
On Rectangular Partitionings in TwoDimensions:Algorithms, Complexity, and ApplicationsS. Muthukrishnan1, Viswanath Poosala1, and Torsten Suel?21 Bell Laboratories, 700 Mountain Avenue, Murray Hill, NJ 07974.fmuthu,poosalag@research.bell-labs.com.2 Polytechnic University, Six MetroTech Center, Brooklyn, NY 11201.suel@photon.poly.edu.Abstract. Partitioning a multi-dimensional data set into rectangularpartitions subject to certain constraints is an important problem thatarises in many database applications, including histogram-based selec-tivity estimation, load-balancing, and construction of index structures.While provably optimal and e�cient algorithms exist for partitioningone-dimensional data, the multi-dimensional problem has received lessattention, except for a few special cases. As a result, the heuristic parti-tioning techniques that are used in practice are not well understood, andcome with no guarantees on the quality of the solution. In this paper, wepresent algorithmic and complexity-theoretic results for the fundamentalproblem of partitioning a two-dimensional array into rectangular tiles ofarbitrary size in a way that minimizes the number of tiles required to sat-isfy a given constraint. Our main results are approximation algorithmsfor several partitioning problems that provably approximate the optimalsolutions within small constant factors, and that run in linear or closeto linear time. We also establish the NP-hardness of several partitioningproblems, therefore it is unlikely that there are e�cient, i.e., polynomialtime, algorithms for solving these problems exactly.We also discuss a few applications in which partitioning problems arise.One of the applications is the problem of constructing multi-dimensionalhistograms. Our results, for example, give an e�cient algorithm to con-struct the V-Optimal histograms which are known to be the most ac-curate histograms in several selectivity estimation problems. Our algo-rithms are the �rst to provide guaranteed bounds on the quality of thesolution.1 IntroductionMany problems arising in databases and other areas require partitioning a multi-dimensional data set into rectangular partitions or tiles such that certain math-ematical constraints are satis�ed. Often these constraints take the form of mini-mizing (or maximizing) a metric using a �xed number of partitions or, conversely,? This work was done while the author was at Bell Labs.

2minimizing the number of partitions while not exceeding (or falling below) agiven value of that metric.These problems are quite challenging for most interesting metrics and henceone usually resorts to heuristic approaches. Unfortunately, many of these ap-proaches do not provide any guarantees on the quality of the solution and maythus adversely a�ect the application. In this paper we present algorithmic andcomplexity-theoretic results on the fundamental problem of partitioning two-dimensional arrays into rectangular partitions tiles1 of arbitrary sizes. We de-velop solutions that o�er guarantees on the quality of their solutions and thatrun in small polynomial time (near-linear in most cases). We start out with afew examples.Example 1. Consider the 4� 4 array in Fig. 1(a). A partitioning with 5 tiles isshown in Figure 1(b) such that the maximum sum of the elements that fall withinany one tile is at most 57. There are many di�erent ways to tile the array with 5tiles with di�erent maximum sums. There are also alternative ways to evaluatethe partitioning, other than by considering the maximum sum of the elements.For instance, for each tile, we could sum up the squares of the di�erence betweeneach element in the tile and the average of all the elements in that tile; we couldthen total all the values thus obtained for the tiles. This value is 204:7 as shownin Fig. 1(b). Again di�erent partitions induce di�erent values. 2Example 2. Consider the 4 � 4 array in Fig. 1. A 3 � 3 tiling, namely oneobtained by partitioning rows into 3 intervals and columns into 3 intervals, ispresented in Fig. 1(c). For the partition presented there, the maximum sum ofthe elements that fall within any tile is at most 79. Again di�erent partitionsinduce di�erent values. 2
0 4 10

6 12 3 24

3

0 15 20 30

15 24 20 6

0 4 10 3 0 4 10 3

6 12 3 24 6 12 3 24

0 15 20 30 0 15 20 30

15 24 20 6 15 24 20 6

(a) (b) (c)Fig. 1. Partitioning ExamplesExample 1 arises in data partitioning for load balancing [23] and histogram-based selectivity estimation [31], while Example 2 arises in constructing grid-�les which are well-known index structures [28]. We will list other applicationscenarios further below, but we brie
y describe the histogram context here.1 We use the terms tile and partition interchangeably in the rest of the paper.

3Example Application: (Histograms) Query optimizers require reasonably ac-curate estimates of query result sizes in order to estimate the costs of variousexecution plans. Most commercial database management systems use histogramsto approximate the data in the database in order to perform these estimations.Histograms group attribute values into subsets (buckets) and approximate trueattribute values and their frequencies based on summary statistics maintainedin each bucket [20, 31]. Researchers have proposed the use of multi-dimensionalhistograms for approximating distributions with multiple attributes [27, 32]. Thisapproach involves partitioning the multi-dimensional space of attribute valuesinto rectangular buckets based on various partitioning constraints. This leads topartitioning problems of the sort we consider in this paper. In particular, thewell-known V -optimal histogram in two dimensions, which has been shown tominimize selectivity estimation errors for estimating the result sizes of severalclasses of queries [14, 30], corresponds to the alternative metric, and one of thepartitions in Example 1. 2There are many di�erent types of partitions and many di�erent metrics toevaluate the partitions. A generic optimization problem that arises in severalapplication contexts is as follows.The Partitioning Problem.We are given a two-dimensional array of elements,the type of partition sought, a metric to evaluate the partitions, and a bound �.The problem is to produce a partitioning of the array of the type sought, withthe minimal number of rectangular tiles such that the metric computed on thepartition is at most �. 2The partitioning problem has been extensively studied in many applicationscenarios in the Database and Algorithms Research communities, in variousspecialized forms. However, most known results are either heuristics withoutprovable guarantees, or provably e�cient algorithms for simple, speci�c metricsand tilings. For example, little is known about the complexity of the partitioningproblem with the alternative metric in Example 1 for di�erent types of partitions,but this problem is fundamental in histogram construction.Motivated by this state-of-the-art, we formulate the partitioning problem inits generality and study its di�culty for various types of partitions and metricsof relevance in application scenarios. Our contributions are two-fold.1. We show that the partitioning problem is NP-hard for many natural metricsand partitionings arising in database applications. Thus, e�cient, i.e. poly-nomial time, algorithms exist if and only if NP = P , a central complexityquestion that remains unresolved.The partitioning problem can be naturally de�ned on one-dimensional arraystoo. These problems can be solved e�ciently in small polynomial time [15],but our claim above implies that their natural two-dimensional variants areNP-Hard. Thus, the partitioning problem becomes fundamentally di�erentas we go from one-dimensional to multidimensional arrays.2. Our main technical results are a number of algorithms that complement thenegative results above. We present very e�cient (near-linear time) algo-rithms for approximately solving the partitioning problem in two dimensions

