Derandomizing Algorithms for Routing and Sorting on Meshes

Michael Kaufmann*

Abstract

We describe a new technique that can be used to derandom-
ize a number of randomized algorithms for routing and sort-
ing on meshes. We demonstrate the power of this technique
by deriving improved deterministic algorithms for a vari-
ety of routing and sorting problems. Our main results are
an optimal algorithm for k-k routing on multi-dimensional
meshes, a permutation routing algorithm with running time
2n 4 o(n) and queue size 5, and an optimal algorithm for 1-1
sorting.

1 Introduction

One of the main problems in the simulation of idealistic
parallel computers by realistic ones i1s the problem of
message routing through the sparse network of links
connecting a set of processing units (PUs) among each
other. In this paper, we consider the case of the n x n
mesh, in which n? PUs are connected by a regular two-
dimensional grid of bidirectional communication links.
There may also be additional wrap-around connections
between the two PUs at opposite ends of each row
and each column of the network; this type of mesh is
called torus. A mesh without wrap-around connections
will be referred to as square. We assume the MIMD
model, where in a single step each PU can perform an
arbitrary amount of internal computation, and transmit
one packet of information (of bounded length) to each
of its neighbors.

The routing problem is the problem of rearranging a
set of information packets in a network, such that every
packet ends up at the PU specified in its destination
address. This problem is of fundamental importance
in the design of efficient algorithms for realistic models
of parallel computation, as well as in the simulation

~ *Wilhelm-Schickard-Institut fiir Informatik, Universitat Tii-
bingen, Sand 13, D-72076 Tiibingen,
mk@informatik.uni-tuebingen.de

tMax-Planck-Institut fiir Informatik, Im Stadtwald, D-66123
Saarbriicken, Germany. FE-mail: jopsi@mpi-sb.mpg.de. Partially
supported by EC Cooperative Action IC-1000 (Project ALTEC:
Algorithms for Future Technologies).

Germany. E-mail:

{Department of Computer Sciences, University of Texas at
Austin, Austin, TX 78712, USA. E-mail: torsten@cs.utexas.edu.
Supported by Texas Advanced Research Program (TARP) Award
#003658480.

Jop F. Sibeyn'

Torsten Suel?

of more powerful, idealistic models. Consequently, the
routing problem has received considerable attention,
and a variety of algorithms have been proposed for
several variants of the problem. The performance of
a routing algorithm is measured by its running time
(the maximum time a packet may need to reach its
destination) and its queue size (the maximumnumber of
packets any node may have to store during the routing).

Most research has focused on the 1-1 routing prob-
lem, also called the permutation routing problem, in
which each node is the origin and destination of at most
one packet. However, in many practical applications a
PU may have to communicate with a number of other
PUs at the same time. This motivates the definition of
the k-k routing problem, in which each PU can be the
source and destination of up to k packets.

Another problem that involves the rearranging of
packets within a processor network is the sorting prob-
lem. Again, several variants of the problem have been
studied. In the 1-1 sorting problem, each PU initially
holds a single packet, where each packet contains a key
drawn from a totally ordered set. The packets have to
be rearranged such that the packet with the key of rank
¢ 18 moved to the PU with index ¢, for all «. In the k-k
sorting problem, each PU is the source and destination
of k packets.

In a routing problem, the destinations of the packets
are given as part of the input; in a sorting problem,
the destinations of the packets have to be computed
as a function of the set of keys and the indexing of
the PUs. However, there is also a close relationship
between the two problems. Many routing algorithms
involve the sorting of subsets of the packets, while many
sorting algorithms use routing in intermediate steps of
the computation.

1.1 Previous Work. A number of algorithms for
the permutation routing problem have been proposed.
A deterministic algorithm with running time 2 - n — 2
and constant queue size was given by Leighton, Make-
don, and Tollis [14] and later refined by Rajasekaran
and Overholt [15] and by Chlebus, Kaufmann, and
Sibeyn [3], who achieve a queue size of 81. However,
in addition to their large queue sizes, these algorithms
suffer from a complicated control structure. Thus, a

simpler algorithm with a smaller queue size might be
of more practical interest, even if its running time is
slightly larger than 2 - n — 2. In this context, several
fairly simple randomized algorithms with running time
2-n+ O(logn) and small constant queue size have been
proposed [7, 16].

Considerable attention has also been given to the
problem of 1-1 sorting on two-dimensional meshes. In
particular, Schnorr and Shamir [17] gave a 3 - n 4 o(n)
step algorithm for sorting into snake-like row-major
order, and proved a nearly matching lower bound of
3-n—o(n), also independently discovered by Kunde [10].
In their model of the mesh, a PU may only hold a single
packet at any time. However, this lower bound does not
hold when PUs may hold more than one packet. For this
model, Kaklamanis, Krizanc, Narayanan, and Tsantilas
[5] gave a randomized 21 - n + o(n) step algorithm for
sorting into a block-wise indexing scheme. Kaklamanis
and Krizanc [6] subsequently gave an improved version
of this algorithm that runs in time 2 - n + o(n), thus
nearly matching the diameter lower bound. The best
deterministic algorithm, due to Kunde [11], achieves a
running time of 2% - n + o(n) and a queue size of 2.

In [11], Kunde also showed that k-k sorting can be
performed in k - n + o(k - n) steps with a queue size
of k. A randomized algorithm for k-k routing with
running time max{4-n, k-n/2}+o(k-n) was given in [8].
This algorithm was improved and extended to sorting
on squares and tori in [18], where it is shown that k-k
sorting can be performed by a randomized algorithm in
time max{4-n, k-n/2}+o(k-n)on asquare, and in about
half this time on a torus. This algorithm is based on the
idea of Reif and Valiant and of Reischuk to randomly
select a set of splitters. After sorting these splitters,
the packets can estimate their rank and determine a
corresponding preliminary destination.

