A Lower Bound for Sorting Networks
Based on the Shuffle Permutation

C. Greg Plaxton” Torsten Suel

Department of Computer Sciences
University of Texas at Austin

Abstract

We prove an Q(Ig?n/lglg n) lower bound for the depth of n-input sorting networks
based on the shuffle permutation. The best previously known lower bound was the
trivial Q(lgn) bound, while the best upper bound is given by Batcher’s ©(lg® n)-depth
bitonic sorting network. The proof technique employed in the lower bound argument
may be of independent interest.

1 Introduction

A variety of different classes of sorting networks has been described in the literature. Of
particular interest here are the so-called AKS network [1] discovered by Ajtai, Komlds and
Szemerédi, and the sorting networks proposed by Batcher [2]. The AKS network is the
only known sorting network with O(lgn) depth. However, the topology of the network is
highly irregular, and the multiplicative constant hidden by the O-notation is impractically
large [1, 11]. On the other hand, the networks proposed by Batcher have a relatively simple
interconnection structure and a small constant. This makes them the networks of choice in
many practical applications, although they have depth ©(lg®n) and are thus asymptotically
inferior to AKS.

This situation has motivated attempts to construct O(lg n)-depth sorting networks with
simpler, more regular topologies, and/or a considerably smaller constant. For sorting net-
works based on Shellsort with monotonically decreasing increments, this question was an-
swered in the negative by Cypher [3], who shows an Q(lg” n/lglg n) lower bound for this class
of networks. Very recently, a more general lower bound was shown that holds for arbitrary
increment sequences and even adaptive Shellsort algorithms [13].

*Supported by NSF Research Initiation Award CCR-9111591, and Texas Advanced Research Program
(TARP) Award #003658480.

TSupported by Texas Advanced Research Program (TARP) Award #003658480, and by an MCD Fellow-
ship of the University of Texas at Austin.

Another class of particular interest are small-depth sorting networks based on hypercubic
networks (e.g., the hypercube, butterfly, cube-connected cycles, or shuffle-exchange). In this
context, Cypher [4] has shown that any emulation of the AKS network on the cube-connected
cycles takes time Q(Ig? n). Here, we say that a sorting algorithm emulates the AKS network
if it performs the same sequence of comparisons. Cypher’s result holds for the class of all
algorithms on the cube-connected cycles, which properly contains the class of shuffle-based
algorithms considered in this paper. On the other hand, this paper provides a lower bound
for the problem of sorting in general, and not merely for the problem of emulating the AKS
network.

This paper focuses on sorting networks based on the shuffle permutation, a notion that
is formalized below. We will establish a lower bound of Q(lg®n/lglgn) for any sorting
network in this class. In fact, our lower bound holds for the slightly more general class
of iterated reverse delta networks defined further below. Before elaborating on this result,
we will briefly describe the comparator network model and define the class of shuffle-based
sorting networks.

Most commonly, a comparator network is defined as an acyclic circuit of comparator
elements, each having two input wires and two output wires. One of the output wires
is labeled as the maz-output, which receives the larger of the two input values; the other
output is called the min-output, and receives the smaller value. We will use this model of a
comparator network throughout most of the paper, but will also briefly consider the following
alternative model.

In this model, a comparator network on n registers is determined by a sequence of pairs
(IL;, %), 0 <1 < d, where 1I; is a permutation of {0,...,n — 1} and &; is a vector of length
|n/2] over {+,—,0,1}. The network gets as input a permutation of {0,...,n — 1} that is
initially stored in the registers, and then operates on the input in d consecutive steps. In
step 1, 0 <1 < d, the register contents are permuted according to II;, and then the operation
stored in the kth component of #; is applied to registers 2k and 2k 4+ 1. In a “4+” operation,
the values stored in the two registers are compared, and the smaller of the values is stored

“—" operation, the values are stored in the

in register 2k, the larger one in 2k 4+ 1. In a
opposite order. A “0” means that no operation takes place on the corresponding pair of
registers. A “1”7 operation simply exchanges the values of the two registers. A comparator
network is called a sorting network if it maps every possible input permutation to the same

output permutation.

