Improved Bounds for Routing and Sorting

on Multi-Dimensional Meshes

Torsten Suel*

Department of Computer Science
University of Texas at Austin

Abstract

We show improved bounds for 1-1 routing and sorting
on multi-dimensional meshes and tori. In particular, we
give a fairly simple deterministic algorithm for sorting on
the d-dimensional mesh of side length n that achieves a
running time of 3dn/2+o(n) without making any copies
of the elements. We give deterministic algorithms with
running times of bdn/4 + o(n) and 3dn/4+ o(n) for the
d-dimensional mesh and torus, respectively, that make
one copy of each element. We also show lower bounds for
sorting with respect to a large class of indexing schemes,
under a model of the mesh where each processor can hold
an arbitrary number of packets. Finally, we describe
algorithms for permutation routing whose running times
come very close to the diameter lower bound.

1 Introduction

The mesh-connected arrays of processors are one of the
most thoroughly investigated classes of interconnection
schemes for parallel processing. While the networks in
this class have a large diameter in comparison to the var-
ious hypercubic networks, they are nonetheless of great
importance due to their simple structure and their good
performance in many applications. A variety of algorith-
mic problems have been analyzed as to their complexity
on theoretical models of the mesh; probably the two
most extensively studied problems are those of routing
and sorting. For a detailed introduction into these prob-
lems, and an overview of the most important classes of
interconnection schemes, the reader is referred to [14].

*Email: torsten@cs.utexas.edu. Supported by the Texas
Advanced Research Program under Grant Nos. 003658-480 and
003658-461, and by a Schlumberger Graduate Fellowship.

Much of the previous work on meshes has con-
centrated on the one-dimensional and two-dimensional
cases. Particularly the two-dimensional networks are of
great practical importance due to their efficient layout,
and have been used as the basis for a number of existing
parallel machines. In contrast, the meshes of dimen-
sion d > 2 (hereinafter referred to as multi-dimensional
meshes) have received somewhat less attention. While
the problems of routing and sorting on these networks
have previously been studied by a number of authors,
there are still considerable gaps between the best upper
and lower bounds.

In this paper, we focus on the problems of 1-1 rout-
ing and sorting on multi-dimensional meshes with con-
stant dimension d. Formally, a d-dimensional mesh of
side length n consists of N = n? processors, where each
processor is identified by a d-tupel (p1,...,pq4) in [n]?.
(We use [n] to denote the set {0,...,n —1}.) Two pro-
cessors P = (po,...,pa—1) and @ = (qo,...,qa—1) are
connected by a bidirectional communication link iff there
exists an ¢ in [d] with |p; — ¢;| = 1 and p; = ¢; for all
J in [d] with j # i. The d-dimensional torus is obtained
from the d-dimensional mesh by adding wrap-around
edges between all pairs of processors (pg,...,p4—1) and
(go,-..,q4—1) such that there exists an ¢ in [d] with
lpi — ¢il = n — 1 and p; = ¢; for all j in [d] with j # 1.

We assume that the processors in the network oper-
ate in a synchronous mode. In a single step of the com-
putation, each processor can perform some fixed amount
of internal computation, and transmit one packet of in-
formation (of bounded size) to each of its neighbors. A
processor can hold at most a constant number of packets
at any time.

The routing problem is the problem of rearranging
a set of packets in a network, such that every packet
ends up at the processor specified in its destination ad-
dress. A routing problem in which each processor is the
source and destination of at most k& packets is called a
k—k routing problem. Most research has focused on the
1-1 routing problem, also called the permutation rout-
wng problem. In the k—k sorting problem, we assume

that each processor initially holds k& packets, where each
packet contains a key drawn from some totally ordered
set X. Our goal is to rearrange the packets in such a
way that the packet with the key of rank ¢ is moved to
the processor with index |i/k], for all é. As in the case
of routing, most of the research has focused on the case

k=1.

The indexr of a processor in the network is deter-
mined by an indexing scheme. Formally, an indexing
scheme for a d-dimensional mesh of side length n is a
bijection Z from [n]?¢ to [n4]. If Z(P) = k for some pro-
cessor P = (po,...,pa—1) in [n]? and some k in [n9],
then we say that processor P has index k. The problem
of sorting an input with respect to an indexing scheme
7 is to move every packet y of the input to the processor
with index Z(Rank (y, X)), where Rank (y, X) =z e
X | # < y}|. An example of a commonly used indexing
scheme for the two-dimensional mesh is the row-major
wndexing scheme, which is given by indexing the proces-
sors from the left to the right, and from the top row
to the bottom row. Another important and closely re-
lated indexing scheme is the snake-like row-major order-
ing defined by Z(i1,41) < Z(d2,42) & (11 < i2) V (({1 =
i2) A (((11 odd) A (J1 < j2)) V(i1 even) A ((j1 > j2))))-

Both of these indexing schemes can be naturally
extended to multi-dimensional networks; see [11] for a
formal definition. Sorting algorithms on the mesh are
usually designed with a particular indexing scheme in
mind, and techniques suitable for one indexing scheme
may not work well at all for others. In the algorithms
presented in this paper, we assume a blocked snake-like
indexing scheme. This indexing scheme is defined by
partitioning the mesh into blocks of side length n®, and
using a snake-like indexing scheme inside each block,
while the blocks themselves are ordered according to
another snake-like indexing. Similar blocked indexing
schemes have recently been used in a number of fast
sorting algorithms (e.g., see [3, 4, 6, 12]).