1.2 Overview of the Paper. We introduce a set of
techniques that can be used to convert a number of ran-
domized algorithms for routing and sorting into deter-
ministic algorithms that achieve similar running times
and queue sizes. Our techniques are very general, and
seem to apply to many of the randomized algorithms for
routing and sorting on meshes and related networks that
have been proposed in the literature. We demonstrate
the power of the technique by deriving improved deter-
ministic algorithms for a variety of routing and sorting
problems on meshes.

Our first result is an optimal algorithm for k-k
sorting, with a running time of k-n/24 (44 o0(1))-k°/¢.
n?/3 on a square and k -n/4 4 (4 + o(1)) - k>/° - n?/3 on
a torus. The algorithm achieves a queue size of &k, and
does not make any copies of packets. In addition, it can

Kaufmann et. al.

easily be generalized to meshes of arbitrary dimensions.
A similar algorithm was independently discovered by
Kunde [12]. However, the lower order terms of his
algorithm are larger, particularly for higher dimensions.

Next, we apply our techniques to several random-
ized routing algorithms recently proposed by Kaklama-
nis, Krizanc, and Rao [7]. As a result, we obtain an
optimal deterministic routing algorithm for the square
with a running time of 2-n+o(n) and a queue size of 5,
as well as the first optimal deterministic algorithms for
routing on the torus and the three-dimensional cube.

Finally, we demonstrate the power of our techniques
by derandomizing an optimal randomized algorithm for
1-1 sorting on the square recently proposed by Kakla-
manis and Krizanc [6]. The resulting deterministic algo-
rithm has a running time of 2-n+o0(n) and a queue size
of about 25. In addition, we also obtain improved sort-
ing algorithms for the torus and for three-dimensional
networks.

Due to space constraints, we can only give a brief
description of the main results. For complete proofs,
and additional applications of our techniques, the reader
is referred to [9, 19].

The remainder of the paper is organized as follows.
The next section contains some additional definitions
and useful results. In Section 3, we explain the basic
idea behind our results, and show how it can be used in
the construction of an optimal deterministic algorithm
for k-k sorting. Section 4 contains our results for 1-1
routing. In Section 5, we present the optimal algorithm
for 1-1 sorting on the two-dimensional mesh. Finally,
Section 6 offers some concluding remarks.

2 Preliminaries

2.1 Machine Model. Our model of computation is
an n x n MIMD mesh with or without wrap-around
connections. In the following, we refer to this machine
simply as mesh. It consists of n? PUs arranged in a
regular square grid, such that every PU is connected to
(at most) four other PUs. The PU located at position
(1,7) is referred to as P; ;, where Py is the PU in the
lower left corner. A one-dimensional square is called
chain, and a square of dimension d > 2 is called cube.
The PUs operate in a synchronous fashion. In a
single step of the computation, each PU can perform
an arbitrary amount of internal computation, and com-
municate with all its neighbors. The only restriction
is that at most one packet of bounded length can be
transmitted across any edge in either direction. Thus,
a PU in a square may send and receive up to four pack-
ets in a single step. We will assume that the running
time of an algorithm is determined by the number of
communication steps, and that the internal operations

Derandomizing Routing and Sorting Algorithms

inside the PUs take a negligible amount of time (or can
be performed simultaneously with the routing). FEach
PU has a queue, which temporarily stores packets that
are not routed on immediately.

2.2 Indexing Schemes. In routing algorithms, the
choice of the indexing of the PUs is irrelevant. In
contrast, the running time of a sorting algorithm often
depends on a particular indexing scheme. In this paper,
we assume a so-called blocked indexing scheme, in which
the mesh 1s partitioned into blocks of equal size, and
the index of a PU 1s determined in the first place by the
index of its block and in the second place by its index
within this block. Under a blocked snake-like row-major
scheme, the blocks are indexed by the snake-like row-
major scheme, while the indexing inside the blocks can
be arbitrary. As an example, we give a blocked snake-
like row-major scheme of a 6 x 6 mesh with blocks of
size 2 X 2:

26(27(30(31|34|35
24125(28)29(32|33
22023(18|19|14|15
20(21(16|17|12|13
3(16|7]|10(11
0114|5819

2.3 Basics of Routing. We assume that a packet
consists of a message plus some additional information
that is needed to route the packet to its destination.
For example, in the case of sorting each packet contains
a key from a linearly ordered set. In the k-k sorting
problem, the packets must be routed such that the PU
with index i, 0 < i < n? — 1, receives the packets with
ranks ki k-i+1,.. . k- (14+1)— 1.

We speak of edge contention if several packets
residing in a PU have to be routed across the same
connection. Contentions can be resolved by a priority
scheme. Throughout this paper, we apply the farthest-
first strategy, which gives priority to the packet that has
the farthest distance to go.

We review a fundamental result from [8] concerning
routing on a chain of length n under the farthest-first
strategy. Let P; be the PU with index 2. For a given
distribution of the packets over the PUs, define A, (1, j)
as the number of packets passing from left to right
through both F; and F;, and let 7, denote the number
of steps required for the routing to the right.

LEMMA 2.1. On a chain of length n, we have T, =
max;«;{j — i+ he(4,5) — 1}.

On two-dimensional meshes there are two basic
modes of packet routing. A packet is routed row-first
if it is first routed along the row to its destination

column, and then along the column to its destination.
A packet is routed column-first if 1t is first routed along
the column to its destination row, and the along the row
to its destination.

Considering the maximal distance a packet may
have to travel, it follows that d-n—d is a lower bound for
routing on d-dimensional cubes; the so-called distance
bound. For k-k routing on a square, at least k - n/2
steps are required if all packets located in the left half
of the mesh have a destination in the right half; this
is the so-called bisection bound. Together, these two
bounds imply the following lemma.

LEMMA 2.2, k-k routing and sorting on a d-dimen-
stonal cube requires al least max{d -n—d, k-n/2} steps.