It is well known that the two models of comparator networks described above are equi-
valent (that is, given any network in one model, there exists a network in the other model
with the same size and depth that performs the same mapping from inputs to outputs).
While the first model often appears more intuitive, we can use the second one to define some
interesting special classes of networks by restricting the possible choices for the permutations
IL;.

For n = 2 where d is a positive integer, the shuffle permutation © on n inputs may
be defined as follows. If j;_1---jo denotes the binary representation of some integer j.
0 < j < n, then #(j) has binary representation jg_s---jojs—1. We say that a network is
based on the shuffle permutation if 1I; = 7= holds for all .

In this paper, we show an Q(lg”n/lglgn) lower bound for the class of networks based on
the shuffle permutation, thereby answering a question posed by Knuth (see Problem 5.3.4.47
of [5]), up to a O(lglgn) factor. The best previously known lower bound for this class was the
trivial Q(lgn) bound, while the best known upper bound continues to be given by Batcher’s
O(lg”® n)-depth bitonic sorting network. Interestingly, the result cannot be extended to the
case where both the shuffle permutation = and the unshuffle operation 7=!
the network. For that case, the “randomized” construction of Leighton and Plaxton [8] has
been shown to imply the existence of sorting networks (in the usual, deterministic sense)
with nearly logarithmic depth [12].

are allowed in

Thus, one way of viewing the lower bound of this paper is that it establishes a non-trivial
separation between the power of “ascend-descend” machines (e.g., the shuffle-exchange when
both shuffling and unshuffling are permitted) and strict “ascend” machines (e.g., shuffle
only). Of course, it must be emphasized that our lower bound for sorting on the directed
shuffle-exchange graph only applies to sorting algorithms that correspond to shuffle-based
sorting networks. On the other hand, this class of algorithms cannot be easily dismissed as
being overly restrictive. To the contrary, one might argue that the primary motivation for
considering hypercubic networks in the context of parallel computation is that they admit
elegant and efficient strict ascend algorithms for a wide variety of basic operations (e.g.,

parallel prefix, FFT).

The remainder of the paper is organized as follows. Section 2 contains an informal
overview of the lower bound argument. In preparation for the actual proof, Section 3 states
a number of useful definitions and basic lemmas. Section 4 contains the proof of the lower
bound. Possible extensions of the lower bound are discussed in Section 5. Finally, Section 6
lists some open questions for future research.

2 An Overview of the Proof

A simple observation concerning comparator networks is that a sorting network has to make
a comparison between all pairs of adjacent values in every input, that is, any pair of values
{m,m + 1} must appear on the input wires of some comparator element (we assume the
inputs to be permutations of {0,...,n — 1}). Thus, one might attempt to prove a lower
bound for the depth of sorting networks by showing the existence of a set of adjacent values
{m,...,m+ 1} such that no two elements of the set have been compared up to a given level
of the network, for some appropriately chosen input. In the following, we will call such a set
a special set. If we apply this proot technique to a shuffle-based network, starting out with
the set of all values as our special set, and, whenever two elements of the set get compared,
removing one of them from the set, then we can lose up to one half of the elements in any
given level. So using this simple approach, we could only show the trivial lower bound of
Q(lgn) for the depth of a sorting network.

The key idea to overcome this problem is to modify the proof technique in a way that
allows us to exploit the particular structure of shuffle-based networks. This special structure
becomes more obvious if we shift our attention to a slightly more general class of networks,
called iterated reverse delta networks. An n-input iterated reverse delta network consists

of a number of consecutive reverse delta networks of depth lgn. Informally, a reverse delta
network is obtained from a delta network by “flipping” the network, that is, interchanging
the roles of the inputs and outputs. Both delta networks and reverse delta networks can
be seen as generalizations of the butterfly network, which is known to be equivalent to a
shuffle-based network of depth lgn (e.g., see [7, Section 3.8]). More precisely, the butterfly
network is the unique network that is both a delta network and a reverse delta network [6].