An obvious lower bound for the running time of
any algorithm for 1-1 routing or sorting is given by the
diameter D of the network. (That is, D = d(n — 1)
for the d-dimensional mesh and D = dn/2 for the d-
dimensional torus.) The performance of an algorithm
for routing or sorting on theoretical models of the mesh
is commonly measured by its running time, its queue
size (that is, the maximum number of packets any node
has to store during the algorithm), and of course by
factors such as the overall simplicity of the algorithm
and the demands it places on the local control hardware
or software. In this paper, we will focus on the time
complexity of routing and sorting on meshes and tori of
arbitrary constant dimension, and we will express our
results in terms of the diameter D of the network.

1.1 Previous Results

A variety of sorting algorithms for the two-dimensional
mesh have been proposed, starting with the work of Or-
cutt [16] and Thompson and Kung [18]. In particular,
Schnorr and Shamir [17] gave a 3n—+o0(n) time algorithm
for sorting into row-major order; and showed a nearly
matching lower bound of 3n — o(n), also independently
discovered by Kunde [7]. This lower bound assumes a
model of the mesh, hereinafter referred to as the single-
packet model, in which each processor can only hold a
single packet at any time. The lower bound technique
can also be extended to indexing schemes other than
row-major [8]; the best general lower bound for arbi-
trary indexing schemes is currently at 2.27n [2].

However, these lower bounds do not hold for the
multi-packet model assumed in this paper, in which any
processor can hold a constant number of packets at a
time. For this model, the only known lower bound is
given by the network diameter of 2n — 2, and recently
algorithms with running time 2n + o(n) have been ob-
tained [3, 6]. In the case of the torus, a lower bound
of 3n/2 — o(n) has been shown for the single-packet
model [8, 17]. Tn contrast, the fastest algorithm for the
multi-packet model runs in 5n/4 4+ o(n) steps [3, 6].

Early examples of sorting algorithms for multi-
dimensional meshes were given by Thompson and
Kung [18] and Nassimi and Sahni [15]. A lower bound of
2D — n — o(n) for sorting on multi-dimensional meshes
was established for the single-packet model [7, 17]; the
bound applies to most of the indexing schemes used in
the literature. An algorithm with a running time of
2D —n+o(n) was subsequently described by Kunde [9].

No non-trivial lower bounds are known for sort-
ing on d-dimensional meshes in the multi-packet model.
The best upper bound in this model is currently at
2D — 5n/2 4+ o(n). (This result can be obtained from
the Tn/2 + o(n) time sorting algorithms for the three-
dimensional mesh in [3, 6].) Hence, for large values of
d, this upper bound 1s still nearly a factor of 2 away
from the diameter lower bound. This is also true in the
case of the d-dimensional torus, where the best upper
bound is currently at 2D — n 4+ o(n). (This bound is
implied by the 2n 4 o(n) time sorting algorithms for the
three-dimensional torus in [3, 6].)

Slightly better results have been obtained for per-
mutation routing on d-dimensional networks. For this
problem, Kunde [10] has described algorithms that run
in time (d 4 (d—2)(1/d)"/(4=2) 4 ¢)n on the mesh, and in
about half that time on the torus. For networks of low
dimension, this is a significant improvement over previ-
ous results. However, for larger dimensions this result is
again nearly a factor of 2 away from the diameter lower
bound. In fact, even for off-line routing no better results
are currently known.

For the problems of k—k routing and sorting on d-
dimensional networks, there are obvious lower bounds
of kn/2 for the mesh and kn/4 for the torus, due to the
bisection width of the networks. For k& > 4r, several
randomized and deterministic algorithms have recently
been proposed that match this lower bound, within a
lower order additive term [5, 6, 12].

1.2 Overview of the Paper

In this paper, we show improved bounds for 1-1 routing
and sorting on multi-dimensional meshes and tori. Our
first result is a deterministic algorithm for sorting on
multi-dimensional meshes of side length n that achieves
a running time of 3D/2 + o(n). The algorithm has a
fairly simple structure, and does not make any copies
of the packets. Next, we show that the running time of
the algorithm can be reduced to 50/4 4 o(n) by making
one copy of each packet. A similar technique is then ap-
plied to the multi-dimensional torus, leading to a deter-
ministic algorithm with a running time of 3D/2 + o(n).
In contrast, the fastest previously known sorting algo-
rithms required 2D —5n/2+ o(n) steps on the mesh and
2D — n+ o(n) steps on the torus.

Thus, our algorithms improve significantly over all
previous results for sorting, and in fact even for off-line
routing, on multi-dimensional meshes and tori. The
ideas underlying our algorithms are quite simple, but
the techniques used in the design and analysis are some-
what different from those in previous papers on multi-
dimensional networks. While we restrict our attention
in this paper to constant values of d, the claimed time
bounds also hold for a limited range of networks of non-
constant dimension.

In addition, we show lower bounds for sorting with
respect to a large class of indexing schemes, under a
model of the mesh where each processor can hold an
arbitrary number of packets. Our lower bounds are the
first non-trivial lower bounds for sorting in the multi-
packet model of the mesh, and they imply that our upper
bounds are nearly optimal on networks of sufficiently
high constant dimension under a large class of indexing
schemes. (In fact, we are not aware of any fast sorting
algorithm for multi-dimensional networks that uses an
indexing scheme not covered by our lower bound.) Using
similar 1deas, we can also establish a lower bound for
selection on multi-dimensional meshes.