3 Basic Idea and k-k Sorting

Our derandomization technique is based on a combina-
tion of local sorting and ‘unshuffling’. More precisely,
we divide the mesh into blocks of size n® x n®, with
0 < o < 1. The blocks are indexed. In sorting prob-
lems 1t 1s required that blocks with consecutive indices
are adjacent. The packets in each block are sorted: in
a routing problem the packets are sorted on the index
of their destination block; in a sorting problem on their
key. Then the packets of each block are distributed
over the blocks. For a k-k problem, £ > 1, this is
done most frequently by routing the packet of rank i,
0<i<k-n? inblock j, 0 < j <n?2% =N, to
position j + [i/N]| - N in block ¢ mod N. Notice that
every PU is the destination of exactly & packets.

The utility of the above sort-and-unshuffle opera-
tion for sorting on meshes was previously observed by
Schnorr and Shamir, who used it in the design of their
3-n+o(n) sorting algorithm in the single-packet model
[17]. In the following, we will demonstrate that this
operation can in many cases be employed as a ‘substi-
tute’” for randomization. Following a scheme originally
proposed by Valiant and Brebner [20], many random-
ized algorithms for routing on meshes start by sending
the packets to random intermediate destinations. This
has the effect of distributing packets with destinations
close to each other evenly over the mesh. The sort-and-
unshuffle operation simulates this effect in a determin-
istic manner.

3.1 Example. A simple example illustrates how sort-
and-unshuffle can be applied to derandomize a sorting
algorithm.

We consider the k-k sorting problem for k = n*.
We choose o = 0, that is, each block consists of a single
PU. The mesh is indexed with a snake-like row-major
scheme. Consider the following simple randomized
algorithm:

1. All packets are routed to a random destination;
with probability 1/2 row-first, with probability 1/2
column-first.
2. The packets in each PU are sorted. The packets
with rank ¢ are routed to PU [i/n?].
3. Sort all pairs of PUs (2¢,2i + 1), 0 < i < n?/2.
Sort all pairs of PUs (2i — 1,2i), 0 < i < n?/2 .
Repeat these steps O(1) times.
We refer to this algorithm as RANDSORT.
LEMMA 3.1. After Step 2 of RANDSORT,

packet is at most O(1) PUs away from its destination,
with high probability.

each

Proof. Consider a packet p with destination in
PU j, 0 < j < n?. There are less than k - (j + 1)
packets with destination before p. Each of these packets
is routed in Step 1 with probability n? to PU j. Thus,
using Chernoff bounds, the number of these packets in
j can be bounded by (j+1)-k-n=24+O((j-k)/*-1/n).
Hence, the maximum of the index of the PU to which p
is routed in Step 2 is given by 5/ = [((j +1) - k- n=2 +
OG- B)M* - 1/n))/(k-n=?)] = j+O(1). =
With Lemma 2.1 and using Chernoff bounds it can be
easily shown that the algorithm runs in & -n/2+ O(k +
(k - n -logn)'/?) steps. The algorithm can be made
deterministic by replacing Step 1 with

1’. The packets residing in each PU are sorted. The
packet p with rank ¢, 0 < i < n* — 1 is routed to
Pimodnz. p is routed row-first if 4 mod (2 - n?) < n?;
else p is routed column-first.

We refer to this algorithm as HIGHKSORT. The
correctness follows from the following lemma.
LEMMA 3.2. After Step 2 of HIGHKSORT, each

packet is at most one PU away from s destination.

Proof. Consider a packet p that resides in some
PU P after Step 1'. Since there are n? regularly
interspaced packets from each PU in P, the rank of p
among the packets that originally resided in any PU F;,
0 < j < n?, can be estimated to within n?. Hence, p
can determine its global rank to within n*, the number
of packets residing in a single PU. i
Note that the way in which the packets are routed
in Step 1’ and Step 2 ensures that the packets are
distributed evenly.

THEOREM 3.1. HIGHKSORT performs k-k sorting
fork=n*ink -n/2+ O(k) steps on a square.

Proof. Under the routing operations in Step 1’ and
Step 2 each PU sends exactly n? packets to each other
PU. Each of these steps can be achieved in a perfectly
regular way in k - n/4 steps. Step 3 takes O(k) steps. O
The routing operations in Step 1’ and Step 2 are so
regular that they can be easily implemented in such a

Kaufmann et. al.

way that no PU ever holds more than k packets. We
can show the following lemma.

LEMMA 3.3. HIGHKSORT can be implemented to
run with mazrimal queue size k.

Proof. We prove that each PU holds at most k/2
white packets at all times. Consider a phase in which
the white packets move horizontally. The distribution
is such that initially the number of packets that leave P
over its right connection equals the number of packets
that enter P over this connection. Because k is large,
because of the distribution of the packets, and because
of the farthest-first strategy, this guarantees that P
receives a packet iff it sends a packet. a

Note that the movement of the packets in the
deterministic algorithm is more regular than in the
randomized one. The running times and queue sizes
of the two algorithms are comparable.

3.2 Sorting for General k. HIGHKSORT can be
easily modified into an algorithm that performs k-k
sorting optimally for all £ > 8. The mesh is divided
into blocks with side length n?/3/k/5. We assume that
this number is an integer. Let m = k3. n?/3 denote
the number of blocks. The size of the blocks is chosen
such that the number of packets in each block equals
m?. In principle we can now apply HIGHKSORT with
the blocks playing the role of PUs, but we still have
to specify precisely where every packet is going to be
routed during Step 1’ and Step 2. We assume that the
mesh is indexed with a blocked snake-like row-major
scheme. We get the following algorithm:

1.a. The packets residing in each block are sorted. The
intermediate destination of a packet p of rank z, 0 <
i < m?, lies in block i mod m. If i mod (2 - m) < m
then p is colored white, else p is colored black.

1.b. The blocks are divided into subblocks with side
lengths n'/3/k'/3. The packets of each block are
rearranged such that the packets with intermediate
destination in block (i,7), 0 < 4,5 < k'/¢ . n'/3
appear in subblock (%, j).

1.c. The white packets are routed along the row to the
column of blocks of their intermediate destination.
The packets in the joth column of subblocks in the
jith column of blocks, 0 < ji,jo < kY- nl/3 are
routed as a block to the jith column of subblocks
in the jsth column of blocks. The black packets are
routed analogously.

1.d. The white packets are routed along the column
to the block of their intermediate destination. The
packets in the i5th row of subblocks in the ¢;th row
of blocks, 0 < iy,i5 < k6. n'/3 are routed as a

Derandomizing Routing and Sorting Algorithms

block to the 7;th row of subblocks in the i5th row of
blocks. The black packets are routed analogously.

2.a. The packets residing in each block are sorted.
The preliminary destination of a packet p of rank ¢,
0 <i<m?—1,lies in block |i/m]. If i is even then
p is colored white, else p 1s colored black.

2.b. Identical to Step 1.h.
2.c.
2.d. Identical to Step 1.d.

3. Sort all pairs of blocks (2¢4,2{ + 1), 0 < 1 < m/2.
Sort all pairs of blocks (2¢ — 1,2¢), 0 < i < m/2.

Identical to Step 1.c.

The correctness of this algorithm, called KKSORT,
follows from the same argument as in the proof of
Lemma 3.2, replacing ‘PU’ by ‘block’:

LEMMA 3.4. After Step 2.d of KKSORT, each packet
1s either in its destination block, or in a block that is
adjacent in the snake-like ordering of the blocks.

The colorings in Step 1.a and Step 2.a assure that
from each block precisely m/2 packets are routed row-
first to each other block, and m/2 packets column-first.
This is essential for the proof of

LEMMA 3.5. Step Il.c, 1.d, 2.c and 2.d of KKSORT
each take at most max{n,k-n/8} steps on a square.

Proof. We analyze the lemma for the routing along
the row in Step 1.c of the white packets. The analyses
for the black packets and for the other steps are analo-
gous.

The PUs in block (¢, j) send m/2 packets row-first
to any other block. So, during Step 1.c k/6 . nl/3.
m/2 = k'? . n/2 packets are routed from block (i, j)
to any block (4,j') in the same row of blocks. By
the rearranging in Step 1.b these packets are evenly
distributed over the rows of block (¢, 7). Hence, we can
concentrate on the routing problem on a chain in which
k*/3 . n'/3/2 packets are routed from each section of
length n%/3/k/® to each other section. Within each
section the packets are sorted according to the distance
they have to go.
consider how many packets have to go from the first ¢
sections to the last j sections, i+ j < &1/ . n!/3. These
are i~j~k2/3~n1/3/2 packets. The gap the packets have to
bridge is (k1/6-n'/3—i—j)-n>/3 /k1/6. Hence, the routing
can be performed in max; j{i - j - k*/> - n'/3/2 4 (k'/5.
n/3 —i—j)-n?3 k%) steps. For k > 8 the maximum
is assumed for i = j = k'/%.n?/3/2, and equals k - n/8.
Otherwise the maximum is assumed for i = j = 0, and
equals n. We do not have to consider ‘cuts’ within the

In order to apply Lemma 2.1, we

sections because there the packets stand in the correct
order. ad

Combining Lemma 3.4 and Lemma 3.5 gives

THEOREM 3.2. KKSORT performs k-k sorting de-
terministically in max{4 - n,k - n/2} + O(k>/® . n?/3)
steps on a square.

The constant of the lower-order term, O(k5/%.n2/3),
depends on the applied algorithm for the local sorting
operations. It is minimized when KKSORT itself is
applied recursively. For the sorting in Step 3, the
algorithm has to be modified slightly.

COROLLARY 3.1. For k > 8, k-k sorting on a
square can be performed in k-n/2+(440(1))-k>/6.n?/3
steps.

Proof. Let s = n*/3/k'/% During KKSORT, k-k
sorting on squares of size s x s must be applied in
Steps 1.a and 2.a. In Step 1.b and 2.b, the packets are
rearranged within squares of size s x s. Each of these
four steps can be performed in k - s/2 4 o(k - s) steps.
The sorting operations in Step 3 can be performed in
k-s+ o(k - s) steps each. a
The small constant of the additional term indicates that
our results may be of practical value. The results of this
section were stated only for squares. Generalizations
for tori are immediate. As the routing steps on which
the algorithms are based, and which determine the
leading term of the sorting times, can be performed
twice as fast on a torus, the problems on a torus can
be solved almost twice as fast as on a square. Without
further modification we can show with a refinement of
Lemma 3.3 that the queue size is at most k 4+ 4. When
the packets are accurately timed we get

LEMMA 3.6. For k > 2, KKSORT can be imple-
mented to run with mazimal queue size k.

3.3 Generalizations. The ideas underlying our k-k
sorting algorithm are very general, and can in fact be
applied to large classes of networks. Interestingly, the
resulting algorithm is a variation of Leighton’s Column-
sort algorithm [2, 13]. In this subsection, we briefly
describe this generalized algorithm, and show how it
can be efficiently implemented on multi-dimensional
This leads to an algorithm for k-k sorting
on meshes of arbitrary dimension whose running time
matches the bisection lower bound to within a lower or-
der additive term, as long as d < log N/(« - loglog N)
and £ > 4 -d, where o = 2/(log3 — 1) and d is the
dimension of the mesh. The high-level structure of the
generalized algorithm is as follows:

1.a. Sort within groups of N?/3/k/3 PUs.

1.b. Route the packets to appropriate intermediate
destinations.

2.a. Sort within groups of N/3/k'/3 PUs.

2.b. Route the packets to their preliminary destina-
tions.

meshes.

3. Sort twice within groups of 2 - N2/3/k'/3 PUs.

Steps l.a, 2.a, and 3 can be implemented by a
recursive call to the algorithm. Note that Steps 1.b
and 2.b of the algorithm are off-line routing problems
corresponding to a sort-and-unshuffle operation. In the
previous subsection, it was shown that these routing
problems can be solved in optimal time, due to their
highly regular structure. It can be shown that this is
also the case for meshes of higher dimension.

Now divide the mesh into blocks of side length
n?/3 /13 There are m = k'/3 . n%3 blocks each
holding k%/3 - n2/34 = m? packets. The algorithm
remains the same as KKSORT except that the coloring
with two colors is replaced by a coloring with d colors:
a packet which has rank ¢ after the sorting in Step 1.a is
given color [(¢ mod d-m)/m]|. In Step 3.a the packets
get color ¢ mod d. The packets are now routed along d
independent paths: a packet of color ¢, 0 < e <d—11s
routed first along axis ¢, then along axis ¢ + 1, and so
on. The algorithm is applied recursively until the side
length of the meshes is reduced to O(1). At that point
we apply the hypercubic sorting algorithm of Cypher
and Plaxton [4], which runs in O(k - d - log d) steps. We
refer to the resulting algorithm as HIGHDIMSORT.

THEOREM 3.3. We apply HIGHDIMSORT to k-k
sorting on a d-dimensional cube of side length n. If
d-logd = o(n*/®) and k > 4 -d, then the sorting is
performed in k-n/2+ (4 +o(1)) - k' =YD . p2/3 steps.

Proof. The recurrence for the running time 7'(k, N)
of this algorithm is given by T'(k,N) = 2- (R(k,N) +
T(k, N2/3/EM3) 4 T(k,2 - N?/3/k'/3)), where R(k,n)
denotes the number of steps needed in the off-line
routing in Step 2 and Step 4. Solving the above
recurrence with R(k,n) = k - n/4, we see that the
recursive sorting of the blocks takes time T(k, N) =
4 U ED 28 L OB 40 4 | d logd). O

Hence, the running time of the above algorithm
nearly matches the bisection lower bound. Note that
the algorithm was designed under the assumption that
each PU can communicate with all of its neighbors in a
single step. For meshes of nonconstant dimension, this
assumption might be considered somewhat unrealistic.
However, through a straightforward simulation of this
multi-port model on a weaker model in which a PU can
only communicate with a single neighbor (the single-
port model), we can also obtain efficient algorithms for
the single-port model.

Finally, we point out that the performance of the
algorithm does not really rely on the power of the
Sharesort algorithm in [4], and that a similar result can
also be shown using, for example, bitonic sorting [1]. In
that case, the constant « is slightly larger.

Kaufmann et. al.

4 Permutation Routing with Small Queues

In this section, we apply our techniques to an optimal
randomized algorithm for permutation routing recently
proposed by Kaklamanis, Krizanc, and Rao [7]. First,
we give a description of their algorithm, which has a
very simple structure.

Partition the mesh vertically into four quarters (g
to @3, where @Q; contains the columns é-n/4 to (i4+1) -
n/4 — 1. In the algorithm every packet is first routed
along the row to an intermediate destination, where it
turns into a column. In this column, the packet moves
to its destination row, and then in the destination row
to its final destination. The intermediate destination is
chosen randomly according to the following rules.

e Packets in)y and)7 with destinations in @y or
Q1 choose intermediate destinations in Q.

e Packets in)y and)7 with destinations in @, or
(3 choose intermediate destinations in @-.

e Packets in () and Q)3 with destinations in @y or
Q1 choose intermediate destinations in Q.

e Packets in () and @3 with destinations in @, or
(23 choose intermediate destinations in Q3.

It is shown in [7] that this routing scheme results
in a running time of 2 - n 4+ O(logn) and a queue size
of O(logn), with high probability. The queue size can
be improved to O(1) by applying a spreading technique
described in [16]. An off-line version of the algorithm
runs in time 2 - n — 1 with queue size 4.

The high-level structure of our deterministic algo-
rithm is very similar. Instead of the randomization,
we perform an appropriate sort-and-unshuffle operation.
We also employ a more sophisticated spreading tech-
nique, hereafter referred to as counter scheme, in order
to achieve a small, constant queue size.

1. Partition the mesh into blocks of size n®/* x n3/4,

and sort the packets in each block by their destination
blocks, into row-major order. Here, it is assumed
that the set of destination blocks is ordered in some
arbitrary fixed way.

2. In each quarter @;, perform a sort-and unshuffle
operation among the blocks of each row of blocks.
This can be implemented by moving in each row the
packet in position j to position (j mod (#)) 344
/(5] for 0 < j < n/4.

3. Route the packets along the rows to their inter-
mediate destinations according to the four rules given
above, such that every packet travels a distance that
is a multiple of n/4.

Derandomizing Routing and Sorting Algorithms

4. Again sort the packets in each block by their
destination blocks, into row-major order.

5. Route the packets along the columns. In order to
get to its destination block, a packet traveling along
its column could turn in any of the n3/* consecutive
rows passing through that block. The exact row
across which a packet will enter its destination block
is determined by the counter scheme described in
the next step. The purpose of this scheme is to
distribute the packets of each destination block evenly
over the n®* incoming rows, while at the same time
maintaining a small, constant queue size.

6. The counter scheme: In each column we maintain
n'/? counters, two for each of the n'/?/2 destination
blocks in the half of the mesh containing the column
(all packets are already in the correct half of the
mesh). The nl/4 counters for any particular row of
n'/*/2 destination blocks are located in the n'/4/2
PUs immediately above and below the n®/4
passing through these destination blocks. Whenever
a row element destined for a particular block arrives
at one of the two corresponding counters, this counter
is either increased by one, modulo 2 - n!/? (in the
case of the counters above the destination rows), or
decreased by one, modulo 2 - nl/2 (in the case of the
counters below the destination rows). The row across
which the packet will enter its destination block is
determined by the sum, modulo n®/*, of the new
counter value and a fixed offset value associated with

TOws

each counter. A counter in column ¢ of the half, 0 <
i < n/2, that corresponds to a destination block in
the jth column of destination blocks, 0 < j < n1/4/2,
is assigned the offset value (i +j - 2-n'/?) mod n®/4.

7. Route the packets along the rows into their desti-
nation blocks using the farthest-first strategy. Each
packet stops at the first PU in its destination block
that has a free memory slot for an additional packet.
It will be shown below that, due to the counter
scheme, the incoming packets are evenly distributed
over the rows of any destination block.