The following recursive definition of a reverse delta network is crucial for understanding
our proof technique: A reverse delta network with 2**! inputs and depth k& + 1 consists of
two parallel 2%-input reverse delta networks of depth k, followed by a final level of up to
2% comparators. Every comparator in the final level takes one input from the outputs of
each of the two subnetworks. Finally, a 1-input reverse delta network is just a wire. This
“tournament-like” structure leads to an important property of reverse delta networks: An
observer who sees the outcomes of all comparisons in the two subnetworks will not be able to
say anything about the relative ordering of any two items taken from different subnetworks.
In other words, the observer will not be able to say anything about the relative strength of the
two “subtournaments” before the final stage. This disjointness property of the subnetworks
will be exploited in our proof.

In the modified proof technique we will try to maintain a collection of special sets, each
consisting of uncompared adjacent elements. More precisely, upon entering a new reverse
delta network of depth lgn, we will partition our current special set into nlg®n disjoint
special sets, most of which are empty, with g’ n sets entering on each wire (recall that a
single wire is a l-input reverse delta network). Thus, every 2-input comparator network
will have two different collections of lg® n special sets arriving on its two input wires. We
will show how to recombine these sets to get a new collection of roughly lg®n special sets,
containing nearly all of the elements of the two collections.

More generally, due to the recursive structure of a reverse delta network, in every level we
will recursively have two different collections of ©(lg® n) special sets coming from two disjoint
subnetworks. In our proof, we show the existence of a partial matching between these two
collections of sets such that, if we recombine the sets according to the matching and remove
one element from every pair of elements that get compared, we get a new collection of sets of
uncompared elements while losing only a very small fraction of our elements. The number of
sets in this new collection will be only slightly larger than the number of sets in either of the
two collections. Due to the abovementioned disjointness property of the two subnetworks,
we will also be able to assume that the new sets in the collection each contain adjacent
elements.

It we repeat this process for the lgn levels of the reverse delta network, we end up with
a single collection of O(Ig” n) special sets. The total number of elements in the sets is only a
constant factor smaller than it was when we entered the reverse delta network. If we pick the
largest of the ©(lg® n) sets as our new special set, then we only lose a polylogarithmic factor
in the size of the set. Hence, we can iterate this process over O(lgn/lglgn) consecutive
reverse delta networks before the size of the special set becomes 1.

To formalize this proof idea, we introduce the notion of an input pattern representing a
class of similar inputs. We construct a class of inputs with the desired property (existence of

large sets of mutually uncompared, adjacent values) by stepwise refinement of a given input
pattern in every level of the network.

3 Definitions

In the following, unless explicitly stated otherwise, the set of input wires of a comparator
network will be denoted by W. An input to a comparator network is a total mapping from
W to a set V of possible input values. We will restrict our attention to inputs 7 that are
permutations of {0,...,n— 1}, i.e., where |W|=n, V ={0,...,n—1}, and 7 is one-to-one.
The set of all one-to-one functions from a set A to a set B will be denoted by (A — B),
and so the set of all inputs of a given comparator network may be written as (W — V).
Furthermore, for a function f on a set A and a subset B of A, let f|, denote the functional
restriction of f to B. For two functions fy and f; on disjoint sets Ag and Ay, we write fo P fi
for the union of fo and fi:

det | fo(x) forall z in Ag, and
(fo® fi)lx) = { }ZE:L'; for all x in A;.

3.1 Input Patterns and Refinement

In the following definitions, we will introduce the notions of input patterns and input pattern
refinement, which will be fundamental to understanding our proof technique. Informally,
an input pattern describes a set of inputs with certain common properties. Input pattern
refinement is the process of imposing additional conditions on such a set of inputs.

Definition 3.1 Let P be a set and <p be a total ordering on P.

(a) An input pattern is a total mapping from W to P.

(b) Let po, p1 be two input patterns. We say that py can be refined to py (written po Dw p1)
if (po(w) <p po(w')) = (p1(w) <p p1(w’)) holds for all w and w’ in W.

(c¢) Let p be an input pattern and # be an input. We say that p can be refined to 7 (written
p Dw) if (p(w) <p p(w')) = (xr(w) < w(w')) holds for all w and w’ in W.

The set P will be referred to as the pattern alphabet, and the elements of P are called
pattern symbols. Throughout this paper, pattern symbols will be denoted by script letters.