Finally, we describe algorithms for permutation
routing on multi-dimensional meshes and tori whose
running times nearly match the diameter lower bound.
In particular, our algorithms achieve a running time of
D+ en, for any € > 0 and d sufficiently large (depending
on €).

Due to space constraints, some of the proofs have

been omitted from this abstract. A more detailed de-
scription of our results will be given in a later version of
the paper.

The remainder of this paper is organized as follows.
Section 2 contains some useful definitions and lemmas.
Section 3 gives improved algorithms for sorting on multi-
dimensional meshes and tori. Section 4 contains our
Section b describes our algorithms for
permutation routing. Finally, Section 6 lists some open
questions for future research.

lower bounds.

2 Preliminaries

In this section, we give some useful definitions and lem-
mas. We begin with a brief review of a “derandomiza-
tion” technique for routing and sorting algorithms re-
cently proposed in [6]. In Subsection 2.2, we state some
results on greedy routing of random permutations.

2.1 Randomization and Unshuffling

In the following, we describe a “derandomization” tech-
nique proposed in [6], which can be used to convert
many randomized algorithms for routing and sorting on
meshes into deterministic algorithms. The technique is
based on an operation called sort-and-unshuffle. The
purpose of this operation is to evenly distribute packets
with similar destinations (in the case of routing) or sim-
ilar ranks (in the case of sorting) over some large region
of the network, using a combination of local sorting and
“unshuffling”.

In the following, we assume a blocked snake-like
indexing scheme on a d-dimensional mesh, where the
blocks have side length n® with 2/3 < « < 1. In the
first step of the sort-and-unshuffle operation, the pack-
ets are sorted inside each block. In the second step, the
packets of each block are distributed evenly over all the
blocks. This is done by routing the packet of rank i,
0 < i< n?% in block j, 0 < j < n%1=%) to position
j+ |i/n®=| . nd1=2) in block i mod n¥*~%). Note
that this second step is an off-line routing problem; the
particular permutation that has to be routed will be re-
ferred to as unshuffle permutation. (Note that if we lay
out the processors of the network in a chain according to
the indexing function, then this permutation is identical
to an (n®1~*))-way unshuffle operation on the chain.)

The structure of this unshuffle permutation exhibits
many of the “nice” properties commonly associated with
“average” or “random” permutations. In particular, the
unshuffle permutation has the property that the destina-
tions of the packets in any region of the network are ap-
proximately evenly distributed over the entire network.
As a consequence, the unshuffle permutation can in most
cases be routed as efficiently as a random permutation.

(In fact, this claim can be formalized under certain con-
ditions.)

It was shown in [6] that the sort-and-unshuffle op-
eration can in many cases be employed as a “substi-
tute” for randomization. Following a scheme originally
proposed by Valiant and Brebner [19], many random-
ized algorithms for routing and sorting on meshes start
by sending the packets to random intermediate desti-
nations. This has the effect of distributing packets with
destinations close to each other evenly over the network.
The sort-and-unshuffle operation simulates this effect in
a deterministic manner. Using this relationship between
randomization and the sort-and-unshuffle operation, the
algorithms of this paper can be described in both ran-
domized and deterministic terms.

2.2 Some Results on Greedy Routing

Routing is used as an important subroutine in many
sorting algorithms for fixed-connection networks. In the
algorithms presented in this paper, we need efficient
routing schemes for random permutations (in the ran-
domized case) and for unshuffle permutations (in the de-
terministic case). Our routing schemes are based on an
extension of the standard greedy routing scheme. This
routing scheme routes a packet on a d-dimensional mesh
by moving it greedily towards its destination along edges
of increasing dimension. In the case of edge contentions,
priority is given to the packet with the farthest distance
to travel.

In our extension of this routing scheme, k& permu-
tations are simultaneously routed by running d “copies”
of the above greedy routing scheme. More precisely, we
partition the set of packets into d sets Sy, ..., 5¢—1 of
approximately equal size, such that the origins and des-
tinations of the packets in each set are approximately
evenly distributed over the entire network. This can be
done either in a randomized way, by having each packet
choose a random set S;, or in a deterministic way, by
locally sorting blocks of side length o(n), and defining
S; as the set of packets with a local rank y such that
y mod d = 7. The packets in set 5; are then routed along
edges of increasing dimension modulo d; starting with
dimension ¢ and ending with dimension (i — 1) mod d.

It is a natural question to ask how many random
permutations can be routed simultaneously under the
above routing scheme. To make this question more
precise, we define the notions of diameter-optimal and
distance-optimal routing. We say that a routing algo-
rithm on a d-dimensional mesh is diameter-optimal if
all packets are delivered to their destination in time
D + o(n), where D is the diameter of the network. We
say that a routing algorithm is distance-optimal if each
packet is delivered in time S + o(n), where S is the
distance between the source and the destination of the

packet.

In the context of an optimal randomized algo-
rithm for k—k sorting, it was shown by Kaufmann, Ra-
jasekaran, and Sibeyn [5] that up to 4d random permuta-
tions can be routed diameter-optimally on d-dimensional
meshes and tori, with high probability. The same bound
can also be shown for the unshuffle permutation, leading
to the optimal deterministic algorithm for k—k sorting
in [6]. However, these results cannot be extended to the
case of distance-optimal routing.

For the standard greedy routing scheme, Leighton
[13] has shown that a random permutation can be routed
distance-optimally on d-dimensional meshes and tori,
with high probability. For the extended greedy routing
scheme, we can show the following result.

Lemma 2.1 Up to 2d random permutations can be
routed distance-optimally on the d-dimensional torus,
with high probability.

Proof: (Sketch) Due to the structure of the torus, it
suffices to consider the movement of the packets within
a single dimension of the network. Initially, we assign
2 of the 2d random permutations to each dimension of
the torus. Note that the destinations of the packets in
each dimension are evenly distributed over all processors
in the ring, and the distances between sources and des-
tinations are evenly distributed over [n/2]. Whenever
a packet reaches its destination in the ring, it moves
on to the next higher dimension. On the other hand,
we can assume that any new packet that arrives in the
current dimension chooses a random destination within
the ring. Thus, we can analyze the movement of the
packets within the current dimension by considering
an appropriate dynamic routing problem, as defined by
Leighton [13]. O

Unfortunately, this analysis does not extend to the
case of the d-dimensional mesh without wrap-around
edges. In fact, it is not difficult to show that even d ran-
dom permutations cannot be routed distance-optimally
on the d-dimensional mesh under the extended greedy
routing scheme. Using a more complicated analysis, we
can show the following results for meshes without wrap-
around edges.

Lemma 2.2 For d > 3, two random permutations can
be routed distance-optimally on the d-dimensional mesh,
with high probability.

Lemma 2.3 Up to |d/2]| random permutations can be
routed distance-optimally on the d-dimensional mesh,
with high probability.

Lemmas 2.1, 2.2, and 2.3 also extend to the case of
the unshuffle permutation. We believe that the result

of Lemma 2.3 can be slightly improved, but we do not
yvet have an exact bound on the number of random per-
mutations that can be routed distance-optimally on the
d-dimensional mesh.

3 Upper Bounds for Sorting

In this section, we give improved algorithms for 1-1 sort-
ing on multi-dimensional meshes and tori. In the first
subsection, we describe the basic ideas underlying our
algorithms. Subsections 3.2 and 3.3 contain our algo-
rithms for multi-dimensional meshes and tori, respec-
tively.

3.1 Basic Ideas

The basic ideas underlying our algorithms are quite sim-
ple. Consider the case of the d-dimensional mesh, and
let C' denote the set of processors that have a distance
of at most D/4 from the center. Tt is not difficult to
see that exactly half of the processors of the network are
contained in this center region C'. Also, no processor
in C has a distance of more than 3D/4 from any other
processor of the network.

These observations lead to the following idea for a
fast sorting algorithm. In the first phase, we concen-
trate all packets into the center region C', in such a way
that packets of similar ranks are evenly distributed over
C. This can be done either in a randomized or in a
deterministic fashion. Next, we locally sort the packets
inside each block of side length n® (as defined by the
blocked indexing scheme) that is contained in C'. Since
all packets were evenly distributed over the center region
in the first phase, we can use the local ranks of the pack-
ets to obtain good approximations of the global ranks,
and hence the final destinations, of all packets. In the
third phase, we route each packet to some location in
the block containing its approximate final destination.
In the fourth phase, we use local sorting to bring each
packet to its final destination.

Note that no packet has to travel a distance of more
than 3D/4 in the first or the third phase. Thus, if we
can show that the routing in these two phases can be
done distance-optimally, then the above scheme runs in
time 3D/2 + o(n).

In the next subsection, we give a more detailed de-
scription of a deterministic algorithm based on the ideas
presented in this section. We show that the routing
problems in the first and third phase of the algorithm
can be reduced to the simultaneous routing of several
unshuffle permutations. We also present an even faster
algorithm that makes one copy of each packet. In Sub-
section 3.3, we use similar ideas to obtain algorithms for
the d-dimensional torus.

3.2 Sorting on Multi-Dimensional Meshes

In the following, we give fast deterministic sorting al-
gorithms based on the ideas described in the previous
subsection. We assume a blocked snake-like indexing
scheme with blocks of side length n®. In addition,
we also assume an arbitrary fixed numbering of the
n?1=2) /2 blocks located in the center region C, inde-
pendent of the indexing scheme. We begin with the
following simple algorithm:

Algorithm SimpleSort:

(1) Sort the packets in each block of side length n?.

(2) Distribute the packets in each block evenly over all
blocks in C'. This is done by routing the packet
of rank 7, 0 < i < n%, in block j, 0 < j <
nd1=%) o position j+ Li/nd(l_“)J n?1=2) in block
i mod (n¥*=2)/2) in C. (Here, the numbering of
the destination blocks 1s with respect to the arbi-
trary fixed numbering of the blocks in C'.) Note that
each processor in (' receives exactly two packets.

(3) Sort the packets in each block of side length n® in
C.

(4) Send the packets in each block in C' towards their
destinations. This is done by routing the packet of
rank 7, 0 < i < 2n% in block j, 0 < j < n¥1=)/2
of C to position j 4 (i mod 2nd2a=1)). nd1-2) /9 iy
block |i/(2n¥?¢=1))]. (Here, the numbering of the
source blocks is with respect to the arbitrary fixed
numbering of the blocks in C'.) Note that each pro-
cessor in the network receives exactly one packet.

(5) Perform two steps of odd-even transposition sort
between neighboring blocks.

The correctness of the above algorithm is implied
by the following lemma, which can be proved along the
lines of Lemma 3.2 in [6].

Lemma 3.1 After Step (4) of Algorithm SimpleSort,
each packet is at most one block away from its destina-
tion.

Next, we analyze the running time of the above al-
gorithm. Clearly, Steps (1), (3), and (5) each run in time
O(n®) = o(n). For the routing in Step (2), the following
can be shown.

Lemma 3.2 Step (2) of Algorithm SimpleSort can be
reduced to the routing of two partial unshuffle permuta-
tions.

Proof: Consider the packets of a single unshuffle per-
mutation 7. Let S be the set of processors that contain a
packet with destination in C'. In each block, exactly half
of the processors are in S, and the destinations of the
packets in these processors are evenly distributed over
all blocks in C'. Let ' be the partial permutation con-
sisting only of the packets that are initially located in S.
After 7’ has been routed, we move the remaining half of
the packets to the processors in S. By routing another
instance of the partial unshuffle permutation 7/, we can
now distribute these remaining packets evenly over the
blocks in C'. Of course, the two instances of 7’ can also
be started simultaneously. O

By Lemma 2.2, we know that two partial unshuf-
fle permutations can be routed distance-optimally on
meshes of dimension d > 3. Since no packet has to travel
a distance of more than 3D/4, this implies that the rout-
ing is completed in time 3D/4 + o(n). Also note that
the routing problem in Step (4) is exactly the inverse of
the problem in Step (2), and therefore runs within the
same time bound. This establishes the following result.

Theorem 3.1 For any constant d, there exists a deter-
ministic sorting algorithm for the d-dimensional mesh
with a running time of 3D/2 + o(n) that does not make
any copies of the packets.

By Lemma 2.3, up to |d/2] unshuffle permuta-
tions can be routed distance-optimally on d-dimensional
meshes. By modifying Algorithm SimpleSort appropri-
ately, we can use this extra bandwidth to establish the
following result for k—k sorting.

Corollary 3.1.1 If k < |d/4], then there exists a deter-
ministic algorithm for k—k sorting on the d-dimensional
mesh with a running time of 3D /2 + o(n) that does not
make any copies of the packets.

We can also get a slight improvement in the running
time for 1-1 sorting, by concentrating the packets into
a smaller center region C'. In general, however, the run-
ning time of this improved algorithm is still (3/2 — ¢)D,
for all € > 0 and d sufficiently large (depending on ¢).

Corollary 3.1.2 Let C(r) be the set of processors of
distance at most r from the center point. If |C(r)| >
2n?/d, then there exists a deterministic sorting algo-
rithm for the d-dimensional mesh with a running time

of D+ 2r + o(n).

Next, we show that the time for 1-1 sorting can
be reduced to 5D/4 + o(n) by making one copy of each
packet. To do so, we modify Algorithm SimpleSort ap-
propriately; the resulting algorithm is called CopySort.
Steps (1), (3), and (5) remain the same as in Algorithm

SimpleSort. The routing in Step (2) of SimpleSort is
augmented as follows. As before, we distribute the pack-
ets evenly over the blocks in C'. In addition, we make one
copy of each packet, and route this copy to a processor
in the unique block of the center region C that is located
exactly on the opposite side of the center point than the
destination processor of the original in this step, and
that has the same distance from the center point. The
routing of the copies can be done simultaneously with
the routing of the originals, and the entire Step (2) can
be implemented by routing four partial unshuffle per-
mutations. By Lemma 2.3, the routing is completed in
3D/4 + o(n) steps for d > 8. The following lemma can
be shown using simple geometric arguments.

Lemma 3.3 After Step (3) of Algorithm CopySort, no
processor in the network is more than a distance of
D/2 4 o(n) away from both the original and the copy
of any packet.

In Step (4) of CopySort, we first delete either the
original or the copy of each packet, depending on which
one is farther away from the destination. Then the re-
maining packets are routed towards their destination. It
can shown that this routing can again be implemented
by four partial unshuffle permutations. By Lemma 3.3,
no packet has to travel more than a distance of D/2.
This establishes the following result.

Theorem 3.2 For any constant d > 8, there exists a de-
terministic sorting algorithm for the d-dimensional mesh
with a running time of 5D/4 4 o(n).

For larger values of d, this result can again be
slightly improved by concentrating into a smaller center
region. Alternatively, we can also adapt the algorithm

to k—k sorting with k£ < |d/8].

3.3 Sorting on Multi-Dimensional Tori

In this subsection, we adapt the ideas of the previous
subsections to the case of the d-dimensional torus. We
describe a modification of the Algorithm CopySort from
the previous subsection, which we refer to as TorusSort.
As before, Steps (1), (3), and (5) perform local sorting
operations. In Step (2), we distribute the packets evenly
over the entire network. In addition, we also make a copy
of each packet, and route this copy to a processor in the
unique block in the network that is D/2 steps away from
the destination processor of the original packet in this
step. Step (2) can be implemented by routing two full
unshuffle permutations; the routing takes time D+o(n).
Then the following lemma can be shown using simple
geometric arguments.

Lemma 3.4 After Step (3) of Algorithm TorusSort, no
processor in the network is more than a distance of
D/2 4 o(n) away from both the original and the copy
of any packet.

As before, half of the packets are deleted in Step (4),
and the remaining packets are routed towards their des-
tination. This routing can be implemented by two par-
tial unshuffle permutations. By Lemma 3.4, no packet
has to travel more than a distance of D/2+ o(n). Using
Lemma 2.1 we obtain the following result.

Theorem 3.3 For any constant d, there exists a deter-
ministic sorting algorithm for the d-dimensional torus
with a running time of 3D/2 4 o(n).

By modifying Algorithm TorusSort appropriately,
and using the extra bandwidth supplied by Lemma 2.1,
we can establish the following result.

