
Improved Bounds for Routing and Sortingon Multi-Dimensional MeshesTorsten Suel�Department of Computer ScienceUniversity of Texas at AustinAbstractWe show improved bounds for 1{1 routing and sortingon multi-dimensional meshes and tori. In particular, wegive a fairly simple deterministic algorithm for sorting onthe d-dimensional mesh of side length n that achieves arunning time of 3dn=2+o(n) without making any copiesof the elements. We give deterministic algorithms withrunning times of 5dn=4+ o(n) and 3dn=4+ o(n) for thed-dimensional mesh and torus, respectively, that makeone copy of each element. We also show lower bounds forsorting with respect to a large class of indexing schemes,under a model of the mesh where each processor can holdan arbitrary number of packets. Finally, we describealgorithms for permutation routing whose running timescome very close to the diameter lower bound.1 IntroductionThe mesh-connected arrays of processors are one of themost thoroughly investigated classes of interconnectionschemes for parallel processing. While the networks inthis class have a large diameter in comparison to the var-ious hypercubic networks, they are nonetheless of greatimportance due to their simple structure and their goodperformance in many applications. A variety of algorith-mic problems have been analyzed as to their complexityon theoretical models of the mesh; probably the twomost extensively studied problems are those of routingand sorting. For a detailed introduction into these prob-lems, and an overview of the most important classes ofinterconnection schemes, the reader is referred to [14].�Email: torsten@cs.utexas.edu. Supported by the TexasAdvanced Research Program under Grant Nos. 003658{480 and003658{461, and by a Schlumberger Graduate Fellowship.0

Much of the previous work on meshes has con-centrated on the one-dimensional and two-dimensionalcases. Particularly the two-dimensional networks are ofgreat practical importance due to their e�cient layout,and have been used as the basis for a number of existingparallel machines. In contrast, the meshes of dimen-sion d > 2 (hereinafter referred to as multi-dimensionalmeshes) have received somewhat less attention. Whilethe problems of routing and sorting on these networkshave previously been studied by a number of authors,there are still considerable gaps between the best upperand lower bounds.In this paper, we focus on the problems of 1{1 rout-ing and sorting on multi-dimensional meshes with con-stant dimension d. Formally, a d-dimensional mesh ofside length n consists of N = nd processors, where eachprocessor is identi�ed by a d-tupel (p1; : : : ; pd) in [n]d.(We use [n] to denote the set f0; : : : ; n� 1g.) Two pro-cessors P = (p0; : : : ; pd�1) and Q = (q0; : : : ; qd�1) areconnected by a bidirectional communication link i� thereexists an i in [d] with jpi � qij = 1 and pj = qj for allj in [d] with j 6= i. The d-dimensional torus is obtainedfrom the d-dimensional mesh by adding wrap-aroundedges between all pairs of processors (p0; : : : ; pd�1) and(q0; : : : ; qd�1) such that there exists an i in [d] withjpi � qij = n� 1 and pj = qj for all j in [d] with j 6= i.We assume that the processors in the network oper-ate in a synchronous mode. In a single step of the com-putation, each processor can perform some �xed amountof internal computation, and transmit one packet of in-formation (of bounded size) to each of its neighbors. Aprocessor can hold at most a constant number of packetsat any time.The routing problem is the problem of rearranginga set of packets in a network, such that every packetends up at the processor speci�ed in its destination ad-dress. A routing problem in which each processor is thesource and destination of at most k packets is called ak{k routing problem. Most research has focused on the1{1 routing problem, also called the permutation rout-ing problem. In the k{k sorting problem, we assume1



that each processor initially holds k packets, where eachpacket contains a key drawn from some totally orderedset X. Our goal is to rearrange the packets in such away that the packet with the key of rank i is moved tothe processor with index bi=kc, for all i. As in the caseof routing, most of the research has focused on the casek = 1.The index of a processor in the network is deter-mined by an indexing scheme. Formally, an indexingscheme for a d-dimensional mesh of side length n is abijection I from [n]d to [nd]. If I(P ) = k for some pro-cessor P = (p0; : : : ; pd�1) in [n]d and some k in [nd],then we say that processor P has index k. The problemof sorting an input with respect to an indexing schemeI is to move every packet y of the input to the processorwith index I(Rank (y;X)), where Rank (y;X) def= jfx 2X j x < ygj. An example of a commonly used indexingscheme for the two-dimensional mesh is the row-majorindexing scheme, which is given by indexing the proces-sors from the left to the right, and from the top rowto the bottom row. Another important and closely re-lated indexing scheme is the snake-like row-major order-ing de�ned by I(i1; j1) < I(i2; j2) , (i1 < i2) _ ((i1 =i2) ^ (((i1 odd ) ^ (j1 < j2)) _ ((i1 even ) ^ ((j1 > j2)))).Both of these indexing schemes can be naturallyextended to multi-dimensional networks; see [11] for aformal de�nition. Sorting algorithms on the mesh areusually designed with a particular indexing scheme inmind, and techniques suitable for one indexing schememay not work well at all for others. In the algorithmspresented in this paper, we assume a blocked snake-likeindexing scheme. This indexing scheme is de�ned bypartitioning the mesh into blocks of side length n�, andusing a snake-like indexing scheme inside each block,while the blocks themselves are ordered according toanother snake-like indexing. Similar blocked indexingschemes have recently been used in a number of fastsorting algorithms (e.g., see [3, 4, 6, 12]).An obvious lower bound for the running time ofany algorithm for 1{1 routing or sorting is given by thediameter D of the network. (That is, D = d(n � 1)for the d-dimensional mesh and D = dn=2 for the d-dimensional torus.) The performance of an algorithmfor routing or sorting on theoretical models of the meshis commonly measured by its running time, its queuesize (that is, the maximumnumber of packets any nodehas to store during the algorithm), and of course byfactors such as the overall simplicity of the algorithmand the demands it places on the local control hardwareor software. In this paper, we will focus on the timecomplexity of routing and sorting on meshes and tori ofarbitrary constant dimension, and we will express ourresults in terms of the diameter D of the network.

