
A Lower Bound for Sorting NetworksBased on the Shu�e PermutationC. Greg Plaxton� Torsten Suel yDepartment of Computer SciencesUniversity of Texas at AustinAbstractWe prove an
(lg2 n= lg lg n) lower bound for the depth of n-input sorting networksbased on the shu�e permutation. The best previously known lower bound was thetrivial
(lgn) bound, while the best upper bound is given by Batcher's �(lg2 n)-depthbitonic sorting network. The proof technique employed in the lower bound argumentmay be of independent interest.1 IntroductionA variety of di�erent classes of sorting networks has been described in the literature. Ofparticular interest here are the so-called AKS network [1] discovered by Ajtai, Koml�os andSzemer�edi, and the sorting networks proposed by Batcher [2]. The AKS network is theonly known sorting network with O(lg n) depth. However, the topology of the network ishighly irregular, and the multiplicative constant hidden by the O-notation is impracticallylarge [1, 11]. On the other hand, the networks proposed by Batcher have a relatively simpleinterconnection structure and a small constant. This makes them the networks of choice inmany practical applications, although they have depth �(lg2 n) and are thus asymptoticallyinferior to AKS.This situation has motivated attempts to construct O(lg n)-depth sorting networks withsimpler, more regular topologies, and/or a considerably smaller constant. For sorting net-works based on Shellsort with monotonically decreasing increments, this question was an-swered in the negative by Cypher [3], who shows an
(lg2 n= lg lg n) lower bound for this classof networks. Very recently, a more general lower bound was shown that holds for arbitraryincrement sequences and even adaptive Shellsort algorithms [13].�Supported by NSF Research Initiation Award CCR{9111591, and Texas Advanced Research Program(TARP) Award #003658480.ySupported by Texas Advanced Research Program (TARP) Award #003658480, and by an MCD Fellow-ship of the University of Texas at Austin. 1

Another class of particular interest are small-depth sorting networks based on hypercubicnetworks (e.g., the hypercube, butter
y, cube-connected cycles, or shu�e-exchange). In thiscontext, Cypher [4] has shown that any emulation of the AKS network on the cube-connectedcycles takes time
(lg2 n). Here, we say that a sorting algorithm emulates the AKS networkif it performs the same sequence of comparisons. Cypher's result holds for the class of allalgorithms on the cube-connected cycles, which properly contains the class of shu�e-basedalgorithms considered in this paper. On the other hand, this paper provides a lower boundfor the problem of sorting in general, and not merely for the problem of emulating the AKSnetwork.This paper focuses on sorting networks based on the shu�e permutation, a notion thatis formalized below. We will establish a lower bound of
(lg2 n= lg lg n) for any sortingnetwork in this class. In fact, our lower bound holds for the slightly more general classof iterated reverse delta networks de�ned further below. Before elaborating on this result,we will brie
y describe the comparator network model and de�ne the class of shu�e-basedsorting networks.Most commonly, a comparator network is de�ned as an acyclic circuit of comparatorelements, each having two input wires and two output wires. One of the output wiresis labeled as the max-output, which receives the larger of the two input values; the otheroutput is called the min-output, and receives the smaller value. We will use this model of acomparator network throughout most of the paper, but will also brie
y consider the followingalternative model.In this model, a comparator network on n registers is determined by a sequence of pairs(�i; ~xi), 0 � i < d, where �i is a permutation of f0; : : : ; n� 1g and ~xi is a vector of lengthbn=2c over f+;�; 0; 1g. The network gets as input a permutation of f0; : : : ; n � 1g that isinitially stored in the registers, and then operates on the input in d consecutive steps. Instep i, 0 � i < d, the register contents are permuted according to �i, and then the operationstored in the kth component of ~xi is applied to registers 2k and 2k +1. In a \+" operation,the values stored in the two registers are compared, and the smaller of the values is storedin register 2k, the larger one in 2k + 1. In a \�" operation, the values are stored in theopposite order. A \0" means that no operation takes place on the corresponding pair ofregisters. A \1" operation simply exchanges the values of the two registers. A comparatornetwork is called a sorting network if it maps every possible input permutation to the sameoutput permutation.It is well known that the two models of comparator networks described above are equi-valent (that is, given any network in one model, there exists a network in the other modelwith the same size and depth that performs the same mapping from inputs to outputs).While the �rst model often appears more intuitive, we can use the second one to de�ne someinteresting special classes of networks by restricting the possible choices for the permutations�i. For n = 2d where d is a positive integer, the shu�e permutation � on n inputs maybe de�ned as follows. If jd�1 � � � j0 denotes the binary representation of some integer j,0 � j < n, then �(j) has binary representation jd�2 � � � j0jd�1. We say that a network isbased on the shu�e permutation if �i = � holds for all i.2