8. Perform local routing over a distance of O(n?/*)
to bring every element to its final destination.

We first analyze the running time. Clearly, Steps 1,
4, and 8 only take O(n3/%) steps. Steps 2 and 3 can
be overlapped by sending the packets directly to the
locations they will assume at the end of Step 3. This
takes between n/240(n3/*) and 3/4-n+O(n3/*) steps,
depending on the location of the block. As soon as a
block has received all of its packets, 1t can perform the
local sort in Step 4, and start with the column routing in
Step 5. This routing problem is a o(n)-approximate 2-2
relation on a linear array, and can be routed in n+ o(n)

steps (see [7]). Thus, Steps 5 and 6 of the algorithm will
terminate between step 1%~n—|—o(n) and step 1%71—1—0(71),
depending on the location of the column. Assuming
that Step 6 has distributed the packets evenly over the
incoming rows of each destination block, Step 7 can be
interpreted as the problem of routing an approximate 2-
1 relation on a linear array of length n/2, where packets
that have a distance of d to travel are not allowed to
move before time n/2 — d. Thus, the above algorithm
runs in time 2 - n 4 o(n).

It remains to show that the packets are indeed
evenly distributed after Step 6, and that the total queue
size 1s bounded by 5. Consider a destination block D
and two blocks By and Bs located in the same quarter
and the same row of blocks. It can be shown that the
number of packets with destination block D will differ
by at most n'/* = 0(n3/4) between By and B, after
Step 3. This implies that after Step 4, the number of
packets with destination block D will differ by at most
2 -nl/% between any two columns in the quarter. There
are n®/? packets with destination block D. Hence, any
of the n/4 columns in the quarter can contain at most
n3/2 /(n/4)+2-n'/* ~ 4. n? packets with destination
block D, which are evenly distributed among 2 - n'/2
rows by the counter technique (up to a difference of 1).
Due to the assignment of offset values to the counters,
packets with different destination blocks always turn
in different PUs. This implies that at most 3 packets
turn in any single PU. The elements in n®/# consecutive
columns will be evenly distributed among all incoming
rows of D, due to the n®* different offset values of
the 2 - n3/* counters corresponding to D. This implies
that every PU of D will receive at most 2 packets.
The maximum possible queue size of the algorithm is
given by a scenario in which 3 packets have to turn in a
given PU, while 2 other packets are temporarily passing
through the PU during the routing in Step 5. This
establishes the following result.

THEOREM 4.1. There exists a deterministic rout-
g algorithm for the two-dimensional mesh with a run-
ning time of 2-n+o(n) and a queue size of 5.

Using similar ideas, we have also derandomized
a number of other algorithms proposed in [7]. In
particular, we can show the following results.

THEOREM 4.2. Any 2-2 relation can be routed de-
terministically in time 2 - n + o(n) with queune size 10.

THEOREM 4.3. There exists a deterministic algo-
rithm for routing on the three-dimenstonal cube with
running time 3 - n—+ o(n) and queue size 13.

THEOREM 4.4. There exists a deterministic algo-
rithm for routing on the two-dimensional torus with
running time n + o(n) and constant queue size.

5 Optimal Deterministic Sorting on a Square

In this section, we apply our techniques to a randomized
algorithm for 1-1 sorting with running time 2 - n +
o(n) recently described by Kaklamanis and Krizanc [6].
As a result, we obtain the first optimal deterministic
algorithm for 1-1 sorting on the square. The fastest
deterministic algorithm previously known runs in 2% .
n + o(n) steps, and is due to Kunde [11].

We start by giving a brief description of the ran-
domized algorithm of Kaklamanis and Krizanc. In Sub-
section 5.2, we derive a simple deterministic algorithm
with a running time of 2% ‘n+ o(n). Finally, Subsec-
tion 5.3 describes the optimal algorithm for the square,
and lists some extensions to other types of meshes.

5.1 The Optimal Randomized Algorithm. We
briefly review the optimal randomized algorithm of
Kaklamanis and Krizanc [6]. The structure of their
algorithm is quite complicated, and hence we necessarily
omit a number of important details.

In the algorithm, the n x n mesh is partitioned
into blocks B;, 0 < i < n?727 of size n? x n7.
In addition, we partition the mesh into quadrants @;,
0 < ¢ < 4, and subquadrants (quadrants of quadrants)
Ti, 0 < 7 < 16. We assume that the four central
subquadrants are denoted as Ty to T5.

1. Each packet is selected as a presplitter with
probability nt/2, for some suitable ¢ > 0. Each
presplitter routes itself to a random position in a
block B of size n¢/? x n¢/? at the center of the mesh.
The presplitters are then sorted, and n¢/®
of equidistant ranks are selected as splitters.

elements

2. The splitters are broadcast in T} to Tj.

3. Each packet declares itself either a row element
or a column element, with equal probability. Each
row element is then routed to a random location in
its current row, within its subquadrant. Similarly,
each column element is routed to a random position
in its column. Each of the subquadrants T to T3
then receives a copy of the contents of all other
subquadrants T;, 0 < ¢ < 16.

4. The packets in each block B; located in 7T} to Ty
are sorted. Using the splitters, each packet can then
compute a preliminary destination that is close to
its final destination, with high probability. A packet
with a preliminary destination outside its current
quadrant kills itself.

5. Each surviving packet is routed to a random lo-
cation in the block containing its preliminary desti-
nation.

Kaufmann et. al.

6. The global ranks of the splitters are computed,
and broadcast throughout each quadrant.

7. Using the global ranks of the splitters, each packet
can be routed to its final position.

Kaklamanis and Krizanc [6] show that by a clever
interleaving of the steps, the above algorithm can be
scheduled to run in 2 - n + o(n) steps.

5.2 A Simple Non-Optimal Algorithm. We now
describe a fairly simple deterministic algorithm that
runs in 2% -1 + O(n?/3) steps, and that does not use
splitters. In the following, let the blocks B; be of size
n2/3 « n2/3

To obtain the algorithm, we remove all steps that
involve the computation and broadcasting of the splitter
elements. The partial randomization in Step 3 is
substituted by a complete sort-and-unshuffle operation
in each subquadrant. This increases the running time
of the algorithm by n/4, since only one phase of
the sort-and-unshuffle operation can be scheduled in
parallel with the overlapping of the packets into the
subquadrants Ty to T3, as described in [6]. Hereafter,
the packets in each block B; in Tj to T3 are sorted again,
and a preliminary destination is computed in the same
way as in the algorithm KKSORT of Section 3. Using
arguments similar to those in Lemma 3.2, it can be
shown that the preliminary destination of each packet
is at most one block away from its final destination.
As before, any element with a preliminary destination
outside its current quadrant kills itself.

The routing of the packets to their preliminary
destinations is now actually much simpler than in the
randomized algorithm, since we are guaranteed that
approximately a quarter of the packets in each block B;
survive. This implies that the surviving elements are
uniformly distributed within each center subquadrant,
and that we can perform the routing in a simple, greedy
fashion. This establishes the following result.

THEOREM 5.1. Deterministic 1-1 sorting without
splitters can be performed in 2% -n+ O(n*3) steps.

5.3 The Optimal Algorithm. We now establish
the main result of this section, a deterministic sorting
algorithm with a running time of 2-n+4o0(n) and a queue
size of approximately 25. Due to space constraints, we
will not be able to give a formal proof of the claimed
bounds on time and queue size.

Our algorithm follows closely the lines of the op-
timal randomized algorithm of [6], and simply replaces
each randomized step with an appropriate deterministic
one.

Derandomizing Routing and Sorting Algorithms

5.3.1 Splitter Selection and Routing. In Step 1
of the algorithm, randomization is used to select a set of
presplitters and route it towards the center of the mesh.
The following deterministic step can be substituted for
Step 1.

1. In each block By, 0 < i < n?/? sort the packets
into row-major ordering and select the elements in
column ¢ as presplitters. Route all presplitters greed-
ily towards the block B; located at the center of the
mesh, such that the presplitter of each block move in
lock step. Then sort the set of presplitters, and select
n?/3 elements of equidistant ranks as splitters.

As the presplitters are routed with priority, they
delay the routing of the other packets. However, it can
be shown that this delay is small, since every edge of the
mesh is traversed by at most n2/? presplitters. Using the
splitters selected from the presplitters in the center of
the mesh, each packet can estimate its rank to within
O(n*/3). More precisely, the following lemma can be
shown.

LEMMA 5.1. Let s; be the ith smallest splitter, 1 <
i < n2/3. Then the global rank of s; is within the range
i-nt3 4+ O(n*3).

This implies that the preliminary destination com-
puted by each surviving packet in Step 4 of the algo-
rithm has a distance of O(n?/3) from its final destination
(recall that we assume a blocked snake-like row-major
indexing scheme). Hence, the local routing in Step 7
of the algorithm will route each packet to its correct
destination in time O(n?/3).

5.3.2 Spreading Along Rows and Columns. In
Step 3 of the randomized algorithm, the set of packets
is partitioned into row elements and column elements,
which are then randomized along the rows and columns,
respectively, of each subquadrant. This step is over-
lapped with the copying of the packets into the center
subquadrants Ty to 73, and is performed according to
a rather ingenious schedule described in [6]. The pur-
pose of this step is to make sure that after Step 4 the
surviving packets are distributed over each center sub-
quadrant in such a way that the routing into destination
blocks in Step 6 can be performed efficiently.

In our deterministic algorithm, we first sort the
packets in each block into row-major ordering. We then
define the row and column elements as the packets with
odd and even ranks, respectively. The randomization
of the row elements along the rows of each subquad-
rant can be simulated along the lines of Step 2 of the
deterministic routing algorithm in Section 4. The ran-
domization of the column elements along the columns
is done analogously.

After execution of this step, all packets with a
common destination block are (approximately) evenly
divided between the sets of row element and column
element, and the row elements (resp. column elements)
are evenly distributed over the columns (resp. rows) of
each subquadrant.

5.3.3 Routing to Destination Blocks. We first
give a brief description of the routing scheme used
in Step b of the randomized algorithm. The routing
consists of two overlapped phases. In the first phase,
the row elements are routed in the columns, while the
column elements are routed in the rows. In the second
phase, the row elements are routed in the rows to their
destination blocks, and the column elements are routed
in the columns to their destination blocks.

If two packets in the same phase content for an
edge, then priority will be given to the packet with the
farthest total distance to travel. If the packets are from
different phases, then a somewhat more complicated
priority scheme is employed.

We use the same routing scheme in our determinis-
tic algorithm, with one minor modification. In Step 5
of the randomized algorithm, each packet is routed to
a random location inside its destination block. This
ensures that at most O(logn) packets turn in a single
PU, and that at most O(logn) packets are routed to
the same destination PU. This queue size can be re-
duced to O(1) by applying a spreading technique de-
scribed in [16]. In the deterministic algorithm, we use
the counter scheme described in the algorithm of Sec-
tion 4 to distribute the packets evenly over the incoming
edges of each destination block. In addition, this scheme
also ensures that the destinations of the elements in the
second phase of the routing are evenly distributed inside
each row and each column; this is crucial in the analysis
of the running time.

It can be shown that the sort-and-unshuffle opera-
tion in Step 3 of the algorithm has distributed the sur-
viving packets in such a way that the above routing
scheme will route each packet to its destination block in
n + o(n) step. The formal proof of this claim is quite
lengthy, and will hence be omitted. Altogether, we get
the following result.

THEOREM 5.2. There exists a deterministic algo-
rithm for 1-1 sorting on the square with running time
2-n+ o(n) and constant queue size.

The following results can be derived in a similar
fashion. The corresponding randomized results can be
found in [6].

THEOREM 5.3. There exists a deterministic algo-
rithm for sorting on the three-dimensional cube with
running time 3% -n+o(n) and constant queue size.

10

THEOREM 5.4. There exists a deterministic algo-
rithm for sorting on the two-dimensional torus with run-
ning time 1% -n+o(n) and constant queue size.

THEOREM 5.5. There exists a deterministic algo-
rithm for sorting on the three-dimensional torus with
running time 2 -n + o(n) and constant queue size.

6 Concluding Remarks

In this paper, we have introduced a new technique that
allows us to derandomize many of the randomized algo-
rithms for routing and sorting on meshes that have been
proposed in recent years. By applying this technique,
we have obtained optimal or improved deterministic al-
gorithms for a number of routing and sorting problems
on meshes and related networks. The new technique is
very general, and seems to apply to most of the random-
ized algorithms that have been proposed in the litera-
ture. In fact, as a result of this work, we are currently
not aware of any randomized algorithm for routing and
sorting on meshes and related networks whose running
time cannot be matched, within a lower order additive
term, by a deterministic algorithm.

This naturally raises the question whether random-
ization is of any help at all in the design of routing
and sorting algorithms for these types of networks. In
this context, we point out that some of the random-
ized algorithms still have a simpler control structure or
smaller lower order terms than their deterministic coun-
terparts, which repeatedly perform local sorting within
blocks. Also, the results in this paper would not have
been possible without the extensive study of random-
ized schemes for routing and sorting by a number of
other authors, which has resulted in a variety of fast

randomized algorithms [5, 6, 7, 8, 16, 18, 20].

Acknowledgements: The third author would like to
thank Christos Kaklamanis, Greg Plaxton, and Rajmo-
han Rajaraman for helpful discussions.

References

[1] Batcher, K.E., ‘Sorting Networks and their Applica-
tions,” Proc. AFIPS Spring Joint Computer Confer-
ence, pp. 307-314, 1968.

[2] Aggarwal, A., M.D. Huang, ‘Network Complexity of
Sorting and Graph Problems and Simulating CRCW
PRAMs by Interconnection Networks,” VLSI Algo-
rithms and Architectures (AWOC 88), LNCS 319, pp.
50-59, ACM, 1992.

[3] Chlebus, B.S., M. Kaufmann, J.F. Sibeyn, ‘Determin-
istic Permutation Routing on Meshes,” Proc. 5th Symp.
on Parallel and Distributed Proc., IEEE, 1993.

[4] Cypher, R., C.G. Plaxton, ‘Deterministic Sorting in
Nearly Logarithmic Time on the Hypercube and Re-

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Kaufmann et. al.

lated Computers,” Proc. 22nd Symp. on Theory of
Computing, pp. 193-203, ACM, 1990.

Kaklamanis, C., D. Krizanc, L. Narayanan, Th. Tsan-
tilas, ‘Randomized Sorting and Selection on Mesh
Connected Processor Arrays,” Proc. 3rd Symposium
on Parallel Algorithms and Architectures, pp. 17-28,
ACM, 1991.

Kaklamanis, C.;, D. Krizanc, ‘Optimal Sorting on
Mesh-Connected Processor Arrays,” Proc. 4th Sympo-
seum on Parallel Algorithms and Architectures, pp. 50-
59, ACM, 1992.

Kaklamanis, C., D. Krizanc, S. Rao, ‘Simple Path
Selection for Optimal Routing on Processor Arrays,’
Proc. 4th Symposium on Parallel Algorithms and Ar-
chitectures, pp. 23-40, ACM, 1992.

Kaufmann, M., S. Rajasekaran, J.F. Sibeyn, ‘Matching
the Bisection Bound for Routing and Sorting on the
Mesh,” Proc. 4th Symposium on Parallel Algorithms
and Architectures, pp. 31-40, ACM, 1992.

Kaufmann, M., J.F. Sibeyn, ‘Derandomizing Sorting
Algorithms on Meshes,” Unpublished Manuscript, 1993.
Kunde, M., ‘Lower Bounds For Sorting on Mesh-
Connected Architectures’, Acta Informatica, 24, pp.
121-130, 1987.

Kunde, M., ‘Concentrated Regular Data Streams on
Grids: Sorting and Routing Near to the Bisection
Bound’, Proc 31th Symposium on Foundations of Com-
puter Science, pp. 141-150, IEEE, 1991.

Kunde, M., ‘Block Gossiping on Grids and Tori: De-
terministic Sorting and Routing Match the Bisection
Bound,” Proc. European Symp. on Algorithms, LNCS
726, pp. 272-283, 1993.

Leighton, F. T. ‘Tight Bounds on the Complexity of
Parallel Sorting,” IEFE Trans. Comp., 34, pp. 344-354,
1985.

Leighton, F. T., F. Makedon, I.G. Tollis, ‘A 2n—2 Step
Algorithm for Routing in an » x n Array with Constant
Queue Sizes,” Proc. 1st ACM Symposium on Parallel
Algorithms and Architectures, pp. 328-335, 1989.
Rajasekaran, S., Overholt, R., ‘Constant Queue Rout-
ing on a Mesh,” Journal of Parallel and Distributed
Computing, 15, pp. 160-166, 1992.

Rajasekaran, S., Tsantilas, T., ‘Optimal Routing Al-
gorithms for Mesh-Connected Processor Arrays,” Algo-
rithmica, 8, pp. 21-38, 1992.

Schnorr, C.P.; A. Shamir, ‘An Optimal Sorting Al-
gorithm for Mesh Connected Computers,” Proc. 18th
Symposium on Theory of Computing, pp. 255-263,
ACM, 1986.

Sibeyn, J.F., M. Kaufmann, ‘k-k Sorting on Meshes,’
Unpublished Manuscript, 1992.

Suel, T.; ‘Optimal Deterministic Routing and Sorting
on Mesh-Connected Arrays of Processors,” Technical
Report TR-93-18, University of Texas at Austin, 1993.
Valiant, L.G., G.J. Brebner, ‘Universal Schemes for
Parallel Communication,” Proc. 13th Symposium on
Theory of Computing, pp. 263-277, ACM, 1981.