Example 3.1 Let W = {wy,...,w,_1}, P = {S, M, L}, and let the ordering <p on P
be given by S <p M <p L (informally, the symbols S, M, and £ may be interpreted as
“Small”, “Medium”, and “Large”, respectively). Then the input pattern p assigning £ to
wy and wy and M to all other wires can be refined to all inputs that assign the two largest
values to wy and wy. We could also refine p to other input patterns, for example to a pattern
p’ such that £ is assigned to wy and wq, S is assigned to wy and M is assigned to all other
wires. The new pattern p’ can itself be refined to all inputs that assign the largest values to
wo and wy, and the smallest value to w,.

The relation Dy defined above is a partial ordering on the set of input patterns. Note
that the set V' of input values can be regarded as a special case of a pattern alphabet with
the ordering of the natural numbers. Every pattern can be refined to some input, and we
could assume that the pattern alphabet P is always a subset of V. The pattern-to-pattern
refinement in Part (b) of Definition 3.1 would then become a special case of the pattern-to-
input refinement in Part (c). However, in the following we will not restrict our choice of P
to subsets of V. We will see that this gives us more power of expression and, thus, simplifies
the presentation of the proof.

We usually think of an input pattern p as a description of the set of inputs that p can be
refined to. This set will be denoted by p[V] = {r | 7 is an input such that p Dy 7}. When
we refine a pattern py to p; then we are imposing additional constraints on this set of inputs.
Formally, we have (po Dw p1) < (po[V] 2 m[V]). Alternatively, the reader may also view
an input pattern p as a shorthand for a logical predicate that holds for exactly the inputs in

plV].
Definition 3.2 Let p and ¢ be input patterns on W, and let U be a subset of W.

(a) The input pattern p, on U is the restriction of p to U.

(b) We say that p can be U-refined to ¢ (written p Dy ¢) if p Dw ¢ and p(w) = ¢(w) holds
for all win W\ U.

Definition 3.3 Let Uy and U; be disjoint subsets of W, pg be an input pattern on Uy, and
p1 be an input pattern on U;. Then ¢ = po & py is the input pattern on Uy U Uy such that

Gy, = Po and g, = p1.

If for two patterns py and p; both py Dw pi and p1 Dw po hold, then we say that pg
and p; are equivalent. In this case, we have po[V] = pi[V], and the refinement steps from
po to p1 and vice versa can be achieved by simply renaming the pattern symbols in a way
that preserves the ordering <p. Hence, we call this special case of a refinement step an
order-preserving renaming.

Example 3.2 Let W = {w,...,w,_1} and P = {P; | i > 0} with P; <p Piyy for all i > 0.
Then any input pattern p is equivalent to the input pattern pgz, & > 0 obtained from p by
substituting every pattern symbol P; in p by P;ix, for all «.

3.2 Comparator Networks

We will now further formalize our notion of a comparator network, and explain how its
domain of operation can be extended from the set of inputs to the set of input patterns.

In the following, a comparator network will be interpreted as a mapping from a set of
possible inputs to a set of possible outputs. More precisely, a comparator network A on
input wires W and output wires W’ defines a mapping (which we will also denote by A)

from (W +— V) to (W' — V) such that every input 7 : W — V is mapped to an output
7'« W' V that is a “permutation” of #. By this we mean that there exists a bijection

p: W= W’ such that 7(w) = 7'(p(w)) holds for all w € W.

Let A5, A7 be two sets of n-input comparator networks. Then Aj @ A7, the serial com-
position of A§ and A}, denotes the set of all networks A that can be obtained by connecting
the output wires of a network from Af to the input wires of a network from Aj. We place no
restrictions on this mapping from output wires to input wires, except that it be one-to-one.
As it happens, we will often make use of the serial composition operator in the context of
singleton sets A5 and A}. In such a case, we may write, for example, Ag @ Ay (where Ag, Ay

are networks) rather than {A¢} @ {A1}.

Given two comparator networks Ay and Ay on disjoint sets of input and output wires,
we obtain the parallel composition of Ag and Ay as the union of the two networks, written
Ao @& Ay The set of input (output) wires of Ag @ Ay is the union of the sets of input (output)
wires of Ag and Ay. Given these definitions, we can now formally define the class of reverse
delta networks.