In this paper, we show an
(lg2 n= lg lg n) lower bound for the class of networks based onthe shu�e permutation, thereby answering a question posed by Knuth (see Problem 5.3.4.47of [5]), up to a �(lg lg n) factor. The best previously known lower bound for this class was thetrivial
(lg n) bound, while the best known upper bound continues to be given by Batcher's�(lg2 n)-depth bitonic sorting network. Interestingly, the result cannot be extended to thecase where both the shu�e permutation � and the unshu�e operation ��1 are allowed inthe network. For that case, the \randomized" construction of Leighton and Plaxton [8] hasbeen shown to imply the existence of sorting networks (in the usual, deterministic sense)with nearly logarithmic depth [12].Thus, one way of viewing the lower bound of this paper is that it establishes a non-trivialseparation between the power of \ascend-descend" machines (e.g., the shu�e-exchange whenboth shu�ing and unshu�ing are permitted) and strict \ascend" machines (e.g., shu�eonly). Of course, it must be emphasized that our lower bound for sorting on the directedshu�e-exchange graph only applies to sorting algorithms that correspond to shu�e-basedsorting networks. On the other hand, this class of algorithms cannot be easily dismissed asbeing overly restrictive. To the contrary, one might argue that the primary motivation forconsidering hypercubic networks in the context of parallel computation is that they admitelegant and e�cient strict ascend algorithms for a wide variety of basic operations (e.g.,parallel pre�x, FFT).The remainder of the paper is organized as follows. Section 2 contains an informaloverview of the lower bound argument. In preparation for the actual proof, Section 3 statesa number of useful de�nitions and basic lemmas. Section 4 contains the proof of the lowerbound. Possible extensions of the lower bound are discussed in Section 5. Finally, Section 6lists some open questions for future research.2 An Overview of the ProofA simple observation concerning comparator networks is that a sorting network has to makea comparison between all pairs of adjacent values in every input, that is, any pair of valuesfm;m + 1g must appear on the input wires of some comparator element (we assume theinputs to be permutations of f0; : : : ; n � 1g). Thus, one might attempt to prove a lowerbound for the depth of sorting networks by showing the existence of a set of adjacent valuesfm; : : : ;m+ lg such that no two elements of the set have been compared up to a given levelof the network, for some appropriately chosen input. In the following, we will call such a seta special set. If we apply this proof technique to a shu�e-based network, starting out withthe set of all values as our special set, and, whenever two elements of the set get compared,removing one of them from the set, then we can lose up to one half of the elements in anygiven level. So using this simple approach, we could only show the trivial lower bound of
(lg n) for the depth of a sorting network.The key idea to overcome this problem is to modify the proof technique in a way thatallows us to exploit the particular structure of shu�e-based networks. This special structurebecomes more obvious if we shift our attention to a slightly more general class of networks,called iterated reverse delta networks. An n-input iterated reverse delta network consists3

of a number of consecutive reverse delta networks of depth lg n. Informally, a reverse deltanetwork is obtained from a delta network by \
ipping" the network, that is, interchangingthe roles of the inputs and outputs. Both delta networks and reverse delta networks canbe seen as generalizations of the butter
y network, which is known to be equivalent to ashu�e-based network of depth lg n (e.g., see [7, Section 3.8]). More precisely, the butter
ynetwork is the unique network that is both a delta network and a reverse delta network [6].The following recursive de�nition of a reverse delta network is crucial for understandingour proof technique: A reverse delta network with 2k+1 inputs and depth k + 1 consists oftwo parallel 2k-input reverse delta networks of depth k, followed by a �nal level of up to2k comparators. Every comparator in the �nal level takes one input from the outputs ofeach of the two subnetworks. Finally, a 1-input reverse delta network is just a wire. This\tournament-like" structure leads to an important property of reverse delta networks: Anobserver who sees the outcomes of all comparisons in the two subnetworks will not be able tosay anything about the relative ordering of any two items taken from di�erent subnetworks.In other words, the observer will not be able to say anything about the relative strength of thetwo \subtournaments" before the �nal stage. This disjointness property of the subnetworkswill be exploited in our proof.In the modi�ed proof technique we will try to maintain a collection of special sets, eachconsisting of uncompared adjacent elements. More precisely, upon entering a new reversedelta network of depth lg n, we will partition our current special set into n lg3 n disjointspecial sets, most of which are empty, with lg3 n sets entering on each wire (recall that asingle wire is a 1-input reverse delta network). Thus, every 2-input comparator networkwill have two di�erent collections of lg3 n special sets arriving on its two input wires. Wewill show how to recombine these sets to get a new collection of roughly lg3 n special sets,containing nearly all of the elements of the two collections.More generally, due to the recursive structure of a reverse delta network, in every level wewill recursively have two di�erent collections of �(lg3 n) special sets coming from two disjointsubnetworks. In our proof, we show the existence of a partial matching between these twocollections of sets such that, if we recombine the sets according to the matching and removeone element from every pair of elements that get compared, we get a new collection of sets ofuncompared elements while losing only a very small fraction of our elements. The number ofsets in this new collection will be only slightly larger than the number of sets in either of thetwo collections. Due to the abovementioned disjointness property of the two subnetworks,we will also be able to assume that the new sets in the collection each contain adjacentelements.If we repeat this process for the lg n levels of the reverse delta network, we end up witha single collection of �(lg3 n) special sets. The total number of elements in the sets is only aconstant factor smaller than it was when we entered the reverse delta network. If we pick thelargest of the �(lg3 n) sets as our new special set, then we only lose a polylogarithmic factorin the size of the set. Hence, we can iterate this process over �(lg n= lg lg n) consecutivereverse delta networks before the size of the special set becomes 1.To formalize this proof idea, we introduce the notion of an input pattern representing aclass of similar inputs. We construct a class of inputs with the desired property (existence of4

large sets of mutually uncompared, adjacent values) by stepwise re�nement of a given inputpattern in every level of the network.3 De�nitionsIn the following, unless explicitly stated otherwise, the set of input wires of a comparatornetwork will be denoted by W . An input to a comparator network is a total mapping fromW to a set V of possible input values. We will restrict our attention to inputs � that arepermutations of f0; : : : ; n� 1g, i.e., where jW j = n, V = f0; : : : ; n� 1g, and � is one-to-one.The set of all one-to-one functions from a set A to a set B will be denoted by (A 7! B),and so the set of all inputs of a given comparator network may be written as (W 7! V).Furthermore, for a function f on a set A and a subset B of A, let fjB denote the functionalrestriction of f to B. For two functions f0 and f1 on disjoint sets A0 and A1, we write f0�f1for the union of f0 and f1:(f0 � f1)(x) def= (f0(x) for all x in A0, andf1(x) for all x in A1.3.1 Input Patterns and Re�nementIn the following de�nitions, we will introduce the notions of input patterns and input patternre�nement, which will be fundamental to understanding our proof technique. Informally,an input pattern describes a set of inputs with certain common properties. Input patternre�nement is the process of imposing additional conditions on such a set of inputs.De�nition 3.1 Let P be a set and <P be a total ordering on P .(a) An input pattern is a total mapping from W to P .(b) Let p0, p1 be two input patterns. We say that p0 can be re�ned to p1 (written p0 �W p1)if (p0(w) <P p0(w0))) (p1(w) <P p1(w0)) holds for all w and w0 in W .(c) Let p be an input pattern and � be an input. We say that p can be re�ned to � (writtenp �W �) if (p(w) <P p(w0))) (�(w) < �(w0)) holds for all w and w0 in W .The set P will be referred to as the pattern alphabet, and the elements of P are calledpattern symbols. Throughout this paper, pattern symbols will be denoted by script letters.Example 3.1 Let W def= fw0; : : : ; wn�1g, P def= fS;M;Lg, and let the ordering <P on Pbe given by S <P M <P L (informally, the symbols S, M, and L may be interpreted as\Small", \Medium", and \Large", respectively). Then the input pattern p assigning L tow0 and w1 and M to all other wires can be re�ned to all inputs that assign the two largestvalues to w0 and w1. We could also re�ne p to other input patterns, for example to a patternp0 such that L is assigned to w0 and w1, S is assigned to w2 and M is assigned to all otherwires. The new pattern p0 can itself be re�ned to all inputs that assign the largest values tow0 and w1, and the smallest value to w2. 5

The relation �W de�ned above is a partial ordering on the set of input patterns. Notethat the set V of input values can be regarded as a special case of a pattern alphabet withthe ordering of the natural numbers. Every pattern can be re�ned to some input, and wecould assume that the pattern alphabet P is always a subset of V . The pattern-to-patternre�nement in Part (b) of De�nition 3.1 would then become a special case of the pattern-to-input re�nement in Part (c). However, in the following we will not restrict our choice of Pto subsets of V . We will see that this gives us more power of expression and, thus, simpli�esthe presentation of the proof.We usually think of an input pattern p as a description of the set of inputs that p can bere�ned to. This set will be denoted by p[V] def= f� j � is an input such that p �W �g. Whenwe re�ne a pattern p0 to p1 then we are imposing additional constraints on this set of inputs.Formally, we have (p0 �W p1) , (p0[V] � p1[V]). Alternatively, the reader may also viewan input pattern p as a shorthand for a logical predicate that holds for exactly the inputs inp[V].De�nition 3.2 Let p and q be input patterns on W , and let U be a subset of W .(a) The input pattern pjU on U is the restriction of p to U .(b) We say that p can be U -re�ned to q (written p �U q) if p �W q and p(w) = q(w) holdsfor all w in W n U .De�nition 3.3 Let U0 and U1 be disjoint subsets of W , p0 be an input pattern on U0, andp1 be an input pattern on U1. Then q = p0 � p1 is the input pattern on U0 [U1 such thatqjU0 = p0 and qjU1 = p1.If for two patterns p0 and p1 both p0 �W p1 and p1 �W p0 hold, then we say that p0and p1 are equivalent. In this case, we have p0[V] = p1[V], and the re�nement steps fromp0 to p1 and vice versa can be achieved by simply renaming the pattern symbols in a waythat preserves the ordering <P . Hence, we call this special case of a re�nement step anorder-preserving renaming.Example 3.2 Let W def= fw0; : : : ; wn�1g and P def= fPi j i � 0g with Pi <P Pi+1 for all i � 0.Then any input pattern p is equivalent to the input pattern pk, k � 0 obtained from p bysubstituting every pattern symbol Pi in p by Pi+k, for all i.3.2 Comparator NetworksWe will now further formalize our notion of a comparator network, and explain how itsdomain of operation can be extended from the set of inputs to the set of input patterns.In the following, a comparator network will be interpreted as a mapping from a set ofpossible inputs to a set of possible outputs. More precisely, a comparator network � oninput wires W and output wires W 0 de�nes a mapping (which we will also denote by �)6

from (W 7! V) to (W 0 7! V) such that every input � : W 7! V is mapped to an output�0 : W 0 7! V that is a \permutation" of �. By this we mean that there exists a bijection� :W 7! W 0 such that �(w) = �0(�(w)) holds for all w 2 W .Let ��0, ��1 be two sets of n-input comparator networks. Then ��0
 ��1, the serial com-position of ��0 and ��1, denotes the set of all networks � that can be obtained by connectingthe output wires of a network from ��0 to the input wires of a network from ��1. We place norestrictions on this mapping from output wires to input wires, except that it be one-to-one.As it happens, we will often make use of the serial composition operator in the context ofsingleton sets ��0 and ��1. In such a case, we may write, for example, �0
�1 (where �0, �1are networks) rather than f�0g
 f�1g.Given two comparator networks �0 and �1 on disjoint sets of input and output wires,we obtain the parallel composition of �0 and �1 as the union of the two networks, written�0��1. The set of input (output) wires of �0��1 is the union of the sets of input (output)wires of �0 and �1. Given these de�nitions, we can now formally de�ne the class of reversedelta networks.De�nition 3.4 A 2l-input comparator network � is called an l-level reverse delta networkif � l = 0 and � contains no comparator elements, or� l > 0 and � is an element of (�0 ��1)
 �l, where(i) �0 and �1 are (l� 1)-level reverse delta networks, and(ii) �l consists of one level with at most 2l�1 comparator elements,such that every comparator in �l takes one input from an output wire of �0 and theother input from an output wire of �1.Note that we do not require the ith level to have exactly 2i�1 comparator elements.This corresponds to allowing the reverse delta network to contain \0" (do nothing) and \1"(exchange) circuit elements, as introduced in the \register model" of a comparator network.We will call a network � a (k; l)-iterated reverse delta network if it consists of k con-secutive l-level reverse delta networks, or, formally, if � belongs to �0
 � � �
�k�1 whereevery �i is an l-level reverse delta network. It should be pointed out that this de�nitionallows an arbitrary �xed permutation between any two consecutive reverse delta networks,due to our de�nition of serial composition. Recall that we allowed both comparators andswitching elements in our network. For this model it has been shown that any permutationon n = 2d inputs can be routed by a shu�e-exchange network with 3d� 4 levels [10, 9, 14].Thus, eliminating the permutations between the reverse delta networks would only increasethe depth of the circuit by at most a constant factor.A comparator network � was identi�ed with a mapping from the set of inputs to the setof outputs. The following de�nition extends � to a function from the set of input patternsto the set of output patterns (an output pattern is a mapping from the set of output wiresto the set of pattern symbols). 7