1.1 Previous ResultsA variety of sorting algorithms for the two-dimensionalmesh have been proposed, starting with the work of Or-cutt [16] and Thompson and Kung [18]. In particular,Schnorr and Shamir [17] gave a 3n+o(n) time algorithmfor sorting into row-major order, and showed a nearlymatching lower bound of 3n� o(n), also independentlydiscovered by Kunde [7]. This lower bound assumes amodel of the mesh, hereinafter referred to as the single-packet model, in which each processor can only hold asingle packet at any time. The lower bound techniquecan also be extended to indexing schemes other thanrow-major [8]; the best general lower bound for arbi-trary indexing schemes is currently at 2:27n [2].However, these lower bounds do not hold for themulti-packet model assumed in this paper, in which anyprocessor can hold a constant number of packets at atime. For this model, the only known lower bound isgiven by the network diameter of 2n � 2, and recentlyalgorithms with running time 2n + o(n) have been ob-tained [3, 6]. In the case of the torus, a lower boundof 3n=2 � o(n) has been shown for the single-packetmodel [8, 17]. In contrast, the fastest algorithm for themulti-packet model runs in 5n=4 + o(n) steps [3, 6].Early examples of sorting algorithms for multi-dimensional meshes were given by Thompson andKung [18] and Nassimi and Sahni [15]. A lower bound of2D � n� o(n) for sorting on multi-dimensional mesheswas established for the single-packet model [7, 17]; thebound applies to most of the indexing schemes used inthe literature. An algorithm with a running time of2D�n+o(n) was subsequently described by Kunde [9].No non-trivial lower bounds are known for sort-ing on d-dimensional meshes in the multi-packet model.The best upper bound in this model is currently at2D � 5n=2 + o(n). (This result can be obtained fromthe 7n=2 + o(n) time sorting algorithms for the three-dimensional mesh in [3, 6].) Hence, for large values ofd, this upper bound is still nearly a factor of 2 awayfrom the diameter lower bound. This is also true in thecase of the d-dimensional torus, where the best upperbound is currently at 2D � n + o(n). (This bound isimplied by the 2n+o(n) time sorting algorithms for thethree-dimensional torus in [3, 6].)Slightly better results have been obtained for per-mutation routing on d-dimensional networks. For thisproblem, Kunde [10] has described algorithms that runin time (d+(d�2)(1=d)1=(d�2)+�)n on the mesh, and inabout half that time on the torus. For networks of lowdimension, this is a signi�cant improvement over previ-ous results. However, for larger dimensions this result isagain nearly a factor of 2 away from the diameter lowerbound. In fact, even for o�-line routing no better resultsare currently known.2



For the problems of k{k routing and sorting on d-dimensional networks, there are obvious lower boundsof kn=2 for the mesh and kn=4 for the torus, due to thebisection width of the networks. For k � 4r, severalrandomized and deterministic algorithms have recentlybeen proposed that match this lower bound, within alower order additive term [5, 6, 12].1.2 Overview of the PaperIn this paper, we show improved bounds for 1{1 routingand sorting on multi-dimensional meshes and tori. Our�rst result is a deterministic algorithm for sorting onmulti-dimensional meshes of side length n that achievesa running time of 3D=2 + o(n). The algorithm has afairly simple structure, and does not make any copiesof the packets. Next, we show that the running time ofthe algorithm can be reduced to 5D=4+o(n) by makingone copy of each packet. A similar technique is then ap-plied to the multi-dimensional torus, leading to a deter-ministic algorithm with a running time of 3D=2 + o(n).In contrast, the fastest previously known sorting algo-rithms required 2D�5n=2+o(n) steps on the mesh and2D � n+ o(n) steps on the torus.Thus, our algorithms improve signi�cantly over allprevious results for sorting, and in fact even for o�-linerouting, on multi-dimensional meshes and tori. Theideas underlying our algorithms are quite simple, butthe techniques used in the design and analysis are some-what di�erent from those in previous papers on multi-dimensional networks. While we restrict our attentionin this paper to constant values of d, the claimed timebounds also hold for a limited range of networks of non-constant dimension.In addition, we show lower bounds for sorting withrespect to a large class of indexing schemes, under amodel of the mesh where each processor can hold anarbitrary number of packets. Our lower bounds are the�rst non-trivial lower bounds for sorting in the multi-packet model of the mesh, and they imply that our upperbounds are nearly optimal on networks of su�cientlyhigh constant dimension under a large class of indexingschemes. (In fact, we are not aware of any fast sortingalgorithm for multi-dimensional networks that uses anindexing scheme not covered by our lower bound.) Usingsimilar ideas, we can also establish a lower bound forselection on multi-dimensional meshes.Finally, we describe algorithms for permutationrouting on multi-dimensional meshes and tori whoserunning times nearly match the diameter lower bound.In particular, our algorithms achieve a running time ofD+ �n, for any � > 0 and d su�ciently large (dependingon �).Due to space constraints, some of the proofs have