Definition 3.4 A 2-input comparator network A is called an [-level reverse delta network

if
e /[=0 and A contains no comparator elements, or
e />0 and A is an element of (Ag & Aq) @ Iy, where

(i) Ag and Ay are (I — 1)-level reverse delta networks, and

(ii) T consists of one level with at most 2/~! comparator elements,

such that every comparator in I'; takes one input from an output wire of Ag and the
other input from an output wire of Aj.

Note that we do not require the ith level to have exactly 2°=!' comparator elements.
This corresponds to allowing the reverse delta network to contain “0” (do nothing) and “1”
(exchange) circuit elements, as introduced in the “register model” of a comparator network.

We will call a network A a (k,[)-iterated reverse delta network if it consists of &k con-
secutive [-level reverse delta networks, or, formally, if A belongs to Ag @ - -+ @ Agx_y where
every A; is an [-level reverse delta network. It should be pointed out that this definition
allows an arbitrary fixed permutation between any two consecutive reverse delta networks,
due to our definition of serial composition. Recall that we allowed both comparators and
switching elements in our network. For this model it has been shown that any permutation
on n = 2¢ inputs can be routed by a shuffle-exchange network with 3d — 4 levels [10, 9, 14].
Thus, eliminating the permutations between the reverse delta networks would only increase
the depth of the circuit by at most a constant factor.

A comparator network A was identified with a mapping from the set of inputs to the set
of outputs. The following definition extends A to a function from the set of input patterns
to the set of output patterns (an output pattern is a mapping from the set of output wires
to the set of pattern symbols).

Definition 3.5 Given a comparator network A, an input pattern pg, and an output pattern

p1 with pr (W) = po(W), we define

Alpo) = pr & ApolV]) = pu[V].

Note that this definition characterizes the behavior of a comparator network on an input
pattern in the way we would expect: If two pattern symbols Py and P; arrive on the input
wires of a comparator gate, then the symbol that is larger according to the ordering <p will
appear on the max-output of the gate, and the smaller one will appear on the min-output.
This implies that any set of inputs that can be expressed by an input pattern will produce
a set of outputs that can be expressed by an output pattern.

Definition 3.6 We say that two input wires wy and w; collide in a network A under an
input 7 if the input values 7 (wp) and #(w) are compared in A when 7 is given as input.

According to the above definition, two wires whose respective values meet in a noncom-
parator element, that is, a “0” (do nothing) or “1” (exchange) switch, are not regarded as
colliding. In the rest of the paper, we do not have to distinguish between the different circuit
elements any more, since the entire lower bound argument is based on the notion of collision
introduced above and extended to input patterns in the following.

Given a network A and an input 7, we can always determine whether two input values
are compared or not (recall that we only consider inputs that are permutations). This is
not the case for input patterns, since an input pattern can contain several occurences of the
same pattern symbol. This motivates the following definition of collision for input patterns:

Definition 3.7 Let A be a comparator network, let p be an input pattern for A, and let wy
and wy be two input wires of A.

(a) We say that wg and wy collide in A under p if they collide in A under all inputs = with
P Ow T.

b) We say that wg and w; can collide in A under p if there exists an input = with p Dw 7
y p P p
such that wy and w; collide in A under .

c¢) We say that wy and wy cannot collide in A under p if there is no input = with p Dw =
y p P p
such that wy and w; collide in A under .

(d) A set U C W is called noncolliding in A under p if any two wires in U cannot collide
in A under p.

Example 3.3 Let W = {wg, wy, wq, w3}, P = {S, M, L}, and let the ordering <p on P
be given by § <p M <p L. Let the network A consist of a comparator between w; and
wq, followed by a comparator between w, and w3, followed by a comparator between wg and
ws, where all comparators are directed towards the wire with the larger index. Then the
following holds under the input pattern p that maps wg to S, wy and w;y to M, and w3 to L:

(1) Wires wy and ws collide in A under p since the very first comparator is between these
two wires.