De�nition 3.5 Given a comparator network �, an input pattern p0, and an output patternp1 with p1(W) = p0(W), we de�ne�(p0) = p1 , �(p0[V]) = p1[V]:Note that this de�nition characterizes the behavior of a comparator network on an inputpattern in the way we would expect: If two pattern symbols P0 and P1 arrive on the inputwires of a comparator gate, then the symbol that is larger according to the ordering <P willappear on the max-output of the gate, and the smaller one will appear on the min-output.This implies that any set of inputs that can be expressed by an input pattern will producea set of outputs that can be expressed by an output pattern.De�nition 3.6 We say that two input wires w0 and w1 collide in a network � under aninput � if the input values �(w0) and �(w1) are compared in � when � is given as input.According to the above de�nition, two wires whose respective values meet in a noncom-parator element, that is, a \0" (do nothing) or \1" (exchange) switch, are not regarded ascolliding. In the rest of the paper, we do not have to distinguish between the di�erent circuitelements any more, since the entire lower bound argument is based on the notion of collisionintroduced above and extended to input patterns in the following.Given a network � and an input �, we can always determine whether two input valuesare compared or not (recall that we only consider inputs that are permutations). This isnot the case for input patterns, since an input pattern can contain several occurences of thesame pattern symbol. This motivates the following de�nition of collision for input patterns:De�nition 3.7 Let � be a comparator network, let p be an input pattern for �, and let w0and w1 be two input wires of �.(a) We say that w0 and w1 collide in � under p if they collide in � under all inputs � withp �W �.(b) We say that w0 and w1 can collide in � under p if there exists an input � with p �W �such that w0 and w1 collide in � under �.(c) We say that w0 and w1 cannot collide in � under p if there is no input � with p �W �such that w0 and w1 collide in � under �.(d) A set U � W is called noncolliding in � under p if any two wires in U cannot collidein � under p.Example 3.3 Let W def= fw0; w1; w2; w3g, P def= fS;M;Lg, and let the ordering <P on Pbe given by S <P M <P L. Let the network � consist of a comparator between w1 andw2, followed by a comparator between w2 and w3, followed by a comparator between w0 andw3, where all comparators are directed towards the wire with the larger index. Then thefollowing holds under the input pattern p that maps w0 to S, w1 and w2 toM, and w3 to L:8

(1) Wires w1 and w2 collide in � under p since the very �rst comparator is between thesetwo wires.(2) Wires w1 and w3 can collide in � under p, since we can re�ne p to an input � thatassigns a larger value to w1 than to w2. In that case, the input value assigned to w1will be compared to that of w3 in the second comparator. Similarly, w2 can collidewith w3 in � under p.(3) Wires w0 and w3 collide in � under p, since no exchange can occur in the secondcomparator of the network under any input � with p �W �. Also, w0 and w1 (resp.w2) cannot collide in � under p.In general, if two wires collide (cannot collide) in some network � under an input patternp, then they also collide (cannot collide) in � under any re�nement p0 of p. Similarly, if aset U is noncolliding in � under p, then it is also noncolliding in � under p0. The propertycan collide is not preserved under arbitrary re�nement.In the following we restrict our attention to a �xed pattern alphabet P which will beused throughout the lower bound argument:P def= fSi;Xi;j;Mi;Li j i; j � 0g:The ordering <P on P is de�ned by Si <P Si+1;Si <P X0;0;Xi;j <P Xi;j+1;Xi;j <P Mi;Mi <P Xi+1;0;Mi <P Lj ; andLi+1 <P Li;for all nonnegative integers i, j.Finally, for a pattern p and a pattern symbol P we de�ne the [P]-set of p as the setfw 2 W j p(w) = Pg. We can now formally express the idea of our lower bound argument:To prove that a network � is not a sorting network, we will show the existence of a patternp such that its [M0]-set is noncolliding in � under p and contains at least two elements.The pattern p can then be re�ned to an input such that the wires in the [M0]-set containadjacent input values. This implies that � does not sort all of the inputs in p[V].The pattern p will be constructed using stepwise re�nement, starting out with a patterncontaining only the symbol M0. In general, we will assume that whenever we enter a newreverse delta network, the current pattern p only contains the pattern symbolsM0, S0, andL0, with the latter two symbols marking the input wires carrying values that are smaller andlarger, respectively, than those of the wires in the [M0]-set. We now split up the pattern pinto n patterns pi, 0 � i < n, of size 1, with one pi corresponding to each input wire (1-input9

