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versons of FMM and Anderson’s Method. A more detailed study is needed in order to assess the
advantages and disadvantages of the different methods. Such a study would aso have to include
the recent algorithm of Hrycak and Rokhlin [14], which may give significant performance gains
over the other methods. An interesting question in the context of such a comparative study is how
to best optimize these methods for current CPUs and memory systems. While we have made an
effort to achieve efficiency in our codes, additional improvements are certainly possible, e.g., by
carefully tuning for the memory hierarchy.

Finaly, it would be interesting to see how our techniques and implementations perform on a
real application domain.
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Source 1 2 4 8 16 32
Bodiesbeforereplication | 128.0 | 130.7 | 130.3 | 129.4 | 129.8 | 131.7
Tree beforereplication 778 | 784 | 828| 838 | 9371154

Replicated bodies 0,0 40| 181 | 282 | 429 | 678
Replicated nodes 00| 134| 538 | 985 | 166.8 | 3194
Total 205,8 | 226.5 | 285.0 | 339.9 | 433.2 | 634.3

Ratio to sequential case 100| 110| 138| 165| 210| 3.08

Table 6.7: Memory usage in bytes as a function of the number of processors, for 256 K particles

Source 64K | 256K | 1024K | 2024K | 4096K
Bodies beforereplication | 1304 | 129.8 | 129.8 | 1321 | 1325
Tree before replication 115.7 | 93.7 85.6 915 88.6

Replicated bodies 839 | 429 255 215 211
Replicated nodes 3349 | 166.8 94.0 71.3 59.7
| Total 664.9 4332 3349| 3164 | 3019 |

Table 6.8: Memory usage in bytes as a function of the number of particles, for 16 processors

estimate as the precise ratio depends on the memory consumption of the sequential code on the
same number of particles, which we could not measure.)

Note that our numbers are based on a 1-separation criterium, and that they will get worsein the
case of 2-separation. We have aso not included the numbers for Barnes-Hut, which are dightly
better then those for Anderson and FMM.

Finally, the amount of communication in the replication phase is roughly equivalent to the size
of the replicated bodies and nodes. However, we found the cost of transmitting the data over the
network to be quite small, even if we include the (usualy dightly larger) computational cost of
inserting the received data into the tree structures.

7 Concluding Remarks

In this paper, we have described portable and efficient parallel implementations of several adaptive
N-body methods, including the adaptive FMM and the adaptive version of Anderson’s Method.
Our experimental results demonstrate that our codes achieve high performance and efficient speed-
up across severa classes of parallel architectures. A downside of our implementations are the
significant memory overheads dueto our replication scheme. We are currently working on reducing
these overheads, and are also |ooking at alternative communication schemesthat do not suffer from
this problem.

Our experimental dataonly providesavery preliminary direct comparison between the adaptive
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relative performance of the different methods and accuracy settingsis similar as in the sequential
case.

6.3 Memory and Communication Requirements

We now discuss the memory consumption and bandwidth requirements of our parallel schemes.
These two issues are actually closely related in our implementations, since the locally essential
trees that are transmitted have to be stored by the receiver for the entire interaction phase. As
pointed out by Singh [24], the size of these replicated data sets can be a significant fraction of the
total memory consumption, particularly for small memory and problem sizes and larger numbers
of processors.

We point out that the numberswe present in this subsection are based on our current partitioning
and replication schemes, and that someimprovementswill be possible by switching to acontinuous
curve in the Cost Zones partitioning, and by additional pruning of the localy essential trees.
Nonetheless, the basic trends should stay the same. In our discussion, we distinguish among the
following sources of memory consumption:

¢ the number of bodies assigned to a processor by the data partitioning,

¢ the size of the tree before the sending of the locally essential trees,

¢ the number of bodies replicated on a processor after receiving the locally essential trees, and
¢ theincrease in the size of the tree after receiving the locally essential trees.

In our measurements, a body assigned to a processor requires 128 bytes (including position, field,
speed, and previous acceleration, as used by a leap-frogging scheme), a node of the tree created
before the replication requires 2056 bytes (including 1536 bytes for the two expansions of length
32), areplicated body requires 32 bytes (only position and charge needed, except for asmall number
of bodies located in shared leaves), and a node of the tree during replication requires 1288 bytes
(nolocal field needed, except for afew shared nodes). Not included in our numbers are some other
sources of memory consumption, including precomputed matrices that may be used to speed up
the interactions. While these sources are not completely negligible, they depend on a number of
specific design decisions that are mostly orthogonal to the issue of replication.

In Tables 6.7 and 6.8, we present two different views of the memory consumption of Anderson’s
Method with expansion order 9 and 1-separation. All memory consumption isin bytes per body,
The data was measured over a single iteration on a Plummer model, where for each of the four
sources of memory consumption, we took the maximum value over all processors.

Table 6.7 shows how the memory consumption increases as we fix the number of particles at
256K and vary the number of processors from 1 to 32. In the 32 processor case, the memory
consumption per body is about three times larger than in the single processor case, mainly dueto
the large number of nodes in the replicated part of the tree.