(2) Wires wy and ws can collide in A under p, since we can refine p to an input # that
assigns a larger value to w; than to w,. In that case, the input value assigned to w;
will be compared to that of ws in the second comparator. Similarly, wy can collide
with w3 in A under p.

(3) Wires wo and ws collide in A under p, since no exchange can occur in the second
comparator of the network under any input © with p Dw 7. Also, wy and wy (resp.
wy) cannot collide in A under p.

In general, if two wires collide (cannot collide) in some network A under an input pattern
p, then they also collide (cannot collide) in A under any refinement p’ of p. Similarly, if a
set U is noncolliding in A under p, then it is also noncolliding in A under p’. The property
can collide 1s not preserved under arbitrary refinement.

In the following we restrict our attention to a fixed pattern alphabet P which will be
used throughout the lower bound argument:

PE{S, X ;, My, Li |4, > 0}.

The ordering <p on P is defined by

Si <p Siq1,

Si <p Koo,
Xij <p Xijir,
Xi;j <p M,
M, <p Xijio,
M, <p ,C]‘, and

Liy1 <p L

for all nonnegative integers ¢, j.

Finally, for a pattern p and a pattern symbol P we define the [P]-set of p as the set
{w e W | p(w) =P}. We can now formally express the idea of our lower bound argument:
To prove that a network A is not a sorting network, we will show the existence of a pattern
p such that its [My]-set is noncolliding in A under p and contains at least two elements.
The pattern p can then be refined to an input such that the wires in the [Mg]-set contain
adjacent input values. This implies that A does not sort all of the inputs in p[V].

The pattern p will be constructed using stepwise refinement, starting out with a pattern
containing only the symbol M. In general, we will assume that whenever we enter a new
reverse delta network, the current pattern p only contains the pattern symbols Mg, Sp, and
Ly, with the latter two symbols marking the input wires carrying values that are smaller and
larger, respectively, than those of the wires in the [My]-set. We now split up the pattern p
into n patterns p;, 0 < ¢ < n, of size 1, with one p; corresponding to each input wire (1-input

reverse delta network). Every pattern p; can be interpreted as having lg” n noncolliding sets
Mo, ..., Mz, _,, where M; is the [M]-set of p;, for 0 < j < lg® n. Except for My, all of
these sets will be empty at this point.

Thus, every 2-input reverse delta network will have two collections of [M;]-sets, denoted
by Moo, ..., Mos—1 and Myg,..., My 1, where t = 1g3 n, entering on the first and second
input wire, respectively. In general, in every level of the recursive definition of a reverse
delta network we will have two collections of noncolliding [M]-sets in each of the two
disjoint subnetworks. We will be able to recombine these collections to obtain a single
collection of noncolliding [M]-sets such that this single collection still contains nearly all
of the input wires that were in either of the two collections, while the number of sets will
only increase marginally. Hence, on average, the new sets will contain roughly twice as
many elements as the old sets. This proof step is performed by showing the existence of
an appropriate matching between the two collections, and refining the two input patterns
according to this matching. After the last level of the reverse delta network, we will have a
collection of O(Ig® n) noncolliding sets containing only a constant factor fewer elements than
the “original” [Mo]-set before the current reverse delta network. We can choose the largest
of these sets as our new noncolliding [M,]-set by performing an order-preserving renaming

of the pattern p, mapping the wires in this set to My and all of the wires in the other sets to
lgn
Iglgn

some S; or L;. This procedure is iterated over O() consecutive reverse delta networks.

3.3 Basic Lemmas

The following lemmas will be used in our lower bound argument. Their proofs are fairly
straightforward and we will only sketch some of the proof ideas. Readers who are familiar
with comparator networks should be able to quickly convince themselves of the validity of
these lemmas.

Lemma 3.1 Let p be an input pattern on W such that only the pattern symbols Sy, Mo,
and Ly appear in p. Let Wy and Wi be disjoint subsets of W with W = Wy U W, and let
A be the [Mg]-set of p. Let ¢o and ¢; be input patterns on Wy and Wy, respectively, with
So <p qo(w), ¢1(w) <p Lo for all win A. Then from Plw, Danw, o and Plw, Danw; 1, We
can infer p D4 qo P ¢1.

