Gamma coding [9] represents a value n >= 0 by a unary
code for 1+ [log(n+1)] followed by a binary code for the lower
[log(n + 1)] bits of n. Gamma coding is good for compressing
small numbers but relatively inefficient for large numbers.

In Golomb coding [12, 28] an integer n is encoded in two
parts: a quotient g stored as a unary code, and a remainder r
in binary form. To encode a set of integers, we first choose a
parameter B; a good choice is B = 0.69 x ave, where ave is the
average of the values to be coded. Then for each number n we

compute ¢ = |[n/B] and r = n mod B. If B is a power of two,
then log(B) bits are used to store the remainder r; otherwise,
either [log(B)] or [log(B)] bits are used depending on r. Rice
coding is the case where B is chosen as a power of two. This
allows for a more efficient implementation through use of bit
shifts and masks, while the difference in size is usually small.

Variable-byte coding [27, 22] represents an integer n as a
sequence of bytes. In each byte, we use the lower 7 bits to
store a part of the binary representation of n, and the highest
bit as a flag to indicate if the next byte is still part of the
current number. Variable-byte coding is simple to implement
and known to be significantly faster than traditional bit-wise
methods such as Golomb, Rice, Gamma, and Delta coding
[30]. However, it usually does not achieve the same reduction
in index size as bit-wise methods.

Simple9 coding [3] is not byte-aligned, but can be seen as
combining word alignment and bit alignment. The basic idea
is to try to pack as many integers as possible into one 32-bit
word. Simple9 divides each word into 4 status bits and 28 data
bits, where the data bits can be divided up in 9 different ways.
For example, if the next 7 values are all less than 16, then we
can store them as 7 4-bit values. Or if the next 3 values are
less than 512, we can store them as 3 9-bit values (leaving one
data bit unused). Simplel6 is a variation of Simple9 that uses
16 instead of 9 cases and thus achieves a slightly better use of
each 32-bit word [29].

PForDelta is a recent technique proposed in [13, 31] for com-
pression in database and TR systems. The basic idea is to split
a list into chunks of some fixed size, and then select a value b
such that most of the values in the current chunk (say, 90%)
are less than 2° and thus fit into a fixed bit field of b bits
each. The remaining integers, called exceptions, are coded sep-
arately. Variants of PForDelta have been shown to outperform
variable-byte coding in terms of both speed and compression.
For best results, chunks should contain a number of values that
is a multiple of 32; this guarantees that the bit fields of each
chunk align with word boundaries.

LLRUN [10] uses Huffman instead of unary coding for the
unary parts of the Gamma code. The Huffman code is derived
from statistics over the entire collection. Thus, LLRUN splits
the space of integer values into intervals or buckets such that
each number can be represented by its bucket number k£ and
its offset o within the bucket. We note that this idea is also
adopted in the widely used zlib library [11], where the binary
part is referred to as “extra bits”. LLRUN was improved in
[20] by using a separate Huffman table for each inverted list.

2.2 Adaptive Methods for Index Compression

As explained earlier, occurrences of terms in text tend to be
clustered (or locally homogeneous [17]) rather than spread out
uniformly. Several previous papers [7, 6, 18, 19, 17] have pro-
posed compression methods that exploit this property. How-
ever, these methods are usually only able to exploit clustered
sequences of gaps that are long enough, say gaps between word
occurrences in books or other collections that contain suffi-
ciently long stretches of linearly ordered text. In contrast, the
average web page contains a few hundred words, and pages
are ordered in the index via a doclD that may be assigned
based on criteria such as global page quality or crawl order.
Thus, while clustering does occur within a document, there
are typically only a few occurrences of the word, and the next
document in the ordering is not related to the previous docu-
ment. In addition, previous work did not exploit page-related

information to compress positions, but treated all positions as
one uniform sequence of numbers.

Bookstein et al. [7, 6] used a compression algorithm based
on a multi-state Markov model to exploit clustering of terms.
The basic idea of interpolative coding [19] is to first encode
the docID in the middle of the list, represented by the gap
from the start of the list, and then recursively compress the
left and right halves of the list. This might seem counterin-
tuitive at first glance, but if occurrences are heavily clustered,
then this divide-and-conquer approach will eventually focus
on fairly small regions of the collection that contain many oc-
currences of a term and can thus be encoded very succinctly.
Interpolative coding achieves good performance for clustered
data but is somewhat slow [28].

Moffat and Anh proposed two binary codes [17], RBUC and
BASC, for compressing locally homogenous sequences. RBUC
encodes the next s numbers into s b-bit binary codes, where
the shared b, called selector, is the number of bits of the binary
code for the maximum value of those s numbers. RBUC can
be applied recursively to the resulting sequence of selectors,
and s can be reduced at each recursive levels by using different
escalations functions. For example, the s in the next level can
be computed by f(s) = 2xs or f(s) = sxs. BASC is an on-line
method that predicts the number of bits b; used to encode the
next number z; by using the value of b;_. In particular, it first
uses one bit to indicate if b; < b;_1, and then encodes z; as a
bi—1-bit binary code if that is true, and otherwise as a (b;-b;—1)-
bit unary code followed by (b;-1)-bit binary code. A variant
of BASC is BASC-smooth, which predicts b; by exploiting the
average b-value used for k previous numbers.

One common property of these methods is that they are
more adaptive than the methods discussed further above. We
now formalize this notion. We say that a method is oblivi-
ous if it compresses each value on its own, without using any
collection- or list-specific statistics such as the average docu-
ment size in the collection, or the length of a list. Examples
are Gamma, Delta, and variable-byte coding. A method is lisi-
adaptive if it compresses an inverted list of positions by using
only statistics about the entire list or collection; examples are
Golomb and Rice coding which use the average value in the
list and the length of the list. A method is page-adaptive if it
compresses the positions for a particular posting using docu-
ment or posting features such as the document length or the
frequency of the term in the document. An example would be
the simple document-oriented version of Rice coding described
later, which chooses a different parameter B for the positions
in each posting based on these features. Finally, fully adaptive
methods may compress a position by also taking into account
other position values in the same posting that have already
been encoded; an example would be interpolative coding when
applied within a single posting. In general, to properly exploit
clustering of positions within documents, it is necessary to use
page- or fully adaptive techniques. (Note that not all methods
can be clearly categorized according to this taxonomy.)

Finally, we point out that several authors [5, 23, 25, 24] have
proposed to improve index compression by reassigning doclDs
to documents such that consecutive documents are fairly simi-
lar. This essentially induces a clustering effect in the document
collection, allowing for better compression of docIDs and fre-
quencies. We also tried this approach for positions, but it gave
only very limited improvements. Also relevant is the work by
Kleinberg [14] on modeling burstiness in data streams using a
Hidden Markov Model, which influenced some of our ideas.

2.3 Query Processing with Position Data

We now discuss how search engines access and use the po-
sitional data stored in the index. There are two main uses of
position data. First, positions are used for queries containing
phrases, either specified by the user or created by the search
engine through query transformations. For example, the en-
gine might recognize that a query contains a person name, and
rewrite the query into a new query that requires the first and
last name to be in close proximity in the text. Thus, positions
are used as a filter. Second, positions can be used in rank-
ing functions to improve result quality. The idea here is that
a document containing the search terms in close proximity is
more likely to be relevant to the user than a document where
the terms occur in completely different parts of the document.
Several researchers [8, 15, 26, 16, 21] have recently proposed
ranking functions that use proximity to improve result quality
on TREC collections and tasks. In practice, web search engines
tend to use machine learning to find good ranking functions,
and term positions or proximity are important features among
the hundreds used.

We focus in this paper on the second use, where positions are
considered by the ranking function; the first use typically only
applies to a limited subset of the queries. There appears to
be little published work on how to optimize query processing
with position data. One challenge is that the position data in
the index is usually several times (3 to 5 times) larger than the
docID and frequency data, and thus a naive use of positions
could significantly decrease system throughput.

To avoid this, query processing can be performed in two
stages. First, a simple ranking function requiring docIDs and
frequencies only (e.g., BM25 or similar) is applied. In the sec-
ond stage, position data is fetched only for a small subset of
documents (a few hundred or thousand) that scored very high
on the simple ranking function. This changes the trade-off
between compressed size and decompression speed somewhat
compared to the case of docIDs, as we only decompress a lim-
ited number of positions. In fact, as we show later, the CPU
cost of this second phase can be much smaller than that of the
first phase, even with fairly slow position decompression meth-
ods. On the other hand, the compressed size of the position
data has a very significant impact on system cost: In the case
of a memory-resident index, smaller compressed size means less
memory is needed. In the case of a primarily disk-resident in-
dex, disk transfers are reduced significantly due to reduced list
sizes and higher cache hit rates, since a larger percentage of the
total index data can be cached in main memory [29]. (Even if
only some of the position data has to be fetched from each list,
disk access costs will usually be equal to that of fetching the
complete lists, as random lookups are prohibitively expensive
on current disks.)

In summary, access to position data is typically performed in
a second stage after traversing the lists of doclDs, only a lim-
ited amount of position data is usually retrieved, and a small
compressed size may be more important than extremely fast
access to positions. We evaluate the query processing perfor-
mance of our techniques for this case in Section 7.

3. CONTRIBUTIONSOF THISPAPER

We study methods for compressing position data in web
search engine indexes, and describe and evaluate a number
of approaches. To our best knowledge, no previous published
work has focused on the case of positions in web pages, as
opposed to longer linearly ordered texts. In particular:

(1) We perform a detailed experimental evaluation of many
existing techniques on position data in web indexes.

(2) We propose and discuss several simple but effective com-
pression algorithms for position data that take advan-
tage of page-wise information, such as remaining page
sizes and frequencies, and other context information, e.g.,
the values of previous positions. We compare our algo-
rithms to the existing ones, showing the limits of list-
oriented techniques and the potential of page-adaptive
approaches. We obtain moderate but measurable im-
provements in compression.

(3) We propose statistics-based methods to further improve
compression performance by integrating more context
features. Our experiments show that these methods can
further reduce the compressed size over other algorithms.
We also evaluate the tradeoff between integrating more
features to reduce the compressed size and the extra cost
for storing the features.

(4) We discuss the use of position information in search en-
gines, and show how to efficiently access position infor-
mation during query execution. We show that ranking
functions that take position information into account can
be evaluated with very moderate additional CPU costs
compared to more basic ranking functions.

4. POSITION GAP DISTRIBUTION

Any compression method is associated with an explicit or
implicit probability model for the data to be compressed. For
instance, many index compression methods assume that d-
gaps conform to a monotonically decreasing distribution. In
particular, Golomb coding assumes geometric distributions of
d-gaps. In this section, we discuss the p-gap distribution of
the TREC GOV2 data set and how it differs from the case of
d-gaps and among different terms.

vaccine sheet

——real
FAAN
A o= | = artificial

~
5

Percentage of Number
of Gaps (%)
s &
——
]
%
()

p

of Gaps (%)

Percentage of Number

5 10 1% 0 5 10 15
log2(size of gap)

10
ﬁ,
0 /!/

log2(size of gap)

death hurricane
5 30 _
2 w—real § s [——real
£ A Al = artificial || £ T "
2220 = 3g® - = artificial
AN A =t AL
58 ° 210 =
56 ’ X
= IR WAWAAW
g s = 2° 5 FIE . S e
[y e . =

°

0 5 10 15
log2(size of gap)

°

5 10 15
log2(size of gap)

Figure 1: Distribution of p-gaps for four words on the
TREC GOV2 data set.
bits required to represent the p-gaps in binary, and on the
y-axis is the percentage of p-gaps that fall in this range.

On the x-axis is the number of

As examples, we select four terms and draw their corre-
sponding p-gap distributions in Figure 1. We show two graphs
for each term, the distribution on real p-gaps and the distribu-
tion one would observe if all words were randomly arranged in
the page. We expect that in the presence of clustering, these
two graphs would behave very differently. From Figure 1 we

can see that the real distributions are very different from the
random (i.e., geometric) distributions. (In fact, the distribu-
tions for “death” and “hurricane” are not even monotonically
decreasing.) The distributions of real gaps for “sheet”, “death”,
and “hurricane” are very different from the random gaps, while
the two distributions for “vaccine” are more similar.

A term may occur several times in a particular document,
and different occurrences may behave very differently. In Fig-
ure 2, we plot the distributions of gaps for first occurrences,
second occurrences, and further occurrences within a docu-
ment, for the same four words as above. From Figure 2, we
can see that for "sheet”, "death”, and "hurricane”, the distribu-
tions on gaps of its first occurrences, second occurrences and
other occurrences are quite different from each other and show
bursts at fairly distinct sizes of gaps. In fact, besides the in-
dex of the occurrence, there are many other factors that may
affect the distributions, e.g., document size and in-document
frequency. Thus, it seems hard to capture the true probability
distribution of all gaps with a single model.

vaccine sheet
25
5 25 H T\\ st
2 5 ~ st || g 2 & 5-2nd
5 - = o-2nd 33 /
=z [e z < 45 — other
2%, Lo —other || | 5y / ya /\
a s)\g 2 @ [AR
2810 / N 2810 R
g¢ I o7 % %, £s J AP
s 5 -4 > Tk S s f.f'/ T
5 7 ~o ° o,
S onR / Sg <L \\\1\,_5

& B

0 5 10 15
log2(size of gap)

5 10 15
log2(size of gap)

death hurricane

5 70 = g 30 q

) n —o—1st ' » ri —+1st ||
- [- 2nd 5~ al o
2850 [iL—other zZE2 20 N _ ther| |
= A s — other
5 71 H A

g6 3 I [2949 .

%5 20 —— £%

g 10 S o 5

§ rbeofles T toiEbaa, | |8

0 5 10 15
log2(size of gap)

log2(size of gap)

Figure 2: Distribution of p-gaps for first, second, and fur-
ther occurrences, for the four words from Figure 1

5. OURALGORITHMS

In this section, we first propose a very simple but effective
algorithm, Remaining Page-Adaptive Rice Coding (RPA-RC),
and present its advanced version with smoothing based on a
regression model (RPA-RC-S). We then propose another algo-
rithm, Remaining Page-Adaptive BASC with smoothing (RPA-
BASC-S), and perform an experimental comparison with a
number of baseline algorithms from the literature.

5.1 Page-Adaptive Rice Coding

Standard Rice coding determines its parameter B by look-
ing at the entire list of integers that need to be compressed,
thus making it a list-adaptive algorithm. However, during de-
compression of position data, we already know the number of
positions in the page (the frequency) and the overall page size,
and it would be smart to exploit this knowledge for better com-
pression. A fairly obvious way to do this is to select B as the
largest power of 2 such that B < |d|/(ft,a + 1) where |d] is the
size of the current document and f; 4 the frequency. We call
this page-adaptive variant of Rice coding Page-Adaptive Rice
Coding (PA-RC).

A fully adaptive version, called Remaining Page-Adaptive
Rice coding (RPA-RC), takes this idea one step further and

uses a different B for each position in the posting. In particu-
lar, rather than taking the size and frequency of the complete
page, we consider the currently remaining page size and fre-
quency of the posting. Thus, after encoding a position value
p, we deduct p from the page size, and 1 from the frequency,
and then use these updated values to select the B for the next
position in the posting. If one of the gaps is very large, then
this implies that subsequent positions occupy a smaller region
towards the end of the document, and the method will use a
smaller B to encode those remaining positions.

5.2 Adaptation with Smoothing

However, RPA-RC may suffer in the case in Figure 3, which
shows the locations of occurrences in a document of a word.

BLUL L ——

Figure 3: An example of word locations in a document.

There are two clusters of occurrences in Figure 3 that are
separated by a wide gap. In the first cluster of occurrences,
the remaining average gap for its last occurrence is large, even
though its gap with its previous occurrence is small, which is
very useful information ignored by RPA-RC. To deal with this
problem, we integrate the information about the previous gap
into our method and build a regression model as follows:

Bt:(lfp)xgt,l-i-pxrt

where By is the value of B in Rice coding for tth gap, r; is
the remaining average gap for ¢-th gap and g;—1 is the value of
previous gap. The second term in the model is used to tune the
error of prediction by using the remaining average gap. When
p = 0, it means that the current expected average gap B; is
equal to the previous gap ¢:—1, while p = 1 means it is equal
to the remaining average gap 7.

We note that BASC coding [17] also exploits the previous
bi—1 to predict the next b;. An extension of BASC called
BASC-smooth uses the average value of k previous bs to predict
the next b. As shown in [17], this achieves better compression
than the basic BASC. Motivated by this, we replace the g:—1
in the above regression model with the previous average gap.
The modified model is called Remaining Page-Adaptive Rice
Coding with Smoothing (RPA-RC-S).

On the other hand, list-wise BASC-smooth can also be mod-
ified to be page-adaptive as follows: First, unlike list-wise
BASC in [17], where the value of b is initialized for the en-
tire list as a fixed number, say 2, or 4, or 8, page-wise BASC-
smooth initializes it as the average gap of its corresponding
page. Second, for page-wise BASC-smooth, only the previous
gaps within the same posting need to be checked to calculate
the previous average b, thus avoiding the noise caused by pre-
vious postings. More interestingly, motivated by RPA-RC-S,
where we tune the predictions by the remaining page informa-
tion, we can tune the prediction of BASC-smooth by using the
following model:

by = (1 —p) X avgi—1 +p X rby

where b; is the expected number of bits to encode the current
gap into a binary code, avg:—1 is the average number of bits to
encode previous gaps, and rb; is the number of bits to encode
the remaining average gap. Thus, when p = 0, the current gap
is encoded by the same number of bits used for the previous
gap, while when p = 1, it is encoded by the number of bits for

the remaining average gap. We called this variant Remaining
Page-Adaptive BASC with Smoothing (RPA-BASC-S).

5.3 Multidimensional Adaptation

Most of the above page-adaptive methods compress the cur-
rent position by exploiting two-dimensional (2D) context fea-
tures: the page size (or the remaining page size) and the fre-
quency. In fact, from experiments in later sections, we will see
that most page-adaptive methods are already much better than
non-parametric or list-adaptive methods by taking advantage
of these two features. Intuitively, we expect that the more con-
text features we use, the better the compression performance
we can get. For example, the above regression-based methods
improve the compression performance slightly by adding as an
additional feature the previous gap (or previous average gap).

However, as discussed in Section 4, different terms may be-
have so differently that it is hard to make a good prediction of
the next value based on a single model. In his case, it might be
better to augment general statistics-based compression meth-
ods such as, e.g., Huffman coding, with context information to
improve compression.

The basic idea is as follows: For each inverted list, we first
classify all p-gaps into one of a moderate number of buckets,
depending on four context features: The remaining document
size rsize, the remaining frequency rfreq, the previous p-gap
prevl, and the previous previous p-gap prev2. To do so, we
divide the values of each feature into a small number of bins
such that two p-gaps are in the same bucket if they fall into
the same bin for all features. We then apply for each bucket a
separate model, in one of the following two ways:

Optb-4D: For each bucket, we determine the optimal value
of b under Rice coding, by trying all 32 possible values and
choosing the one leading to the smallest compressed size. Dur-
ing decompression, for each position, we first determine which
bucket the position belongs to and then retrieve the corre-
sponding b from a global table.

Huff-4D and LLRUN-4D: Huff-4D is similar to Optb-
4D except that it stores an entire Huffman table (instead of
just the best value of b) for each bucket, and uses this table
to encode the positions in the bucket. LLRUN-4D is similar
to Huff-4D except that it builds the Huffman tables only for
the unary parts of gamma codes of the positions. In other
words, the difference is that each Huffman table in LLRUN-4D
uses (slightly) fewer codewords than a Huffman table in Huff-
4D (which employs a more fine-grained scheme for selecting
codeword boundaries in the Huffman tables).

Note that while such multidimensional models can easily
be extended to use more features, this does not necessarily
result in smaller compressed sizes. This is because the resulting
models (Huffman tables, or b values) need to be stored together
with the compressed indexes, and this cost increases quickly
with additional features.

6. EXPERIMENTAL RESULTS

We first describe our experimental setup. We used the TREC
GOV2 data set of 25.2 million web pages crawled from the gov
top-level domain. We selected 1000 random queries from the
supplied query logs; these queries contain 2171 unique terms.
On average, there were 4.85 million postings with 20.72 mil-
lion positions in the inverted lists associated with each query.
Limited experiments involving decompression speed are pro-
vided in Section 7 in the context of a query processor that
uses position data.

Throughout the paper, we report the compressed size of the
position data per query, that is, the amount of compressed
position data in MB associated with the inverted lists of an
average query. This is a rough measure of the amount of
data per query that has to be transferred from disk in the
case of a purely disk-based index, under the assumption that
only complete lists are transferred. (We believe that this is
realistic given the performance characteristics of current hard
disks, which strongly discourage performing multiple seeks for
smaller amounts of data.)

6.1 Compression Results

In Figure 4, we compare the average compressed size of
the position data per query of various methods on the TREC
GOV2 data set. We show results for the following oblivious
or list-adaptive methods: Gamma, variable-byte (vbyte), Sim-
ple9, Simplel6 as described in [29], the version of PForDelta
described in [29], list-adaptive Rice coding (list-Rice), list-
adaptive riceV'T as described in [28] (list-riceVT), list-LLRUN
[10] (building one Huffman table for each list), RBUC and
BASC [17] (where in RBUC we choose the escalation function
as f(s) = s* s and where BASC is the basic version without
smoothing). We also show results for four page-adaptive or
fully adaptive methods: a page-oriented version of interpola-
tive coding [18, 19] (page-IPC) that is applied to the posi-
tions in each posting, a page-oriented version of riceVT (page-
riceVT), PA-RC, and RPA-RC. We also show the list-wise en-
tropy (which of course does not constitute a lower bound).

30
§os |
3
o
o
96 |
8
S
Boa |
o
o
-
E22
o
20 . .
&(\\'b ’o\ve Q\@ \é\b 00{* & .oé\ 000 v.5_,0 Qg\\ m’\Q°40$ vg@ vgp ‘OQ*
¢ Aé&i}@Q"‘ﬂ"’\.\g’\QQw\ybgefongz&
]) @ ° Q,DQ

Figure 4: Compressed size per query for a variety of base-
line methods on the TREC GOV?2 data set.

From Figure 4 we can see that all oblivious (non-parametric)
or list-adaptive methods, including all methods except list-
LLRUN to the left of page-IPC, do significantly worse than
the page-adaptive methods on the right side of and includ-
ing page-IPC, by 10 to 15%. Second, although list-LLRUN
can achieve comparable compression performance as the page-
adaptive methods, it is a semi-static method that has to first
calculate the statistics information of all positions in the list
before it can start encoding, while the page-adaptive methods
do not need to do so. We also note that while page-wise in-
terpolative coding (page-IPC) achieves the best result (20.92
MB/q), it is only slightly better than RPA-RC (21.00 MB/q)
but slower in decompression [18, 19]. Overall, RPA-RC is a
fairly simple on-line method, and performs much better than
all other methods in Figure 4 except page-1PC.

In Figure 5 we show the performance of the two regres-
sion models for different values of p (where p = 0 means us-
ing only the previous gaps, while p = 1 means using only
the remaining page information). From Figure 5, we observe
that even without remaining page information, page-adaptive

than its list-adaptive version (22.75 MB/q) in Figure 4. Sec-
ond, both models achieve their best results when using both
types of information. In particular, RPA-RC-S achieves its
best result (20.98 MB/q) for p = 0.95, while RPA-BASC-S
gets its best result (20.94 MB/q) for p = 0.2 and p = 0.1.
Third, the remaining average gap has more impact on RPA-
RC-S than on RPA-BASC-S, while the previous average gap
affects the latter more. The reason is that if the current gap
to be encoded is very large while the previous average gap was
fairly small, then the unary part of the Rice code for RPA-RC-
S would be very large. In order to avoid this problem, RPA-
RC-S exploits the remaining average gap to tune the wrong
prediction from the previous gaps.

23
9 —~RPA-BASC-S
z, S22 --RPA-RC-S
%S
2
Sm
g2 21 ¢ . .
o
o

20

0 0.1 0.2 0.5 0.9 0.95 1
Probability

Figure 5: Compressed size per query for RPA-RC-S and
RPA-BASC-S on the TREC GOV2 data set.

However, overall we see that using only the remaining-page
information (without the previous gaps) is already a fairly good
choice, since both methods achieve reasonably good compres-
sion performance in this case. Thus, the benefit due to regres-
sion is only very limited.

\

@
S

N
@

-o-data
- total

N
o
T

N
N
T

Compressed Size (MB/query)
N N
o -

-
©

o
& 4 & 4 .0‘590 o‘é‘vyo %§§ Q*’e’?
& (o4

Figure 6: Compressed size per query for RPA-BASC-S,
Optb-4D, Optb-5D, Optb-6D, Huff-4D and LLRUN-4D.

In Figure 6, we compare the best method from Figure 5,
RPA-BASC-S, with Optb-4D, Optb-5D, Optb-6D, Huff-4D and
LLRUN-4D. (Optb-5D and Optb-6D are variants of Optb-4D
that use one and two additional previous gaps as 5th and 6th
features.) We plot two lines in Figure 6, one for the com-
pressed size without taking the extra cost for storing the Huff-
man tables or b-values for each bucket into account, and one for
the compressed size including this extra cost. From Figure 6,
we can see that although Optb-6D could get better compres-
sion if we do not consider the extra cost, in reality it is much
worse. Overall, LLRUN-4D achieves the smallest compressed
size among the methods, achieving about 19.58 MB per query.
Huff-4D has similar performance but suffers slightly for using
too many codewords in its Huffman tables.

Finally, we list in Table 1 the exact compressed sizes of the
methods with the best compression performance.

7. QUERY PROCESSING

As discussed, for typical web data the position data in the

BASC-smoothing achieves much better compression (21.06 MB/q) index is significantly larger (by a factor of 3 to 5) than the do-

Table 1: Compressed sizes (MB/q) for selected methods.

data | extra cost | total size

list-LLRUN 21.52 N/A 21.52
page-1PC 20.92 N/A 20.92
RPA-RC-S 20.99 N/A 20.99
RPA-BASC-S | 20.94 N/A 20.94
Optb-4D 20.57 0.05 20.62
Huff-4D 19.00 0.63 19.63
LLRUN-4D 19.53 0.05 19.58

cID and frequency data. To minimize decompression cost, an
efficient query processor should try to avoid accessing the posi-
tion data for all postings in the intersection (or other Boolean
filter) of the inverted lists. Instead, postings in the intersec-
tion are first scored without taking position information into
account, and then position data is fetched only for the K most
promising postings, for some sufficiently large K.

Thus, while queries typically decompress substantial parts
of the docID data of the inverted lists (though with some
amount of skipping), accesses to position data in memory are
best thought of as random accesses to individual postings. On
the other hand, we still have to first fetch the complete posi-
tion data for any inverted list located on disk, since random
lookups are extremely inefficient with current hard disks. This
fundamentally changes the trade-off between compressed size
and decoding speed, in that size becomes relatively more im-
portant than speed. In this section we describe how to perform
random lookups into the position data, and then evaluate the
query processing performance of our compression schemes un-

der this modified trade-off.
7.1 Position Look-Up Structure

To efficiently access the compressed position data associated
with a particular posting, we need a suitable look-up structure.
We now describe this structure for the case of Rice coding (or
any other method that compresses each integer individually),
and then outline how to modify the structure for methods such
as PForDelta.

We employ a fairly standard hierarchical look-up structure,
where position data is divided into chunks. In particular, we
organize the position data for Vi postings into one chunk, and
store for each such chunk one docID and one pointer to the
beginning of the chunk in uncompressed form. Within each
chunk, we organize data into sub-chunks of N> postings each,
and for each sub-chunk we store its offset from the beginning
of the chunk in compressed form, using variable-byte compres-
sion. This allows us to access any posting by decompressing
at most N, postings of position data. In particular, to find
the position data for a particular docID, we first search for the
right chunk using binary search on the array of uncompressed
docIDs (one per chunk). Since we have already decompressed
the docID data itself, we know the index of the posting within
the chunk (i.e., the global index modulo N;) and thus the
correct sub-chunk, which we can then decompress. We used
N; = 128 and N2 = 8 in the following.

For PForDelta and other compression methods that com-
press batches of numbers, the look-up structure has some mi-
nor differences compared to the above. In the case of PForDelta,
we compress 128 integers at a time, which does not align with
posting boundaries. As a result, we need to store two rather
than one compressed integer for each sub-chunk, to store an
offset within a field of 128 integers. For other methods such
as Simple9 that compress a variable number of integers at the

Table 2: Space overhead and performance of the
lookup structure for K = 100.

PA-RC | RPA-RC | PForDelta | Optb-4D
Space per query 0.77TM 0.77TM 1.51M 0.77TM
Space for L.1 0.15M 0.15M 0.3M 0.15M
Space for L2 0.62M 0.62M 1.21M 0.62M
Decoded ints 13524 13524 43895 13524
Total time 0.63ms 0.91ms 0.31ms 1.70ms
Decode time 0.38ms 0.66ms 0.10ms 1.50ms
Seek time 0.25ms 0.25ms 0.21ms 0.20ms
Position size 21.37TM 21.18M 23.67TM 20.61M

Table 3: Percent of queries that achieve the same top-
results as an exhaustive evaluation.

K =10 20 50 100 150 200
m =10 | 34.9% 79.3% | 94.8% | 97.3% | 97.8% | 98.2%
m = 50 NA NA 27.0% | 77.5% | 87.8% | 91.8%

same time, some other minor adjustments are needed. The
first-level structure remains basically the same in either case.

Table 2 shows the lookup performance and size of this struc-
ture, where we perform K = 100 lookups each for 1000 queries.
The total time per 100 lookups consists of the decoding time for
the sub-chunks, plus the seek time for searching the first-level
array and decompressing the second-level pointers. As we see
from the results, the lookup structure adds between 0.77 and
1.51 MBs to the more than 20 MB of position data per query.
We decode between 138 and 438 integers per lookup; this is
since for each lookup, we need to decode an entire sub-chunk
for each query term. We also see that there is a trade-off be-
tween compressed size and time, but the overall look-up time
per query is at most 1.7 ms even for the method achieving
the smallest size (Optb-4d). We expect some additional speed
gains with proper tuning.

7.2 Proximity-Aware Scoring

We now look at the use of our lookup structure in the con-
text of ranking functions such as [8, 15, 26, 16, 21] that take
term proximity, and thus positions, into account. In particular,
we use the scoring model proposed by Buettcher and Clarke
in [8], also used in [21], which gives significant improvements
in result quality over BM25-based scoring. In this model, the
BM25 scoring function is combined with a proximity score for
each query term that depends on how far this term is from an
occurrence of some other query term. Given a query, we first
compute a proximity score for each query term that depends on
the distance of this term’s occurrences to the adjacent query
term’s occurrences. The score for a document is then com-
puted by a linear combination of the standard BM25 score
and a total proximity score computed from the accumulated
proximity scores.

We now show how this scoring function can be very effi-
ciently approximated using our lookup structure as follows:
We first compute the top- K results under the standard BM25
score, by accessing only doclD and frequency values. Then for
these K results, we fetch position information in all lists in or-
der to compute the proximity score and thus the full ranking
function. As we show, using values of K at most 200, we can
compute the correct top-m results for m = 10 and m = 50
almost all the time.

The results are shown in Tables 3 and 4. In particular,
Table 3 shows how likely we are to get exactly the same top-m
results as an exhaustive evaluation, while Table 4 shows what

Table 4: Percent of correct top-m results returned.

K =10 20 50 100 150 200
m=10 | 83.7% | 95.5% | 98.8% | 99.3% | 99.4% | 99.5%
m = 50 NA NA 88.5% | 97.2% | 98.6% | 99.1%

percentage of returned results really belongs into the top-m.
For example, using K = 100 we get exactly the same top-10
results as an exhaustive evaluation for 97.3% of all queries,
while 99.3% of all results returned for K = 100 are in fact
correct top-10 results. Thus, about 100 lookups per query are
typically enough to match the quality of the scoring function in
[8], justifying our claim that access patterns for position data
are very different from those for doclDs and frequencies.

8. DISCUSSION AND CONCLUSIONS

In this paper, we have studied compression techniques for
position data in web indexes. We proposed two simple but
effective techniques, Remaining Page-Adaptive Rice Coding
with Smoothing (RPA-RC-S) and Remaining Page-Adaptive
BASC with Smoothing (RPA-BASC-S). We also proposed sev-
eral statistics-based methods (Optb-4d, Huff-4d, and LLRUN-
4d) and show that they achieve even better compression per-
formance. Finally, we studied the efficient use of position in-
formation during query execution.

Overall, our improvements in compressed size are fairly mod-
erate. We believe that the lessons learned from this work are
as follows: First, word positions in web pages do not seem to
follow simple distributions that could be easily exploited. Sec-
ond, additional context, such as document size, frequency, and
nearby previous gaps, is highly useful, but there is a trade-off
between the benefits of more features and the cost of storing
more complex models. Third, during query processing, access
to position data should be performed in a second stage after
traversing the lists of docIDs such that only a limited amount
of position data is retrieved; in this case, a small compressed
size may be more important than extremely fast access.

There are a number of remaining open challenges concerning
position data in web indexes. It would be nice to find ways to
significantly improve our results, or to exploit page reordering
for better position compression. More generally, it is an inter-
esting question whether there are other organizations for po-
sition data, different from the standard inverted-list organiza-
tions, that allow efficient query processing while enabling bet-
ter compression. For instance, one could even consider storing
the parsed documents themselves in highly compressed form
and accessing these during a position data lookup, instead of
keeping the positions in inverted lists.

9 REFERENCES

V. Anh. Impact-based document retrieval. PhD Thesis, The
Umver51ty of Melbourne, Amsterdam, Netherlands, April 2004.

[2] V. Anh and A. Moffat. Index compression using fixed binary
codewords. In Proc. of the 15th Int. Australasian Database
Conference, pages 61 67, 2004.

[3] V. Anh and A. Moffat. Inverted index compression using
word-aligned binary codes. Information Retrieval, 8(1):151 166,
Jan. 2005.

[4] V. Anh and A. Moffat. Improved word-aligned binary compression
for text indexing. IEEE Transactions on Knowledge and Data
Engineering, 18(6):857-861, 2006.

[5] D. Blandford and G. Blelloch. Index compression through
document reordering. In Proc. of the Data Compression
Conference, pages 342—-351, 2002.

[6] A. Bookstein, S. Klein, and T. Raita. Modeling word occurrences
for the compression of concordances. ACM Transactions of
Information Systems, 15(3):254-290, 1997.

(7]

(8]

[0]

[10]

[11]
(12]

[13]

[14]

(15]

(16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

26]

[27]

(28]

[29]

(30]

(31]

A. Bookstein, S. Klein, and T. Raita. Markov models for clusters
in concordance compression. In Proc. of the Data Compression
Conference, March, 1994.

S. Buettcher, C. Clarke, and B. Lushman. Term proximity scoring
for ad-hoc retrieval on very large text collections. In Proc. of the
29th Annual Int. ACM SIGIR Conf. on Research and
Development in Information Retrieval, 2006.

P. Elias. Universal codeword sets and representations of the
integers. IEFEFE Transactions on Information Theory,
12(3):194-203, Mar. 1975.

A. Fraenkel and S. Klein. Novel compression of sparse bit-strings —
preliminary report. Combinatorial Algorithms on Words,

12:169 183, 1985.

J. Gailly. zlib compression library. Available at
http://www.gzip.org/zlib/.

S. Golomb. Run-length encodingds. IEEE Transactions on
Information Theory, 12(3):399-401, 1966.

S. Heman. Super-scalar database compression between ram and
cpu-cache. MS Thesis, Centrum voor Wiskunde en Informatica
(CWT), Amsterdam, Netherlands, July 2005.

J. Kleinberg. Bursty and hierarchical structure in streams. In
Proc. of the 8th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, 2002.

D. Metzler and W. B. Croft. A markov random field model for
term dependencies. In Proc. of the 28th Annual Int. ACM SIGIR
Conf. on Research and Development in Information Retrieval,
2005.

G. Mishne and M. Rijke. Boosting web retrieval through query
operations. In Proc. of the 27th European Conference on IR
Research, 2005.

A. Moffat and V. Anh. Binary codes for locally homogeneous
sequences. Information Processing Letters, 99(5):75 80, Sept.
2006.

A. Moffat and L. Stuiver. Exploiting clustering in inverted file
compression. Proc. of the Data Compression Conference, pages
82 91, 1996.

A. Moffat and L. Stuiver. Binary interpolative coding for effective
index compression. Information Retrieval, 3(1):25-47, 2000.

A. Moffat and J. Zobel. Parameterised compression for sparse
bitmaps. In Proc. of the 15th Annual Int. ACM SIGIR Conf. on
Research and Development in Information Retrieval, 1992.

R. Schenkel, A. Broschart, S. Hwang, M. Theobald, and

G. Weikum. Efficient text proximity search. In 14th String
Processing and Information Retrieval Symposium, 2007.

F. Scholer, H. Williams, J. Yiannis, and J. Zobel. Compression of
inverted indexes for fast query evaluation. In Proc. of the 25th
Annual SIGIR Conf. on Research and Development in
Information Retrieval, pages 222-229, Aug. 2002.

‘W. Shieh, T. Chen, J. Shann, and C. Chung. Inverted file
compression through document identifier reassignment.
Information Processing and Management: an International
Journal, 39(1):117 131, Oct. 2003.

F. Silvestri, S. Orlando, and R. Perego. Assigning identifiers to
documents to enhance the clustering property of fulltext indexes.
In Proc. of the 27th Annual Int. ACM SIGIR Conf. on Research
and Development in Information Retrieval, pages 305 312, 2004.
F. Silvestri, R. Perego, and S. Orlando. Assigning document
identifiers to enhance compressibility of web search engine
indexes. In Proc. of the 19th ACM Symp. on Appliled Comp,
pages 600 605, 2004.

T. Tao and C. Zhai. An exploration of proximity measures in
information retrieval. In Proc. of the 30th Annual Int. ACM
SIGIR Conf. on Research and Development in Information
Retrieval, 2007.

H. Williams and J. Zobel. Compressing integers for fast file access.
Computer Journal, 42(3):193 201, 1999.

1. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan
Kaufmann, second edition, 1999.

J. Zhang, X. Long, and T. Suel. Performance of compressed
inverted list caching in search engines. In 17th International
World Wide Web Conference (WWW), April 2008.

J. Zobel and A. Moffat. Inverted files for text search engines.
ACM Computing Surveys, 38(2), 2006.

M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar
ram-cpu cache compression. In Proc. of the Int. Conf. on Data
Engineering, 2006.