A more optimistic scenario is given by Table 6.8, which shows the memory consumption for
16 processors as the input size increases from 16 K to 4096/. While memory consumption is
very high for 16/, it dropsto aratio of less than 1.5 for 4096/ bodies. (Thisis a conservative
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Platform Processors | 16K | 64K | 256K | 1024K
Cray T3E 1 24.3 | 99.7
2 12.4 | 50.6 .
4 64| 270| 95.6 :
16 19 75| 285 | 1035
32 : 43| 14.8 51.7
SGI Challenge | 1 97.1 | 4122
4 26.3 | 111.0
8 140 | 574
16 9.0| 310 :
PC Network 1 42.7 | 183.3 | 675.1
2 227 | 94.3 | 349.8
4 11.9| 51.0 | 1827
8 10.3 | 319 107.1

Table 6.5: Performance of FMM (potential calculation) with expansion order 4 and 1-separation
on a Plummer model.

Platform Processors | 16K | 64K | 256K | 1024K
Cray T3E 1 9.400 | 43.26
2 4587 | 21.10 :
4 2.213 | 10.56 | 46.94 :
16 0572 | 269 | 1236 | 53.95
32 : : .| 13.49
SGI Challenge | 1 1752 | 80.4 | 364.0
4 436 | 200| 90.3
8 222 | 101 | 454
16 1.28 56| 247
PC Network 1 7.75 | 34.21 | 163.8
2 3981786 | 824
4 216 | 1006 | 431
8 1.78 | 748 | 245

Table 6.6: Performance of Barnes-Hut with separation constant 1.0 and quadpoles on a Plummer
model.
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Platform Processors | 16K | 64K | 256K | 1024K
Cray T3E 1 19.7 | 864
2 78| 35.6 .
4 40| 17.7 69.3 :
16 13 5.0 17.9 67.8
32 : 2.8 12.9 46.4
SGI Challenge | 1 77.2 | 3258 | 1251.8
4 21.0| 86.7| 3301
8 116 | 449 | 1674
16 6.7 | 241 87.0
PC Network 1 3241|1388 | 5389
2 172 | 724 | 2816
4 104 | 39.8| 1495
8 86| 265 89.6

Table 6.4: Performance of Anderson’s Method (field calculation) with expansion order 9 and
1-separation on a Plummer model.

by a Synoptics 28115 Fast Ethernet switch. Only one processor per node was used in the
experiments.

The results of our runs are summarized in Tables 6.4, 6.5, and 6.6. In the runs, we used
Cost Zones partitioning for FMM and Anderson’s Method, and ORB partitioning for Barnes-Hut.
The main observation from the tables is that we obtain efficient parallelism across agorithms and
parallel platforms, with speed-up going towards linear as we increase the input size. The speed-up
is particularly good for the Barnes-Hut algorithm, which can be very accurately load-balanced
fairly easily. Some small improvementsin certain cases of Anderson and FMM might be possible
by fine-tuning the cost functions associated with the interaction types for each platform. (Our
current cost functions were derived on a Sparc workstation.)

The speed-up on 8 processors of the network of PCs was limited to between 6 and 7 due
to inefficiencies in the communication phase. Note that these inefficiencies are not due to the
bandwidth or latency limitations of the underlying network, which in principle is powerful enough
to support nearly linear speed-up. We conjecturethat the problemisprimarily dueto problemswith
the network cards of the PCs, and maybe to a lesser extent due to the communication algorithm
used in the BSP library implementation.

The times spent in the different phases of the algorithm are nearly the same asin the sequential
case, which isto be expected given that the parallel code consists of the same basic components,
plus some additional communication steps that take only a small amount of time.

Finally, we have also performed parallel runs with other settings of the integration order, and
with 2-separation criterium and supernodes. The speed-up resultsthat we observed arevery similar
to the numbers we have reported here. This, together with the efficient speed-up, implies that the
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Accuracy | Algorithm Particles | Time | RMS Error
Low FMM (N=4) 1000 | .318 2.25e-4

5000 | 4.13 2.12e-4
10000 | 7.97 2.0le4
20000 | 12.22 2.02e-4
50000 | 40.85 :
And (K=5) 1000 | .171 5.15e-4

5000 | 141 4.78e-4
10000 | 3.62 4.71e-4
20000 | 10.08 457e-4
50000 | 17.13 :
Medium | FMM (N=6) 1000 | .726 3.19e-5

5000 | 9.90 2.44e-5
10000 | 15.81 2.06e-5
20000 | 19.33 1.90e-5
50000 | 103.0 :
And (K=9) 1000 | .299 4.00e-5

5000 | 3.08 3.49%e-5
10000 | 5.87 3.51e-5
20000 | 12,51 3.46e-5
50000 | 34.53 :
High FMM (N=8) 1000 | 1.74 8.49e-6

5000 | 22.64 6.77e-6
10000 | 31.73 5.76e-6
20000 | 36.31 5.41e-6
50000 | 252.5 :
And (K=11) 1000 | .545 1.00e-5