This lemma ensures that, given an input pattern p for a network A = Ay & Ay, we get a
refinement of p if we separately refine the input patterns py, for Ag and py,, for Ay in the
way described, where W, and W are the sets of input wires of Ag and Ay, respectively.

Lemma 3.2 Let A be a d-level comparator network, p be an input pattern for A, and Py,
Py be pattern symbols in P. Let Ag be the [Py]-set of p, and Ay be the [Py]-set of p. If A
and A; are each noncolliding in the first d — 1 levels of A under p, then any two wires wg in
Ag and wq in A; either collide in level d under p, or they cannot collide in that level.

To prove the correctness of this lemma, note that an input value on a wire w in Ag or A
will follow the same path through the first d — 1 levels of the network under all inputs = with

10

p Dw w. This follows from the assumption that Ay and A; are noncolliding and contain all
occurrences of the symbols Py and P;. Hence, we can identify the locations of all pattern
symbols Py and P; in level d by following their paths through the network. This is also
the underlying idea in the next lemma, which shows a one-to-one correspondence between
the M; on the input wires and those on the output wires of a network, provided that the
[M]-set is noncolliding.

Lemma 3.3 Let A be a comparator network in Ay @ Ay, ¢ be a nonnegative integer, and
p be an input pattern for Ag such that its [M,]-set A is noncolliding in Ay under p. Let
¢ = Ao(p) be an input pattern for A; and B be the [M;]-set of ¢. Then for every ¢’ with
q Dp ¢ there exists a p’ with p D4 p’ such that ¢’ = Ag(p’). Furthermore, if the [M,]-set of
¢’ is noncolliding in Ay under ¢/, then the [M;]-set of p’ is noncolliding in A under p'.

To verify the validity of the final lemma, note that the paths taken by the M;-symbols
through a network are not changed if we rename the rest of the symbols in the way described
in the lemma.

Lemma 3.4 Let A be a comparator network, p be an input pattern for A, and A be the
[M]-set of p. Let p;(p) be the input pattern obtained from p by changing all pattern symbols
P with P <p M, to Sy, all pattern symbols P with M; <p P to Ly, and all pattern symbols
M, to My. If A is noncolliding in A under p, then A is also noncolliding in A under p;(p).

4 The Lower Bound

This section contains the proof of the lower bound for sorting on iterated reverse delta
networks. The argument is divided into three major steps: First, a lemma will be established
that implies the existence of a pattern p with a “large” [Mpg]-set that is noncolliding in a
single reverse delta network under p. This is the main part of our proof, and also the one that
employs the novel proof ideas. A subsequent theorem iterates the result of the lemma, thus
showing how to maintain a “large” noncolliding [Mg]-set over several consecutive reverse
delta networks in an iterated reverse delta network. Finally, a corollary establishes the lower

bound.

Lemma 4.1 Let A be an [-level reverse delta network, [> 0, and let p be an input pattern
for A such that only the pattern symbols Sy, Lo, and Mg occur in p. Let A be the [Mg]-set
of p, and let k be a positive integer. Then there exists an input pattern ¢ with p D4 ¢ and
H(1) =k 4 1k? sets My, ... Mypy—1 of input wires such that the following properties hold,

where B & Uo<icty Mi:

(1) Every M; is the [M,]-set of ¢,
(2) Every M, is noncolliding in A under g,
(3) BC A, and

11

1A
(4) |B] > [A] - 4.

Proof: We will prove the lemma by induction over [, the number of levels in the reverse
delta network.

Base Case: [=0

We define the sets Moy, ..., Myq)y—1 by setting My to A and all M;, 1 < ¢ < ¢(0), to
the empty set. If we set ¢ = p, then Properties (1) to (4) are satisfied. In particular,
Property (2) is satisfied since a 0-level reverse delta network does not contain any
comparators, and hence every set is noncolliding in the network under every input
pattern.