been omitted from this abstract. A more detailed de-scription of our results will be given in a later version ofthe paper.The remainder of this paper is organized as follows.Section 2 contains some useful de�nitions and lemmas.Section 3 gives improved algorithms for sorting on multi-dimensional meshes and tori. Section 4 contains ourlower bounds. Section 5 describes our algorithms forpermutation routing. Finally, Section 6 lists some openquestions for future research.2 PreliminariesIn this section, we give some useful de�nitions and lem-mas. We begin with a brief review of a \derandomiza-tion" technique for routing and sorting algorithms re-cently proposed in [6]. In Subsection 2.2, we state someresults on greedy routing of random permutations.2.1 Randomization and Unshu�ingIn the following, we describe a \derandomization" tech-nique proposed in [6], which can be used to convertmany randomized algorithms for routing and sorting onmeshes into deterministic algorithms. The technique isbased on an operation called sort-and-unshu�e. Thepurpose of this operation is to evenly distribute packetswith similar destinations (in the case of routing) or sim-ilar ranks (in the case of sorting) over some large regionof the network, using a combination of local sorting and\unshu�ing".In the following, we assume a blocked snake-likeindexing scheme on a d-dimensional mesh, where theblocks have side length n� with 2=3 � � < 1. In the�rst step of the sort-and-unshu�e operation, the pack-ets are sorted inside each block. In the second step, thepackets of each block are distributed evenly over all theblocks. This is done by routing the packet of rank i,0 � i < nd�, in block j, 0 < j � nd(1��), to positionj + �i=nd(1��)� � nd(1��) in block i mod nd(1��). Notethat this second step is an o�-line routing problem; theparticular permutation that has to be routed will be re-ferred to as unshu�e permutation. (Note that if we layout the processors of the network in a chain according tothe indexing function, then this permutation is identicalto an (nd(1��))-way unshu�e operation on the chain.)The structure of this unshu�e permutation exhibitsmany of the \nice" properties commonly associated with\average" or \random" permutations. In particular, theunshu�e permutation has the property that the destina-tions of the packets in any region of the network are ap-proximately evenly distributed over the entire network.As a consequence, the unshu�e permutation can in mostcases be routed as e�ciently as a random permutation.3



(In fact, this claim can be formalized under certain con-ditions.)It was shown in [6] that the sort-and-unshu�e op-eration can in many cases be employed as a \substi-tute" for randomization. Following a scheme originallyproposed by Valiant and Brebner [19], many random-ized algorithms for routing and sorting on meshes startby sending the packets to random intermediate desti-nations. This has the e�ect of distributing packets withdestinations close to each other evenly over the network.The sort-and-unshu�e operation simulates this e�ect ina deterministic manner. Using this relationship betweenrandomization and the sort-and-unshu�e operation, thealgorithms of this paper can be described in both ran-domized and deterministic terms.2.2 Some Results on Greedy RoutingRouting is used as an important subroutine in manysorting algorithms for �xed-connection networks. In thealgorithms presented in this paper, we need e�cientrouting schemes for random permutations (in the ran-domized case) and for unshu�e permutations (in the de-terministic case). Our routing schemes are based on anextension of the standard greedy routing scheme. Thisrouting scheme routes a packet on a d-dimensional meshby moving it greedily towards its destination along edgesof increasing dimension. In the case of edge contentions,priority is given to the packet with the farthest distanceto travel.In our extension of this routing scheme, k permu-tations are simultaneously routed by running d \copies"of the above greedy routing scheme. More precisely, wepartition the set of packets into d sets S0; : : : ; Sd�1 ofapproximately equal size, such that the origins and des-tinations of the packets in each set are approximatelyevenly distributed over the entire network. This can bedone either in a randomized way, by having each packetchoose a random set Si, or in a deterministic way, bylocally sorting blocks of side length o(n), and de�ningSi as the set of packets with a local rank y such thaty mod d = i. The packets in set Si are then routed alongedges of increasing dimension modulo d, starting withdimension i and ending with dimension (i� 1) mod d.It is a natural question to ask how many randompermutations can be routed simultaneously under theabove routing scheme. To make this question moreprecise, we de�ne the notions of diameter-optimal anddistance-optimal routing. We say that a routing algo-rithm on a d-dimensional mesh is diameter-optimal ifall packets are delivered to their destination in timeD + o(n), where D is the diameter of the network. Wesay that a routing algorithm is distance-optimal if eachpacket is delivered in time S + o(n), where S is thedistance between the source and the destination of the