5000 | 5.93 7.95e-6
10000 | 9.48 7.61e-6
20000 | 16.15 7.40e-6
50000 | 66.29

Table 6.3: Relative performance of Anderson’s Method and the Fast Multipole Method using
1-separation (potential computation only)
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Particles | U-Int | V-Int | W-Int | X-Int
1000 456 | 49.1 25 29
5000 21.3| 458 | 118 | 19.0
10000 449 | 249 | 11.2| 189
20000 771 | 17.3 2.3 3.3
50000 296 | 523 74| 10.7

Table 6.1: Percentages of interaction time spent on the different interaction types (uniform distri-
bution)

Particles | U-Int | V-Int | W-Int | X-Int
1000 355 94| 20.1| 349
5000 30.9 99| 215| 376
10000 278 | 157 | 20.7| 358
20000 294 | 178 | 194 | 334
50000 281 | 219 | 186 | 314

Table 6.2: Percentages of interaction time spent on the different interaction types (Plummer model)

FMM code s less optimized than the Anderson code, and afully optimized version might actually
be dightly faster than Anderson’s Method, We plan to perform a detailed comparison in the near
future.

Finally, we repeated some of the sequential experiments on our other platforms. While the
absolute times vary significantly, we found the relative behavior between different algorithms and
settings to be similar on all platforms.

6.2 Paralle Performance Results

In this subsection, we present results on the parallel speed-up and scale-up achieved by our codes
on three different machines, which cover severa interesting classes of parallel architectures. The
machines are:

(1) aCray T3E, located at the National Energy Research Scientific Computing (NERSC) Center
in Berkeley. The machine has 152 DEC Alpha processors with 256 MB of main memory
each.

(2) an SGI Challenge shared-memory machine, located at the NEC Research Institute in Prince-
ton. The machine has 16 MIPS R4400 processors and 1 GB of main memory.

(3) a network of PCs, also located at NEC. Each machine has two 200 Mhz Pentium Pro
processors and 128 MB of main memory. The machines run the Linux OS and are connected
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node of the Cray T3E. In Subsection 6.2, we present parallel speed-up and scale-up resultson three
machines representing different classes of parallel architectures, for a small set of problems sizes
and fixed precision settings. Finally, in Subsection 6.3 we discuss the memory and communication
requirements of the parallel codes.

Note that all running timesin this section are for a single iteration of the algorithm. We do not
include the times spent on advancing the bodies (which is less than 1% of the total time), and the
time spent on load balancing. It is somewhat difficult to estimate the cost of load balancing as it
isonly periodically performed. Both the frequency and the cost of the load balancing step depend
heavily on the particular input distribution and the chosen time step. However, even in the worst
case, (whichisgiven by theinitial partitioning step before the first iteration, and which isunlikely
to ever occur thereafter), the time for aload balancing step is small compared to the time for the
interactions.

Throughout this section, we choose the maximum number of bodies per leaf node as 100 for
FMM and Anderson’s Method, and 20 for Barnes-Hut. Note that the precise optimal value for
this parameter depends in a non-trivial way on many factors such as input size and distribution.
However, the valueswe have chosen come quite closeto optimal in most cases we have encountered.

6.1 Sequential Performance Characteristics

We start out by presenting some basic sequential performance characteristics of the agorithms
we have implemented. These results were obtained by running our codes on a single node of
the Cray T3E. We emphasize that these sequential runs correspond to fairly generic sequentia
implementations of the algorithms, and that they do not incur any of the overheads associated with
aparalel implementation.

One characteristic of the sequential algorithmsthat isnot surprising is that the vast majority of
the computation time is spent in the interaction computation phase of the algorithm. In all of the
sample runs referred to in Tables 6.1 and 6.2, between 90 and 95 percent of the computation time
was spent in this phase. The remaining 5 to 10 percent were primarily spent in the upward and
downward passes, and only very little time was spent in building the tree.

Tables 6.1 and 6.2 show the percentages of time spent performing the variousinteractionsduring
the interaction phase for uniform and Plummer distributions. Note that the percentages for the W
and X interactionsin the uniform case fluctuate in a complicated way with the average number of
bodies per leaf node and with the structure of the tree.

In Table 6.3 we compare the running time of FMM and Anderson’s Method for several accuracy
settings. The input data is a uniformly distributed set of particles. The measured times are for
the computation of the potentials, and do not include the time for the fields. The error (RMYS)
is calculated as follows. For any particle x;, let ®.(x;) be the potential at =; calculated by the
algorithm, and let @, (z;) be the potential computed by the direct method. Then the RMS error for
the calculation is defined as

18 (D) = Py(w))
ﬁ;( D, () >

According to Table 6.3, Anderson’s Method outperformed FMM for smilar levels of accuracy.
However, we point out that these results are still very preliminary, since our current version of the

11



For each node of an oct-tree, we defineitslocation with respect to thelocal partitioning domain.
A nodeisinsideif it iscompletely insidethe domain, outsideif it iscompletely outside, and shared
otherwise. Using this notation, we define the work partitioning by the following rules: (1) If the
target node of an interaction isinside a partition, then theinteraction is performed by the processor
owning that partition. (2) If the target node of an interaction is shared, then the interaction is
performed by the processor whose partition contains the unique point inside the target node that
is closest to the geometric center of the source node. Note that this means that if atarget nodeis
shared, then the work associated with that node will usually be shared by several processors.

