
Derandomizing Algorithms for Routing and Sorting on MeshesMichael Kaufmann� Jop F. Sibeyny Torsten SuelzAbstractWe describe a new technique that can be used to derandom-ize a number of randomized algorithms for routing and sort-ing on meshes. We demonstrate the power of this techniqueby deriving improved deterministic algorithms for a vari-ety of routing and sorting problems. Our main results arean optimal algorithm for k-k routing on multi-dimensionalmeshes, a permutation routing algorithm with running time2n+o(n) and queue size 5, and an optimal algorithm for 1-1sorting.1 IntroductionOne of the main problems in the simulation of idealisticparallel computers by realistic ones is the problem ofmessage routing through the sparse network of linksconnecting a set of processing units (PUs) among eachother. In this paper, we consider the case of the n � nmesh, in which n2 PUs are connected by a regular two-dimensional grid of bidirectional communication links.There may also be additional wrap-around connectionsbetween the two PUs at opposite ends of each rowand each column of the network; this type of mesh iscalled torus. A mesh without wrap-around connectionswill be referred to as square. We assume the MIMDmodel, where in a single step each PU can perform anarbitrary amount of internal computation, and transmitone packet of information (of bounded length) to eachof its neighbors.The routing problem is the problem of rearranging aset of information packets in a network, such that everypacket ends up at the PU speci�ed in its destinationaddress. This problem is of fundamental importancein the design of e�cient algorithms for realistic modelsof parallel computation, as well as in the simulation�Wilhelm-Schickard-Institut f�ur Informatik, Universit�at T�u-bingen, Sand 13, D-72076 T�ubingen, Germany. E-mail:mk@informatik.uni-tuebingen.deyMax-Planck-Institut f�ur Informatik, Im Stadtwald, D-66123Saarbr�ucken, Germany. E-mail: jopsi@mpi-sb.mpg.de. Partiallysupported by EC Cooperative Action IC-1000 (Project ALTEC:Algorithms for Future Technologies).zDepartment of Computer Sciences, University of Texas atAustin, Austin, TX 78712, USA. E-mail: torsten@cs.utexas.edu.Supported by Texas Advanced Research Program (TARP) Award#003658480.

of more powerful, idealistic models. Consequently, therouting problem has received considerable attention,and a variety of algorithms have been proposed forseveral variants of the problem. The performance ofa routing algorithm is measured by its running time(the maximum time a packet may need to reach itsdestination) and its queue size (the maximumnumber ofpackets any node may have to store during the routing).Most research has focused on the 1-1 routing prob-lem, also called the permutation routing problem, inwhich each node is the origin and destination of at mostone packet. However, in many practical applications aPU may have to communicate with a number of otherPUs at the same time. This motivates the de�nition ofthe k-k routing problem, in which each PU can be thesource and destination of up to k packets.Another problem that involves the rearranging ofpackets within a processor network is the sorting prob-lem. Again, several variants of the problem have beenstudied. In the 1-1 sorting problem, each PU initiallyholds a single packet, where each packet contains a keydrawn from a totally ordered set. The packets have tobe rearranged such that the packet with the key of ranki is moved to the PU with index i, for all i. In the k-ksorting problem, each PU is the source and destinationof k packets.In a routing problem, the destinations of the packetsare given as part of the input; in a sorting problem,the destinations of the packets have to be computedas a function of the set of keys and the indexing ofthe PUs. However, there is also a close relationshipbetween the two problems. Many routing algorithmsinvolve the sorting of subsets of the packets, while manysorting algorithms use routing in intermediate steps ofthe computation.1.1 Previous Work. A number of algorithms forthe permutation routing problem have been proposed.A deterministic algorithm with running time 2 � n � 2and constant queue size was given by Leighton, Make-don, and Tollis [14] and later re�ned by Rajasekaranand Overholt [15] and by Chlebus, Kaufmann, andSibeyn [3], who achieve a queue size of 81. However,in addition to their large queue sizes, these algorithmssu�er from a complicated control structure. Thus, a1



2 Kaufmann et. al.simpler algorithm with a smaller queue size might beof more practical interest, even if its running time isslightly larger than 2 � n � 2. In this context, severalfairly simple randomized algorithms with running time2 �n+O(logn) and small constant queue size have beenproposed [7, 16].Considerable attention has also been given to theproblem of 1-1 sorting on two-dimensional meshes. Inparticular, Schnorr and Shamir [17] gave a 3 � n+ o(n)step algorithm for sorting into snake-like row-majororder, and proved a nearly matching lower bound of3�n�o(n), also independently discovered by Kunde [10].In their model of the mesh, a PU may only hold a singlepacket at any time. However, this lower bound does nothold when PUs may hold more than one packet. For thismodel, Kaklamanis, Krizanc, Narayanan, and Tsantilas[5] gave a randomized 212 � n + o(n) step algorithm forsorting into a block-wise indexing scheme. Kaklamanisand Krizanc [6] subsequently gave an improved versionof this algorithm that runs in time 2 � n + o(n), thusnearly matching the diameter lower bound. The bestdeterministic algorithm, due to Kunde [11], achieves arunning time of 212 � n+ o(n) and a queue size of 2.In [11], Kunde also showed that k-k sorting can beperformed in k � n + o(k � n) steps with a queue sizeof k. A randomized algorithm for k-k routing withrunning time maxf4�n; k �n=2g+o(k �n) was given in [8].This algorithm was improved and extended to sortingon squares and tori in [18], where it is shown that k-ksorting can be performed by a randomized algorithm intimemaxf4�n; k�n=2g+o(k�n) on a square, and in abouthalf this time on a torus. This algorithm is based on theidea of Reif and Valiant and of Reischuk to randomlyselect a set of splitters. After sorting these splitters,the packets can estimate their rank and determine acorresponding preliminary destination.1.2 Overview of the Paper. We introduce a set oftechniques that can be used to convert a number of ran-domized algorithms for routing and sorting into deter-ministic algorithms that achieve similar running timesand queue sizes. Our techniques are very general, andseem to apply to many of the randomized algorithms forrouting and sorting on meshes and related networks thathave been proposed in the literature. We demonstratethe power of the technique by deriving improved deter-ministic algorithms for a variety of routing and sortingproblems on meshes.Our �rst result is an optimal algorithm for k-ksorting, with a running time of k �n=2+(4+o(1)) �k5=6 �n2=3 on a square and k � n=4 + (4 + o(1)) � k5=6 � n2=3 ona torus. The algorithm achieves a queue size of k, anddoes not make any copies of packets. In addition, it can