packet.In the context of an optimal randomized algo-rithm for k{k sorting, it was shown by Kaufmann, Ra-jasekaran, and Sibeyn [5] that up to 4d random permuta-tions can be routed diameter-optimally on d-dimensionalmeshes and tori, with high probability. The same boundcan also be shown for the unshu�e permutation, leadingto the optimal deterministic algorithm for k{k sortingin [6]. However, these results cannot be extended to thecase of distance-optimal routing.For the standard greedy routing scheme, Leighton[13] has shown that a random permutation can be routeddistance-optimally on d-dimensional meshes and tori,with high probability. For the extended greedy routingscheme, we can show the following result.Lemma 2.1 Up to 2d random permutations can berouted distance-optimally on the d-dimensional torus,with high probability.Proof: (Sketch) Due to the structure of the torus, itsu�ces to consider the movement of the packets withina single dimension of the network. Initially, we assign2 of the 2d random permutations to each dimension ofthe torus. Note that the destinations of the packets ineach dimension are evenly distributed over all processorsin the ring, and the distances between sources and des-tinations are evenly distributed over [n=2]. Whenevera packet reaches its destination in the ring, it moveson to the next higher dimension. On the other hand,we can assume that any new packet that arrives in thecurrent dimension chooses a random destination withinthe ring. Thus, we can analyze the movement of thepackets within the current dimension by consideringan appropriate dynamic routing problem, as de�ned byLeighton [13]. 2Unfortunately, this analysis does not extend to thecase of the d-dimensional mesh without wrap-aroundedges. In fact, it is not di�cult to show that even d ran-dom permutations cannot be routed distance-optimallyon the d-dimensional mesh under the extended greedyrouting scheme. Using a more complicated analysis, wecan show the following results for meshes without wrap-around edges.Lemma 2.2 For d � 3, two random permutations canbe routed distance-optimally on the d-dimensionalmesh,with high probability.Lemma 2.3 Up to bd=2c random permutations can berouted distance-optimally on the d-dimensional mesh,with high probability.Lemmas 2.1, 2.2, and 2.3 also extend to the case ofthe unshu�e permutation. We believe that the result4



of Lemma 2.3 can be slightly improved, but we do notyet have an exact bound on the number of random per-mutations that can be routed distance-optimally on thed-dimensional mesh.3 Upper Bounds for SortingIn this section, we give improved algorithms for 1{1 sort-ing on multi-dimensional meshes and tori. In the �rstsubsection, we describe the basic ideas underlying ouralgorithms. Subsections 3.2 and 3.3 contain our algo-rithms for multi-dimensional meshes and tori, respec-tively.3.1 Basic IdeasThe basic ideas underlying our algorithms are quite sim-ple. Consider the case of the d-dimensional mesh, andlet C denote the set of processors that have a distanceof at most D=4 from the center. It is not di�cult tosee that exactly half of the processors of the network arecontained in this center region C. Also, no processorin C has a distance of more than 3D=4 from any otherprocessor of the network.These observations lead to the following idea for afast sorting algorithm. In the �rst phase, we concen-trate all packets into the center region C, in such a waythat packets of similar ranks are evenly distributed overC. This can be done either in a randomized or in adeterministic fashion. Next, we locally sort the packetsinside each block of side length n� (as de�ned by theblocked indexing scheme) that is contained in C. Sinceall packets were evenly distributed over the center regionin the �rst phase, we can use the local ranks of the pack-ets to obtain good approximations of the global ranks,and hence the �nal destinations, of all packets. In thethird phase, we route each packet to some location inthe block containing its approximate �nal destination.In the fourth phase, we use local sorting to bring eachpacket to its �nal destination.Note that no packet has to travel a distance of morethan 3D=4 in the �rst or the third phase. Thus, if wecan show that the routing in these two phases can bedone distance-optimally, then the above scheme runs intime 3D=2 + o(n).In the next subsection, we give a more detailed de-scription of a deterministic algorithm based on the ideaspresented in this section. We show that the routingproblems in the �rst and third phase of the algorithmcan be reduced to the simultaneous routing of severalunshu�e permutations. We also present an even fasteralgorithm that makes one copy of each packet. In Sub-section 3.3, we use similar ideas to obtain algorithms forthe d-dimensional torus.

3.2 Sorting on Multi-Dimensional MeshesIn the following, we give fast deterministic sorting al-gorithms based on the ideas described in the previoussubsection. We assume a blocked snake-like indexingscheme with blocks of side length n�. In addition,we also assume an arbitrary �xed numbering of thend(1��)=2 blocks located in the center region C, inde-pendent of the indexing scheme. We begin with thefollowing simple algorithm:Algorithm SimpleSort:(1) Sort the packets in each block of side length n�.(2) Distribute the packets in each block evenly over allblocks in C. This is done by routing the packetof rank i, 0 � i < nd�, in block j, 0 < j �nd(1��), to position j+�i=nd(1��)��nd(1��) in blocki mod (nd(1��)=2) in C. (Here, the numbering ofthe destination blocks is with respect to the arbi-trary �xed numbering of the blocks inC.) Note thateach processor in C receives exactly two packets.(3) Sort the packets in each block of side length n� inC.(4) Send the packets in each block in C towards theirdestinations. This is done by routing the packet ofrank i, 0 � i < 2nd�, in block j, 0 < j � nd(1��)=2of C to position j+(i mod 2nd(2��1)) �nd(1��)=2 inblock �i=(2nd(2��1))�. (Here, the numbering of thesource blocks is with respect to the arbitrary �xednumbering of the blocks in C.) Note that each pro-cessor in the network receives exactly one packet.(5) Perform two steps of odd-even transposition sortbetween neighboring blocks.The correctness of the above algorithm is impliedby the following lemma, which can be proved along thelines of Lemma 3.2 in [6].Lemma 3.1 After Step (4) of Algorithm SimpleSort,each packet is at most one block away from its destina-tion.Next, we analyze the running time of the above al-gorithm. Clearly, Steps (1), (3), and (5) each run in timeO(n�) = o(n). For the routing in Step (2), the followingcan be shown.Lemma 3.2 Step (2) of Algorithm SimpleSort can bereduced to the routing of two partial unshu�e permuta-tions.5