Considering the different types of interactionsin FMM and Anderson’s Method, we observe
that in any interaction (s, ¢), the target node ¢ must intersect a cube centered at the center of source
node s and with side length proportional to the side length of s. The constant of proportionality
depends on the separation parameter of the algorithm. Let us call this cube the interaction cube.

As before, to determine which parts of alocal tree 7" in processor P; have to be sent to another
processor P,, we perform a depth-first traversal of 7. When we encounter a node s, we do the
following. If s isaleaf, then we smply send al of the bodies within s to P,. If s isnot aledf,
then we look at all of the interaction cubesfor children of s. If any of these cubesintersect 2, then
we recursively continue the depth-first search. 1f none of the cubesintersect theregion R, then we
know that none of the descendents of s are going to be the source in an interaction that is assigned
to P,, and we simply send the expansion informationfor s to P, and return to the next higher level.

It can again be shown that this procedure will transmit all information that is needed by P, to
perform itsinteractions. Moreover, after the data has been appropriately inserted into the oct-tree
at the receiving end, and after the expansi ons have been updated accordingly, each locally held tree
will be consistent with the corresponding region of the (nonexistent) global tree.

Note that the above description refersto the data partition only indirectly via geometric terms
such as “inside a partition”, “outside a partition”, and “distance from a partition”, which can be
implemented based on the geometric representation of the particular partitioning scheme. This
allows a nice separation between the data partitioning and the replication scheme in our code.

The actual scheme that we use in our codes is dightly more complicated than the description
we have given here. In particular, we avoid the additional upward pass for updating the expansions
at thereceiver side by transmitting the expansion of anode even if we also transmit the information
associated with al its children (or al its bodies if it is aleaf), thus trading off bandwidth versus
computation. We also use some other conditions for pruning the size of the locally essential trees.
These optimizations are motivated primarily not by bandwidth concerns, but by computation costs
and space concerns a the receiving side.

6 Experimental Results

In this section, we present and discuss the results of an extensive series of test runs of our codes.
We consider total work, parallel speed-up and scale-up, precision, and memory and communication
requirements. Given the vast space of parameter settings, we have to restrict ourselves to a few
interesting cases.

Our set of experiments is structured as follows. In the first subsection, we explore the basic
characteristics of FMM and Anderson’s Method through a sequence of sequential runson asingle
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locally essential tree with respect to P», that is, all the informationin 7" that is needed by P, for its
interactions.

More precisely, when wevisit anode s in 7" we do thefollowing. If s isaleaf node, we smply
send all of the bodieswithin s to P,. Otherwise, if s is contained entirely within P,’s ORB region,
then we can calculate how far the center of massisfrom the boundary of R. If thisdistanceislarge
enough relative to the side length of s, then we only need to send the center of mass (or higher
order approximation) of s to P, and return to the next higher level. If the center of mass is too
close, then we recursively visit the children of s. If s is not contained entirely within P;’s ORB
region, then P; does not know the true location of the center of mass of s in the global tree. We
therefore assume the worst case, that the center of massisas close to i as possible.

It can be shown that thisprocedurewill transmit all information that is needed by P; to perform
its interactions. Moreover, after the data has been appropriately inserted into the oct-tree at the
receiving end, and after the centers of mass have been updated accordingly, each locally held tree
will be consistent with the corresponding region of the (nonexistent) global tree.

5.2 Problemsin theGeneralization

Before explaining the generalization of thereplication schemeto FMM and Anderson’sMethod, we
describe some of the new problemsthat arise, and that make it non-trivial to extend and implement
the replication scheme. The main challenges are as follows:

(1) Inthe Barnes-Hut method, the well-separatedness criterium depends only on the size of the
source box, and its distance from the particle. In FMM and Anderson’s Method, we have
cluster-cluster interactions whose criterium can depend on the size of either the source or the
object box (e.g., X and W interactions). Thismakesit moredifficult to design asender-driven
protocol, since the sender does not know the structure of the local treeinside the receiver.

(2) FMM and Anderson’s Method have four different types of interactions, each with its own set
of conditions about when the interaction is applicable.

(3) In FMM and Anderson’s Method, work is aso associated with internal nodes, which can
overlap the domains of several processors. Thus we need a work partitioning scheme that
uniquely assignsthese interactionsto processors, and that is compatiblewith asimple sender-
driven approach.

5.3 TheGeneral Scheme

In the general scheme, we assume that each processor has complete knowledge of the data parti-
tioning. It is convenient to assume that the partitioning is represented in some simple geometric
form, e.g., boxes in ORB, or unions of cubes (each corresponding to an oct-tree node) in Cost
Zones.

First, we describe the method for assigning interactions to processors. As mentioned before,
there are four types of interactions that can occur during the force calculation phase of the FMM
algorithm. Each interaction involves asource node s and atarget node ¢, and can be denoted by the
pair (s,t). All of these interactions involve taking field information from s and converting it into
field information for ¢.



implemented.