easily be generalized to meshes of arbitrary dimensions.A similar algorithm was independently discovered byKunde [12]. However, the lower order terms of hisalgorithm are larger, particularly for higher dimensions.Next, we apply our techniques to several random-ized routing algorithms recently proposed by Kaklama-nis, Krizanc, and Rao [7]. As a result, we obtain anoptimal deterministic routing algorithm for the squarewith a running time of 2 �n+o(n) and a queue size of 5,as well as the �rst optimal deterministic algorithms forrouting on the torus and the three-dimensional cube.Finally, we demonstrate the power of our techniquesby derandomizing an optimal randomized algorithm for1-1 sorting on the square recently proposed by Kakla-manis and Krizanc [6]. The resulting deterministic algo-rithm has a running time of 2 �n+o(n) and a queue sizeof about 25. In addition, we also obtain improved sort-ing algorithms for the torus and for three-dimensionalnetworks.Due to space constraints, we can only give a briefdescription of the main results. For complete proofs,and additional applications of our techniques, the readeris referred to [9, 19].The remainder of the paper is organized as follows.The next section contains some additional de�nitionsand useful results. In Section 3, we explain the basicidea behind our results, and show how it can be used inthe construction of an optimal deterministic algorithmfor k-k sorting. Section 4 contains our results for 1-1routing. In Section 5, we present the optimal algorithmfor 1-1 sorting on the two-dimensional mesh. Finally,Section 6 o�ers some concluding remarks.2 Preliminaries2.1 Machine Model. Our model of computation isan n � n MIMD mesh with or without wrap-aroundconnections. In the following, we refer to this machinesimply as mesh. It consists of n2 PUs arranged in aregular square grid, such that every PU is connected to(at most) four other PUs. The PU located at position(i; j) is referred to as Pi;j, where P0;0 is the PU in thelower left corner. A one-dimensional square is calledchain, and a square of dimension d > 2 is called cube.The PUs operate in a synchronous fashion. In asingle step of the computation, each PU can performan arbitrary amount of internal computation, and com-municate with all its neighbors. The only restrictionis that at most one packet of bounded length can betransmitted across any edge in either direction. Thus,a PU in a square may send and receive up to four pack-ets in a single step. We will assume that the runningtime of an algorithm is determined by the number ofcommunication steps, and that the internal operations



Derandomizing Routing and Sorting Algorithms 3inside the PUs take a negligible amount of time (or canbe performed simultaneously with the routing). EachPU has a queue, which temporarily stores packets thatare not routed on immediately.2.2 Indexing Schemes. In routing algorithms, thechoice of the indexing of the PUs is irrelevant. Incontrast, the running time of a sorting algorithm oftendepends on a particular indexing scheme. In this paper,we assume a so-called blocked indexing scheme, in whichthe mesh is partitioned into blocks of equal size, andthe index of a PU is determined in the �rst place by theindex of its block and in the second place by its indexwithin this block. Under a blocked snake-like row-majorscheme, the blocks are indexed by the snake-like row-major scheme, while the indexing inside the blocks canbe arbitrary. As an example, we give a blocked snake-like row-major scheme of a 6 � 6 mesh with blocks ofsize 2� 2: 0 1 4 5 8 92 3 6 7 10 1120 21 16 17 12 1322 23 18 19 14 1524 25 28 29 32 3326 27 30 31 34 352.3 Basics of Routing. We assume that a packetconsists of a message plus some additional informationthat is needed to route the packet to its destination.For example, in the case of sorting each packet containsa key from a linearly ordered set. In the k-k sortingproblem, the packets must be routed such that the PUwith index i, 0 � i � n2 � 1, receives the packets withranks k � i; k � i + 1; : : : ; k � (i + 1) � 1.We speak of edge contention if several packetsresiding in a PU have to be routed across the sameconnection. Contentions can be resolved by a priorityscheme. Throughout this paper, we apply the farthest-�rst strategy, which gives priority to the packet that hasthe farthest distance to go.We review a fundamental result from [8] concerningrouting on a chain of length n under the farthest-�rststrategy. Let Pi be the PU with index i. For a givendistribution of the packets over the PUs, de�ne hr(i; j)as the number of packets passing from left to rightthrough both Pi and Pj, and let Tr denote the numberof steps required for the routing to the right.Lemma 2.1. On a chain of length n, we have Tr =maxi<jfj � i+ hr(i; j) � 1g.On two-dimensional meshes there are two basicmodes of packet routing. A packet is routed row-�rstif it is �rst routed along the row to its destination