Proof: Consider the packets of a single unshu�e per-mutation �. Let S be the set of processors that contain apacket with destination in C. In each block, exactly halfof the processors are in S, and the destinations of thepackets in these processors are evenly distributed overall blocks in C. Let �0 be the partial permutation con-sisting only of the packets that are initially located in S.After �0 has been routed, we move the remaining half ofthe packets to the processors in S. By routing anotherinstance of the partial unshu�e permutation �0, we cannow distribute these remaining packets evenly over theblocks in C. Of course, the two instances of �0 can alsobe started simultaneously. 2By Lemma 2.2, we know that two partial unshuf-
e permutations can be routed distance-optimally onmeshes of dimension d � 3. Since no packet has to travela distance of more than 3D=4, this implies that the rout-ing is completed in time 3D=4 + o(n). Also note thatthe routing problem in Step (4) is exactly the inverse ofthe problem in Step (2), and therefore runs within thesame time bound. This establishes the following result.Theorem 3.1 For any constant d, there exists a deter-ministic sorting algorithm for the d-dimensional meshwith a running time of 3D=2 + o(n) that does not makeany copies of the packets.By Lemma 2.3, up to bd=2c unshu�e permuta-tions can be routed distance-optimally on d-dimensionalmeshes. By modifying Algorithm SimpleSort appropri-ately, we can use this extra bandwidth to establish thefollowing result for k{k sorting.Corollary 3.1.1 If k � bd=4c, then there exists a deter-ministic algorithm for k{k sorting on the d-dimensionalmesh with a running time of 3D=2 + o(n) that does notmake any copies of the packets.We can also get a slight improvement in the runningtime for 1{1 sorting, by concentrating the packets intoa smaller center region C. In general, however, the run-ning time of this improved algorithm is still (3=2� �)D,for all � > 0 and d su�ciently large (depending on �).Corollary 3.1.2 Let C(r) be the set of processors ofdistance at most r from the center point. If jC(r)j �2nd=d, then there exists a deterministic sorting algo-rithm for the d-dimensional mesh with a running timeof D + 2r+ o(n).Next, we show that the time for 1{1 sorting canbe reduced to 5D=4 + o(n) by making one copy of eachpacket. To do so, we modify Algorithm SimpleSort ap-propriately; the resulting algorithm is called CopySort.Steps (1), (3), and (5) remain the same as in Algorithm

SimpleSort. The routing in Step (2) of SimpleSort isaugmented as follows. As before, we distribute the pack-ets evenly over the blocks inC. In addition, we make onecopy of each packet, and route this copy to a processorin the unique block of the center region C that is locatedexactly on the opposite side of the center point than thedestination processor of the original in this step, andthat has the same distance from the center point. Therouting of the copies can be done simultaneously withthe routing of the originals, and the entire Step (2) canbe implemented by routing four partial unshu�e per-mutations. By Lemma 2.3, the routing is completed in3D=4 + o(n) steps for d � 8. The following lemma canbe shown using simple geometric arguments.Lemma 3.3 After Step (3) of Algorithm CopySort, noprocessor in the network is more than a distance ofD=2 + o(n) away from both the original and the copyof any packet.In Step (4) of CopySort, we �rst delete either theoriginal or the copy of each packet, depending on whichone is farther away from the destination. Then the re-maining packets are routed towards their destination. Itcan shown that this routing can again be implementedby four partial unshu�e permutations. By Lemma 3.3,no packet has to travel more than a distance of D=2.This establishes the following result.Theorem 3.2 For any constant d � 8, there exists a de-terministic sorting algorithm for the d-dimensional meshwith a running time of 5D=4 + o(n).For larger values of d, this result can again beslightly improved by concentrating into a smaller centerregion. Alternatively, we can also adapt the algorithmto k{k sorting with k � bd=8c.3.3 Sorting on Multi-Dimensional ToriIn this subsection, we adapt the ideas of the previoussubsections to the case of the d-dimensional torus. Wedescribe a modi�cation of the Algorithm CopySort fromthe previous subsection, which we refer to as TorusSort.As before, Steps (1), (3), and (5) perform local sortingoperations. In Step (2), we distribute the packets evenlyover the entire network. In addition, we also make a copyof each packet, and route this copy to a processor in theunique block in the network that is D=2 steps away fromthe destination processor of the original packet in thisstep. Step (2) can be implemented by routing two fullunshu�e permutations; the routing takes timeD+o(n).Then the following lemma can be shown using simplegeometric arguments.6



Lemma 3.4 After Step (3) of Algorithm TorusSort, noprocessor in the network is more than a distance ofD=2 + o(n) away from both the original and the copyof any packet.As before, half of the packets are deleted in Step (4),and the remaining packets are routed towards their des-tination. This routing can be implemented by two par-tial unshu�e permutations. By Lemma 3.4, no packethas to travel more than a distance of D=2+ o(n). UsingLemma 2.1 we obtain the following result.Theorem 3.3 For any constant d, there exists a deter-ministic sorting algorithm for the d-dimensional toruswith a running time of 3D=2 + o(n).By modifying Algorithm TorusSort appropriately,and using the extra bandwidth supplied by Lemma 2.1,we can establish the following result.Corollary 3.3.1 For any constant d, there exists adeterministic algorithm for d{d sorting on the d-dimensional torus with a running time of 3D=2 + o(n).Alternatively, we can also get a slight improvementin the running time for 1{1 sorting. As an example,we can obtain a fairly simple algorithm for the two-dimensional torus that uses four copies of each packetand runs in time 1:375n. In general, however, the run-ning time of the improved algorithm is still (3=2� �)D,for all � > 0 and d su�ciently large (depending on �).4 Lower Bounds for SortingIn this section, we establish lower bounds for sortingon multi-dimensional meshes and tori under the multi-packet model. The lower bounds hold for a large classof indexing schemes, including most of the indexingschemes used in the literature. Our lower bound tech-nique is an extension of the Joker Zone argument ofKunde [7] and Schnorr and Shamir [17] to the multi-packet model. An important di�erence is that our lowerbounds are based on edge capacity arguments, and donot place any limits on the number of packets that canbe held inside a single processor. We begin the sectionwith a few de�nitions.We say that an indexing scheme I of the d-dimensional mesh is compatible if there exists a � < 1such that for every index i 2 [nd � n�d], the set of pro-cessors with indices in fi; : : : ; i + n�d � 1g contains acomplete (d� 1)-dimensional subnetwork of side lengthn. (Informally speaking, this means that a compatibleindexing scheme has the property that a joker zone ofn�d packets su�ces to move the �nal destination of apacket to any processor within a (d � 1)-dimensional

sub-network.) Note that the natural extensions of therow-major, snake-like, blocked row-major, and blockedsnake-like indexing schemes to multi-dimensional net-works are compatible indexing schemes. In the remain-der of this section, we assume an arbitrary compatibleindexing scheme with associated constant �.We use Cd;
 to denote the processors of a d-dimensional diamond of radius (1� 
) �D=4 around thecenter of a d-dimensional mesh. (That is, the set of pro-cessors that have a distance of at most (1�
) �D=4 fromthe center.) The number of processors in Cd;
 is denotedby Vd;
 , and the number of processors on the surface ofCd;
 is denoted by Sd;
 . Then the following bounds canbe shown.Lemma 4.1 For any d and any 
 > 0, we haveVd;
 � e�
2d=4 � ndand Sd;
 � 8
 � e�
2d=16 � nd�1:4.1 Sorting without CopyingWe �rst establish a lower bound for sorting under therestriction that no copies of the packets can be made.Our main lemma for this case is as follows.Lemma 4.2 Let d and 
 be chosen such thatd � Sd;
 ���12 + 1� 
4 � �D � dn�� < nd � Vd;
holds for large enough n. If no copying of packets is al-lowed, then sorting on the d-dimensional mesh with re-spect to an arbitrary compatible indexing scheme takesat least D + (1� 
) �D=2� n � dn� steps.Proof: Consider the computation of an arbitrary sort-ing algorithm up to time (12 + 1�
4 ) �D � dn�. At mostd �Sd;
 packets can enter the diamond Cd;
 in each step.Thus, the above inequality implies that not all of thend � Vd;
 packets that are initially outside the diamondcan have entered up to this point.Now consider an arbitrary packet located outsidethe diamond at time (12 + 1�
4 ) �D � dn�. This packethas a distance of at least (12 + 1�
4 ) �D from at least oneof the corners of the network. (Otherwise, the packetwould be in the diamond.) Thus, the present positionof the packet is independent of the content of a block ofside length n� located in that corner.As we assume a compatible indexing scheme, thecontent of this block can force the destination of thepacket to be in any processor of a (d � 1)-dimensionalsub-network of side length n. There exists a processor7



in this sub-network that has a distance of at least (12 +1�
4 ) � D � n from the current position of the packet.Hence, at least (12 + 1�
4 ) � D � n additional steps areneeded under some assignment of values to the cornerblock. 2Theorem 4.1 If no copying of packets is allowed, thenfor every � � 0 there exists a d0 such that for all d �d0, sorting on the d-dimensional mesh with respect toa compatible indexing scheme takes at least (3=2� �)Dsteps.To establish this theorem, we use Lemma 4.1 toshow that the condition in Lemma 4.2 holds for 
 = 3�and d su�ciently large (depending on �), The claim thenfollows by a direct application of Lemma 4.2. Togetherwith Theorem 3.2, this result establishes a separationbetween the complexities of sorting with and withoutcopying, for large values of d. Unfortunately, Lemma 4.1does not give any good bounds for small values of d. Inthis case, we can show lower bounds by adapting ourargument to the particular network in question. In par-ticular, we can establish the following theorem.Theorem 4.2 If no copying of packets is allowed, thenfor d � 5 the diameter bound cannot be asymptoticallymatched under any compatible indexing scheme.For the torus, it can be shown that the lower boundsfor the single-packet model also extend to the multi-packet model, assuming that no copying is allowed. In-formally speaking, the reason is that the torus does nothave a center point towards which the packets could berouted.4.2 Sorting with CopyingOur lower bound techniques can also be extended to amodel in which unlimited copying of packets is allowed.For this case, we obtain the following result.Theorem 4.3 If unlimited copying of packets is al-lowed, then for every � � 0 there exists a d0 such thatfor all d � d0, sorting on the d-dimensional mesh withrespect to a compatible indexing scheme takes at least(5=4� �)D steps.We only describe the main ideas in the proof of theabove theorem. The basic idea for this lower bound isthat we choose the center diamond small enough suchthat only a small fraction of the packets can be routedinto this diamond. Next, we argue that the edge band-width of the network does not allow every packet todistribute a large number of copies of itself over the net-work. (Formally, the number of communication steps