4.4 Communication and Force Computation

Asmentioned before, we use an extension of thelocally essentia treesapproachin order toreplicate
tree nodes that are needed by morethan one processor. Thisschemeisdescribed indetail inthenext
section. Thus, at the beginning of the force computation phase, every processor already contains
al of the datathat it has to access during this phase, and the computation is completely local and
can be done by the same code as in the sequential case.

Our implementation of the interactions in the FMM is based on the dight reformulation of
the origina method of Greengard and Rokhlin provided by Singer [23]. For Anderson’s Method
we relied on the description in [1], with precomputed matrices used in the V interactions and the
upward and downward passes. Finally, our implementation of quadpole moments in Barnes-Hut
follows the description in [13].

5 Replication Scheme

In this section, we give a high-level and general description of the replication scheme that we use
in our codes. Inthefollowing, we assume that the bodies have aready been partitioned among the
processors using ORB, Cost Zones, or some other data partitioning scheme.

In order to perform al the interactions, we require two additiona ingredients. First, we need
awork partitioning that assigns every interaction to one of the processors. Such a scheme will be
partly induced by the data partitioning, but also needs to uniquely assign interactions that require
data from two or more processors. Second, we have to design an efficient communication and
replication scheme that ensuresthat every processor has all of the information necessary to perform
itsinteractions. The simplicity and efficiency of such a scheme depends of course on the data and
work partitioning scheme.

What we are describing in the following is basically a generalized version of the “locally
essential trees’ scheme of Warren and Salmon, which was originaly introduced for a Barnes-
Hut algorithm with ORB partitioning, to adaptive multipole methods and other classes of data
partitionings such as Cost Zones or the RRB scheme of Hu, Johnsson, and Teng [15].

5.1 Barnes-Hut and ORB

We first explain the scheme for the case of a Barnes-Hut implementation with ORB partitioning.
We point out that this scheme isvery similar to those in [28] and [20]. Note that in the Barnes-Hut
algorithm, all interactions are between a particle and a node of the oct-tree. This makes the work
partitioning very ssimple: a processor is responsible for al interactions involving particleslocated
inits ORB region.

Thus, it remainsto describethe replication scheme. During the Barnes-Hut algorithm, aparticle
will interact with a node if the particle is far enough away from the center of mass of the node,
relative to the side length of the node.

Let P, and P, be two processors. Let P, have alocaly constructed oct-tree 7', and let P»
have ORB region k. We can then perform a depth-first traversal of 7" in order to determine the



are completely rebuilt in each iteration.

4.3 DataPartitioning and Load Balancing

We haveimplemented two different schemesfor partitioning and load balancing. FollowingLiuand
Bhatt [20], load balancing is only performed when the load imbal ance exceeds a certain threshold
(typically about 2%). The weight each body contributes to the load of its processor is determined
by the amount of work “caused” by the body in the previous superstep. In the case of Barnes-Hut,
thisisjust the number of interactions and quadpole evaluations, while for Anderson and FMM, al
costsincurred by internal nodes are propagated to the bodiesin the downward pass of the algorithm.

Our first implementation was based on the Orthogonal Recursive Bisection (ORB) scheme
[28], where space isrecursively partitioned along the longest dimension, such that each of the two
resulting rectangular regions receives anumber of bodies equivalent to half of the remaining work.
We initially implemented a fully distributed version of ORB partitioning in which the space is
recursively halved by a parallel median finding algorithm. To increase the ssimplicity and flexibility
of our code, welater switched to amainly sequential implementation, where each processor sendsa
random sample of its body positions and weightsto asingle processor. This processor then locally
computes a partition based on the sample, and broadcasts the result. Afterwards, the quality of the
load balancing is checked and, if necessary, the processis repeated. We found thisimplementation
to be very efficient even for fairly small input sizes.

The ORB partitioning resulted in excellent speed-up for the Barnes-Hut agorithm. For the
FMM and Anderson’s Method, however, we experienced significant load imbal ances that severely
limited the parallel speed-up (to about 6 on 16 processorsfor 64K bodies). Thereasonisthat since
work is really associated with nodes rather then bodies, any repartitioning of the load only has an
effect if it changes the partitioning of the nodes. For example, inasimulation with 64K bodiesand
up to 100 bodies per leaf, we end up with about 2000 leaf nodes, or about 13 leaves along each of
the three dimensions. This small set of possible partitioningsaong asingle dimension resultsin a
load imbalance that is compounded over the number of processors and dimensions.

This effect was already described by Singh [24], who observed only afairly moderate degree of
load imbalance in his two-dimensional runs. Our observation is that this problem is significantly
worsein three dimensions. While the problem (very) slowly decreases with larger input sizes, and
additional improvements might be possible by modifying the ORB scheme, we were not able to
come up with a smple and convincing scheme for three dimensions. Hence, we conclude that
ORB partitioning is probably not a good choice for adaptive multipole methods.