reverse delta network). Every pattern pi can be interpreted as having lg3 n noncolliding setsM0; : : : ;Mlg3 n�1, where Mj is the [Mj]-set of pi, for 0 � j < lg3 n. Except for M0, all ofthese sets will be empty at this point.Thus, every 2-input reverse delta network will have two collections of [Mi]-sets, denotedby M0;0; : : : ;M0;t�1 and M1;0; : : : ;M1;t�1, where t = lg3 n, entering on the �rst and secondinput wire, respectively. In general, in every level of the recursive de�nition of a reversedelta network we will have two collections of noncolliding [Mj]-sets in each of the twodisjoint subnetworks. We will be able to recombine these collections to obtain a singlecollection of noncolliding [Mj]-sets such that this single collection still contains nearly allof the input wires that were in either of the two collections, while the number of sets willonly increase marginally. Hence, on average, the new sets will contain roughly twice asmany elements as the old sets. This proof step is performed by showing the existence ofan appropriate matching between the two collections, and re�ning the two input patternsaccording to this matching. After the last level of the reverse delta network, we will have acollection of �(lg3 n) noncolliding sets containing only a constant factor fewer elements thanthe \original" [M0]-set before the current reverse delta network. We can choose the largestof these sets as our new noncolliding [M0]-set by performing an order-preserving renamingof the pattern p, mapping the wires in this set toM0 and all of the wires in the other sets tosome Si or Li. This procedure is iterated over �(lgnlg lgn) consecutive reverse delta networks.3.3 Basic LemmasThe following lemmas will be used in our lower bound argument. Their proofs are fairlystraightforward and we will only sketch some of the proof ideas. Readers who are familiarwith comparator networks should be able to quickly convince themselves of the validity ofthese lemmas.Lemma 3.1 Let p be an input pattern on W such that only the pattern symbols S0, M0,and L0 appear in p. Let W0 and W1 be disjoint subsets of W with W = W0 [W1 and letA be the [M0]-set of p. Let q0 and q1 be input patterns on W0 and W1, respectively, withS0 <P q0(w); q1(w) <P L0 for all w in A. Then from pjW0 �A\W0 q0 and pjW1 �A\W1 q1, wecan infer p �A q0 � q1.This lemma ensures that, given an input pattern p for a network � = �0 ��1, we get are�nement of p if we separately re�ne the input patterns pjW0 for �0 and pjW0 for �1 in theway described, where W0 and W1 are the sets of input wires of �0 and �1, respectively.Lemma 3.2 Let � be a d-level comparator network, p be an input pattern for �, and P0,P1 be pattern symbols in P . Let A0 be the [P0]-set of p, and A1 be the [P1]-set of p. If A0and A1 are each noncolliding in the �rst d� 1 levels of � under p, then any two wires w0 inA0 and w1 in A1 either collide in level d under p, or they cannot collide in that level.To prove the correctness of this lemma, note that an input value on a wire w in A0 or A1will follow the same path through the �rst d�1 levels of the network under all inputs � with10

p �W �. This follows from the assumption that A0 and A1 are noncolliding and contain alloccurrences of the symbols P0 and P1. Hence, we can identify the locations of all patternsymbols P0 and P1 in level d by following their paths through the network. This is alsothe underlying idea in the next lemma, which shows a one-to-one correspondence betweenthe Mi on the input wires and those on the output wires of a network, provided that the[Mi]-set is noncolliding.Lemma 3.3 Let � be a comparator network in �0
 �1, i be a nonnegative integer, andp be an input pattern for �0 such that its [Mi]-set A is noncolliding in �0 under p. Letq def= �0(p) be an input pattern for �1 and B be the [Mi]-set of q. Then for every q0 withq �B q0 there exists a p0 with p �A p0 such that q0 = �0(p0). Furthermore, if the [Mi]-set ofq0 is noncolliding in �1 under q0, then the [Mi]-set of p0 is noncolliding in � under p0.To verify the validity of the �nal lemma, note that the paths taken by the Mi-symbolsthrough a network are not changed if we rename the rest of the symbols in the way describedin the lemma.Lemma 3.4 Let � be a comparator network, p be an input pattern for �, and A be the[Mi]-set of p. Let �i(p) be the input pattern obtained from p by changing all pattern symbolsP with P <P Mi to S0, all pattern symbols P withMi <P P to L0, and all pattern symbolsMi to M0. If A is noncolliding in � under p, then A is also noncolliding in � under �i(p).4 The Lower BoundThis section contains the proof of the lower bound for sorting on iterated reverse deltanetworks. The argument is divided into three major steps: First, a lemma will be establishedthat implies the existence of a pattern p with a \large" [M0]-set that is noncolliding in asingle reverse delta network under p. This is the main part of our proof, and also the one thatemploys the novel proof ideas. A subsequent theorem iterates the result of the lemma, thusshowing how to maintain a \large" noncolliding [M0]-set over several consecutive reversedelta networks in an iterated reverse delta network. Finally, a corollary establishes the lowerbound.Lemma 4.1 Let � be an l-level reverse delta network, l � 0, and let p be an input patternfor � such that only the pattern symbols S0, L0, andM0 occur in p. Let A be the [M0]-setof p, and let k be a positive integer. Then there exists an input pattern q with p �A q andt(l) def= k3 + lk2 sets M0; : : : ;Mt(l)�1 of input wires such that the following properties hold,where B def= S0�i<t(l)Mi:(1) Every Mi is the [Mi]-set of q,(2) Every Mi is noncolliding in � under q,(3) B � A, and 11

(4) jBj � jAj � l�jAjk2 .Proof: We will prove the lemma by induction over l, the number of levels in the reversedelta network.Base Case: l = 0We de�ne the sets M0; : : : ;Mt(0)�1 by setting M0 to A and all Mi, 1 � i < t(0), tothe empty set. If we set q = p, then Properties (1) to (4) are satis�ed. In particular,Property (2) is satis�ed since a 0-level reverse delta network does not contain anycomparators, and hence every set is noncolliding in the network under every inputpattern.Induction Step: l! l + 1An (l + 1)-level reverse delta network � consists of two l-level reverse delta networks�0 and �1, and an (l+ 1)th level �l+1 satisfying the conditions of De�nition 3.4. Theinput wires W of � can be partitioned into the sets W0 and W1 of input wires of �0and �1, respectively. Let p0 def= pjW0 and p1 def= pjW1 . Then A0 def= A \W0 is the [M0]-setof p0 and A1 def= A \W1 is the [M0]-set of p1.Applying the induction hypothesis to �0, p0, and A0 we can infer the existence of aninput pattern q0 with p0 �A0 q0, and of t(l) disjoint sets M0;i, 0 � i < t(l), such that� every M0;i is the [Mi]-set of q0,� every M0;i is noncolliding in �0 under q0,� B0 � A0, and� jB0j � jA0j � l�jA0jk2 ,where B0 def= S0�i<t(l)M0;i.Correspondingly, for �1, p1, and A1 we get an input pattern q1, disjoint sets M1;i,0 � i < t(l), and a set B1, with the same properties.We will now construct the sets Mi, 0 � i < t(l + 1), by combining the sets M0;i of �0with the sets M1;j of �1, according to some partial matching to be determined in thefollowing.Note that, due to the topology of a reverse delta network, no element of a set M0;ican collide in � with any element of a set M1;j before level l + 1. Also, because ofLemma 3.2, any two elements w0 in M0;i and w1 in M1;j either collide in level l + 1 of� under q0 � q1, or they cannot collide in that level.For 0 � i; j < t(l), we de�ne Ci;j as the set of all w0 in M0;i such that w0 collides withsome w1 in M1;j in level l + 1 of � under q0 � q1.For 0 � i < k2 and 0 � j < t(l+ 1), we de�neM(i; j) def= 8>>><>>>: M0;j 0 � j < i,(M0;j nCj;j�i) [M1;j�i i � j < t(l),M1;j�i t(l) � j < t(l) + i, and; t(l) + i � j < t(l+ 1).12

By their construction, the sets M(i; j) are noncolliding in � under q0 � q1. If we letLi def= Si�j<t(l) Cj;j�i for 0 � i < k2, then[0�j<t(l+1)M(i; j) = (B0 n Li) [B1:The Ci;j are pairwise disjoint and contained in B0. Thus, the Li's are also pairwisedisjoint and contained in B0. Hence, by averaging there exists an i0, 0 � i0 < k2, suchthat jLi0 j � jB0jk2 . We use this i0 to determine the partial matching between the M0;iand the M1;j.More precisely, for all j with 0 � j < t(l + 1), we match the set M0;j with the setM1;j�i0 to obtain a new set Mj def= M(i0; j) (here we assume M0;i and M1;i to be theempty set for i < 0 and i � t(l)). Thus, the new set Mj is obtained by removing thewires in Cj;j�i0 from M0;j, and merging the resulting set with M1;j�i0 . We now showthat this choice of Mj satis�es Properties (3) and (4). We haveB def= [0�j<t(l+1)Mj= (B0 n Li0) [B1� B0 [B1� A0 [A1= A:This establishes Property (3). Verifying Property (4) is also straightforward:jBj = jB0j+ jB1j � jLi0 j� jA0j � l � jA0jk2 + jA1j � l � jA1jk2 � jLi0j= (jA0j+ jA1j) 1 � lk2!� jLi0 j� jAj � l � jAjk2 � jB0jk2� jAj � (l + 1) � jAjk2 :To complete our proof, we have to construct a re�nement q of p such that Properties (1)and (2) hold for q and the sets Mj . We do this by A0-re�ning q0 to some q00 and A1-re�ning q1 to some q01. Then p0 �A0 q00 and p1 �A1 q01, and by Lemma 3.1 the patternq def= q00 � q01 is an A-re�nement of p.We re�ne q0 to q00 in the following steps:1. First change all pattern symbolsMi and Xi;j with i � t(l) to Mi+k2 and Xi+k2;j,respectively. 13

2. Then change the pattern symbols of all wires in Ci;i�i0 with i0 � i < t(l) to Xi;j0,where j0 is chosen such that before this step only symbols Xi;j with j < j0 appearin the pattern.The steps for the re�nement of q1 to q01 are:10. First change all pattern symbols Mi and Xi;j with i � t(l) + i0 to Mi+k2 andXi+k2;j, respectively.20. Then change all pattern symbols Mi and Xi;j with 0 � i < t(l) to Mi+i0 andXi+i0;j, respectively.All re�nement steps described above are order-preserving renamings and, thus, validre�nement steps. Steps 1 and 10 remove all symbolsMi and Xi;j with t(l) � i < t(l+1)from the patterns. Then Steps 2 and 20 can be executed to perform the matchingbetween the sets M0;i and M1;j. Note that Steps 1 and 10 are not really necessarysince we can assume that the patterns q0 and q1 themselves have been constructedusing the above re�nement steps, and that, therefore, no symbols Mi and Xi;j witht(l) � i < t(l + 1) exist in the pattern. However, in order to simplify our inductionhypothesis, we have chosen not to make this assumption.The pattern q = q00 � q01 has been constructed such that the sets Mi are the [Mi]-setsof q, so Property (1) is satis�ed.To see that Property (2) holds, note that Ci;j, the set of input wires ofM0;i that collidewith an input wire of M1;j in �l+1 under q0� q1, also contains the same colliding wireswith respect to q = q00 � q01. The sets M0;i are noncolliding in �0 under q00 and, thus,also noncolliding in � under q. Similarly, the sets M1;j are noncolliding in � under q.Hence, Mj = (M0;j n Cj;j�i0) [M1;j�i0is noncolliding in � under q.2Theorem 4.1 Let � be a (d; l)-iterated reverse delta network with d; l � 0. Let W be theset of input wires of �, and let n = jW j � 8 be the number of input wires of �. Then thereexists an input pattern p such that the following properties hold, where D is the [M0]-set ofp:(1) Only the symbols S0,M0, and L0 occur in p,(2) D is noncolliding in � under p, and(3) jDj � nlg4d n .Proof: We will prove the theorem by induction over d, the number of consecutive reversedelta network in �. 14

Induction Start: d = 0Choose D = W and p such that p(w) =M0 for all w in W .Induction Step: d! d + 1A (d + 1; l)-iterated reverse delta network � consists of a (d; l)-iterated reverse deltanetwork �0 followed by a single reverse delta network �, or, formally, � 2 �0
�.By the induction hypothesis there exists a pattern p0 such that the following propertieshold, where D0 is the [M0]-set of p0:� Only the symbols S0, M0, and L0 occur in p0,� D0 is noncolliding in �0 under p0, and� jD0j � nlg4d n .Then the input pattern q0 def= �0(p0) for � contains only the symbols S0, M0, and L0.The [M0]-set B 0 of q0 has size jB 0j = jD0j � nlg4d n .We can now apply Lemma 4.1 with �, q0, and l = k = lg n. By the lemma, there existsan input pattern q00 with q0 �B0 q00 and t(lgn) = 2 lg3 n disjoint sets M0; : : : ;Mt(lgn)�1of input wires of � such that� every Mi is the [Mi]-set of q00,� every Mi is noncolliding in � under q00,� B 00 � B 0, and� jB 00j � jB 0j � jB0j�lgnlg2 n � nlg4d n (1� 1lgn),where B 00 def= S0�i<t(lgn)Mi.By averaging, there exists a set Mi0 , 0 � i0 < 2 lg3 n, of size at leastn2 lg4d+3 n 1 � 1lg n! � nlg4(d+1) n;where the last inequality follows from the fact that 12(1�1= lg n) � 1= lg n for all n � 8.By Lemma 3.3, there exists an input pattern p00 for � with p0 �D0 p00 such that q00 =�0(p00). The set Mi0 is noncolliding in �, hence the [Mi0]-set D of p00 is noncollidingin � 2 �0
� under p00.Then, by Lemma 3.4, there exists an input pattern p such that� only the symbols S0, M0, and L0 occur in p, and� D is noncolliding in � under p.Furthermore, we have jDj = jMi0 j � nlg4(d+1) n . This concludes the induction step.2 15

Corollary 4.1.1 All n-input sorting networks with iterated delta topology have depth
 � lg2 nlg lgn�.Proof: Let � be a (d; lg n)-iterated reverse delta network with d < lgn4 lg lgn . Then byTheorem 4.1 there exists an input pattern p and a set D � W such that� D is the [M0]-set of p,� D is noncolliding in � under p, and� jDj � nlg4d n > nlg(lg nlg lg n) n = 1.Since jDj is an integer, D must contain at least two elements, w0 and w1. Since p(w0) =p(w1) =M0, we can re�ne p to an input � such that the wires w0 and w1 have adjacent inputvalues, that is, �(w0) = m and �(w1) = m+ 1 for some integer m. Since D is noncollidingin � under p, the input values �(w0) and �(w1) never get compared in � under input �.Let �0 be the input obtained from � by exchanging the input values �(w0) and �(w1).Then the network � performs the same permutation on input � and on input �0. Hence, thenetwork cannot sort both � and �0.Note that the constant 14 obtained in this proof can be improved to 12+� by a sharperanalysis in Theorem 4.1.25 Extensions of the ResultThis section discusses a few implications and extensions of our lower bound.First, we point out that the proof of the lower bound still holds if the network is allowedto be \adaptive", in the following sense: If we write the network as a sequence of pairs(�i; ~xi), then the labeling ~xi of the ith level with elements from f+;�; 0; 1g can depend onthe outcome of all the comparisons made in all previous levels. Note that in our lower boundargument, it was never assumed that the labeling is �xed beforehand; instead, in every level,we allowed the \adversary" to choose the labeling in an arbitrary way. Hence, the validityof the argument is not a�ected by allowing the construction of the network to be adaptive.We can also fairly easily extend the argument to another more general class of networks.So far, we have allowed an arbitrary permutation to occur in the network after every lg nshu�e stages. It is easy to see that, if we would allow an arbitrary permutation every(lg lg n)2 stages, our argument would immediately imply a lgnlg lgn (lg lg n)2 = lg n lg lgn lowerbound for the resulting class of networks. In general, we could ask for a lower bound forshu�e-based networks with an arbitrary permutation allowed to occur after every f(n)stages, where f(n) = o(lg n). In order to get the best possible lower bounds for this case,and, in particular, to get any meaningful lower bounds at all for f(n) = O(lg lg n), we have tomodify our proof slightly. If we choose to split up the set of uncompared, adjacent values into16

2f(n) � (f(n))c sets every time we enter a new, in this case truncated, reverse delta network,then our technique will give a lower bound of
(lgnlg f(n) � f(n)). This compares to an upperbound of O(lg n � f(n)) obtained by a straightforward emulation of the AKS network.Leighton and Plaxton [8] have designed a shu�e-unshu�e comparator network (i.e.,a comparator network in which the permutation between successive levels can be eithershu�e or unshu�e) of depth O(lg n) that sorts all but a superpolynomially small fractionof the inputs. Their technique can be applied to construct a shu�e-based network of depthO(lg n lg lg n) that sorts all but a polynomially small fraction of the inputs. This impliesthat we cannot hope to prove a lower bound close to
(lg2 n= lg lg n) for the \average case"complexity of shu�e-based networks, where the average case complexity is de�ned in thefollowing manner. First, determine for every possible input the depth of the �rst levelof the network at which the input \becomes sorted" (i.e., agrees with an appropriate �xedassignment of ranks given to the nodes at that level). Then de�ne the average case complexityas the average of this depth over all inputs. It is not di�cult to see that the O(lg n lg lg n)network mentioned above, followed by a bitonic sorter (say), achieves an average sortingdepth of O(lg n lg lg n).A similar argument can be used to show that we cannot hope to extend the lower boundto the \randomized" complexity of shu�e-based sorting networks. In order to construct arandomized shu�e-unshu�e network that sorts all inputs with high probability, Leightonand Plaxton [8] use an additional \randomizing" circuit element that interchanges the inputvalues with probability 1=2, and leaves them unchanged otherwise. This new element canbe used to construct a shu�e-based randomized sorter of depth O(lg n lg lg n).For the class of shu�e-based networks, our lower bound also rules out a seeminglyattractive way of designing small-depth sorting networks. The 0-1 principle says that everycomparator circuit that sorts the 2n inputs in f0; 1gn is a sorting network. One might hopeto strengthen this result by showing that there exists a relatively \small" subset of the 0-1permutations such that every network that sorts these permutations would be \nearly" asorting network. We formalize this idea by de�ning a representative set (with respect to theclass of shu�e-based networks) as a subset of f0; 1gn such that for any network � that sortsthese permutations, there exists a shu�e-based network � of depth o(lg2 n= lg lgn) such that�
 � contains a true sorting network. Assuming the existence of a representative set ofpolynomial size, and using Corollary 4.2.1 of [12], the existence of an O(lg n lg lg n)-depthshu�e-based network for sorting all but a polynomially small fraction of the inputs impliesthe existence of a o(lg2 n= lg lg n)-depth shu�e-based sorting network. Since this wouldcontradict our lower bound, we can conclude that there does not exist a representative setof polynomial size.This argument can be strengthened somewhat. The technique of Leighton and Plax-ton [8] can also be used to construct a o(lg2 n= lg lg n)-depth shu�e-based sorting networkthat sorts all but an � def= 2�2o(lg n= lg lg n)fraction of the inputs. Arguing as in the preceding paragraph, there cannot exist a repre-sentative set of size less than 1=�. 17

6 Concluding RemarksIn this paper, we have shown an
(lg2 n= lg lg n) lower bound on the depth of sorting networksbased on the shu�e permutation. It would certainly be interesting to close the �(lg lg n)gap that remains between the upper and lower bounds.Another possible direction for future research would be to consider other classes of net-works based on restricted sets of permutations. For instance, it would be interesting to provea !(lg n) lower bound for the class of sorting networks based on the shu�e and unshu�epermutations. Of course, we cannot discount the possibility that depth O(lg n) may beachievable within that class. Other interesting classes could be obtained by restricting thenumber of di�erent permutations that can appear in the network. We might ask, for example,whether any small-depth sorting network exists that is based on a single permutation.Finally, one might try to apply our proof technique of maintaining and recombining alarge number of incomparable sets to other sorting-related problems in connection with lowerbounds.Acknowledgements: Wewould like to thank the anonymous referees for several suggestionsthat helped to improve the quality of the presentation.References[1] M. Ajtai, J. Koml�os, and E. Szemer�edi. Sorting in c log n parallel steps. Combinatorica,3:1{19, 1983.[2] K. E. Batcher. Sorting networks and their applications. In Proceedings of the AFIPSSpring Joint Computer Conference, vol. 32, pages 307{314, 1968.[3] R. E. Cypher. A lower bound on the size of Shellsort sorting networks. SIAM J.Comput., 22:62{71, February 1993.[4] R. E. Cypher. Theoretical aspects of VLSI pin limitations. SIAM J. Comput., 22:58{63,April 1993.[5] D. E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, Reading,MA, 1973.[6] C. P. Kruskal and M. Snir. A uni�ed theory of interconnection network structure.Theoretical Computer Science, 48:75{94, 1986.[7] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Treesand Hypercubes. Morgan-Kaufmann, San Mateo, CA, 1991.[8] F. T. Leighton and C. G. Plaxton. A (fairly) simple circuit that (usually) sorts. InProceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science,pages 264{274, October 1990. 18

[9] N. Linial and M. Tarsi. Interpolation between bases and the shu�e exchange network.European Journal of Combinatorics, 10:29{39, 1989.[10] D. Parker. Notes on shu�e/exchange-type switching networks. IEEE Transactions onComputers, 29:213{222, 1980.[11] M. S. Paterson. Improved sorting networks with O(logN) depth. Algorithmica, 5:75{92,1990.[12] C. G. Plaxton. A hypercubic sorting network with nearly logarithmic depth. In Pro-ceedings of the 24th Annual ACM Symposium on Theory of Computing, pages 405{416,May 1992.[13] C. G. Plaxton, B. Poonen, and T. Suel. Improved lower bounds for Shellsort. InProceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science,pages 226{235, October 1992.[14] A. Varma and C. S. Raghavendra. Rearrangeability of multistage shu�e/exchangenetworks. IEEE Transactions on Communications, 36:1138{1147, 1988.

19