required to route copies of a packet to a number of lo-cations in the network is lowerbounded by the length ofa minimal \broadcast tree" connecting these locations.)This implies that an appropriate loading of the jokerzones can force the rank of a packet to be such that nocopy is close to its destination.However, this technique does not give any non-trivial lower bounds for reasonable values of d. Weexpect that some results for smaller d can be ob-tained by adapting our argument to the particular low-dimensional network in question. We plan to report theresults of such an analysis in a later version of this pa-per. In the case of the torus, we obtain the followingresult.Theorem 4.4 If unlimited copying of packets is al-lowed, then for every � � 0 there exists a d0 such thatfor all d � d0, sorting on the d-dimensional torus withrespect to a compatible indexing scheme takes at least(3=2� �)D steps.The lower bounds can also extended to many non-compatible indexing schemes. In fact, it is not di�cult toshow that the above bounds hold for the vast majorityof all possible indexing schemes. (A similar result forthe single-packet model was described by Kunde [8].)Of course, such a result is not a very good measure forthe generality of our lower bounds, since most indexingschemes are highly irregular and thus unsuitable for anye�cient sorting scheme. More important in this respectis that we are not aware of any fast sorting algorithmthat assumes an indexing scheme not covered by ourlower bound. This indicates that any such algorithmwould probably be quite di�erent from those currentlyknown.4.3 SelectionUsing similar ideas, we can also show a lower bound of(9=16� �) �D for the problem of selecting the median atthe center processor of a high-dimensional mesh. A triv-ial lower bound for this problem is given by the radiusof the network. (That is, D=2 for the multi-dimensionalmesh and D for the multi-dimensional torus.)By Lemma 4.1, we know that for any � > 0 and anysu�ciently large d, only a small fraction of the packetscan enter Cd;� in the �rst D=2 steps of any algorithm.Let x be any processor outside Cd;�. Then the set ofprocessors that have a distance of at most (5=16�2�) �Dfrom x contains only a small fraction of the nd processorsin the network. This means that up to time (5=16�2�) �D, no packet located outside Cd;� can be \ruled out" asthe median element. Hence, up to (1��)�D=4 additionalsteps are necessary to move the median to the centerprocessor, and we get the following result.8



Theorem 4.5 For every � � 0 there exists a d0 suchthat for all d � d0, selection on the d-dimensional meshtakes at least (9=16� �)D steps.An upper bound of D + o(n) can be obtained bya modi�cation of the sorting algorithms in Section 3.For large values of d, this result can be improved to(3=4+ �) �D. On the multi-dimensional torus, a runningtime of (1+�)�D can be achieved for large d, thus comingvery close to the trivial lower bound of D.5 Permutation RoutingThe lower bounds established in the previous section arerestricted to the case of sorting. In this section, we showthe existence of algorithms for permutation routing onmulti-dimensional networks that nearly match the di-ameter lower bound. The algorithms are based on sim-ilar ideas as the sorting algorithms in Subsection 3. Inparticular, they use a similar reduction to the distance-optimal routing of a number of unshu�e permutations.Consider the following idea for a randomized rout-ing algorithm. For a packet with source processor x anddestination processor y, we de�ne S(x; y) as the set ofprocessors that have a distance of at most D=2 fromboth x and y. Note that S(x; y) is non-empty for all xand y. Thus, a simple two-phase algorithm could routea packet with source x and destination y by �rst sendingthe packet to a random processor in S(x; y), and thento its destination y. If we could solve the resulting tworouting problems distance-optimally, then we would ob-tain a total running time of D + o(n) for the algorithm.Unfortunately, we do not know how to reduce thesetwo routing problems to a small number of random orunshu�e permutations. To do so, we have to modify theabove algorithm slightly. We de�ne S�(x; y) as the set ofprocessors that have a distance of at most D=2+� fromboth x and y. In the �rst phase of the algorithm, wenow route each packet with source x and destination yto a random processor in S�(x; y). In the correspondingdeterministic algorithm, we partition the network intoblocks of side length n�, and distribute all packets withsource in block X and destination in block Y evenlyover S�(X;Y ), the set of blocks that have a distance ofat most D=2 + � from both block X and block Y .If we choose � such that k � jS�(X;Y )j � nd holdsfor all blocks X and Y , then we can reduce each phase ofthe algorithm to the simultaneous routing of k unshu�epermutations. For a block X, de�ne c(X) as the cornerprocessor that is closest to X. Then we can lowerboundS�(X;Y ) by S�(c(X); c(Y )). An analysis shows that ford � 4 and � = n=2, we have bd=2c � jS�(c(X); c(Y ))j �nd, and hence we can reduce each phase of the algorithmto the routing of bd=2c unshu�e permutations. UsingLemma 2.3, we obtain the following result.

Theorem 5.1 For all d, there exists a deterministic al-gorithm for permutation routing on the d-dimensionalmesh with a running time of D + n+ o(n).The routing scheme can be easily adapted to themulti-dimensional torus. For d � 4 and � = n=16, wehave 2d � jS�(X;Y )j � nd, and by Lemma 2.1 we obtainthe following result.Theorem 5.2 For all d, there exists a deterministic al-gorithm for permutation routing on the d-dimensionaltorus with a running time of D + n=8 + o(n).Finally, a sharper analysis using bounds similarto those in Lemma 4.1 shows that in high-dimensionalmeshes (tori), most processors have a distance of aroundD=2 from any particular corner (any particular proces-sor). This means that as d increases, we can choosesmaller and smaller values for �.Theorem 5.3 For all � > 0, there exists a d0 such thatfor all d � d0, permutation routing can be done in timeD + �n on d-dimensional meshes and tori.6 Concluding RemarksIn this paper, we have shown improved bounds for rout-ing and sorting on multi-dimensional meshes and tori.While our bounds are nearly tight for high-dimensionalnetworks, we do not obtain very good bounds for net-works of small, �xed dimension. In particular, it is aninteresting open question whether there exists an opti-mal algorithm for sorting on the two-dimensional meshthat does not make any copies, or whether any optimalsorting algorithm exists for some d � 3.We are currently investigating whether the lowerbounds for sorting can be extended to arbitrary indexingschemes. One possible approach to this problem is toadapt some of the techniques that have been used toshow lower bounds for arbitrary indexing schemes in thesingle-packet model [1].It would also be nice to obtain algorithms for per-mutation routing that match the diameter bound moreclosely. For example, one might try to overlap the tworouting phases of the algorithm in Section 5, and boundthe running time of the resulting algorithm. Finally, itis an open question whether the diameter and bisectionbounds can be matched simultaneously for routing onnetworks of dimension d � 2.AcknowledgementsI would like to thank Greg Plaxton and Rajmohan Ra-jaraman for helpful discussions.9



References[1] Y. Han and Y. Igarashi. Time lower bounds for par-allel sorting on multidimensional mesh-connectedprocessor arrays. Information Processing Letters,33:233{238, 1990.[2] Y. Han, Y. Igarashi, and M. Truszczynski. Index-ing functions and time lower bounds for sorting on amesh-connected computer. Discrete Applied Math-ematics, 36:141{152, 1992.[3] C. Kaklamanis and D. Krizanc. Optimal sorting onmesh-connected processor arrays. In Proceedings ofthe 4th Annual ACM Symposium on Parallel Algo-rithms and Architectures, pages 50{59, July 1992.[4] C. Kaklamanis, D. Krizanc, L. Narayanan, andT. Tsantilas. Randomized sorting and selection onmesh-connected processor arrays. In Proceedings ofthe 3rd Annual ACM Symposium on Parallel Algo-rithms and Architectures, pages 17{28, July 1991.[5] M. Kaufmann, S. Rajasekaran, and J. F. Sibeyn.Matching the bisection bound for routing and sort-ing on the mesh. In Proceedings of the 4th AnnualACM Symposium on Parallel Algorithms and Ar-chitectures, pages 31{40, July 1992.[6] M. Kaufmann, J. Sibeyn, and T. Suel. Derandom-izing algorithms for routing and sorting on meshes.In Proceedings of the Fifth Annual ACM-SIAMSymposium on Discrete Algorithms, pages 669{679,January 1994.[7] M. Kunde. Lower bounds for sorting on mesh-connected architectures. Acta Informatica, 24:121{130, 1987.[8] M. Kunde. Bounds for 1-selection and related prob-lems on grids of processors. In Proceedings of the4th International Workshop on Parallel Processingby Cellular Automata and Arrays (PARCELLA),pages 298{307. Springer, 1988.[9] M. Kunde. Routing and sorting on mesh-connectedarrays. In J. H. Reif, editor, VLSI Algorithms andArchitectures: Proceedings of the 3rd Aegean Work-shop on Computing, Lecture Notes in ComputerScience, volume 319, pages 423{433. Springer, 1988.[10] M. Kunde. Balanced routing: Towards the distancebound on grids. In Proceedings of the 3rd AnnualACM Symposium on Parallel Algorithms and Ar-chitectures, pages 260{271, July 1991.[11] M. Kunde. Concentrated regular data streams ongrids: Sorting and routing near to the bisectionbound. In Proceedings of the 32nd Annual IEEESymposium on Foundations of Computer Science,pages 141{150, October 1991.

[12] M. Kunde. Block gossiping on grids and tori: De-terministic sorting and routing match the bisectionbound. In Proceedings of the 1st Annual EuropeanSymposium on Algorithms, September 1993.[13] F. T. Leighton. Average case analysis of greedyrouting algorithms on arrays. In Proceedings ofthe 2nd Annual ACM Symposium on Parallel Al-gorithms and Architectures, pages 2{10, July 1990.[14] F. T. Leighton. Introduction to Parallel Algorithmsand Architectures: Arrays, Trees, and Hypercubes.Morgan-Kaufmann, San Mateo, CA, 1991.[15] D. Nassimi and S. Sahni. Bitonic sort on a mesh-connected parallel computer. IEEE Transactionson Computers, C{28:2{7, 1979.[16] S. E. Orcutt. Computer Organization and Algo-rithms for Very-High Speed Computations. PhDthesis, Department of Computer Science, StanfordUniversity, September 1974.[17] C. P. Schnorr and A. Shamir. An optimal sortingalgorithm for mesh-connected computers. In Pro-ceedings of the 18th ACM Symposium on Theory ofComputing, pages 255{263, May 1986.[18] C. D. Thompson and H. T. Kung. Sorting on amesh-connected parallel computer. Communica-tions of the ACM, 20:263{271, 1977.[19] L. G. Valiant and G. J. Brebner. Universal schemesfor parallel communication. In Proceedings of the13th Annual ACM Symposium on Theory of Com-puting, pages 263{277, May 1981.

10