To solve these problems, we implemented the Cost Zones partitioning scheme described in
[24]. Our implementation is again based on sending a random sample to a single processor, who
then builds an oct-tree based on the bodies in the sample. Informally speaking, the overall shape
of the resulting “sample tree” is very similar to that of the global oct-tree on all bodies. The
processor then applies Cost Zones partitioning to thistree. By choosing the maximum number of
bodies per leaf somewhat smaller than in the global tree, we can reduce the required sample size.
The implementation runs very efficiently, and obtains good load balance. The size of the locally
essential trees is only dightly larger than in the case of ORB, and could be somewhat reduced
by using a continuous space-filling curve instead of the smpler non-continuous curve we have



4.1 Programming Environment

The programswerewritten in C using an SPMD programming style. Communication is performed
through a small library of message-passing functions, called Green BSP and described in [§],
which implements a set of bulk-synchronous communication primitives as prescribed by Valiant’s
Bulk-Synchronous (BSP) model of parallel computation [25]. The library offers smple functions
for sending, synchronization, and receiving that partition the program execution into a sequence
of computation phases called supersteps such that messages sent in one phase are received by the
receiver only at the beginning of the next phase. This alows for a very efficient implementation
of very-coarse grained parallel programs that are especially suitable for high-latency pardlel
machines. Thus, the library provides avery natural match for the communication schemes arising
in our implementations. Versions of the library have been implemented on a number of different
platforms.

On the other hand, our implementation techniques are not dependent on a particular library, but
can be used on any reasonable message-passing library (e.g., MPI [11]), assuming that appropriate
buffering is used to avoid software overheads due to the large number of fairly small messages sent
by the program. In fact, one of the versions of the library used in our experimentsis basically a
thin layer on top of MPI that enforces certain buffering policies.

One dlight disadvantage of the very large supersteps in our algorithms is that they require
significant amounts of buffer space at both sender and receiver. (This problem is due to the nature
of buffered message-passing in BSP, and the fact that the library version we used allocates a fixed
amount of buffer space at the beginning of the program run.) To avoid this problem, we decided
to split the largest supersteps into several smaller supersteps, resulting in a slight increase in code
complexity.

4.2 Tree Construction

One problem faced by any implementer of tree-based parallel N-body methods is how to represent
and efficiently build the tree structure used for the force calculation. A convenient way of doing
this on shared-memory machinesis to have all processors jointly build the tree, and use locks for
consistency. However, such a scheme would be inefficient on high-latency distributed-memory
platforms, and hence we decided on a scheme in which no global tree structureis built, but each
processors constructs a separate tree structure that contains all its particles, and that is“ consistent”
with the (nonexisting) global tree.

The construction of these trees is very simple. Each processor starts by building a tree on
its own particles, starting out with the entire extension of space in the root node, but essentially
pretending that there are no other particles apart from its own. Thisresultsin atree structure that
is not fully consistent with the global one at nodes that are not completely within the boundaries
of the local partition. However, as it turns out, these inconsistencies can be easily removed during
the transmission of the locally essential trees described further bel ow.

Thus, to built thetreesin our parallel code, we just use the same tree insertion routine asin the
sequential case, perform an upwards pass to compute the expansions, and then wait for the locally
essential trees schemeto correct any inconsistencies. (Note that some of the expansions need to be
updated after the locally essential trees have been recelved and inserted into the local tree)) Trees



is used in the shared-memory implementation by Singh [24], who also performs a comparative
study of severa partitioning and |oad-bal ancing schemes.

3.2 FMM and Anderson’s M ethod

There have also been a number of parallel implementations of the non-adaptive versions of the
FMM and Anderson’s Method, some examples are [4, 6, 17, 22, 27, 29]. Due to the regular
structure of these methods, parallel implementations can usually employ fairly smple schemes for
partitioning, load-balancing, and replication. In contrast to the non-adaptive case, there have been
only very few parallel implementations of the adaptive versions of FMM and Anderson. We are
aware of the implementationsin [9, 16, 18, 21, 24].

The earliest implementation we know of is the two-dimensional FMM code of Greenbaum [9]
for the shared-memory NY U Ultracomputer. Another two-dimensional implementation for shared
memory was done by Singh [24], who performed a detailed performance and scalability study for
shared-memory machines. However, both approaches do not seem to be appropriatefor distributed
memory.

Parallel implementations of the three-dimensional FMM have been designed by Nyland, Prins,
and Reif [21] and Krishnan and Kale [18]. The code in [21] is written in the high-level Proteus
programming language. However, no performance numbers are given, and in fact no compiler
for PROTEUS appears to be available yet. The code in [18] is writtenin the CHARM++ object-
oriented programming language, and implementsadightly smplified variant of the adaptive FMM
where the higher levels of the tree structure coincide with the ORB partitioning. However, the
running times reported in [18] appear to be by about one order of magnitude too high.

Very recently, and while our work was in progress, Hu, Johnsson, and Teng [15, 16] have
reported an implementation of the three-dimensional adaptive version of Anderson’s Method in
High-Performance Fortran (HPF). Their implementation appears to be the only adaptive three-
dimensional code that achieves good performance on distributed-memory machines. The work in
[15, 16] isalso important becauseit providestechniquesfor the efficient implementation of adaptive
algorithmsin data-parallel languages such as HPF, which were mainly designed with more regular
applications in mind. (An aternative way to overcome these problems would be to allow nested
dataparalelism, as provided, e.g., by the NESL language [5].)

However, adata-parallel implementation does not appear suitable for low-cost parallel systems,
such as Ethernet-connected PCs or workstations, which typically have much higher latency and
much lower bandwidth than their high-cost MPP counterparts. Our goal isto achieve high efficiency
even on such low-cost systems. At the same time, we want to achieve very high performance on
more powerful MPP systems; an interesting question isto what degree our “raw C” implementation
can improve on HPF with its associated overheads.

4 Description of Our Codes

In the following, we describe the structure and implementation of our parallel codes. The basic
structure of the codes is similar to that of the sequential algorithms outlined in Section 2, Our
implementations share a significant amount of code between them. Hence, unless explicitly stated
otherwise, the following descriptions apply to al algorithmsthat we have implemented.



2.2 AdaptiveFMM and Anderson

In the Barnes-Hut algorithm, interactions between bodies and sufficiently far away clusters are
used to reduce the number of interactions from O(N?) to O(N log N) in the uniform case. The
FMM and Anderson’s Method go one step further, by also alowing interactions between two
clusters. Thus, theforce exerted on abody by adistant cluster is usually determined not by a direct
interaction between body and cluster, but by an interaction between the distant cluster and a cluster
containing the body. The force exerted on the cluster is then propagated to all the bodies contained
init; thisisdonein an additional downward pass through the oct-tree after the interaction phasein
Step (3) of the algorithm. Apart from this extra step, the high-level structure of the algorithmsis
the same as in the case of Barnes-Hut, while the total number of interactionsis reduced to O(N),
under some assumptions about the distribution of the bodies.

However, as a consequence, the internal structure of the interaction phase becomes somewhat
more complicated. The adaptive FMM and Anderson’s Method have four different types of
interactions, which are executed depending on certain conditionsabout therelative size and location
of the two interacting nodes in the tree. For example, in order for two clusters to interact (such an
interaction is caled aV interaction), they have to be of the same size and well separated, that is,
have a sufficient distance from each other. Other rules govern the possible interactions between
clusters and bodies (W and X interactions) and between bodies (U interactions). The accuracy of
the method depends on the distance required for nodes to be well separated, but more importantly
on the number of terms used in the approximation of the clusters.

The only difference between the FMM and Anderson’s Method isin the way they approximate
the force field of a cluster of bodies. While the FMM uses Taylor and Laurent expansions in 2D
and expansions based on spherical harmonics in 3D, Anderson’s Method is based on Poisson’'s
formula. This makes Anderson’s Method dightly easier to implement, while it appears to be till
unclear which method gives the better accuracy/performance trade-off.

3 Other Parallel I mplementations

I nthissection wedescribe somepreviousparallel implementationsof tree-based N-body algorithms,
and discuss their relation to our work. Due to the large amount of previous work, we can only
discuss the most closely related work.

3.1 Barnes-Hut Algorithm

Over the last decade, there have been alarge number of parallel implementationsof the Barnes-Hut
algorithm; a few examples are [20, 4, 24, 28, 26]. In [28], Warren and Salmon describe a fast
message-passing implementation of the Barnes-Hut algorithm. They propose the use of locally
essential treesto obtain a purely sender-driven protocol for replicating nodes that are accessed by
several processors during the force computation phase. This approach was later refined by Liu and
Bhatt [20] in their optimized Barnes-Hut implementation on the CM-5.

In a later implementation [26, 27], Warren and Salmon use a partitioning scheme based on
space-filling curves and a distributed tree structure in order to achieve more flexibility in terms of
application domainsand separation criteria(MACs). A similar schemebased on space-filling curves



2 Basic N-Body Algorithms

I nthissection we describethe basi ¢ structure of the N-body algorithmsused in our implementations.
Wefirst explain the Barnes-Hut algorithm, which hasafairly simple structure, and then outline the
more complicated structure of the adaptive FMM and Anderson’s Method.

All agorithms considered in this paper use an oct-tree data structure to partition three-
dimensional space and to group bodies that are close to each other. The tree structure for a
given input distribution is obtained by recursively partitioning a box into eight smaller boxes of
equal size until each box contains at most ¢ particles (where d is experimentally determined for
maximum performance).

2.1 Barnes-Hut Algorithm

The basic idea behind the Barnes-Hut [3] agorithm (and many other methods) is to approximate
theforce exerted on abody by asufficiently far away cluster of bodies by computing an interaction
between the body and the center of mass (or some other approximation) of the cluster. Bodies are
grouped into clusters by the tree data structure, and a separation condition (which typically depends
on the distance between the body and the cluster and on the size of the cluster) determineswhether
a cluster is sufficiently far avay. The basic steps of one iteration of the (sequential) Barnes-Hut
algorithm are as follows:

(1) Build the oct-tree data structure. This can be done by a simple tree insertion algorithm.

(2) Compute the center of mass (or some higher-order approximation) of the bodiesin each box
of the oct-tree. Thisis done in a upward traversal of the tree, starting with the centers of
mass of the leaf boxes.

(3) For each body, perform a depth-first traversal of the oct-tree in order to compute the force
exerted on the body. The traversal starts at the root.

(3a) At each vidited node, if the cluster defined by al bodies inside this node is suffi-
ciently far away, compute an interaction with its center of mass (or some higher-order
approximation of the cluster). Otherwise visit all its child nodes.

(4) Compute the acceleration and speed of each body in the current time step, and advance it
accordingly.

A common separation condition isthat a cluster is sufficiently far away from abody if theratio
of the side length of the box containing the cluster to the distance between body and cluster is
smaller than some 6. The precision of the force calculation can be improved by choosing asmall ¢
or, usually moreefficiently, by using ahigher order approximation of the cluster such as quadpoles
[13] or hexadecapoles [19] instead of the center of mass monopole.



tuned for high performance. As a result, while there have been many parallel implementations
of non-adaptive O(N') methods (e.g., see [4, 6, 17, 22, 27, 29]) and of the O(N log V) adaptive
Barnes-Hut algorithm (e.qg., see[20, 4, 24, 28, 26]), thereareonly very few parallel implementations
of the O(V) adaptive methods.

In this paper, we focus on the efficient parallel implementation of O(/N') adaptive tree codes,
and in particular on the adaptive Fast Multipole Method [ 7] and the closely related adaptive version
of Anderson’s Method [1]. In the following, we refer to these algorithms, plus the also closely
related method of Hrycak and Rokhlin [14], simply as adaptive multipole methods. Our goal isto
design techniques that alow highly efficient implementations that are portable over a wide range
of paralel architectures. We believe that highly optimized parallel implementations of adaptive
multipole methods will eventually outperform the more commonly used methods as computation
power and problem sizes continue to increase.

We have compl eted implementations of the adaptive versions of FMM and Anderson’s Method.
Some of the techniques that we derived are generalizations of ideas used in a highly portable
implementation of the Barnes-Hut algorithm, which we includein our presentation for comparison,
and for asimple illustration of some of the ideas. We believe that the main contributions of our
work are as follows:

(1) Wedescribetechniquesthat allow an efficient implementation of adaptive multipole methods
on machines with very high latency and fairly low bandwidth.

(2) We provide portable and highly efficient parallel implementations of these methods.

(3) We compare the performance of several adaptive N-body methods on severa different plat-
forms.

Before continuing, let us briefly describe the approach taken in our work, and its goals and
limitation. As the reader will notice, we focus on the basic algorithmic aspects of the N-body
problem, a perspective taken by much of the N-body work from the computer science community.
Our goal is to show how the basic structures of adaptive multipole methods can be efficiently
implemented on parallel machines. We have tested our codes on several types of input distributions
commonly used in the literature, but we have not (yet) applied our codes towards rea problems
arising, say, in astrophysics or molecular dynamics. Such applications will place additiona
application-dependent demands and constraints on the basic N-body agorithms, which need to be
resolved before making any stronger claims of practicality. We hope to test our codes on areal
application in alater phase of this project.

The remainder of this paper is organized as follows. The next section gives a brief description
of the N-body algorithms used in our implementations. Section 3 discusses some related work.
Section 4 contains a description of our implementations. Section 5 describes our scheme for
datareplication and work partitioning, and Section 6 contains some experimental results. Finally,
Section 7 offers some concluding remarks.



Highly Portable and Efficient | mplementations
of Parallel Adaptive N-Body Methods

David Blackston? Torsten Suel 2

Abstract

We describe the design of several portable and efficient parallel implementations of adaptive
N-body methods, including the adaptive Fast Multipole Method, the adaptive version of
Anderson’s Method, and the Barnes-Hut algorithm. Our codes are based on a communication
and work partitioning scheme that alows an efficient implementation of adaptive multipole
methods even on high-latency systems. Our test runsdemonstrate high performance and speed-
up on severa parallel architectures, including traditional M PPs, shared-memory machines, and
networks of workstations connected by Ethernet.

1 Introduction

The N-body problem is the problem of smulating the movement of a set of bodies (or particles)
under the influence of gravitational, electrostatic, or other type of force. Algorithms for N-body
simulations have a number of important applications in fields such as astrophysics, molecular
dynamics, fluid dynamics, and even computer graphics [12]. A large number of agorithms for
N-body simulations have been proposed; a basic approach taken by most of these algorithmsisto
simulate the system by advancing the bodiesin discrete time steps. 1n each time step, the algorithm
computes (or approximates) the force exerted on each body dueto all other bodies; this determines
the acceleration and speed of that body during the next time step. Computing the forces among a
set of V bodies can be done in a straightforward way by computing all N2 pairwise interactions.
However, a number of more efficient algorithms have been proposed that can approximate the
forcesamong N bodiesin closeto linear time.

Animportant class of such algorithmsarethetree-based methods, which use atreedatastructure
to hierarchically group the bodies into clusters, that is, groups of bodies that are fairly close to
each other (see, eg., [1, 2, 3, 7, 10, 14, 30]). These methods can calculate the forces between
N bodies in time proportional to O(N log V') or even O(N), under certain assumptions about the
input distributions.

Most of the O(N) methods [1, 7, 10, 14, 30] have non-adaptive versions, which partition the
gpace into boxes of a fixed size, and adaptive versions, which partition the space according to
the particular input distribution, and which are more efficient for nonuniform distributions. On
the other hand, the non-adaptive methods have a much smpler structure and can be more easily
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