4 for fairly general metrics and di�erent partitionings (including most thatarise in our database applications); the approximation bounds are guaran-teed, and they are small constants.We de�ne the partitioning problem and state our results more formally inSection 2. Here are a few high-level remarks on our results.Remark 1. All of our algorithms extend to multiple dimensions with similar(i.e., near-linear) performance bounds. However, this may sound better than itactually is, because they will take time that is linear in the size of the underlyingd-dimensional array. However, in many applications, this array may be verysparse, and an algorithm that works in time linear in the number of non-zeroentries would be much preferable, while one that works in time linear in the sizeof the array can be prohibitively expensive. Some of our algorithms can likelybe modi�ed to exploit sparseness of the input domain, while for others this ismore di�cult.Remark 2. There are other limitations to our framework of partitioning prob-lems. For example, in some application scenarios, tiles may be allowed to overlap,i.e., the problem may be one of covering the array rather than partitioning it.This arises, for example, when building certain spatial indices such as R-trees.Our results do not directly apply to such covering problems. Also, there are ap-plication scenarios where one may be allowed to permute the rows and columnsof the input array. All our results assume that some canonical ordering (such asthat given by the natural order of numeric attributes in database applications)is �xed.Remark 3. Despite the limitations above, the partitioning problems we studyare very general, and they arise in a number of important application scenarioswithin databases. Besides the problems of histogram-based selectivity estima-tion, grid �le construction, and load balancing mentioned earlier, there are ap-plications in database compression, bulk-loading of hierarchical index structures,and partitioning of spatial data, as well as to problems outside databases suchas domain partitioning in scienti�c computation, support of data partitioningin data-parallel languages, and image and video processing. In this paper, weclarify applications to histogram-based selectivity estimation only; discussionsabout other applications can be found in the full version of this paper. 2Map. The rest of the paper is organized as follows. We formalize the partition-ing problem and relate it to various application contexts in Section 2; we alsostate our results formally there. In Sections 4, 5, and 6, we present hardnessand algorithmic results for di�erent types of partitions with di�erent metrics.In Section 7, we discuss the implications of our results for one applied area indatabases, namely, histogram-based selectivity estimation. Section 8 has con-cluding remarks.

52 Problem Formulation and Overview of Results2.1 The Partitioning Problem De�nitionWe are given an n � n array A containing N = n2 real numbers. A tile is anyrectangular subarray A[i : : : j; k : : : l]. A partitioning of array A is a partitioningof A into tiles; by de�nition of a partition, each element A[i; j] lies within sometile and no two tiles overlap. As mentioned in the previous section, partitioningschemes can be classi�ed based on the type of partition and the metric functionsused within and outside the tiles to evaluate the partition. We de�ne thesecriteria below and present interesting instantiations for each of them.Type of Partitioning: There are many possible types of partitionings of atwo-dimensional array. The ones we consider here are the common ones thatarise in database applications:1. Arbitrary: No restrictions on the arrangement of tiles within A (Figure 2.a).2. Hierarchical: A hierarchical partition is one in which there exists a verticalor horizontal separation of array into two disjoint parts in each of which thepartitioning is again hierarchical (Figure 2.b). A hierarchical partitioning isnaturally represented by a hierarchy tree which is a binary tree in which anode represents a subarray of A and each of its children represent a partitionof that subarray of A into two disjoint parts; the root represents A.3. p�p: Here, the rows and columns of A are partitioned into p disjoint intervalseach; the induced p2 tiles form the p�p partitioning. This can be thought ofas a special case of hierarchical partitioning where the tiling in the subarraysof two sibling nodes of the hierarchy tree are the same along one dimension(Figure 2.c).
a. Arbitrary b. Hierarchical c. pXpFig. 2. TilingsQuality Metrics: Metrics are de�ned on the tiling using the following threefunctions.1. Elementary Function: An elementary function h maps the array elements ofany tile to real numbers. Common functions include (i) ID, i.e., h(A[i]) =A[i], (ii) AVG DIFF, i.e., h(A[i]) = jA[i]�Aj where A is the average of theelements in that tile, (iii) GEO DIFF, i.e., h(A[i]) = jA[i]�A0j where A0 is

6 the geometric median of the elements in the tile, and (iv) SQR DIFF whichis the square of AVG DIFF.2. Heft Function. A heft function g is de�ned for a tile r and an elementary func-tion h of the elements in that tile. The common heft functions are (i) SUM,i.e., PA[i;j]2r h(A[i; j]), (ii) MAX, i.e., maxA[i;j]2r h(A[i; j]), (iii) RATIO,i.e., maxA[i;j]2r h(A[i;j])minA[i;j]2r h(A[i;j]) , etc. SUM and MAX are the common heft functionsin our application scenarios. Notice that the heft is an \intra-tile" function.The value evaluated by the heft function in a tile is called its heft.3. Cumulative Function. A cumulative function f is de�ned for the entire setof tiles, for combining heft function g. The common cumulative functionsare SUM and MAX, representing the total and maximum heft value of tilesin the given tiling, respectively. Note that the cumulative function is an\inter-tile" function.Any partition thus has a metric that is a combination of these three functionsf � g�h. For example, the SUM-MAX-ID metric of a partition is the sum overthe tiles of the maximum element in each tile. In Section 1, Example 1 hasthe MAX-SUM-ID metric with the alternative being the SUM-SUM-SQR DIFFmetric, and Example 2 has the MAX-SUM-ID metric. Some combination of thefunctions are trivial { for example, all partitions are identical under the MAX-MAX-ID and SUM-SUM-ID metrics { but most of the metrics are nontrivial.The value the metric evaluates to on a given array and a partition, is called itsmetric value, or where there is no ambiguity, the heft of the partition.The Optimization Problem: The optimization problem we consider is asfollows: For the given type of partition, metric, and bound �, determine the par-titioning of that type that has the minimum number of tiles with the metric valueof the partition being at most �. A related problem is one in which we are givena bound p on the number of tiles and the goal is to determine a tiling using atmost p tiles with minimum metric value. As far as the NP-Hardness is concerned,these two optimization problems are identical, that is, if one is NP-hard, so isthe other. However, this similarity does not extend to e�cient approximabilityof these problems. In this paper, we only consider the �rst version.Several partitioning problems arising in real applications mentioned in theIntroduction �t naturally in our framework. We present one such application(histograms) in full detail in Section 7 and illustrate how our problem de�nitionand results solve an important problem arising in that application.2.2 Some PreliminariesWe state some properties of the metrics and hefts that will be used latter. Wesay that a heft function g is monotonic if g(r) � g(R) for two tiles r and R,r 2 R. For example, SUM-ID is monotonic provided the array elements are non-negative. Most of the heft functions that arise in our applications are monotonic.We say that a metric f � g is superadditive if the following holds. f(g(rSR)) �

7f(g(r); g(R)), where r and R are any two disjoint tiles. For example, SUM-SUM-SQR DIFF is superadditive (this requires a nontrivial proof). Some of our resultshold only for superadditive metrics.Our algorithms often identify tiles and are required to compute their hefts.Say tQ represents the time to determine the heft of any tile. The straightforwardway would be to consider each element of the tile and this takes tQ = O(N)time in the worst case. However, there is a more e�cient method in some cases.Consider the MAX heft function: after O(N) time preprocessing, we can computethe heft of any tile in tQ = O(1) time. We omit the details of this procedure here.For SUM heft functions, the same holds for some elementary functions such asthe SQR DIFF and ID, and not for others, such as the AVG DIFF, GEO DIFFetc. There are still other examples of heft functions for which tQ is O(logN).In what follows, we state all our bounds in terms of tQ. For applications arisingin databases, tQ is often O(1) since SUM-SQR DIFF is the most common heftfunction (such as in V -optimal histograms).3 Related WorkPartitioning problems have been studied extensively in various application areasincluding databases, parallel computing (e.g., load balancing), computationalgeometry (e.g., clustering), video compression (e.g., block matching) etc. Somerelated papers from a variety of application areas include [17, 23, 25, 24, 1, 3, 10].Here we review a selection of related work most relevant to us.Hardness Results. Hardness results exist only for a simple metric function,namely, MAX-SUM-ID { [18] proved it to be NP-hard for arbitrary partitions,and [11, 6] proved it to be NP-hard for p� p partition. Our NP-hardness resultsare inspired by the abovementioned results. However, the basic gadgets in ourreductions are di�erent from the ones in [18, 6] and we derive di�erent non-approximability bounds for various metrics.Algorithmic Results. Dynamic programming has been used to �nd optimalresults for hierarchical partitions in several contexts [2, 26, 18]. However, oursparse hierarchy approach with provable guarantee appears to be new. For p� ppartition MAX-SUM-ID, the best known approximation is by O(logn) factor[19]. We derived substantially improved bounds for this problem. Many heuristicalgorithms have been proposed for this problem [23].Applications: We focus on prior work in one database application, namely,histograms. Histograms have been studied quite extensively in the literature inthe context of approximating single attributes [20, 33, 13, 14, 30, 31, 15]. On theother hand, these has been very little work on multi-dimensional histograms.Muralikrishna et al proposed a heuristic hierarchical algorithm for constructingmulti-dimensional equidepth histograms [27]. Poosala et al extended the de�ni-tion of multi-dimensional histograms to other bucketization techniques, such asV-Optimal, MaxDi� etc [32] and provided a more sophisticated and general hi-

8erarchical partitioning algorithm calledMHIST. But, neither of these algorithmsprovide any guarantee on the quality of the partitioning.4 Hierarchical TilingsIn this section, we consider the hierarchical partitioning problems. Recall thatthe problem is to produce a hierarchical partition of an n � n array A withmetric value at most � using the minimum number of tiles. We set N = n2throughout. Let tQ be an upper bound on the time taken to calculate the heftvalue of any tile in A; all our bounds below will be in terms of tQ. First we focuson exact algorithms, and then approximate ones. We state our results for onlySUM and MAX metrics, but they hold for any superadditive metric with timebound identical to that for the SUM metric.4.1 Exact AlgorithmsTheorem 1. For cumulative function MAX, there exists an O(N2:5 + N2tQ)time algorithm to solve the hierarchical partitioning problem exactly. For cumu-lative function SUM, there exists an O(N2:5(B�)2tQ) time algorithm to solve thehierarchical partitioning problem exactly; here, B� is the number of tiles in theoptimum solution.Proof. The proof uses dynamic programming; it is simple, and it has appeared,for example, in [18], for a special case of the heft function. We include it heresince some of our algorithms will be derived by suitably modifying this solu-tion. We consider the cumulative function MAX only; the SUM case is a simplemodi�cation. De�ne E�(i � � � j; k � � � `) to be smallest number of tiles needed topartition the region A[i � � � j; k � � � `] with metric value at most �. If the heft ofthe tile A[i : : : j; k : : : `] is at most �, we have E�(i � � � j; k � � � `) = 1. Else, we haveEquation (I) below:E�(i � � � j; k � � � `) = mini�x<j; k�y<`8>><>>:E�(i � � �x; k � � � `)+E�(x+ 1 � � � j; k � � � `);E�(i � � � j; k � � � y)+E�(i � � � j; y + 1 � � � `) 9>>=>>;We need to calculate E� = E�(1 � � �n; 1 � � �n). We use the dynamic programmingtechnique and calculate E�(i � � � j; k : : : `) for all 1 � i < j � n and 1 � k < ` �n. In all, there are O(n4) possible sub-rectangles and for each we calculate O(n)values and the heft of a single tile. Thus we take O(n5 + n4tQ) time which isO(N2:5 +N2tQ) time. 24.2 Approximate AlgorithmsIn this section, we present approximation algorithms for computing hierarchicalpartitions for the SUM and MAX metrics (as before, they can be modi�ed to

9work for any superadditive metric); the algorithms in this section are faster thanthe exact ones in Section 4.1. Our algorithms rely on two natural, well-knownideas, namely, rounding, and pruning, which we informally describe below. Thesestrategies \sparsify" the dynamic programming, that is, reduce the number ofsubproblems to be considered; this results in a speedier dynamic programmingsolution. They are easy to implement, and the technical crux is their analyses.Rounding is a structured way to limit ourselves to only a subset of all possi-ble tiles. This is achieved by considering only tiles with endpoints at multiplesof a small number of parameters. However, there are many ways to performrounding: round only along one of the dimensions, or possibly both; round soboth the endpoints of tiles are multiples of the parameters, or just one of them;etc. Rounding can also be done hierarchically with choice of parameter valuesand rounding techniques at di�erent levels. A general tradeo� for solving thepartitioning problems in terms of all these combinations is di�cult to state, butin our solutions, we employ interesting combinations and obtain our bounds.Rounding to one grid pattern. We �x a parameter L and assume n is amultiple of L { the following description can be easily modi�ed to handle othervalues of n. We de�ne an L-grid as the subset of columns and rows numbered1; L + 1; 2L + 1; � � �; thus there are n=L grid columns and rows in an L-grid.We refer to each such row (column) as the L-row (L-column respectively). Wede�ne the 1-hierarchical partition to be a hierarchical partition in which the tilesadditionally satisfy the following two conditions. (1) At least one side has bothits endpoints on L-rows on L-columns, that is, the side is of length a multiple ofL, and (2) Both its sides have their endpoints between two consecutive L-rowsor two consecutive L-columns; that is, they are each of length at most L. The1-hierarchical partitioning problem is to produce a 1-hierarchical partition ofan n � n array A with metric value at most � using the minimum number oftiles. In what follows we will argue the following two points: (1) the optimal1-hierarchical partition can be determined e�ciently, and (2) the optimal 1-hierarchical partition approximates the hierarchical partition nicely.Lemma 1. For cumulative function MAX, there exists an O(N1:6tQ) time al-gorithm to solve the 1-hierarchical partitioning problem exactly. For cumulativefunction SUM, there exists an O(N1:6(B�)2tQ) time algorithm to solve the 1-hierarchical partitioning problem exactly; here, B� is the number of tiles in theoptimum solution.Proof. We will only show the proof for the MAX function; the proof for theSUM function is similar. De�ne E�(i � � � j � 1; k � � � `� 1) to be smallest numberof tiles in an 1-hierarchical partition of the region A[i � � � j � 1; k � � � ` � 1] withmetric value at most �. We employ the Equation (I) to compute E�(i � � � j; k � � � `),with some changes in the set of values taken by x and y in Equation (I). Ifj � i > L, then x takes only the values of L-rows in Equation (I) between i andj. otherwise, x takes all values between i and j; same holds for y values too. Asbefore, the computation is done using the dynamic programming technique tocalculate E� = E�(1 � � �n; 1 � � �n). By choosing L = n2=5 (optimized based on

10the running time calculations), the total running time of this algorithm turnsout to be O(N1:6tQ). 2Lemma 2. Consider any hierarchical partition of array A with B tiles and met-ric value at most �, for an superadditive metric. There exists a 1-hierarchicalpartition using at most 9B tiles with metric value at most � for any positiveinteger L.The proof of this lemma is omitted for space constraints. The two precedinglemmas together let us conclude that,Theorem 2. For cumulative function MAX, there exists an O(N1:6tQ) timealgorithm for solving the hierarchical partitioning problem that returns a hier-archical partition with at most 9B� tiles and metric value at most �; here, B�is the minimum number of tiles in a hierarchical partition with metric value atmost � and the metric is superadditive. For the cumulative function SUM, thesame holds with running time O(N1:6(B�)2tQ); here, B� is the number of tilesin the optimum solution.This algorithm is faster than the one in Theorem 1, but produces a parti-tioning with a slightly larger number of tiles. We can improve the running timefurther by increasing the number of tiles in a structured manner as describedbelow.Rounding to several grid patterns. We are given a sequence of positiveintegers L0; L1; L2; : : : Lk such that L0 = n, Lk = 1 and Li+1 divides Li fori > 0. We de�ne a k-hierarchical partition as follows. It is a hierarchical partitionin which there are k sets Si of permissible intervals that can be the side lengthsof the tiles. S1 comprises of intervals [jL1; `L1] for some integers j < `. Ingeneral, Si for 1 � i < k, comprises the set of intervals [jLi; `Li] such that forsome h, hLi�1 � jLi and (h+ 1)Li�1 � `Li. The set Sk comprises intervals inSi, for i = k, as de�ned above, but additionally, all subintervals thereof. Thek-hierarchical partitioning problem is to �nd the k-hierarchical partition withmetric value at most � and minimum number of tiles. We can solve this problemagain using dynamic programming, although the solution is somewhat moreinvolved. The analysis of the running time of this algorithm follows the sameline as in Lemma 1. We choose Li's appropriately to minimize the running time;it turns out to be a geometric progression of values. Also, we claim: Considerany hierarchical partition of array A with B tiles and cumulative metric valueat most �, for any superadditive metric. There exists a k-hierarchical partitionusing at most (2k + 1)2B tiles with cumulative metric value at most � for anypositive integer k. The proof is similar to that of Lemma 2. This lets us conclude,Theorem 3. For cumulative function MAX, there exists an O(N1+�tQ) time al-gorithm for solving the hierarchical partitioning problem with at most B�O(1=�2)tiles with metric value at most �; here, B� is the the minimum number of tilesin a hierarchical partition with metric value at most �, � is any chosen positivefraction, and the cumulative metric is superadditive.

11By choosing � appropriately, we can get the running time to be as close toO(NtQ) as we desire (which is linear for our applications { See Section 2.2). Thisis achieved at the expense of more (though not a very large number of) tiles.A di�erent result which may be of interest is the following: we can prove thatthere is an O(N(B�)2) time algorithm that approximates the minimum numberof buckets to O((log logn)2) factor, for any superadditive metric.The other natural idea we explore for approximate algorithms is pruning.Pruning also limits the set of tiles that are examined in dynamic program-ming. However, this is data-dependent since, e�ectively, we do not examine thosetiles for which the heft is beyond certain prune condition. There is no e�cientpruning strategy without rounding, since there are many large tiles that can-not be pruned. We have di�erent pruning conditions for MAX and SUM. Dueto space constraints, we omit the description of these conditions which can befound in [29]. Two examples of the results we obtain for MAX metrics are: anO(N1:25(B�)3) time algorithm for factor 9 approximation, and O(N(B�)3) timealgorithm for factor 25 approximation. Further results for MAX, SUM and othersuperadditive metrics can be found in [29].5 Arbitrary Partitionings5.1 NP-Hardness ResultsIn this subsection, we prove NP-hardness results for several metrics that showthat minimizing the partitioning with p tiles that minimizes the heft is NP-hard.In fact, the proof also implies limits on the approximability of the problem forsome cases.For the special case of the MAX-SUM-ID metric, it was shown in [18] thatthe minimum heft cannot be approximated to within a factor of 1:25. We es-tablish similar results for a a di�erent set of metrics that includes SUM-SUM-SQR DIFF, MAX-MAX-AVG DIFF, and MAX-MAX-GEO DIFF. As in [18]and the earlier work in [9], the proof is based on a reduction from the Planar3SAT problem (shown to be NP-complete in [21]), though a number of changesare needed to adapt the argument to our types of metrics. Similar results canalso be shown for several other metrics, but we restrict ourselves to the mostimportant ones (proofs are omitted here).Theorem 4. Given a data distribution A and an upper bound on p, it is NP-hard{ to �nd the minimum heft of any rectangular partitioning with p tiles underthe SUM-SUM-SQR DIFF metric, and{ to approximate the minimum heft of any rectangular partitioning with p tilesunder the MAX-MAX-GEO DIFF metric to any factor less than 2, and{ to approximate the minimum heft of any rectangular partitioning with p tilesunder the MAX-MAX-AVG DIFF metric to any factor less than 3=2.

125.2 Approximate AlgorithmsIn view of the hardness results in Section 5.1, we can not anticipate e�cient,that is, polynomial time algorithms for exactly solving the partitioning problemswith arbitrary partitions for many natural metrics. In this section, we focus ondeveloping e�cient approximate algorithms instead. All our approximations arebased on the following observation which was presented in [18] for a specialmetric.Lemma 3. Consider any arbitrary partitioning of a two dimensional array Awith superadditive cumulative metric at most � and B tiles. There exists a hier-archical partition of A with cumulative metric at most � and at most 4B tiles.Proof. It is shown in [8] that any arbitrary rectangular partition can be con-verted into a hierarchical one by splitting each tile into at most 4 disjoint tiles.If we apply their procedure to the given arbitrary partition, the resulting hi-erarchical partition has at most 4B tiles; furthermore, the metric value of thishierarchical partition is at most � by the superadditivity of the metric. 2Using this observation with the results in Section 4, we get the following.(Similar results can be obtained for the SUM cumulative function as well.)Theorem 5. For cumulative function MAX, say B� is the optimal solution tothe arbitrary partitioning problem with metric value at most �. There is an al-gorithm that �nds a partition with metric value at most � in1. O(N2:5 +N2T) time; the solution has at most 4B� tiles.2. O(N1+�T) time; the solution has at most 4B�O(1=�2) tiles.Again, by setting � appropriately, we can obtain an algorithm with near linearrunning time.Note. Using the ideas in [18], an O(N c) time algorithm can be obtained thatapproximates the arbitrary partition using at most twice as many buckets as theoptimum; however, the c is rather large (at least 5), and the resulting algorithmis impractical for all but tiny values of N .6 p�p Partitioning SchemesIn this section, we consider the p� p-partitioning problem de�ned earlier. Thus,we are given a two-dimensional distribution A, a metric E and a value �, andwe are interested in �nding a minimum p, and a p � p partitioning H , suchthat E(H) � �. Here, a p � p partitioning is determined by a set of horizontaldividers (rows) h0 = 0 � h1 � : : : � hp = n and a set of vertical dividers(columns) v0 = 0 � v1 � : : : � vp = n, and tile ri;j of the partition consists ofall entries A[k; l] such that hi�1 < k � hi and vj�1 < l � vj .We describe algorithms that run in linear or nearly linear time and thatcompute solutions that are guaranteed to be within a small constant factor ofoptimal. The algorithms provide an interesting application of the framework for

13approximating Set Cover for set systems with bounded Vapnik-Chervonenkis(VC) dimension described by Br�onnimann and Goodrich [4] (see also the discus-sion in Section 6.3.)6.1 NP-Hardness ResultsFor the special case of the MAX-SUM-ID metric, Charikar, Chekuri, Feder, andMotwani [6] have shown that it is NP-hard to approximate the minimum heftof any p � p partitioning to within a factor of less than 2. This result can beextended to several other interesting metrics, including SUM-SUM-SQR DIFF,MAX-MAX-AVG DIFF, and MAX-MAX-GEO DIFF. We point out that all theresults are obtained by modi�cations of the hardness proof in [6], which uses areduction from the k-Balanced Bipartite Vertex Cover (k-BBVC) problem. Theresults are summarized in the following theorem, the proof of which is omittedfor space constraints.Theorem 6. Given a data distribution A and an upper bound on p, it is NP-hard{ to approximate the minimum heft of any p� p partitioning under the MAX-MAX-AVG DIFF and MAX-MAX-GEO DIFF metrics to any factor lessthan 2, and{ to �nd the minimum heft of any p � p partitioning under the SUM-SUM-SQR DIFF metric.The proof of the �rst claim follows from some fairly simple modi�cationsof the proof in [6], while the second claim requires an additional accountingargument. Of course, the result also implies the NP-hardness of the problem ofminimizing p given an upper bound on the heft, though we do not have anyinapproximability result for that case.6.2 PreliminariesWe denote by X the set of n rows and n columns of the n � n distribution A.As before, we assume N = n2. For each tile ri;j of a p � p partitioning H , wede�ne a corresponding subset Ri;j of X consisting of all rows and columns thatintersect ri;j , except for the last intersecting row and column. We also use aweight function w, to be de�ned later, that assigns a real-valued weight w(x) toeach x 2 X , and de�ne w(Y) =Py2Y w(y) for any subset Y of X .De�nition 1. Given a weight function w, we say that a p � p partitioning is�-good if every tile ri;j of H satis�es w(Ri;j) � � � w(X).We remark that our �-good partitionings correspond to the �-nets used in[4] and originally introduced in [12], which have found many applications incomputational geometry.

146.3 Upper Bounds for MAX MetricsWe now present approximation results for the p� p-partitioning problem wherethe cumulative metric is the MAX metric, i.e., the heft of a partition is the largestheft of any of the tiles. We also require that the heft function is monotonic, i.e.,the heft of a tile does not decrease if we grow its size, which is true for mostinteresting cases2.The Algorithm Suppose that we are given a maximum value � for the heft ofthe solution, and assume that there exists a p0� p0 partitioning H0 with heft atmost � (the value of p0 will be guessed using binary search). We will show thatthe following algorithm computes a p � p partitioning with heft at most � andp � (2 + �) � p0, for any chosen � > 0.Algorithm MAX-pxp.(1) Set the weights of all elements of X to 1.(2) Repeat the following three steps:(a) Compute an �-good partitioning H , for � = 1(2+�)p0 .(b) Find a tile ri;j in H such that w(Ri;j) > �. If none exists, terminate andreturn H as solution.(c) Multiply the weights of all elements of X that are contained in Ri;j by� = (1 + �=2).Analysis of the Algorithm.We now analyze the performance of the algorithmin three steps: (1) We show how Step (2a) can be implemented, and bound thesize of the resulting �-good partitioning, (2) we bound the number of iterationsin Step (2), and (3) we analyze the running time of each iteration. Theorem 7then gives the main result of this subsection.Lemma 4. There exists an �-good p � p partitioning with p = 1=�. It can becomputed in time O(n).Proof: Simply set 1=� � 1 horizontal dividers one after the other, starting atthe top, and repeatedly choosing the next divider hi as the �rst element wherethe sum of the weights of all rows encountered after hi�1 surpasses � � w(Xh),where Xh is the set of all rows. Choose the vertical dividers vi in an analogousfashion. utLemma 5. The loop in Step (2) of MAX-pxp terminates after O(p logn) iter-ations.Proof: The proof is similar to that of Lemma 3.4 of [4], which itself follows thearguments in [7, 22, 34].Note that the weight w(X) is initially 2n, and that it increases by at mosta factor of �1 + �2�(2+�)�p0� in each iteration, since in each iteration we multiply2 An exception is the MAX-MAX-AVG DIFF metric.

15the weights of exactly one of the sets Ri;j by a factor of (1 + �=2), and thisset Ri;j has a total weight of at most 1(2+�)�p0 � w(X) due to the de�nition of�-goodness. Thus, after k iterations, we can upperbound w(X) by2n�1 + �2 � (2 + �) � p0�k � 2n�exp� � � k2 � (2 + �) � p0� = exp � _k2 � (2 + �)�0 + ln(2n)!where exp() denotes the exponential function with basis e. We now consider theweight w(H0) of the p0 � p0 partitioning H0 of heft at most � that we assumeto exist.3 Note that any tile ri;j that is selected in Step (2b) has a heft largerthan �, and hence H0 must cut ri;j , due to the monotonicity of the heft function.This implies that at least one element of H0 is also contained in Ri;j and has itsweight increased by a factor of (1 + �=2). Thus, we havew(H0) = Xxi2H0(1 + �=2)ziwith P zi >= k, where zi denotes the number of times the weight of the corre-sponding element xi 2 H0 has been multiplied by (1+ �=2). Using the convexityof the exponential function with basis (1 + �=2), we can lower-bound this asw(H0) � 2p0 � (1 + �=2)k=(2p0) = exp� ln(1 + �=2) � k2p0 + ln(2p0)� :Since H0 is a subset of X , we must have w(H0) � w(X), which implies thatln(1 + �=2) � k2p0 + ln(2p0) � � � k2 � (2 + �) � p0 + ln(2n);which, using the inequality ln(1 + �=2) � �2+� for 0 < � < 1, can be shown toimply that k � p0 � ln(n=p0)ln(1 + �=2)� �2+� : utLemma 6. Each iteration in Step (2) runs in time O(n+ p2 � tQ), where tQ isthe time needed to compute the heft of a tile.Proof: Steps (2a) and (2c) clearly run in time O(n). In Step (2b), we have tocompute the heft of at most p2 tiles to �nd a tile with heft more than �. utTheorem 7. For any � and any � > 0, a p� p partitioning H with heft at most� and p � (2 + �)p0 can be computed in time O((n+ p2 � tQ) � p logn), where p0is the minimum number such that there exists a p0� p0 partitioning with heft atmost �, and tQ is the time needed to compute the heft of any tile.3 The weight of H0 is the sum of the weights of the rows and columns that are hori-zontal dividers hi or vertical dividers vi, respectively, of H0.

16Proof: We perform binary search for the value of p0, starting at p0 = 2. Werun algorithm MAX-pxp for each p0 in the search. If the algorithm does notterminate after the number of iterations stated in Lemma 5, then we know thatthere is no p0 � p0 partitioning with heft at most �, and we increase p0 by somesmall factor (1 + �0). The total running time is dominated by the time used torun MAX-pxp on the largest p0; this implies the stated bound. utAs explained before, in many cases the heft of each tile can be computed inO(1) time, by performing O(N) steps of preprocessing. In particular, this is truefor the case of the MAX-SUM-ID metric, which is probably the most importantof the metrics covered by Theorem 7, and we get the following corollary. Notethat for the common case of p� pN , this gives a linear time bound.Corollary 1. For the MAX-SUM-ID metric, a p � p partitioning H with heftat most � and p � (2+ �)p0 can be computed in time O(N + p3 logN), where p0is the minimum number such that there exists a p0� p0 partitioning with heft atmost �.Discussion. We now discuss the relation of our algorithm to the work in [19]and [4]. A simple reduction of the p � p partitioning problem to the Set Coverproblem was given in [19], resulting in an approximation ratio of O(logN) usingthe well known greedy algorithm for Set Cover. This bound can be improvedto O(log p) by using the algorithm for approximating Set Cover for the case ofbounded VC-dimension in [4], and observing that the set system generated bythe reduction in [19] has VC-dimension 4. By additionally using a constructionof an �-net for this set system along the lines of our Lemma 5, one can obtainan approximation ratio of 16 and a running time of O(N3=2 � p logN). In orderto get near-linear running time, we describe a modi�ed algorithm that operatesdirectly on the data distribution without materializing the set system used forthe reduction to Set Cover, which could be of size �(N3=2) in the worst case.The approximation ratio of (2 + �) is then obtained by tightening the analysisof [4] in several places.Approximating the Error. For the important special case of the MAX-SUM-ID metric, which arises when partitioning data or work evenly among the tiles,we can also get signi�cantly improved results for the problem of approximatingthe minimal heft of any p� p partitioning given an upper bound on p. The bestprevious result in [19] achieved a running time of O(N2) and an approximationratio of around 120. We can show the following results.Theorem 8. Let �0 be the minimum heft of any p0 � p0 partitioning. Then intime O(N + p3 logN), we can compute(a) a p� p partitioning with heft � � 4�0 and p � (23 + �)p0, and(b) a p� p partitioning with heft � � 2�0 and p � (1 + �)p0,for any chosen � > 0.

17Note that these results come quite close to the lower bound of 2 on theapproximability shown by Charikar, Chekuri, Feder, and Motwani [6]. Theseresults are based on a fairly simple observation: If we modify Algorithm MAX-pxp such that in Step (2b) we search for a tile with heft at least 2�0 (4�0), thenwe can conclude that the optimum solution H0 must cut this tile at least 2(resp., 3) times in order to get a heft of at most �0. This means that Step (2c)guarantees a larger increase in the weight of H0. We can then adjust the choiceof the other parameters � and � appropriately to get the result.Other Extensions. All results in this subsection can also be easily extendedto p � q partitionings with p 6= q, and to non-square input distributions. Inparticular, in the case of a p � q partitioning of an n � m data distribution,the running time becomes O(n + m + pq � tQ)(p + q)2 log(n + m)), while theapproximation ratio remains as before. It is also easy to extend the techniquesto d dimensions, resulting in an approximation ratio of d+ � and a running timeof O((n+ pd � tQ)p logN) for the result in Theorem 7.Input data in higher dimensions is usually sparse, and thus e�ciency cruciallydepends on exploiting this sparseness. For the algorithms in this subsection,the easiest solution would be to implement the computation of the heft of atile (represented by the term tQ) in a way that exploits sparseness; the detailsdepend on the particular metric.6.4 Upper Bounds for SUM MetricsWe now present approximation results for the case where the cumulative metricis the SUM metric. We again require that the heft function is monotonic. Thealgorithm follows the approach from the previous subsection. In contrast to theMAX case, we are not aware of any direct reduction of the SUM case to the SetCover problem, and thus it is surprising that the same approach applies.The Algorithm Suppose that we are given a maximum value �0 for the heft ofthe solution, and assume that there exists a p0� p0 partitioning H0 with heft atmost �0. Then the following algorithm computes a p � p partitioning with heftat most 2�0 and p � (4 + �) � p0, for any chosen � > 0.Algorithm SUM-pxp.(1) Set the weights of all elements of X to 1.(2) Repeat the following three steps:(a) Compute an �-good partitioning H , for � = 1(4+�)p0 .(b) If the heft of the partitioning is at most 2�0, terminate and return H assolution. Otherwise, select a tile ri;j at random such that the probabilityof picking a tile is proportional to its heft.(c) Multiply the weights of all elements of X that are contained in Ri;j by� = (1 + �=2).Sketch of Analysis. The following lemma provides the main insight underlyingthe analysis.

18Lemma 7. With probability at most 12 , the tile chosen in Step (2b) is not cutby H0.Proof: Let U be the set of tiles that are not cut by H0. Then the hefts of the tilesin U sum up to at most �0, since otherwise the monotonicity of the heft functionwould imply that H0 has a heft of more than �0. Since the sum of the hefts ofall the tiles is at least 2�0, and each tile is chosen with probability proportionalto its heft, the probability of choosing a tile from U is at most 12 . utThe lemma directly implies that the weight of H0 is increased in Step (2c)with probability at least 12 . This results in a slightly weaker lower bound forw(H0) as compared to the MAX case in the previous subsection. To deal withthis weaker lower bound, we compute an �-good partitioning with � = 1(4+�)p0instead of 1(2+�)p0 . The remainder of the analysis is then along the lines of theanalysis for the MAX case, and we get the following result.Theorem 9. For any �0 and any � > 0, a p�p partitioning H with heft at most2�0 and p � (4+ �)p0 can be computed in expected time O((n+ p2 � tQ) � p logn),where p0 is the minimum number such that there exists a p0 � p0 partitioningwith heft at most �0, and tQ is the time needed to compute the heft of any tile.Discussion and Extensions. We point out that the algorithm can be easilymade deterministic by modifying Steps (2b) and (2c) such that instead of choos-ing one particular tile at random, we take every tile ri;j and increase the weightof the elements in Ri;j by a factor that is proportional to the heft of the tile. Also,the algorithm can be generalized to yield a trade-o� between the approximationof the error and the approximation of the number of cuts.As before, in many cases tQ can be implemented in O(1) steps by performingappropriate preprocessing. An interesting example is the SUM-SUM-SQR DIFFmetric, which models the case when we wish to form tiles containing similarvalues. Finally, the result can also be extended to p� q partitionings with p 6= qand to higher dimensions, resulting in the same bounds as for the MAX case.7 An Example Application of ResultsWe focus on one database application where partitioning problems arise; see [29]for the implications of our results in other applications.Consider a database over relation R with n numerical attributes. This can bevisualized as a multidimensional arrayA with one attribute along each dimensionin which each array element contains the number of tuples in the database withthe associated attribute values. This is the joint frequency distribution of thedatabase. Histograms partition this distribution into rectangular regions (buck-ets) and approximate each region using a small amount of space. Typically, thefrequencies in a bucket are approximated by their average.Histograms are typically used to estimate the result sizes of relational queries.The errors in the estimation depend mainly on the bucketization. A theory of

19optimal histograms has been developed [31] in which a number of histogramshave been identi�ed as being optimal for various queries and operators. Thesehistograms, such as Equidepth, Equiwidth etc can all be considered as specialcases of our partitioning problems, and our results apply to them uniformly.Here, we focus on an important class of histograms, namely, the V-Optimal his-togram which is provably the most accurate in several estimation problems [31].De�nition 2. V-Optimal Histogram [14]: For a given number of buckets,a V-Optimal histogram is the one with the number of buckets bounded by thespeci�ed threshold, but having the least variance, where variance is the sum ofsquared di�erences between the actual and approximate frequencies. Alternately,for a given total variance, the V -Optimal histogram is one with the least numberof buckets with total variance bounded by the speci�ed threshold.Note that for joint distributions over two attributes, one version of the prob-lem of constructing the optimal V -optimal histogram is identical to the par-titioning problem with arbitrary partitions under the SUM-SUM-SQR DIFFmetric. By applying our general results to this partitioning problem, we derivethe following results (further details are in [29].):1. Identifying the optimal V-Optimal histogram with arbitrary buckets is NP-Hard.2. The greedy MHIST algorithm presented in the literature [32] can result inarbitrarily poor histograms in terms of the buckets, as well as the totalvariance, whichever is being optimized; we can construct inputs to inducesuch worst case behavior. In fact, this applies to many other greedy solutionswe can design for this problem.3. We can approximate the minimum number of buckets needed to achieve thethreshold variance in the V -Optimal histogram by using results in Section5.2. The resulting algorithms work in near-linear time and produce smallfactor approximations.8 ConclusionsWe have considered the complexity of partitioning problems for di�erent parti-tions and metrics. These problems are fundamental, and they arise in applicationscenarios such as histogram-based selectivity estimation, constructing grid �les,load balancing, and many others. Very little is known about the complexity ofthese problems except for some special metrics, and heuristics with no provenguarantees on the quality of the solution are used.In this paper, we show that many natural versions of the partitioning prob-lem are NP-hard and thus it is unlikely they have e�cient (polynomial time)exact solutions in the worst case. Our main results, however, are positive ones.We present highly e�cient (near-linear time) algorithms that approximate thesolutions to within small constant factors, for di�erent partitions and metrics.

20 We applied our general results to solving an important problem arising inquery result size estimation: the identi�cation of V -Optimal histograms in twodimensions. Existing greedy algorithms do not o�er any quality guarantees forthis NP-Hard problem; our approximate solutions to the partitioning problemsimply the �rst known e�cient algorithms for this problem with guarantees. Weare investigating its impact in practice.References1. S. Anily and A. Federgruen. Structured partitioning problems. Operations Re-search, 13, 130{149, 1991.2. S. Arora. Polynomial time approximation schemes for euclidean tsp and othergeometric problems. Proc 37th IEEE Symp. of Foundations of Computer Science(FOCS), pages 2{12, 1996.3. S. Bokhari. Partitioning problems in parallel, pipelined, and distributed computing.IEEE Transactions on Computers, 37, 38{57, 1988.4. Br�onnimann and Goodrich. Almost optimal set covers in �nite VC-dimension. InProceedings of the 10th Annual Symposium on Computational Geometry, 1994.5. B. Carpentieri and J. Storer. A split-merge parallel block matching algorithm6. M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Personal communication,1996.7. K. L. Clarkson. A Las Vegas algorithm for linear programming when the dimensionis small. In Proc. 29th Annual IEEE Symposium on Foundations of ComputerScience, pages 452{456, October 1988.8. F. d'Amore and P. Franciosa. On the optimal binary plane partition for sets ofisothetic rectangles. Information Proc. Letters, 44, 255{259, 1992.9. R. Fowler, M. Paterson, and S. Tanimoto. Optimal packing and covering in theplane are np-complete. Information Proc. Letters, 12, 133{137, 1981.10. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. SolvingProblems on Concurrent Processors, volume 1. Prentice-Hall, Englewood Cli�s,New Jersey, 1988.11. M. Grigni and F. Manne. On the complexity of the generalized block distribution.Proc. of 3rd international workshop on parallel algorithms for irregularly structuredproblems (IRREGULAR '96), Lecture notes in computer science 1117, Springer,319-326, 1996.12. D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete andComputational Geometry, 2:127{151, 1987.13. Y. Ioannidis. Universality of serial histograms. Proc. of the 19th Int. Conf. onVery Large Databases, pages 256{267, December 1993.14. Y. Ioannidis and V. Poosala. Balancing histogram optimality and practicality forquery result size estimation. Proc. of ACM SIGMOD Conf, pages 233{244, May1995.15. H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. Sevcik, and T. Suel.Optimal histograms with quality guarantees. Proc. of the 24rd Int. Conf. on VeryLarge Databases, pages 275{286, August 1998.16. J. Jain and A. Jain. Displacement measurement and its application in interframecoding. IEEE Transactions on communications, 29, 1799{1808, 1981.17. M. Kaddoura, S. Ranka and A. Wang. Array decomposition for nonuniform com-putational environments. Technical Report, Syracuse University, 1995.

2118. S. Khanna, S. Muthukrishnan, and M. Paterson. Approximating rectangle tilingand packing. Proc Symp. on Discrete Algorithms (SODA), pages 384{393, 1998.19. S. Khanna, S. Muthukrishnan, and S. Skiena. E�cient array partitioning. Proc.Intl. Colloq. on Automata, Languages, and Programming (ICALP), pages 616{626,1997.20. R. P. Kooi. The optimization of queries in relational databases. PhD thesis, CaseWestern Reserve University, Sept 1980.21. D. Lichtenstein. Planar formulae and their uses. SIAM J. Computing, 11, 329{343,1982.22. N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. In Proceedings of the 28th Annual Symposium on Foundationsof Computer Science, pages 68{77, October 1987.23. F. Manne. Load Balancing in Parallel Sparse Matrix Computations. Ph.d. thesis,Department of Informatics, University of Bergen, Norway, 1993.24. F. Manne and T. Sorevik. Partitioning an array onto a mesh of processors. Proc.of Workshop on Applied Parallel Computing in Industrial Problems. 1996.25. C. Manning. Introduction to Digital Video Coding and Block Matching Algorithms.http://atlantis.ucc.ie/dvideo/dv.html.26. J. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A sim-ple method for geometric k-mst problem. Proc. ACM-SIAM Symp. on DiscreteAlgorithms (SODA), pages 402{408, 1996.27. M. Muralikrishna and David J Dewitt. Equi-depth histograms for estimating selec-tivity factors for multi-dimensional queries. Proc. of ACM SIGMOD Conf, pages28{36, 1988.28. J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid �le: An adaptable, sym-metric multikey �le structure. ACM Transactions on Database Systems, 9(1):38{71,March 1984.29. S. Muthukrishnan, V. Poosala and T. Suel. On rectangular partitionings in twodimensions: algorithms, complexity and applications. Manuscript, 1998.30. V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita. Improved histograms for selec-tivity estimation of range predicates. Proc. of ACM SIGMOD Conf, pages 294{305,June 1996.31. V. Poosala. Histogram-based estimation techniques in databases. PhD thesis, Univ.of Wisconsin-Madison, 1997.32. V. Poosala and Y. Ioannidis. Selectivity estimation without the attribute valueindependence assumption. Proc. of the 23rd Int. Conf. on Very Large Databases,August 1997.33. G. P. Shapiro and C. Connell. Accurate estimation of the number of tuples satis-fying a condition. Proc. of ACM SIGMOD Conf, pages 256{276, 1984.34. E. Welzl. Partition trees for triangle counting and other range searching problems.In Proceedings of the 4th Annual Symposium on Computational Geometry, pages23{33, June 1988.