Corollary 3.3.1 For any constant d, there exists a
deterministic algorithm for d-d sorting on the d-
dimensional torus with a running time of 3D/2 4 o(n).

Alternatively, we can also get a slight improvement
in the running time for 1-1 sorting. As an example,
we can obtain a fairly simple algorithm for the two-
dimensional torus that uses four copies of each packet
and runs in time 1.375n. In general, however, the run-
ning time of the improved algorithm is still (3/2 — ¢)D,
for all € > 0 and d sufficiently large (depending on ¢).

4 Lower Bounds for Sorting

In this section, we establish lower bounds for sorting
on multi-dimensional meshes and tori under the multi-
packet model. The lower bounds hold for a large class
of indexing schemes, including most of the indexing
schemes used in the literature. Our lower bound tech-
nique is an extension of the Joker Zone argument of
Kunde [7] and Schnorr and Shamir [17] to the multi-
packet model. An important difference is that our lower
bounds are based on edge capacity arguments, and do
not place any limits on the number of packets that can
be held inside a single processor. We begin the section
with a few definitions.

We say that an indexing scheme Z of the d-
dimensional mesh is compatible if there exists a § < 1
such that for every index i € [n? — n”9], the set of pro-
cessors with indices in {i,...,i + n?? — 1} contains a
complete (d — 1)-dimensional subnetwork of side length
n. (Informally speaking, this means that a compatible
indexing scheme has the property that a joker zone of
n?? packets suffices to move the final destination of a
packet to any processor within a (d — 1)-dimensional

sub-network.) Note that the natural extensions of the
row-major, snake-like, blocked row-major, and blocked
snake-like indexing schemes to multi-dimensional net-
works are compatible indexing schemes. In the remain-
der of this section, we assume an arbitrary compatible
indexing scheme with associated constant 3.

We use Cy, to denote the processors of a d-
dimensional diamond of radius (1 —) - D/4 around the
center of a d-dimensional mesh. (That is, the set of pro-
cessors that have a distance of at most (1—+)-D/4 from
the center.) The number of processors in Cy , is denoted
by Vg, and the number of processors on the surface of
Cg, 1s denoted by Sz . Then the following bounds can
be shown.

Lemma 4.1 For any d and any v > 0, we have
Vi < e~ A4 pd

and

4.1 Sorting without Copying

We first establish a lower bound for sorting under the
restriction that no copies of the packets can be made.
Our main lemma for this case is as follows.

Lemma 4.2 Let d and v be chosen such that

1 1-
de”y((i—i_pr) D—dnﬁ) <nd—Vdﬁ

holds for large enough n. If no copying of packets is al-
lowed, then sorting on the d-dimensional mesh with re-
spect to an arbitrary compatible indexing scheme takes
at least D+ (1 —) - D/2 — n — dnP steps.

Proof: Consider the computation of an arbitrary sort-
ing algorithm up to time (3 + 1_77) - D —dn”?. At most
d - Sq~ packets can enter the diamond Cy - in each step.
Thus, the above inequality implies that not all of the
nd — Vi~ packets that are initially outside the diamond

can have entered up to this point.

Now consider an arbitrary packet located outside
the diamond at time (% + 17%) - D — dn”. This packet
has a distance of at least (% + 1_77) - D from at least one
of the corners of the network. (Otherwise, the packet
would be in the diamond.) Thus, the present position
of the packet is independent of the content of a block of

side length n” located in that corner.

As we assume a compatible indexing scheme, the
content of this block can force the destination of the
packet to be in any processor of a (d — 1)-dimensional
sub-network of side length n. There exists a processor

in this sub-network that has a distance of at least (% +
1=y
1

Hence, at least (% + 1_77) - D — n additional steps are

needed under some assignment of values to the corner

block. O

) - D —n from the current position of the packet.

Theorem 4.1 If no copying of packets is allowed, then
for every € > 0 there exists a dy such that for all d >
dy, sorting on the d-dimensional mesh with respect to
a compatible indexing scheme takes at least (3/2 —¢)D
steps.

To establish this theorem, we use Lemma 4.1 to
show that the condition in Lemma 4.2 holds for v = 3e
and d sufficiently large (depending on €), The claim then
follows by a direct application of Lemma 4.2. Together
with Theorem 3.2, this result establishes a separation
between the complexities of sorting with and without
copying, for large values of d. Unfortunately, Lemma 4.1
does not give any good bounds for small values of d. In
this case, we can show lower bounds by adapting our
argument to the particular network in question. In par-
ticular, we can establish the following theorem.

Theorem 4.2 If no copying of packets is allowed, then
for d > 5 the diameter bound cannot be asymptotically
matched under any compatible indexing scheme.

For the torus, it can be shown that the lower bounds
for the single-packet model also extend to the multi-
packet model, assuming that no copying is allowed. In-
formally speaking, the reason is that the torus does not
have a center point towards which the packets could be
routed.

4.2 Sorting with Copying

Our lower bound techniques can also be extended to a
model in which unlimited copying of packets is allowed.
For this case, we obtain the following result.

Theorem 4.3 If unlimited copying of packets is al-
lowed, then for every € > 0 there exists a dy such that
for all d > dy, sorting on the d-dimensional mesh with
respect to a compatible indexing scheme takes at least

(5/4 — €)D steps.

We only describe the main ideas in the proof of the
above theorem. The basic idea for this lower bound is
that we choose the center diamond small enough such
that only a small fraction of the packets can be routed
into this diamond. Next, we argue that the edge band-
width of the network does not allow every packet to
distribute a large number of copies of itself over the net-
work. (Formally, the number of communication steps

required to route copies of a packet to a number of lo-
cations in the network is lowerbounded by the length of
a minimal “broadcast tree” connecting these locations.)
This implies that an appropriate loading of the joker
zones can force the rank of a packet to be such that no
copy 1s close to its destination.

However, this technique does not give any non-
trivial lower bounds for reasonable values of d. We
expect that some results for smaller d can be ob-
tained by adapting our argument to the particular low-
dimensional network in question. We plan to report the
results of such an analysis in a later version of this pa-
per. In the case of the torus, we obtain the following
result.

Theorem 4.4 If unlimited copying of packets is al-
lowed, then for every € > 0 there exists a dy such that
for all d > dy, sorting on the d-dimensional torus with
respect to a compatible indexing scheme takes at least

(3/2 — €)D steps.

The lower bounds can also extended to many non-
compatible indexing schemes. In fact, it is not difficult to
show that the above bounds hold for the vast majority
of all possible indexing schemes. (A similar result for
the single-packet model was described by Kunde [8].)
Of course, such a result is not a very good measure for
the generality of our lower bounds, since most indexing
schemes are highly irregular and thus unsuitable for any
efficient sorting scheme. More important in this respect
is that we are not aware of any fast sorting algorithm
that assumes an indexing scheme not covered by our
lower bound. This indicates that any such algorithm
would probably be quite different from those currently
known.

4.3 Selection

Using similar ideas, we can also show a lower bound of
(9/16 — €) - D for the problem of selecting the median at
the center processor of a high-dimensional mesh. A triv-
1al lower bound for this problem is given by the radius
of the network. (That is, D/2 for the multi-dimensional
mesh and D for the multi-dimensional torus.)

By Lemma 4.1, we know that for any ¢ > 0 and any
sufficiently large d, only a small fraction of the packets
can enter Cy . in the first D/2 steps of any algorithm.
Let = be any processor outside Cy .. Then the set of
processors that have a distance of at most (5/16—2¢)-D
from # contains only a small fraction of the n? processors
in the network. This means that up to time (5/16 — 2¢) -
D, no packet located outside Cy . can be “ruled out” as
the median element. Hence, up to (1—¢)-D/4 additional
steps are necessary to move the median to the center
processor, and we get the following result.

Theorem 4.5 For every € > 0 there exists a dy such
that for all d > dy, selection on the d-dimensional mesh
takes at least (9/16 — €) D steps.

An upper bound of D + o(n) can be obtained by
a modification of the sorting algorithms in Section 3.
For large values of d, this result can be improved to
(3/44+¢€)- D. On the multi-dimensional torus, a running
time of (14¢)-D can be achieved for large d, thus coming
very close to the trivial lower bound of D.

5 Permutation Routing

The lower bounds established in the previous section are
restricted to the case of sorting. In this section, we show
the existence of algorithms for permutation routing on
multi-dimensional networks that nearly match the di-
ameter lower bound. The algorithms are based on sim-
ilar ideas as the sorting algorithms in Subsection 3. In
particular, they use a similar reduction to the distance-
optimal routing of a number of unshuffle permutations.

Consider the following idea for a randomized rout-
ing algorithm. For a packet with source processor z and
destination processor y, we define S(z,y) as the set of
processors that have a distance of at most D/2 from
both # and y. Note that S(z,y) is non-empty for all
and y. Thus, a simple two-phase algorithm could route
a packet with source # and destination y by first sending
the packet to a random processor in S(z,y), and then
to 1ts destination y. If we could solve the resulting two
routing problems distance-optimally, then we would ob-
tain a total running time of D + o(n) for the algorithm.

Unfortunately, we do not know how to reduce these
two routing problems to a small number of random or
unshuffle permutations. To do so, we have to modify the
above algorithm slightly. We define S, (#, y) as the set of
processors that have a distance of at most D/2+ v from
both # and y. In the first phase of the algorithm, we
now route each packet with source x and destination y
to a random processor in S, (x,y). In the corresponding
deterministic algorithm, we partition the network into
blocks of side length n®, and distribute all packets with
source in block X and destination in block Y evenly
over S, (X,Y), the set of blocks that have a distance of
at most D/2 + v from both block X and block V.

If we choose v such that & -|S,(X,Y)| > n? holds
for all blocks X and Y, then we can reduce each phase of
the algorithm to the simultaneous routing of £ unshuffle
permutations. For a block X, define ¢(X) as the corner
processor that is closest to X. Then we can lowerbound
Sy(X,Y) by Sy(e(X),e(Y)). An analysis shows that for
d >4 and v = n/2, we have [d/2] -|S,(c(X),e(Y))] >
n?, and hence we can reduce each phase of the algorithm
to the routing of |d/2] unshuffle permutations. Using
Lemma 2.3, we obtain the following result.

Theorem 5.1 For all d, there exists a deterministic al-
gorithm for permutation routing on the d-dimensional
mesh with a running time of D + n + o(n).

The routing scheme can be easily adapted to the
multi-dimensional torus. For d > 4 and v = n/16, we
have 2d - |5, (X,Y)| > n¢, and by Lemma 2.1 we obtain
the following result.

Theorem 5.2 For all d, there exists a deterministic al-
gorithm for permutation routing on the d-dimensional
torus with a running time of D + n/8 4+ o(n).