column, and then along the column to its destination.A packet is routed column-�rst if it is �rst routed alongthe column to its destination row, and the along the rowto its destination.Considering the maximal distance a packet mayhave to travel, it follows that d�n�d is a lower bound forrouting on d-dimensional cubes, the so-called distancebound. For k-k routing on a square, at least k � n=2steps are required if all packets located in the left halfof the mesh have a destination in the right half; thisis the so-called bisection bound. Together, these twobounds imply the following lemma.Lemma 2.2. k-k routing and sorting on a d-dimen-sional cube requires at least maxfd �n�d; k�n=2g steps.3 Basic Idea and k-k SortingOur derandomization technique is based on a combina-tion of local sorting and `unshu�ing'. More precisely,we divide the mesh into blocks of size n� � n�, with0 < � < 1. The blocks are indexed. In sorting prob-lems it is required that blocks with consecutive indicesare adjacent. The packets in each block are sorted: ina routing problem the packets are sorted on the indexof their destination block; in a sorting problem on theirkey. Then the packets of each block are distributedover the blocks. For a k-k problem, k � 1, this isdone most frequently by routing the packet of rank i,0 � i < k � n2��, in block j, 0 < j � n2�2�� = N , toposition j + bi=Nc � N in block i mod N . Notice thatevery PU is the destination of exactly k packets.The utility of the above sort-and-unshu�e opera-tion for sorting on meshes was previously observed bySchnorr and Shamir, who used it in the design of their3 �n+o(n) sorting algorithm in the single-packet model[17]. In the following, we will demonstrate that thisoperation can in many cases be employed as a `substi-tute' for randomization. Following a scheme originallyproposed by Valiant and Brebner [20], many random-ized algorithms for routing on meshes start by sendingthe packets to random intermediate destinations. Thishas the e�ect of distributing packets with destinationsclose to each other evenly over the mesh. The sort-and-unshu�e operation simulates this e�ect in a determin-istic manner.3.1 Example. A simple example illustrates how sort-and-unshu�e can be applied to derandomize a sortingalgorithm.We consider the k-k sorting problem for k = n4.We choose � = 0, that is, each block consists of a singlePU. The mesh is indexed with a snake-like row-majorscheme. Consider the following simple randomizedalgorithm:



4 Kaufmann et. al.1. All packets are routed to a random destination;with probability 1=2 row-�rst, with probability 1=2column-�rst.2. The packets in each PU are sorted. The packetswith rank i are routed to PU bi=n2c.3. Sort all pairs of PUs (2i; 2i + 1), 0 � i < n2=2.Sort all pairs of PUs (2i � 1; 2i), 0 < i < n2=2 .Repeat these steps O(1) times.We refer to this algorithm as randsort.Lemma 3.1. After Step 2 of randsort, eachpacket is at most O(1) PUs away from its destination,with high probability.Proof. Consider a packet p with destination inPU j, 0 � j < n2. There are less than k � (j + 1)packets with destination before p. Each of these packetsis routed in Step 1 with probability n2 to PU j. Thus,using Cherno� bounds, the number of these packets inj can be bounded by (j+1) �k �n�2+O((j �k)1=2 �1=n).Hence, the maximum of the index of the PU to which pis routed in Step 2 is given by j0 = b((j + 1) � k � n�2 +O((j � k)1=2 � 1=n))=(k � n�2)c = j + O(1). 2With Lemma 2.1 and using Cherno� bounds it can beeasily shown that the algorithm runs in k �n=2+O(k+(k � n � logn)1=2) steps. The algorithm can be madedeterministic by replacing Step 1 with10. The packets residing in each PU are sorted. Thepacket p with rank i, 0 � i � n4 � 1 is routed toPimodn2 . p is routed row-�rst if i mod (2 � n2) < n2;else p is routed column-�rst.We refer to this algorithm as highksort. Thecorrectness follows from the following lemma.Lemma 3.2. After Step 2 of highksort, eachpacket is at most one PU away from its destination.Proof. Consider a packet p that resides in somePU P after Step 10. Since there are n2 regularlyinterspaced packets from each PU in P , the rank of pamong the packets that originally resided in any PU Pj,0 � j < n2, can be estimated to within n2. Hence, pcan determine its global rank to within n4, the numberof packets residing in a single PU. 2Note that the way in which the packets are routedin Step 10 and Step 2 ensures that the packets aredistributed evenly.Theorem 3.1. highksort performs k-k sortingfor k = n4 in k � n=2 +O(k) steps on a square.Proof. Under the routing operations in Step 10 andStep 2 each PU sends exactly n2 packets to each otherPU. Each of these steps can be achieved in a perfectlyregular way in k �n=4 steps. Step 3 takes O(k) steps. 2The routing operations in Step 10 and Step 2 are soregular that they can be easily implemented in such a

way that no PU ever holds more than k packets. Wecan show the following lemma.Lemma 3.3. highksort can be implemented torun with maximal queue size k.Proof. We prove that each PU holds at most k=2white packets at all times. Consider a phase in whichthe white packets move horizontally. The distributionis such that initially the number of packets that leave Pover its right connection equals the number of packetsthat enter P over this connection. Because k is large,because of the distribution of the packets, and becauseof the farthest-�rst strategy, this guarantees that Preceives a packet i� it sends a packet. 2Note that the movement of the packets in thedeterministic algorithm is more regular than in therandomized one. The running times and queue sizesof the two algorithms are comparable.3.2 Sorting for General k. highksort can beeasily modi�ed into an algorithm that performs k-ksorting optimally for all k � 8. The mesh is dividedinto blocks with side length n2=3=k1=6. We assume thatthis number is an integer. Let m = k1=3 � n2=3 denotethe number of blocks. The size of the blocks is chosensuch that the number of packets in each block equalsm2. In principle we can now apply highksort withthe blocks playing the role of PUs, but we still haveto specify precisely where every packet is going to berouted during Step 10 and Step 2. We assume that themesh is indexed with a blocked snake-like row-majorscheme. We get the following algorithm:1.a. The packets residing in each block are sorted. Theintermediate destination of a packet p of rank i, 0 �i < m2, lies in block i modm. If i mod (2 �m) < mthen p is colored white, else p is colored black.1.b. The blocks are divided into subblocks with sidelengths n1=3=k1=3. The packets of each block arerearranged such that the packets with intermediatedestination in block (i; j), 0 � i; j < k1=6 � n1=3,appear in subblock (i; j).1.c. The white packets are routed along the row to thecolumn of blocks of their intermediate destination.The packets in the j2th column of subblocks in thej1th column of blocks, 0 � j1; j2 < k1=6 � n1=3, arerouted as a block to the j1th column of subblocksin the j2th column of blocks. The black packets arerouted analogously.1.d. The white packets are routed along the columnto the block of their intermediate destination. Thepackets in the i2th row of subblocks in the i1th rowof blocks, 0 � i1; i2 < k1=6 � n1=3, are routed as a