Induction Step: [— [+ 1

An (I + 1)-level reverse delta network A consists of two [-level reverse delta networks
Ag and Ay, and an (I + 1)th level I';4; satisfying the conditions of Definition 3.4. The
input wires W of A can be partitioned into the sets Wy and Wy of input wires of Ag
and Ay, respectively. Let py & Plw, and p1 d:efp|W1. Then Ag = AN W is the [Mg]-set

of po and A; & AN W, is the [M]-set of py.
Applying the induction hypothesis to Ag, po, and Ay we can infer the existence of an
input pattern ¢o with po D4, qo, and of ¢(I) disjoint sets My ,;, 0 < ¢ < t(I), such that
e every My, is the [M,]-set of qo,
o cvery My, is noncolliding in Ag under ¢,
o By C Ag, and
|Bol > |Ao| — 1

k2

def

where By = Uo<icst) Moi-
Correspondingly, for Ay, py, and A; we get an input pattern ¢, disjoint sets My,
0 <i<t(l), and a set By, with the same properties.

We will now construct the sets M;, 0 < < (/4 1), by combining the sets My ; of Ag
with the sets M ; of Ay, according to some partial matching to be determined in the
following.

Note that, due to the topology of a reverse delta network, no element of a set My ;
can collide in A with any element of a set M ; before level [4+ 1. Also, because of
Lemma 3.2, any two elements wq in My; and wy in M ; either collide in level [41 of
A under gg @ ¢1, or they cannot collide in that level.

For 0 <i,5 < t(I), we define C;; as the set of all wq in My, such that wq collides with
some wy in My ; in level [+ 1 of A under ¢o @ ¢1.

For 0 <7< k*and 0 <j < t(l+ 1), we define

MOJ 0 S] < iv
M,)% (Mo \ Cjjmi) UMy 1 < j <i(l),
Y My (1) < j < t(l) +1i, and
0) +i<j<t(l+1).

12

By their construction, the sets M(¢,5) are noncolliding in A under go & ¢1. If we let
L; = Ui§j<t(1) CJ‘J‘_Z' for 0 <i < k2, then

U M(i,5)=(Bo\ L;) U By.

0<5<t(141)

The C;; are pairwise disjoint and contained in By. Thus, the L;’s are also pairwise
disjoint and contained in By. Hence, by averaging there exists an 1o, 0 < ig < k?, such

that |L;,| < %. We use this 29 to determine the partial matching between the My

and the M ;.
More precisely, for all j with 0 < j < #(l 4+ 1), we match the set My ; with the set

My ;—, to obtain a new set M; = M{(ig,) (here we assume My,; and M, to be the
empty set for ¢ < 0 and ¢ > #(I)). Thus, the new set M, is obtained by removing the
wires in C ;_;, from My ;, and merging the resulting set with AM; ;_;,. We now show
that this choice of M; satisfies Properties (3) and (4). We have

B U M
0<5<t(141)
= (Bo\ Liy) U By
ByU B,
Ao U A4
= A.

C
C

This establishes Property (3). Verifying Property (4) is also straightforward:

Bl = 1B+ 1B~ L
A A
> = ey A
[
= (a1 (1-) - 12
LAl 1By
R
I+1)- 4]
> |A|—%-

To complete our proof, we have to construct a refinement ¢ of p such that Properties (1)
and (2) hold for ¢ and the sets M;. We do this by Ag-refining ¢o to some ¢ and A;-
refining ¢; to some ¢;. Then pg D4, q; and p; D4, ¢, and by Lemma 3.1 the pattern

def

q = q4 P qq is an A-refinement of p.
We refine ¢o to ¢ in the following steps:

L. First change all pattern symbols M; and X; ; with ¢ > #(I) to M2 and X s,
respectively.

13

a

2. Then change the pattern symbols of all wires in C;,_;, with i < < t(I) to & j,,
where jg is chosen such that before this step only symbols X; ; with j < jo appear
in the pattern.

The steps for the refinement of ¢; to ¢ are:

1", First change all pattern symbols M, and AX;; with ¢ > #(I) 4+ iy to M, ;2 and
X ik j, respectively.

2'. Then change all pattern symbols M; and A;; with 0 < ¢ < #(I) to M,4,, and
Xiti, ;. respectively.

All refinement steps described above are order-preserving renamings and, thus, valid
refinement steps. