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Abstract. Partitioning a multi-dimensional data set into rectangular
partitions subject to certain constraints is an important problem that
arises in many database applications, including histogram-based selec-
tivity estimation, load-balancing, and construction of index structures.
While provably optimal and efficient algorithms exist for partitioning
one-dimensional data, the multi-dimensional problem has received less
attention, except for a few special cases. As a result, the heuristic parti-
tioning techniques that are used in practice are not well understood, and
come with no guarantees on the quality of the solution. In this paper, we
present algorithmic and complexity-theoretic results for the fundamental
problem of partitioning a two-dimensional array into rectangular tiles of
arbitrary size in a way that minimizes the number of tiles required to sat-
isfy a given constraint. Our main results are approximation algorithms
for several partitioning problems that provably approximate the optimal
solutions within small constant factors, and that run in linear or close
to linear time. We also establish the NP-hardness of several partitioning
problems, therefore it is unlikely that there are efficient, i.e., polynomial
time, algorithms for solving these problems ezactly.

We also discuss a few applications in which partitioning problems arise.
One of the applications is the problem of constructing multi-dimensional
histograms. Our results, for example, give an efficient algorithm to con-
struct the V-Optimal histograms which are known to be the most ac-
curate histograms in several selectivity estimation problems. Our algo-
rithms are the first to provide guaranteed bounds on the quality of the
solution.

1 Introduction

Many problems arising in databases and other areas require partitioning a multi-
dimensional data set into rectangular partitions or tiles such that certain math-
ematical constraints are satisfied. Often these constraints take the form of mini-
mizing (or maximizing) a metric using a fixed number of partitions or, conversely,
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minimizing the number of partitions while not exceeding (or falling below) a
given value of that metric.

These problems are quite challenging for most interesting metrics and hence
one usually resorts to heuristic approaches. Unfortunately, many of these ap-
proaches do not provide any guarantees on the quality of the solution and may
thus adversely affect the application. In this paper we present algorithmic and
complexity-theoretic results on the fundamental problem of partitioning two-
dimensional arrays into rectangular partitions tiles' of arbitrary sizes. We de-
velop solutions that offer guarantees on the quality of their solutions and that
run in small polynomial time (near-linear in most cases). We start out with a
few examples.

Example 1. Consider the 4 x 4 array in Fig. 1(a). A partitioning with 5 tiles is
shown in Figure 1(b) such that the maximum sum of the elements that fall within
any one tile is at most 57. There are many different ways to tile the array with 5
tiles with different maximum sums. There are also alternative ways to evaluate
the partitioning, other than by considering the maximum sum of the elements.
For instance, for each tile, we could sum up the squares of the difference between
each element in the tile and the average of all the elements in that tile; we could
then total all the values thus obtained for the tiles. This value is 204.7 as shown
in Fig. 1(b). Again different partitions induce different values. O

Example 2. Consider the 4 x 4 array in Fig. 1. A 3 x 3 tiling, namely one
obtained by partitioning rows into 3 intervals and columns into 3 intervals, is
presented in Fig. 1(c). For the partition presented there, the maximum sum of
the elements that fall within any tile is at most 79. Again different partitions

induce different values. O
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Fig. 1. Partitioning Examples

Example 1 arises in data partitioning for load balancing [23] and histogram-
based selectivity estimation [31], while Example 2 arises in constructing grid-
files which are well-known index structures [28]. We will list other application
scenarios further below, but we briefly describe the histogram context here.

! 'We use the terms tile and partition interchangeably in the rest of the paper.



Example Application: (Histograms) Query optimizers require reasonably ac-
curate estimates of query result sizes in order to estimate the costs of various
execution plans. Most commercial database management systems use histograms
to approximate the data in the database in order to perform these estimations.
Histograms group attribute values into subsets (buckets) and approximate true
attribute values and their frequencies based on summary statistics maintained
in each bucket [20,31]. Researchers have proposed the use of multi-dimensional
histograms for approximating distributions with multiple attributes [27,32]. This
approach involves partitioning the multi-dimensional space of attribute values
into rectangular buckets based on various partitioning constraints. This leads to
partitioning problems of the sort we consider in this paper. In particular, the
well-known V-optimal histogram in two dimensions, which has been shown to
minimize selectivity estimation errors for estimating the result sizes of several
classes of queries [14, 30], corresponds to the alternative metric, and one of the
partitions in Example 1. O

There are many different types of partitions and many different metrics to
evaluate the partitions. A generic optimization problem that arises in several
application contexts is as follows.

The Partitioning Problem. We are given a two-dimensional array of elements,
the type of partition sought, a metric to evaluate the partitions, and a bound 4.
The problem is to produce a partitioning of the array of the type sought, with
the minimal number of rectangular tiles such that the metric computed on the
partition is at most §. O

The partitioning problem has been extensively studied in many application
scenarios in the Database and Algorithms Research communities, in various
specialized forms. However, most known results are either heuristics without
provable guarantees, or provably efficient algorithms for simple, specific metrics
and tilings. For example, little is known about the complexity of the partitioning
problem with the alternative metric in Example 1 for different types of partitions,
but this problem is fundamental in histogram construction.

Motivated by this state-of-the-art, we formulate the partitioning problem in
its generality and study its difficulty for various types of partitions and metrics
of relevance in application scenarios. Our contributions are two-fold.

1. We show that the partitioning problem is NP-hard for many natural metrics

and partitionings arising in database applications. Thus, efficient, i.e. poly-
nomial time, algorithms exist if and only if NP = P, a central complexity
question that remains unresolved.
The partitioning problem can be naturally defined on one-dimensional arrays
too. These problems can be solved efficiently in small polynomial time [15],
but our claim above implies that their natural two-dimensional variants are
NP-Hard. Thus, the partitioning problem becomes fundamentally different
as we go from one-dimensional to multidimensional arrays.

2. Our main technical results are a number of algorithms that complement the
negative results above. We present very efficient (near-linear time) algo-
rithms for approximately solving the partitioning problem in two dimensions



for fairly general metrics and different partitionings (including most that
arise in our database applications); the approzimation bounds are guaran-
teed, and they are small constants.

We define the partitioning problem and state our results more formally in
Section 2. Here are a few high-level remarks on our results.

Remark 1. All of our algorithms extend to multiple dimensions with similar
(i.e., near-linear) performance bounds. However, this may sound better than it
actually is, because they will take time that is linear in the size of the underlying
d-dimensional array. However, in many applications, this array may be very
sparse, and an algorithm that works in time linear in the number of non-zero
entries would be much preferable, while one that works in time linear in the size
of the array can be prohibitively expensive. Some of our algorithms can likely
be modified to exploit sparseness of the input domain, while for others this is
more difficult.

Remark 2. There are other limitations to our framework of partitioning prob-
lems. For example, in some application scenarios, tiles may be allowed to overlap,
i.e., the problem may be one of covering the array rather than partitioning it.
This arises, for example, when building certain spatial indices such as R-trees.
Our results do not directly apply to such covering problems. Also, there are ap-
plication scenarios where one may be allowed to permute the rows and columns
of the input array. All our results assume that some canonical ordering (such as
that given by the natural order of numeric attributes in database applications)
is fixed.

Remark 3. Despite the limitations above, the partitioning problems we study
are very general, and they arise in a number of important application scenarios
within databases. Besides the problems of histogram-based selectivity estima-
tion, grid file construction, and load balancing mentioned earlier, there are ap-
plications in database compression, bulk-loading of hierarchical index structures,
and partitioning of spatial data, as well as to problems outside databases such
as domain partitioning in scientific computation, support of data partitioning
in data-parallel languages, and image and video processing. In this paper, we
clarify applications to histogram-based selectivity estimation only; discussions
about other applications can be found in the full version of this paper.

O

Map. The rest of the paper is organized as follows. We formalize the partition-
ing problem and relate it to various application contexts in Section 2; we also
state our results formally there. In Sections 4, 5, and 6, we present hardness
and algorithmic results for different types of partitions with different metrics.
In Section 7, we discuss the implications of our results for one applied area in
databases, namely, histogram-based selectivity estimation. Section 8 has con-
cluding remarks.



2 Problem Formulation and Overview of Results

2.1 The Partitioning Problem Definition

We are given an n X n array A containing N = n? real numbers. A tile is any
rectangular subarray Afi...j, k...l]. A partitioning of array A is a partitioning
of A into tiles; by definition of a partition, each element A[i, j] lies within some
tile and no two tiles overlap. As mentioned in the previous section, partitioning
schemes can be classified based on the type of partition and the metric functions
used within and outside the tiles to evaluate the partition. We define these
criteria below and present interesting instantiations for each of them.

Type of Partitioning: There are many possible types of partitionings of a
two-dimensional array. The ones we consider here are the common ones that
arise in database applications:

1. Arbitrary: No restrictions on the arrangement of tiles within A (Figure 2.a).

2. Hierarchical: A hierarchical partition is one in which there exists a vertical
or horizontal separation of array into two disjoint parts in each of which the
partitioning is again hierarchical (Figure 2.b). A hierarchical partitioning is
naturally represented by a hierarchy tree which is a binary tree in which a
node represents a subarray of A and each of its children represent a partition
of that subarray of A into two disjoint parts; the root represents A.

3. pxp: Here, the rows and columns of A are partitioned into p disjoint intervals
each; the induced p? tiles form the p x p partitioning. This can be thought of
as a special case of hierarchical partitioning where the tiling in the subarrays
of two sibling nodes of the hierarchy tree are the same along one dimension
(Figure 2.c).

a Arbitrary b. Hierarchical C. pXp

Fig. 2. Tilings

Quality Metrics: Metrics are defined on the tiling using the following three
functions.

1. Elementary Function: An elementary function h maps the array elements of
any tile to real numbers. Common functions include (i) ID, i.e., h(Afi]) =
Ali], (ii) AVG_DIFF, i.e., h(A[i]) = |A[i] — A| where A is the average of the
elements in that tile, (7i) GEO_DIFF, i.e., h(A[i]) = |A[i] — A’| where A’ is



the geometric median of the elements in the tile, and (iv) SQR-DIFF which
is the square of AVG_DIFF.

2. Heft Function. A heft function g is defined for a tile r and an elementary func-
tion A of the elements in that tile. The common heft functions are (i) SUM,
ie., ZA[i,j]er h(A[i, j]), (ii) MAX, i.e., max4[; jer h(A[4, j]), (iii) RATIO,

ie., DxAlijler h(A[?’j]), etc. SUM and MAX are the common heft functions
minap; jje. h(A[i,5])

in our application scenarios. Notice that the heft is an “intra-tile” function.
The value evaluated by the heft function in a tile is called its heft.

3. Cumulative Function. A cumulative function f is defined for the entire set
of tiles, for combining heft function g. The common cumulative functions
are SUM and MAX, representing the total and maximum heft value of tiles
in the given tiling, respectively. Note that the cumulative function is an
“inter-tile” function.

Any partition thus has a metric that is a combination of these three functions
f — g — h. For example, the SUM-MAX-ID metric of a partition is the sum over
the tiles of the maximum element in each tile. In Section 1, Example 1 has
the MAX-SUM-ID metric with the alternative being the SUM-SUM-SQR_DIFF
metric, and Example 2 has the MAX-SUM-ID metric. Some combination of the
functions are trivial for example, all partitions are identical under the MAX-
MAX-ID and SUM-SUM-ID metrics but most of the metrics are nontrivial.
The value the metric evaluates to on a given array and a partition, is called its
metric value, or where there is no ambiguity, the heft of the partition.

The Optimization Problem: The optimization problem we consider is as
follows: For the given type of partition, metric, and bound §, determine the par-
titioning of that type that has the minimum number of tiles with the metric value
of the partition being at most 0. A related problem is one in which we are given
a bound p on the number of tiles and the goal is to determine a tiling using at
most p tiles with minimum metric value. As far as the NP-Hardness is concerned,
these two optimization problems are identical, that is, if one is NP-hard, so is
the other. However, this similarity does not extend to efficient approximability
of these problems. In this paper, we only consider the first version.

Several partitioning problems arising in real applications mentioned in the
Introduction fit naturally in our framework. We present one such application
(histograms) in full detail in Section 7 and illustrate how our problem definition
and results solve an important problem arising in that application.

2.2 Some Preliminaries

We state some properties of the metrics and hefts that will be used latter. We
say that a heft function g is monotonic if g(r) < g(R) for two tiles r and R,
r € R. For example, SUM-ID is monotonic provided the array elements are non-
negative. Most of the heft functions that arise in our applications are monotonic.
We say that a metric f — g is superadditive if the following holds. f(g(r U R)) >



f(g(r),g9(R)), where r and R are any two disjoint tiles. For example, SUM-SUM-
SQR._DIFF is superadditive (this requires a nontrivial proof). Some of our results
hold only for superadditive metrics.

Our algorithms often identify tiles and are required to compute their hefts.
Say tg represents the time to determine the heft of any tile. The straightforward
way would be to consider each element of the tile and this takes tg = O(N)
time in the worst case. However, there is a more efficient method in some cases.
Consider the MAX heft function: after O(N) time preprocessing, we can compute
the heft of any tile in tg = O(1) time. We omit the details of this procedure here.
For SUM heft functions, the same holds for some elementary functions such as
the SQR_DIFF and ID, and not for others, such as the AVG_DIFF, GEO_DIFF
etc. There are still other examples of heft functions for which #g is O(log N).
In what follows, we state all our bounds in terms of ¢¢. For applications arising
in databases, t¢g is often O(1) since SUM-SQR_DIFF is the most common heft
function (such as in V-optimal histograms).

3 Related Work

Partitioning problems have been studied extensively in various application areas
including databases, parallel computing (e.g., load balancing), computational
geometry (e.g., clustering), video compression (e.g., block matching) etc. Some
related papers from a variety of application areas include [17,23,25,24,1, 3,10].
Here we review a selection of related work most relevant to us.

Hardness Results. Hardness results exist only for a simple metric function,
namely, MAX-SUM-ID — [18] proved it to be NP-hard for arbitrary partitions,
and [11, 6] proved it to be NP-hard for p x p partition. Our NP-hardness results
are inspired by the abovementioned results. However, the basic gadgets in our
reductions are different from the ones in [18,6] and we derive different non-
approximability bounds for various metrics.

Algorithmic Results. Dynamic programming has been used to find optimal
results for hierarchical partitions in several contexts [2,26,18]. However, our
sparse hierarchy approach with provable guarantee appears to be new. For p x p
partition MAX-SUM-ID, the best known approximation is by O(logn) factor
[19]. We derived substantially improved bounds for this problem. Many heuristic
algorithms have been proposed for this problem [23].

Applications: We focus on prior work in one database application, namely,
histograms. Histograms have been studied quite extensively in the literature in
the context of approximating single attributes [20,33,13,14,30,31,15]. On the
other hand, these has been very little work on multi-dimensional histograms.
Muralikrishna et al proposed a heuristic hierarchical algorithm for constructing
multi-dimensional equidepth histograms [27]. Poosala et al extended the defini-
tion of multi-dimensional histograms to other bucketization techniques, such as
V-Optimal, MaxDiff etc [32] and provided a more sophisticated and general hi-



erarchical partitioning algorithm called MHIST. But, neither of these algorithms
provide any guarantee on the quality of the partitioning.

4 Hierarchical Tilings

In this section, we consider the hierarchical partitioning problems. Recall that
the problem is to produce a hierarchical partition of an n x n array A with
metric value at most ¢ using the minimum number of tiles. We set N = n?
throughout. Let g be an upper bound on the time taken to calculate the heft
value of any tile in A; all our bounds below will be in terms of ¢qg. First we focus
on exact algorithms, and then approximate ones. We state our results for only
SUM and MAX metrics, but they hold for any superadditive metric with time
bound identical to that for the SUM metric.

4.1 Exact Algorithms

Theorem 1. For cumulative function MAX, there exists an O(N*® + N?tq)
time algorithm to solve the hierarchical partitioning problem exactly. For cumu-
lative function SUM, there exists an O(N*®(B*)?tq) time algorithm to solve the
hierarchical partitioning problem exactly; here, B* is the number of tiles in the
optimum, solution.

Proof. The proof uses dynamic programming; it is simple, and it has appeared,
for example, in [18], for a special case of the heft function. We include it here
since some of our algorithms will be derived by suitably modifying this solu-
tion. We consider the cumulative function MAX only; the SUM case is a simple
modification. Define E*(i---j,k---£) to be smallest number of tiles needed to
partition the region A[i---j, k---f] with metric value at most 4. If the heft of
the tile Afi...j, k... ¢] is at most 0, we have E*(i--- j, k- --£) = 1. Else, we have
Equation (I) below:

E*(i-a, k-0
L B ] +E*(z+1-j, kL),
EG---g.k Z)_i5w<r§}11?5y<é E*(i---j,k---y)

+E* (i jy+1---0)

We need to calculate E* = E*(1---n,1---n). We use the dynamic programming
technique and calculate E*(i---j,k...£)forall 1 <i<j<mand 1<k <<
n. In all, there are O(n?) possible sub-rectangles and for each we calculate O(n)
values and the heft of a single tile. Thus we take O(n® + n'tg) time which is
O(N?5 + N?tg) time. |

4.2 Approximate Algorithms

In this section, we present approximation algorithms for computing hierarchical
partitions for the SUM and MAX metrics (as before, they can be modified to



work for any superadditive metric); the algorithms in this section are faster than
the exact ones in Section 4.1. Our algorithms rely on two natural, well-known
ideas, namely, rounding, and pruning, which we informally describe below. These
strategies “sparsify” the dynamic programming, that is, reduce the number of
subproblems to be considered; this results in a speedier dynamic programming
solution. They are easy to implement, and the technical crux is their analyses.

Rounding is a structured way to limit ourselves to only a subset of all possi-
ble tiles. This is achieved by considering only tiles with endpoints at multiples
of a small number of parameters. However, there are many ways to perform
rounding: round only along one of the dimensions, or possibly both; round so
both the endpoints of tiles are multiples of the parameters, or just one of them;
etc. Rounding can also be done hierarchically with choice of parameter values
and rounding techniques at different levels. A general tradeoff for solving the
partitioning problems in terms of all these combinations is difficult to state, but
in our solutions, we employ interesting combinations and obtain our bounds.

Rounding to one grid pattern. We fix a parameter L and assume n is a
multiple of L — the following description can be easily modified to handle other
values of n. We define an L-grid as the subset of columns and rows numbered
1,L +1,2L + 1,--+; thus there are n/L grid columns and rows in an L-grid.
We refer to each such row (column) as the L-row (L-column respectively). We
define the 1-hierarchical partition to be a hierarchical partition in which the tiles
additionally satisfy the following two conditions. (1) At least one side has both
its endpoints on L-rows on L-columns, that is, the side is of length a multiple of
L, and (2) Both its sides have their endpoints between two consecutive L-rows
or two consecutive L-columns; that is, they are each of length at most L. The
1-hierarchical partitioning problem is to produce a 1-hierarchical partition of
an n x n array A with metric value at most § using the minimum number of
tiles. In what follows we will argue the following two points: (1) the optimal
1-hierarchical partition can be determined efficiently, and (2) the optimal 1-
hierarchical partition approximates the hierarchical partition nicely.

Lemma 1. For cumulative function MAX, there exists an O(N'-5tg) time al-
gorithm to solve the 1-hierarchical partitioning problem exactly. For cumulative
function SUM, there exists an O(N'5(B*)?tg) time algorithm to solve the 1-
hierarchical partitioning problem exactly; here, B* is the number of tiles in the
optimum, solution.

Proof. We will only show the proof for the MAX function; the proof for the
SUM function is similar. Define E*(i---j — 1,k---£ — 1) to be smallest number
of tiles in an 1-hierarchical partition of the region A[i---j — 1,k---£ — 1] with
metric value at most 6. We employ the Equation (I) to compute E*(i - - - j, k- - - £),
with some changes in the set of values taken by z and y in Equation (I). If
Jj—i > L, then z takes only the values of L-rows in Equation (I) between i and
j. otherwise, x takes all values between ¢ and j; same holds for y values too. As
before, the computation is done using the dynamic programming technique to
calculate E* = E*(1---n,1---n). By choosing L = n*/® (optimized based on
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the running time calculations), the total running time of this algorithm turns
out to be O(N!ts). ]

Lemma 2. Consider any hierarchical partition of array A with B tiles and met-
ric value at most §, for an superadditive metric. There exists a 1-hierarchical
partition using at most 9B tiles with metric value at most § for any positive
integer L.

The proof of this lemma is omitted for space constraints. The two preceding
lemmas together let us conclude that,

Theorem 2. For cumulative function MAX, there exists an O(N%tq) time
algorithm for solving the hierarchical partitioning problem that returns a hier-
archical partition with at most 9B* tiles and metric value at most §; here, B*
is the minimum number of tiles in a hierarchical partition with metric value at
most § and the metric is superadditive. For the cumulative function SUM, the
same holds with running time O(N'-%(B*)%tq); here, B* is the number of tiles
in the optimum solution.

This algorithm is faster than the one in Theorem 1, but produces a parti-
tioning with a slightly larger number of tiles. We can improve the running time
further by increasing the number of tiles in a structured manner as described
below.

Rounding to several grid patterns. We are given a sequence of positive
integers Lg, L1, L, ... Ly such that Ly = n, L, = 1 and L;;; divides L; for
i > 0. We define a k-hierarchical partition as follows. It is a hierarchical partition
in which there are k sets S; of permissible intervals that can be the side lengths
of the tiles. S; comprises of intervals [jL;,¢L;] for some integers j < £. In
general, S; for 1 < i < k, comprises the set of intervals [jL;, £L;] such that for
some h, hL;_; < jL; and (h+ 1)L;—1 > ¢L;. The set S; comprises intervals in
S;, for i = k, as defined above, but additionally, all subintervals thereof. The
k-hierarchical partitioning problem is to find the k-hierarchical partition with
metric value at most § and minimum number of tiles. We can solve this problem
again using dynamic programming, although the solution is somewhat more
involved. The analysis of the running time of this algorithm follows the same
line as in Lemma 1. We choose L;’s appropriately to minimize the running time;
it turns out to be a geometric progression of values. Also, we claim: Consider
any hierarchical partition of array A with B tiles and cumulative metric value
at most &, for any superadditive metric. There exists a k-hierarchical partition
using at most (2k + 1)2B tiles with cumulative metric value at most § for any
positive integer k. The proof is similar to that of Lemma 2. This lets us conclude,

Theorem 3. For cumulative function MAX, there exists an O(N'*¢tg) time al-
gorithm for solving the hierarchical partitioning problem with at most B*O(1/€?)
tiles with metric value at most &; here, B* is the the minimum number of tiles
in a hierarchical partition with metric value at most 8, € is any chosen positive
fraction, and the cumulative metric is superadditive.
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By choosing € appropriately, we can get the running time to be as close to
O(Ntg) as we desire (which is linear for our applications See Section 2.2). This
is achieved at the expense of more (though not a very large number of) tiles.
A different result which may be of interest is the following: we can prove that
there is an O(N(B*)?) time algorithm that approximates the minimum number
of buckets to O((loglogn)?) factor, for any superadditive metric.

The other natural idea we explore for approximate algorithms is pruning.
Pruning also limits the set of tiles that are examined in dynamic program-
ming. However, this is data-dependent since, effectively, we do not examine those
tiles for which the heft is beyond certain prune condition. There is no efficient
pruning strategy without rounding, since there are many large tiles that can-
not be pruned. We have different pruning conditions for MAX and SUM. Due
to space constraints, we omit the description of these conditions which can be
found in [29]. Two examples of the results we obtain for MAX metrics are: an
O(N125(B*)?) time algorithm for factor 9 approximation, and O(N(B*)?) time
algorithm for factor 25 approximation. Further results for MAX, SUM and other
superadditive metrics can be found in [29].

5 Arbitrary Partitionings

5.1 NP-Hardness Results

In this subsection, we prove NP-hardness results for several metrics that show
that minimizing the partitioning with p tiles that minimizes the heft is NP-hard.
In fact, the proof also implies limits on the approximability of the problem for
some cases.

For the special case of the MAX-SUM-ID metric, it was shown in [18] that
the minimum heft cannot be approximated to within a factor of 1.25. We es-
tablish similar results for a a different set of metrics that includes SUM-SUM-
SQR_DIFF, MAX-MAX-AVG_DIFF, and MAX-MAX-GEO_DIFF. As in [1§]
and the earlier work in [9], the proof is based on a reduction from the Planar
3SAT problem (shown to be NP-complete in [21]), though a number of changes
are needed to adapt the argument to our types of metrics. Similar results can
also be shown for several other metrics, but we restrict ourselves to the most
important ones (proofs are omitted here).

Theorem 4. Given a data distribution A and an upper bound on p, it is NP-
hard

— to find the minimum heft of any rectangular partitioning with p tiles under
the SUM-SUM-SQR_DIFF metric, and

— to approximate the minimum heft of any rectangular partitioning with p tiles
under the MAX-MAX-GEO_DIFF metric to any factor less than 2, and

— to approximate the minimum heft of any rectangular partitioning with p tiles
under the MAX-MAX-AVG_DIFF metric to any factor less than 3/2.
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5.2 Approximate Algorithms

In view of the hardness results in Section 5.1, we can not anticipate efficient,
that is, polynomial time algorithms for exactly solving the partitioning problems
with arbitrary partitions for many natural metrics. In this section, we focus on
developing efficient approximate algorithms instead. All our approximations are
based on the following observation which was presented in [18] for a special
metric.

Lemma 3. Consider any arbitrary partitioning of a two dimensional array A
with superadditive cumulative metric at most 6 and B tiles. There exists a hier-
archical partition of A with cumulative metric at most 0 and at most 4B tiles.

Proof. It is shown in [8] that any arbitrary rectangular partition can be con-
verted into a hierarchical one by splitting each tile into at most 4 disjoint tiles.
If we apply their procedure to the given arbitrary partition, the resulting hi-
erarchical partition has at most 4B tiles; furthermore, the metric value of this
hierarchical partition is at most by the superadditivity of the metric. O
Using this observation with the results in Section 4, we get the following.
(Similar results can be obtained for the SUM cumulative function as well.)

Theorem 5. For cumulative function MAX, say B* is the optimal solution to
the arbitrary partitioning problem with metric value at most 6. There is an al-
gorithm that finds a partition with metric value at most 6 in

1. O(N?5 + N2T) time; the solution has at most 4B* tiles.
2. O(NYTT) time; the solution has at most 4B*O(1/€?) tiles.

Again, by setting e appropriately, we can obtain an algorithm with near linear
running time.

Note. Using the ideas in [18], an O(N€) time algorithm can be obtained that
approximates the arbitrary partition using at most twice as many buckets as the
optimum; however, the ¢ is rather large (at least 5), and the resulting algorithm
is impractical for all but tiny values of V.

6 pXxp Partitioning Schemes

In this section, we consider the p x p-partitioning problem defined earlier. Thus,
we are given a two-dimensional distribution A, a metric F and a value §, and
we are interested in finding a minimum p, and a p X p partitioning H, such
that E(H) < §. Here, a p X p partitioning is determined by a set of horizontal
dividers (rows) hg = 0 < hy < ... < h, = n and a set of vertical dividers
(columns) vg = 0 < wv; < ... < v, =mn, and tile r; ; of the partition consists of
all entries A[k,[] such that h;_1 < k < h; and v;_1 <1 < v;.

We describe algorithms that run in linear or nearly linear time and that
compute solutions that are guaranteed to be within a small constant factor of
optimal. The algorithms provide an interesting application of the framework for



13

approximating Set Cover for set systems with bounded Vapnik-Chervonenkis
(VC) dimension described by Brénnimann and Goodrich [4] (see also the discus-
sion in Section 6.3.)

6.1 NP-Hardness Results

For the special case of the MAX-SUM-ID metric, Charikar, Chekuri, Feder, and
Motwani [6] have shown that it is NP-hard to approximate the minimum heft
of any p X p partitioning to within a factor of less than 2. This result can be
extended to several other interesting metrics, including SUM-SUM-SQR_DIFF,
MAX-MAX-AVG_DIFF, and MAX-MAX-GEO_DIFF. We point out that all the
results are obtained by modifications of the hardness proof in [6], which uses a
reduction from the k-Balanced Bipartite Vertex Cover (k-BBVC) problem. The
results are summarized in the following theorem, the proof of which is omitted
for space constraints.

Theorem 6. Given a data distribution A and an upper bound on p, it is NP-
hard

— to approximate the minimum heft of any p X p partitioning under the MAX-
MAX-AVG_DIFF and MAX-MAX-GEO_DIFF metrics to any factor less
than 2, and

— to find the minimum heft of any p X p partitioning under the SUM-SUM-
SQR_DIFF metric.

The proof of the first claim follows from some fairly simple modifications
of the proof in [6], while the second claim requires an additional accounting
argument. Of course, the result also implies the NP-hardness of the problem of
minimizing p given an upper bound on the heft, though we do not have any
inapproximability result for that case.

6.2 Preliminaries

We denote by X the set of n rows and n columns of the n x n distribution A.
As before, we assume N = n?. For each tile r; ; of a p x p partitioning H, we
define a corresponding subset R; ;j of X consisting of all rows and columns that
intersect r; ;, except for the last intersecting row and column. We also use a
weight function w, to be defined later, that assigns a real-valued weight w(z) to
each z € X, and define w(Y) =, .y w(y) for any subset ¥ of X.

Definition 1. Given a weight function w, we say that a p X p partitioning is
a-good if every tile r; ; of H satisfies w(R; ;) < a-w(X).

We remark that our a-good partitionings correspond to the e-nets used in
[4] and originally introduced in [12], which have found many applications in
computational geometry.
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6.3 Upper Bounds for MAX Metrics

We now present, approximation results for the p x p-partitioning problem where
the cumulative metric is the MAX metric, i.e., the heft of a partition is the largest
heft of any of the tiles. We also require that the heft function is monotonic, i.e.,
the heft of a tile does not decrease if we grow its size, which is true for most
interesting cases?.

The Algorithm Suppose that we are given a maximum value ¢ for the heft of
the solution, and assume that there exists a pg X pg partitioning Hy with heft at
most § (the value of py will be guessed using binary search). We will show that
the following algorithm computes a p X p partitioning with heft at most § and
p < (2+¢€) - pg, for any chosen € > 0.

Algorithm MAX-pzp.

(1) Set the weights of all elements of X to 1.

(2) Repeat the following three steps:
(a) Compute an a-good partitioning H, for a = m.

(b) Find a tile r; ; in H such that w(R; ;) > J. If none exists, terminate and
return H as solution.

(c) Multiply the weights of all elements of X that are contained in R, ; by
B=(1+¢€/2).

Analysis of the Algorithm. We now analyze the performance of the algorithm
in three steps: (1) We show how Step (2a) can be implemented, and bound the
size of the resulting a-good partitioning, (2) we bound the number of iterations
in Step (2), and (3) we analyze the running time of each iteration. Theorem 7
then gives the main result of this subsection.

Lemma 4. There exists an a-good p X p partitioning with p = 1/«a. It can be
computed in time O(n).

Proof: Simply set 1/a — 1 horizontal dividers one after the other, starting at
the top, and repeatedly choosing the next divider h; as the first element where
the sum of the weights of all rows encountered after h;_; surpasses a - w(Xp),
where X}, is the set of all rows. Choose the vertical dividers v; in an analogous
fashion. O

Lemma 5. The loop in Step (2) of MAX-pxp terminates after O(plogn) iter-
ations.

Proof: The proof is similar to that of Lemma 3.4 of [4], which itself follows the
arguments in [7,22, 34].
Note that the weight w(X) is initially 2n, and that it increases by at most

a factor of (1 + m) in each iteration, since in each iteration we multiply

2 An exception is the MAX-MAX-AVG_DIFF metric.
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the weights of exactly one of the sets R;; by a factor of (1 + €/2), and this
set R;; has a total weight of at most m -w(X) due to the definition of

a-goodness. Thus, after k iterations, we can upperbound w(X) by

2 (1 + my < 2n-exp <ﬁ) = exp (% + ln(2n)>

where exp() denotes the exponential function with basis e. We now consider the
weight w(Hy) of the po x pg partitioning Hy of heft at most § that we assume
to exist.® Note that any tile r; ; that is selected in Step (2b) has a heft larger
than ¢, and hence Hy must cut r; j, due to the monotonicity of the heft function.
This implies that at least one element of Hy is also contained in R; ; and has its
weight increased by a factor of (1 + €/2). Thus, we have

w(Ho) = Y (1+¢/2)%

z;€EHo

with Y z; >= k, where z; denotes the number of times the weight of the corre-
sponding element z; € Hy has been multiplied by (1+¢/2). Using the convexity
of the exponential function with basis (1 + €/2), we can lower-bound this as

In(1+¢/2) -k

w(Ho) > 2po - (1 +€/2)*7) = exp <
2po

+ ln(2p0)> .

Since Hy is a subset of X, we must have w(Hp) < w(X), which implies that

In(1+¢€/2) -k ek

FIn(2p) < ———5 L in(2n),
o0 n( po)_21(2+€)_p0 n(2n)

which, using the inequality In(1 + €¢/2) > 5 for 0 < e < 1, can be shown to
imply that
In(n/po)

In(l1+¢/2) - 246-5 '

k<po-

ad

Lemma 6. Each iteration in Step (2) runs in time O(n + p* - tg), where tg is
the time needed to compute the heft of a tile.

Proof: Steps (2a) and (2c) clearly run in time O(n). In Step (2b), we have to
compute the heft of at most p? tiles to find a tile with heft more than 6. O

Theorem 7. For any d and any € > 0, a p X p partitioning H with heft at most
d and p < (2 + €)po can be computed in time O((n + p* - tg) - plogn), where pg
is the minimum number such that there exists a pg X pg partitioning with heft at
most 6, and tg is the time needed to compute the heft of any tile.

% The weight of Hy is the sum of the weights of the rows and columns that are hori-
zontal dividers h; or vertical dividers v;, respectively, of Hy.
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Proof: We perform binary search for the value of pq, starting at po = 2. We
run algorithm MAX-pzp for each pg in the search. If the algorithm does not
terminate after the number of iterations stated in Lemma 5, then we know that
there is no pg X pg partitioning with heft at most 4, and we increase py by some
small factor (1 + €¢'). The total running time is dominated by the time used to
run MAX-pxp on the largest po; this implies the stated bound. O

As explained before, in many cases the heft of each tile can be computed in
O(1) time, by performing O(N) steps of preprocessing. In particular, this is true
for the case of the MAX-SUM-ID metric, which is probably the most important
of the metrics covered by Theorem 7, and we get the following corollary. Note
that for the common case of p <« /N, this gives a linear time bound.

Corollary 1. For the MAX-SUM-ID metric, a p X p partitioning H with heft
at most 6 and p < (2+ €)py can be computed in time O(N + p3log N), where pg
is the minimum number such that there exists a pg X pg partitioning with heft at
most 4.

Discussion. We now discuss the relation of our algorithm to the work in [19]
and [4]. A simple reduction of the p X p partitioning problem to the Set Cover
problem was given in [19], resulting in an approximation ratio of O(log N) using
the well known greedy algorithm for Set Cover. This bound can be improved
to O(logp) by using the algorithm for approximating Set Cover for the case of
bounded VC-dimension in [4], and observing that the set system generated by
the reduction in [19] has VC-dimension 4. By additionally using a construction
of an e-net for this set system along the lines of our Lemma 5, one can obtain
an approximation ratio of 16 and a running time of O(N?3/2 . plog N). In order
to get near-linear running time, we describe a modified algorithm that operates
directly on the data distribution without materializing the set system used for
the reduction to Set Cover, which could be of size @(N3/?) in the worst case.
The approximation ratio of (2 + €) is then obtained by tightening the analysis
of [4] in several places.

Approximating the Error. For the important special case of the MAX-SUM-
ID metric, which arises when partitioning data or work evenly among the tiles,
we can also get significantly improved results for the problem of approximating
the minimal heft of any p x p partitioning given an upper bound on p. The best
previous result in [19] achieved a running time of O(/N?) and an approximation
ratio of around 120. We can show the following results.

Theorem 8. Let g be the minimum heft of any pg X po partitioning. Then in
time O(N + p3log N), we can compute

(a) a p x p partitioning with heft 6 < 46y and p < (% + €)po, and
(b) ap x p partitioning with heft 6 < 25y and p < (1 + €)po,

for any chosen e > 0.
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Note that these results come quite close to the lower bound of 2 on the
approximability shown by Charikar, Chekuri, Feder, and Motwani [6]. These
results are based on a fairly simple observation: If we modify Algorithm MAX-
pxp such that in Step (2b) we search for a tile with heft at least 20y (4dg), then
we can conclude that the optimum solution Hy must cut this tile at least 2
(resp., 3) times in order to get a heft of at most dy. This means that Step (2c)
guarantees a larger increase in the weight of Hy. We can then adjust the choice
of the other parameters « and § appropriately to get the result.

Other Extensions. All results in this subsection can also be easily extended
to p X ¢ partitionings with p # ¢, and to non-square input distributions. In
particular, in the case of a p X g partitioning of an n x m data distribution,
the running time becomes O(n + m + pq - tg)(p + ¢)*log(n + m)), while the
approximation ratio remains as before. It is also easy to extend the techniques
to d dimensions, resulting in an approximation ratio of d + € and a running time
of O((n + p? - tg)plog N) for the result in Theorem 7.

Input data in higher dimensions is usually sparse, and thus efficiency crucially
depends on exploiting this sparseness. For the algorithms in this subsection,
the easiest solution would be to implement the computation of the heft of a
tile (represented by the term #g) in a way that exploits sparseness; the details
depend on the particular metric.

6.4 Upper Bounds for SUM Metrics

We now present approximation results for the case where the cumulative metric
is the SUM metric. We again require that the heft function is monotonic. The
algorithm follows the approach from the previous subsection. In contrast to the
MAX case, we are not, aware of any direct reduction of the SUM case to the Set
Cover problem, and thus it is surprising that the same approach applies.

The Algorithm Suppose that we are given a maximum value dq for the heft of
the solution, and assume that there exists a pg X pg partitioning Hy with heft at
most dg. Then the following algorithm computes a p X p partitioning with heft
at most 2dg and p < (4 + €) - po, for any chosen € > 0.

Algorithm SUM-pxp.

(1) Set the weights of all elements of X to 1.
(2) Repeat the following three steps:
(a) Compute an a-good partitioning H, for a = m.

(b) If the heft of the partitioning is at most 24y, terminate and return H as
solution. Otherwise, select a tile r; ; at random such that the probability
of picking a tile is proportional to its heft.

(¢) Multiply the weights of all elements of X that are contained in R; ; by

8= (1+¢€/2).

Sketch of Analysis. The following lemma provides the main insight underlying
the analysis.
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Lemma 7. With probability at most %, the tile chosen in Step (2b) is not cut
by H(].

Proof: Let U be the set of tiles that are not cut by Hg. Then the hefts of the tiles
in U sum up to at most dy, since otherwise the monotonicity of the heft function
would imply that Hy has a heft of more than §y. Since the sum of the hefts of
all the tiles is at least 2dp, and each tile is chosen with probability proportional
to its heft, the probability of choosing a tile from U is at most % O

The lemma directly implies that the weight of Hy is increased in Step (2c)
with probability at least % This results in a slightly weaker lower bound for
w(Hp) as compared to the MAX case in the previous subsection. To deal with
this weaker lower bound, we compute an a-good partitioning with a = m
instead of m. The remainder of the analysis is then along the lines of the
analysis for the MAX case, and we get the following result.

Theorem 9. For any §g and any € > 0, a p X p partitioning H with heft at most
200 and p < (4+ €)po can be computed in expected time O((n + p* - tg) - plogn),
where pg is the minimum number such that there exists a py X po partitioning
with heft at most &y, and tg is the time needed to compute the heft of any tile.

Discussion and Extensions. We point out that the algorithm can be easily
made deterministic by modifying Steps (2b) and (2¢) such that instead of choos-
ing one particular tile at random, we take every tile 7; ; and increase the weight
of the elements in R; ; by a factor that is proportional to the heft of the tile. Also,
the algorithm can be generalized to yield a trade-off between the approximation
of the error and the approximation of the number of cuts.

As before, in many cases tg can be implemented in O(1) steps by performing
appropriate preprocessing. An interesting example is the SUM-SUM-SQR_DIFF
metric, which models the case when we wish to form tiles containing similar
values. Finally, the result can also be extended to p X ¢ partitionings with p # ¢
and to higher dimensions, resulting in the same bounds as for the MAX case.

7 An Example Application of Results

We focus on one database application where partitioning problems arise; see [29]
for the implications of our results in other applications.

Consider a database over relation R with n numerical attributes. This can be
visualized as a multidimensional array A with one attribute along each dimension
in which each array element contains the number of tuples in the database with
the associated attribute values. This is the joint frequency distribution of the
database. Histograms partition this distribution into rectangular regions (buck-
ets) and approximate each region using a small amount of space. Typically, the
frequencies in a bucket are approximated by their average.

Histograms are typically used to estimate the result sizes of relational queries.
The errors in the estimation depend mainly on the bucketization. A theory of
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optimal histograms has been developed [31] in which a number of histograms
have been identified as being optimal for various queries and operators. These
histograms, such as Equidepth, Equiwidth etc can all be considered as special
cases of our partitioning problems, and our results apply to them uniformly.
Here, we focus on an important class of histograms, namely, the V-Optimal his-
togram which is provably the most accurate in several estimation problems [31].

Definition 2. V-Optimal Histogram [14]: For a given number of buckets,
a V-Optimal histogram is the one with the number of buckets bounded by the
specified threshold, but having the least variance, where variance is the sum of
squared differences between the actual and approximate frequencies. Alternately,
for a given total variance, the V -Optimal histogram is one with the least number
of buckets with total variance bounded by the specified threshold.

Note that for joint distributions over two attributes, one version of the prob-
lem of constructing the optimal V-optimal histogram is identical to the par-
titioning problem with arbitrary partitions under the SUM-SUM-SQR_DIFF
metric. By applying our general results to this partitioning problem, we derive
the following results (further details are in [29].):

1. Identifying the optimal V-Optimal histogram with arbitrary buckets is NP-
Hard.

2. The greedy MHIST algorithm presented in the literature [32] can result in
arbitrarily poor histograms in terms of the buckets, as well as the total
variance, whichever is being optimized; we can construct inputs to induce
such worst case behavior. In fact, this applies to many other greedy solutions
we can design for this problem.

3. We can approximate the minimum number of buckets needed to achieve the
threshold variance in the V-Optimal histogram by using results in Section
5.2. The resulting algorithms work in near-linear time and produce small
factor approximations.

8 Conclusions

We have considered the complexity of partitioning problems for different parti-
tions and metrics. These problems are fundamental, and they arise in application
scenarios such as histogram-based selectivity estimation, constructing grid files,
load balancing, and many others. Very little is known about the complexity of
these problems except for some special metrics, and heuristics with no proven
guarantees on the quality of the solution are used.

In this paper, we show that many natural versions of the partitioning prob-
lem are NP-hard and thus it is unlikely they have efficient (polynomial time)
ezact solutions in the worst case. Our main results, however, are positive ones.
We present highly efficient (near-linear time) algorithms that approximate the
solutions to within small constant factors, for different partitions and metrics.
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We applied our general results to solving an important problem arising in
query result size estimation: the identification of V-Optimal histograms in two
dimensions. Existing greedy algorithms do not offer any quality guarantees for
this NP-Hard problem; our approximate solutions to the partitioning problems
imply the first known efficient algorithms for this problem with guarantees. We
are investigating its impact in practice.
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