Derandomizing Routing and Sorting Algorithms 5block to the i1th row of subblocks in the i2th row ofblocks. The black packets are routed analogously.2.a. The packets residing in each block are sorted.The preliminary destination of a packet p of rank i,0 � i � m2 � 1, lies in block bi=mc. If i is even thenp is colored white, else p is colored black.2.b. Identical to Step 1.b.2.c. Identical to Step 1.c.2.d. Identical to Step 1.d.3. Sort all pairs of blocks (2i; 2i+ 1), 0 � 1 < m=2.Sort all pairs of blocks (2i� 1; 2i), 0 < i < m=2.The correctness of this algorithm, called kksort,follows from the same argument as in the proof ofLemma 3.2, replacing `PU' by `block':Lemma 3.4. After Step 2.d of kksort, each packetis either in its destination block, or in a block that isadjacent in the snake-like ordering of the blocks.The colorings in Step 1.a and Step 2.a assure thatfrom each block precisely m=2 packets are routed row-�rst to each other block, and m=2 packets column-�rst.This is essential for the proof ofLemma 3.5. Step 1.c, 1.d, 2.c and 2.d of kksorteach take at most maxfn; k � n=8g steps on a square.Proof. We analyze the lemma for the routing alongthe row in Step 1.c of the white packets. The analysesfor the black packets and for the other steps are analo-gous.The PUs in block (i; j) send m=2 packets row-�rstto any other block. So, during Step 1.c k1=6 � n1=3 �m=2 = k1=2 � n=2 packets are routed from block (i; j)to any block (i; j0) in the same row of blocks. Bythe rearranging in Step 1.b these packets are evenlydistributed over the rows of block (i; j). Hence, we canconcentrate on the routing problem on a chain in whichk2=3 � n1=3=2 packets are routed from each section oflength n2=3=k1=6 to each other section. Within eachsection the packets are sorted according to the distancethey have to go. In order to apply Lemma 2.1, weconsider how many packets have to go from the �rst isections to the last j sections, i+ j � k1=6 �n1=3. Theseare i�j �k2=3�n1=3=2 packets. The gap the packets have tobridge is (k1=6�n1=3�i�j)�n2=3=k1=6. Hence, the routingcan be performed in maxi;jfi � j � k2=3 � n1=3=2 + (k1=6 �n1=3� i� j) �n2=3=k1=6g steps. For k � 8 the maximumis assumed for i = j = k1=6 � n2=3=2, and equals k � n=8.Otherwise the maximum is assumed for i = j = 0, andequals n. We do not have to consider `cuts' within thesections because there the packets stand in the correctorder. 2Combining Lemma 3.4 and Lemma 3.5 gives

Theorem 3.2. kksort performs k-k sorting de-terministically in maxf4 � n; k � n=2g + O(k5=6 � n2=3)steps on a square.The constant of the lower-order term, O(k5=6�n2=3),depends on the applied algorithm for the local sortingoperations. It is minimized when kksort itself isapplied recursively. For the sorting in Step 3, thealgorithm has to be modi�ed slightly.Corollary 3.1. For k � 8, k-k sorting on asquare can be performed in k �n=2+(4+o(1)) �k5=6 �n2=3steps.Proof. Let s = n2=3=k1=6. During kksort, k-ksorting on squares of size s � s must be applied inSteps 1.a and 2.a. In Step 1.b and 2.b, the packets arerearranged within squares of size s � s. Each of thesefour steps can be performed in k � s=2 + o(k � s) steps.The sorting operations in Step 3 can be performed ink � s + o(k � s) steps each. 2The small constant of the additional term indicates thatour results may be of practical value. The results of thissection were stated only for squares. Generalizationsfor tori are immediate. As the routing steps on whichthe algorithms are based, and which determine theleading term of the sorting times, can be performedtwice as fast on a torus, the problems on a torus canbe solved almost twice as fast as on a square. Withoutfurther modi�cation we can show with a re�nement ofLemma 3.3 that the queue size is at most k + 4. Whenthe packets are accurately timed we getLemma 3.6. For k � 2, kksort can be imple-mented to run with maximal queue size k.3.3 Generalizations. The ideas underlying our k-ksorting algorithm are very general, and can in fact beapplied to large classes of networks. Interestingly, theresulting algorithm is a variation of Leighton's Column-sort algorithm [2, 13]. In this subsection, we brie
ydescribe this generalized algorithm, and show how itcan be e�ciently implemented on multi-dimensionalmeshes. This leads to an algorithm for k-k sortingon meshes of arbitrary dimension whose running timematches the bisection lower bound to within a lower or-der additive term, as long as d � logN=(� � log logN )and k � 4 � d, where � = 2=(log 3 � 1) and d is thedimension of the mesh. The high-level structure of thegeneralized algorithm is as follows:1.a. Sort within groups of N2=3=k1=3 PUs.1.b. Route the packets to appropriate intermediatedestinations.2.a. Sort within groups of N2=3=k1=3 PUs.2.b. Route the packets to their preliminary destina-tions.



6 Kaufmann et. al.3. Sort twice within groups of 2 �N2=3=k1=3 PUs.Steps 1.a, 2.a, and 3 can be implemented by arecursive call to the algorithm. Note that Steps 1.band 2.b of the algorithm are o�-line routing problemscorresponding to a sort-and-unshu�e operation. In theprevious subsection, it was shown that these routingproblems can be solved in optimal time, due to theirhighly regular structure. It can be shown that this isalso the case for meshes of higher dimension.Now divide the mesh into blocks of side lengthn2=3=k1=(3�d). There are m = k1=3 � nd=3 blocks eachholding k2=3 � n2=3�d = m2 packets. The algorithmremains the same as kksort except that the coloringwith two colors is replaced by a coloring with d colors:a packet which has rank i after the sorting in Step 1.a isgiven color b(i mod d �m)=mc. In Step 3.a the packetsget color i mod d. The packets are now routed along dindependent paths: a packet of color c, 0 � c � d� 1 isrouted �rst along axis c, then along axis c + 1, and soon. The algorithm is applied recursively until the sidelength of the meshes is reduced to O(1). At that pointwe apply the hypercubic sorting algorithm of Cypherand Plaxton [4], which runs in O(k � d � logd) steps. Werefer to the resulting algorithm as highdimsort.Theorem 3.3. We apply highdimsort to k-ksorting on a d-dimensional cube of side length n. Ifd � log d = o(n2=3) and k � 4 � d, then the sorting isperformed in k � n=2+ (4 + o(1)) � k1�1=(3�d) � n2=3 steps.Proof. The recurrence for the running time T (k;N )of this algorithm is given by T (k;N ) = 2 � (R(k;N ) +T (k;N2=3=k1=3) + T (k; 2 � N2=3=k1=3)), where R(k; n)denotes the number of steps needed in the o�-linerouting in Step 2 and Step 4. Solving the aboverecurrence with R(k; n) = k � n=4, we see that therecursive sorting of the blocks takes time T (k;N ) =4 � k1�1=(3�d) �n2=3+O(k1�1=(3�d) � n4=9+ k � d � logd). 2Hence, the running time of the above algorithmnearly matches the bisection lower bound. Note thatthe algorithm was designed under the assumption thateach PU can communicate with all of its neighbors in asingle step. For meshes of nonconstant dimension, thisassumption might be considered somewhat unrealistic.However, through a straightforward simulation of thismulti-port model on a weaker model in which a PU canonly communicate with a single neighbor (the single-port model), we can also obtain e�cient algorithms forthe single-port model.Finally, we point out that the performance of thealgorithm does not really rely on the power of theSharesort algorithm in [4], and that a similar result canalso be shown using, for example, bitonic sorting [1]. Inthat case, the constant � is slightly larger.

4 Permutation Routing with Small QueuesIn this section, we apply our techniques to an optimalrandomized algorithm for permutation routing recentlyproposed by Kaklamanis, Krizanc, and Rao [7]. First,we give a description of their algorithm, which has avery simple structure.Partition the mesh vertically into four quarters Q0to Q3, where Qi contains the columns i �n=4 to (i+ 1) �n=4 � 1. In the algorithm every packet is �rst routedalong the row to an intermediate destination, where itturns into a column. In this column, the packet movesto its destination row, and then in the destination rowto its �nal destination. The intermediate destination ischosen randomly according to the following rules.� Packets in Q0 and Q1 with destinations in Q0 orQ1 choose intermediate destinations in Q0.� Packets in Q0 and Q1 with destinations in Q2 orQ3 choose intermediate destinations in Q2.� Packets in Q2 and Q3 with destinations in Q0 orQ1 choose intermediate destinations in Q1.� Packets in Q2 and Q3 with destinations in Q2 orQ3 choose intermediate destinations in Q3.It is shown in [7] that this routing scheme resultsin a running time of 2 � n + O(logn) and a queue sizeof O(logn), with high probability. The queue size canbe improved to O(1) by applying a spreading techniquedescribed in [16]. An o�-line version of the algorithmruns in time 2 � n� 1 with queue size 4.The high-level structure of our deterministic algo-rithm is very similar. Instead of the randomization,we perform an appropriate sort-and-unshu�e operation.We also employ a more sophisticated spreading tech-nique, hereafter referred to as counter scheme, in orderto achieve a small, constant queue size.1. Partition the mesh into blocks of size n3=4�n3=4,and sort the packets in each block by their destinationblocks, into row-major order. Here, it is assumedthat the set of destination blocks is ordered in somearbitrary �xed way.2. In each quarter Qi, perform a sort-and unshu�eoperation among the blocks of each row of blocks.This can be implemented by moving in each row thepacket in position j to position (j mod (n1=44 ))�n3=4+bj=(n1=44 )c, for 0 � j < n=4.3. Route the packets along the rows to their inter-mediate destinations according to the four rules givenabove, such that every packet travels a distance thatis a multiple of n=4.



Derandomizing Routing and Sorting Algorithms 74. Again sort the packets in each block by theirdestination blocks, into row-major order.5. Route the packets along the columns. In order toget to its destination block, a packet traveling alongits column could turn in any of the n3=4 consecutiverows passing through that block. The exact rowacross which a packet will enter its destination blockis determined by the counter scheme described inthe next step. The purpose of this scheme is todistribute the packets of each destination block evenlyover the n3=4 incoming rows, while at the same timemaintaining a small, constant queue size.6. The counter scheme: In each column we maintainn1=2 counters, two for each of the n1=2=2 destinationblocks in the half of the mesh containing the column(all packets are already in the correct half of themesh). The n1=4 counters for any particular row ofn1=4=2 destination blocks are located in the n1=4=2PUs immediately above and below the n3=4 rowspassing through these destination blocks. Whenevera row element destined for a particular block arrivesat one of the two corresponding counters, this counteris either increased by one, modulo 2 � n1=2 (in thecase of the counters above the destination rows), ordecreased by one, modulo 2 � n1=2 (in the case of thecounters below the destination rows). The row acrosswhich the packet will enter its destination block isdetermined by the sum, modulo n3=4, of the newcounter value and a �xed o�set value associated witheach counter. A counter in column i of the half, 0 �i < n=2, that corresponds to a destination block inthe jth column of destination blocks, 0 � j < n1=4=2,is assigned the o�set value (i+ j � 2 � n1=2) mod n3=4.7. Route the packets along the rows into their desti-nation blocks using the farthest-�rst strategy. Eachpacket stops at the �rst PU in its destination blockthat has a free memory slot for an additional packet.It will be shown below that, due to the counterscheme, the incoming packets are evenly distributedover the rows of any destination block.8. Perform local routing over a distance of O(n3=4)to bring every element to its �nal destination.We �rst analyze the running time. Clearly, Steps 1,4, and 8 only take O(n3=4) steps. Steps 2 and 3 canbe overlapped by sending the packets directly to thelocations they will assume at the end of Step 3. Thistakes between n=2+O(n3=4) and 3=4�n+O(n3=4) steps,depending on the location of the block. As soon as ablock has received all of its packets, it can perform thelocal sort in Step 4, and start with the column routing inStep 5. This routing problem is a o(n)-approximate 2-2relation on a linear array, and can be routed in n+o(n)

steps (see [7]). Thus, Steps 5 and 6 of the algorithmwillterminate between step 112 �n+o(n) and step 134 �n+o(n),depending on the location of the column. Assumingthat Step 6 has distributed the packets evenly over theincoming rows of each destination block, Step 7 can beinterpreted as the problem of routing an approximate 2-1 relation on a linear array of length n=2, where packetsthat have a distance of d to travel are not allowed tomove before time n=2 � d. Thus, the above algorithmruns in time 2 � n+ o(n).It remains to show that the packets are indeedevenly distributed after Step 6, and that the total queuesize is bounded by 5. Consider a destination block Dand two blocks B1 and B2 located in the same quarterand the same row of blocks. It can be shown that thenumber of packets with destination block D will di�erby at most n1=4 = o(n3=4) between B1 and B2, afterStep 3. This implies that after Step 4, the number ofpackets with destination block D will di�er by at most2 �n1=4 between any two columns in the quarter. Thereare n3=2 packets with destination block D. Hence, anyof the n=4 columns in the quarter can contain at mostn3=2=(n=4)+ 2 �n1=4 � 4 �n1=2 packets with destinationblock D, which are evenly distributed among 2 � n1=2rows by the counter technique (up to a di�erence of 1).Due to the assignment of o�set values to the counters,packets with di�erent destination blocks always turnin di�erent PUs. This implies that at most 3 packetsturn in any single PU. The elements in n3=4 consecutivecolumns will be evenly distributed among all incomingrows of D, due to the n3=4 di�erent o�set values ofthe 2 � n3=4 counters corresponding to D. This impliesthat every PU of D will receive at most 2 packets.The maximum possible queue size of the algorithm isgiven by a scenario in which 3 packets have to turn in agiven PU, while 2 other packets are temporarily passingthrough the PU during the routing in Step 5. Thisestablishes the following result.Theorem 4.1. There exists a deterministic rout-ing algorithm for the two-dimensional mesh with a run-ning time of 2 � n+ o(n) and a queue size of 5.Using similar ideas, we have also derandomizeda number of other algorithms proposed in [7]. Inparticular, we can show the following results.Theorem 4.2. Any 2-2 relation can be routed de-terministically in time 2 � n+ o(n) with queue size 10.Theorem 4.3. There exists a deterministic algo-rithm for routing on the three-dimensional cube withrunning time 3 � n+ o(n) and queue size 13.Theorem 4.4. There exists a deterministic algo-rithm for routing on the two-dimensional torus withrunning time n+ o(n) and constant queue size.



8 Kaufmann et. al.5 Optimal Deterministic Sorting on a SquareIn this section, we apply our techniques to a randomizedalgorithm for 1-1 sorting with running time 2 � n +o(n) recently described by Kaklamanis and Krizanc [6].As a result, we obtain the �rst optimal deterministicalgorithm for 1-1 sorting on the square. The fastestdeterministic algorithm previously known runs in 212 �n+ o(n) steps, and is due to Kunde [11].We start by giving a brief description of the ran-domized algorithm of Kaklamanis and Krizanc. In Sub-section 5.2, we derive a simple deterministic algorithmwith a running time of 214 � n + o(n). Finally, Subsec-tion 5.3 describes the optimal algorithm for the square,and lists some extensions to other types of meshes.5.1 The Optimal Randomized Algorithm. Webrie
y review the optimal randomized algorithm ofKaklamanis and Krizanc [6]. The structure of theiralgorithm is quite complicated, and hence we necessarilyomit a number of important details.In the algorithm, the n � n mesh is partitionedinto blocks Bi, 0 � i < n2�2�
, of size n
 � n
 .In addition, we partition the mesh into quadrants Qi,0 � i < 4, and subquadrants (quadrants of quadrants)Ti, 0 � i < 16. We assume that the four centralsubquadrants are denoted as T0 to T3.1. Each packet is selected as a presplitter withprobability n�=2, for some suitable � > 0. Eachpresplitter routes itself to a random position in ablock B of size n�=2� n�=2 at the center of the mesh.The presplitters are then sorted, and n�=5 elementsof equidistant ranks are selected as splitters.2. The splitters are broadcast in T1 to T4.3. Each packet declares itself either a row elementor a column element, with equal probability. Eachrow element is then routed to a random location inits current row, within its subquadrant. Similarly,each column element is routed to a random positionin its column. Each of the subquadrants T0 to T3then receives a copy of the contents of all othersubquadrants Ti, 0 � i < 16.4. The packets in each block Bi located in T1 to T4are sorted. Using the splitters, each packet can thencompute a preliminary destination that is close toits �nal destination, with high probability. A packetwith a preliminary destination outside its currentquadrant kills itself.5. Each surviving packet is routed to a random lo-cation in the block containing its preliminary desti-nation.

6. The global ranks of the splitters are computed,and broadcast throughout each quadrant.7. Using the global ranks of the splitters, each packetcan be routed to its �nal position.Kaklamanis and Krizanc [6] show that by a cleverinterleaving of the steps, the above algorithm can bescheduled to run in 2 � n+ o(n) steps.5.2 A Simple Non-Optimal Algorithm. We nowdescribe a fairly simple deterministic algorithm thatruns in 214 � n + O(n2=3) steps, and that does not usesplitters. In the following, let the blocks Bi be of sizen2=3 � n2=3.To obtain the algorithm, we remove all steps thatinvolve the computation and broadcasting of the splitterelements. The partial randomization in Step 3 issubstituted by a complete sort-and-unshu�e operationin each subquadrant. This increases the running timeof the algorithm by n=4, since only one phase ofthe sort-and-unshu�e operation can be scheduled inparallel with the overlapping of the packets into thesubquadrants T0 to T3, as described in [6]. Hereafter,the packets in each block Bi in T0 to T3 are sorted again,and a preliminary destination is computed in the sameway as in the algorithm kksort of Section 3. Usingarguments similar to those in Lemma 3.2, it can beshown that the preliminary destination of each packetis at most one block away from its �nal destination.As before, any element with a preliminary destinationoutside its current quadrant kills itself.The routing of the packets to their preliminarydestinations is now actually much simpler than in therandomized algorithm, since we are guaranteed thatapproximately a quarter of the packets in each block Bisurvive. This implies that the surviving elements areuniformly distributed within each center subquadrant,and that we can perform the routing in a simple, greedyfashion. This establishes the following result.Theorem 5.1. Deterministic 1-1 sorting withoutsplitters can be performed in 214 � n+O(n2=3) steps.5.3 The Optimal Algorithm. We now establishthe main result of this section, a deterministic sortingalgorithm with a running time of 2�n+o(n) and a queuesize of approximately 25. Due to space constraints, wewill not be able to give a formal proof of the claimedbounds on time and queue size.Our algorithm follows closely the lines of the op-timal randomized algorithm of [6], and simply replaceseach randomized step with an appropriate deterministicone.



Derandomizing Routing and Sorting Algorithms 95.3.1 Splitter Selection and Routing. In Step 1of the algorithm, randomization is used to select a set ofpresplitters and route it towards the center of the mesh.The following deterministic step can be substituted forStep 1.1. In each block Bi, 0 � i < n2=3, sort the packetsinto row-major ordering and select the elements incolumn i as presplitters. Route all presplitters greed-ily towards the block Bj located at the center of themesh, such that the presplitter of each block move inlock step. Then sort the set of presplitters, and selectn2=3 elements of equidistant ranks as splitters.As the presplitters are routed with priority, theydelay the routing of the other packets. However, it canbe shown that this delay is small, since every edge of themesh is traversed by at most n2=3 presplitters. Using thesplitters selected from the presplitters in the center ofthe mesh, each packet can estimate its rank to withinO(n4=3). More precisely, the following lemma can beshown.Lemma 5.1. Let si be the ith smallest splitter, 1 �i � n2=3. Then the global rank of si is within the rangei � n4=3 � O(n4=3).This implies that the preliminary destination com-puted by each surviving packet in Step 4 of the algo-rithm has a distance ofO(n2=3) from its �nal destination(recall that we assume a blocked snake-like row-majorindexing scheme). Hence, the local routing in Step 7of the algorithm will route each packet to its correctdestination in time O(n2=3).5.3.2 Spreading Along Rows and Columns. InStep 3 of the randomized algorithm, the set of packetsis partitioned into row elements and column elements,which are then randomized along the rows and columns,respectively, of each subquadrant. This step is over-lapped with the copying of the packets into the centersubquadrants T0 to T3, and is performed according toa rather ingenious schedule described in [6]. The pur-pose of this step is to make sure that after Step 4 thesurviving packets are distributed over each center sub-quadrant in such a way that the routing into destinationblocks in Step 6 can be performed e�ciently.In our deterministic algorithm, we �rst sort thepackets in each block into row-major ordering. We thende�ne the row and column elements as the packets withodd and even ranks, respectively. The randomizationof the row elements along the rows of each subquad-rant can be simulated along the lines of Step 2 of thedeterministic routing algorithm in Section 4. The ran-domization of the column elements along the columnsis done analogously.

After execution of this step, all packets with acommon destination block are (approximately) evenlydivided between the sets of row element and columnelement, and the row elements (resp. column elements)are evenly distributed over the columns (resp. rows) ofeach subquadrant.5.3.3 Routing to Destination Blocks. We �rstgive a brief description of the routing scheme usedin Step 5 of the randomized algorithm. The routingconsists of two overlapped phases. In the �rst phase,the row elements are routed in the columns, while thecolumn elements are routed in the rows. In the secondphase, the row elements are routed in the rows to theirdestination blocks, and the column elements are routedin the columns to their destination blocks.If two packets in the same phase content for anedge, then priority will be given to the packet with thefarthest total distance to travel. If the packets are fromdi�erent phases, then a somewhat more complicatedpriority scheme is employed.We use the same routing scheme in our determinis-tic algorithm, with one minor modi�cation. In Step 5of the randomized algorithm, each packet is routed toa random location inside its destination block. Thisensures that at most O(logn) packets turn in a singlePU, and that at most O(logn) packets are routed tothe same destination PU. This queue size can be re-duced to O(1) by applying a spreading technique de-scribed in [16]. In the deterministic algorithm, we usethe counter scheme described in the algorithm of Sec-tion 4 to distribute the packets evenly over the incomingedges of each destination block. In addition, this schemealso ensures that the destinations of the elements in thesecond phase of the routing are evenly distributed insideeach row and each column; this is crucial in the analysisof the running time.It can be shown that the sort-and-unshu�e opera-tion in Step 3 of the algorithm has distributed the sur-viving packets in such a way that the above routingscheme will route each packet to its destination block inn + o(n) step. The formal proof of this claim is quitelengthy, and will hence be omitted. Altogether, we getthe following result.Theorem 5.2. There exists a deterministic algo-rithm for 1-1 sorting on the square with running time2 � n+ o(n) and constant queue size.The following results can be derived in a similarfashion. The corresponding randomized results can befound in [6].Theorem 5.3. There exists a deterministic algo-rithm for sorting on the three-dimensional cube withrunning time 312 � n+ o(n) and constant queue size.



10 Kaufmann et. al.Theorem 5.4. There exists a deterministic algo-rithm for sorting on the two-dimensional torus with run-ning time 114 � n+ o(n) and constant queue size.Theorem 5.5. There exists a deterministic algo-rithm for sorting on the three-dimensional torus withrunning time 2 � n+ o(n) and constant queue size.6 Concluding RemarksIn this paper, we have introduced a new technique thatallows us to derandomize many of the randomized algo-rithms for routing and sorting on meshes that have beenproposed in recent years. By applying this technique,we have obtained optimal or improved deterministic al-gorithms for a number of routing and sorting problemson meshes and related networks. The new technique isvery general, and seems to apply to most of the random-ized algorithms that have been proposed in the litera-ture. In fact, as a result of this work, we are currentlynot aware of any randomized algorithm for routing andsorting on meshes and related networks whose runningtime cannot be matched, within a lower order additiveterm, by a deterministic algorithm.This naturally raises the question whether random-ization is of any help at all in the design of routingand sorting algorithms for these types of networks. Inthis context, we point out that some of the random-ized algorithms still have a simpler control structure orsmaller lower order terms than their deterministic coun-terparts, which repeatedly perform local sorting withinblocks. Also, the results in this paper would not havebeen possible without the extensive study of random-ized schemes for routing and sorting by a number ofother authors, which has resulted in a variety of fastrandomized algorithms [5, 6, 7, 8, 16, 18, 20].Acknowledgements: The third author would like tothank Christos Kaklamanis, Greg Plaxton, and Rajmo-han Rajaraman for helpful discussions.References[1] Batcher, K.E., `Sorting Networks and their Applica-tions,' Proc. AFIPS Spring Joint Computer Confer-ence, pp. 307-314, 1968.[2] Aggarwal, A., M.D. Huang, `Network Complexity ofSorting and Graph Problems and Simulating CRCWPRAMs by Interconnection Networks,' VLSI Algo-rithms and Architectures (AWOC 88), LNCS 319, pp.50-59, ACM, 1992.[3] Chlebus, B.S., M. Kaufmann, J.F. Sibeyn, `Determin-istic Permutation Routing on Meshes,' Proc. 5th Symp.on Parallel and Distributed Proc., IEEE, 1993.[4] Cypher, R., C.G. Plaxton, `Deterministic Sorting inNearly Logarithmic Time on the Hypercube and Re-

lated Computers,' Proc. 22nd Symp. on Theory ofComputing, pp. 193-203, ACM, 1990.[5] Kaklamanis, C., D. Krizanc, L. Narayanan, Th. Tsan-tilas, `Randomized Sorting and Selection on MeshConnected Processor Arrays,' Proc. 3rd Symposiumon Parallel Algorithms and Architectures, pp. 17-28,ACM, 1991.[6] Kaklamanis, C., D. Krizanc, `Optimal Sorting onMesh-Connected Processor Arrays,' Proc. 4th Sympo-sium on Parallel Algorithms and Architectures, pp. 50-59, ACM, 1992.[7] Kaklamanis, C., D. Krizanc, S. Rao, `Simple PathSelection for Optimal Routing on Processor Arrays,'Proc. 4th Symposium on Parallel Algorithms and Ar-chitectures, pp. 23-40, ACM, 1992.[8] Kaufmann, M., S. Rajasekaran, J.F. Sibeyn, `Matchingthe Bisection Bound for Routing and Sorting on theMesh,' Proc. 4th Symposium on Parallel Algorithmsand Architectures, pp. 31-40, ACM, 1992.[9] Kaufmann, M., J.F. Sibeyn, `Derandomizing SortingAlgorithms on Meshes,' Unpublished Manuscript, 1993.[10] Kunde, M., `Lower Bounds For Sorting on Mesh-Connected Architectures', Acta Informatica, 24, pp.121-130, 1987.[11] Kunde, M., `Concentrated Regular Data Streams onGrids: Sorting and Routing Near to the BisectionBound', Proc 31th Symposium on Foundations of Com-puter Science, pp. 141-150, IEEE, 1991.[12] Kunde, M., `Block Gossiping on Grids and Tori: De-terministic Sorting and Routing Match the BisectionBound,' Proc. European Symp. on Algorithms, LNCS726, pp. 272-283, 1993.[13] Leighton, F. T., `Tight Bounds on the Complexity ofParallel Sorting,' IEEE Trans. Comp., 34, pp. 344-354,1985.[14] Leighton, F. T., F. Makedon, I.G. Tollis, `A 2n�2 StepAlgorithm for Routing in an n�n Array with ConstantQueue Sizes,' Proc. 1st ACM Symposium on ParallelAlgorithms and Architectures, pp. 328-335, 1989.[15] Rajasekaran, S., Overholt, R., `Constant Queue Rout-ing on a Mesh,' Journal of Parallel and DistributedComputing, 15, pp. 160-166, 1992.[16] Rajasekaran, S., Tsantilas, T., `Optimal Routing Al-gorithms for Mesh-Connected Processor Arrays,' Algo-rithmica, 8, pp. 21-38, 1992.[17] Schnorr, C.P., A. Shamir, `An Optimal Sorting Al-gorithm for Mesh Connected Computers,' Proc. 18thSymposium on Theory of Computing, pp. 255-263,ACM, 1986.[18] Sibeyn, J.F., M. Kaufmann, `k-k Sorting on Meshes,'Unpublished Manuscript, 1992.[19] Suel, T., `Optimal Deterministic Routing and Sortingon Mesh-Connected Arrays of Processors,' TechnicalReport TR-93-18, University of Texas at Austin, 1993.[20] Valiant, L.G., G.J. Brebner, `Universal Schemes forParallel Communication,' Proc. 13th Symposium onTheory of Computing, pp. 263-277, ACM, 1981.