Finally, a sharper analysis using bounds similar
to those in Lemma 4.1 shows that in high-dimensional
meshes (tori), most processors have a distance of around
D/2 from any particular corner (any particular proces-
sor). This means that as d increases, we can choose
smaller and smaller values for v.

Theorem 5.3 For all € > 0, there exists a dy such that
for all d > dy, permutation routing can be done in time
D + en on d-dimensional meshes and tori.

6 Concluding Remarks

In this paper, we have shown improved bounds for rout-
ing and sorting on multi-dimensional meshes and tori.
While our bounds are nearly tight for high-dimensional
networks, we do not obtain very good bounds for net-
works of small, fixed dimension. In particular, it is an
interesting open question whether there exists an opti-
mal algorithm for sorting on the two-dimensional mesh
that does not make any copies, or whether any optimal
sorting algorithm exists for some d > 3.

We are currently investigating whether the lower
bounds for sorting can be extended to arbitrary indexing
schemes. One possible approach to this problem is to
adapt some of the techniques that have been used to
show lower bounds for arbitrary indexing schemes in the
single-packet model [1].

It would also be nice to obtain algorithms for per-
mutation routing that match the diameter bound more
closely. For example, one might try to overlap the two
routing phases of the algorithm in Section 5, and bound
the running time of the resulting algorithm. Finally, it
is an open question whether the diameter and bisection
bounds can be matched simultaneously for routing on
networks of dimension d > 2.

Acknowledgements

I would like to thank Greg Plaxton and Rajmohan Ra-
jaraman for helpful discussions.

References

(1]

[2]

[10]

Y. Han and Y. Igarashi. Time lower bounds for par-
allel sorting on multidimensional mesh-connected

processor arrays. Information Processing Letters,

33:233-238, 1990.

Y. Han, Y. Igarashi, and M. Truszczynski. Index-
ing functions and time lower bounds for sorting on a
mesh-connected computer. Discrete Applied Math-
ematics, 36:141-152, 1992.

C. Kaklamanis and D. Krizanc. Optimal sorting on
mesh-connected processor arrays. In Proceedings of
the 4th Annual ACM Symposium on Parallel Algo-
rithms and Architectures, pages 50-59, July 1992.

C. Kaklamanis, D. Krizanc, L. Narayanan, and
T. Tsantilas. Randomized sorting and selection on
mesh-connected processor arrays. In Proceedings of
the 3rd Annual ACM Symposium on Parallel Algo-
rithms and Architectures, pages 17-28, July 1991.

M. Kaufmann, S. Rajasekaran, and J. F. Sibeyn.
Matching the bisection bound for routing and sort-
ing on the mesh. In Proceedings of the 4th Annual
ACM Symposium on Parallel Algorithms and Ar-
chitectures, pages 31-40, July 1992.

M. Kaufmann, J. Sibeyn, and T. Suel. Derandom-
izing algorithms for routing and sorting on meshes.
In Proceedings of the Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 669679,
January 1994.

M. Kunde. Lower bounds for sorting on mesh-
connected architectures. Acte Informatica, 24:121—

130, 1987.

M. Kunde. Bounds for 1-selection and related prob-
lems on grids of processors. In Proceedings of the
4th International Workshop on Parallel Processing
by Cellular Automata and Arrays (PARCELLA),
pages 298-307. Springer, 1988.

M. Kunde. Routing and sorting on mesh-connected
arrays. In J. H. Reif, editor, VLSI Algorithms and
Architectures: Proceedings of the 3rd Aegean Work-
shop on Computing, Lecture Notes in Computer
Science, volume 319, pages 423-433. Springer, 1988.

M. Kunde. Balanced routing: Towards the distance
bound on grids. In Proceedings of the 3rd Annual
ACM Symposium on Parallel Algorithms and Ar-
chitectures, pages 260-271, July 1991.

M. Kunde. Concentrated regular data streams on
grids: Sorting and routing near to the bisection
bound. In Proceedings of the 32nd Annual IEEE
Symposium on Foundations of Computer Science,

pages 141-150, October 1991.

10

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

M. Kunde. Block gossiping on grids and tori: De-
terministic sorting and routing match the bisection
bound. In Proceedings of the 1st Annual Furopean
Symposium on Algorithms, September 1993.

F. T. Leighton. Average case analysis of greedy
routing algorithms on arrays. In Proceedings of
the 2nd Annual ACM Symposium on Parallel Al-
gorithms and Architectures, pages 2-10, July 1990.

F. T. Leighton. Introduction to Parallel Algorithms
and Architectures: Arrays, Trees, and Hypercubes.
Morgan-Kaufmann, San Mateo, CA, 1991.

D. Nassimi and S. Sahni. Bitonic sort on a mesh-
connected parallel computer. IEEFE Transactions

on Computers, C-28:2-7, 1979.

S. E. Orcutt. Computer Organization and Algo-
rithms for Very-High Speed Computations. PhD
thesis, Department of Computer Science, Stanford
University, September 1974.

C. P. Schnorr and A. Shamir. An optimal sorting
algorithm for mesh-connected computers. In Pro-
ceedings of the 18th ACM Symposium on Theory of
Computing, pages 25b-263, May 1986.

C. D. Thompson and H. T. Kung. Sorting on a
mesh-connected parallel computer. Communica-

tions of the ACM, 20:263-271, 1977.

L. G. Valiant and G. J. Brebner. Universal schemes
for parallel communication. In Proceedings of the
13th Annual ACM Symposium on Theory of Com-
puting, pages 263-277, May 1981.

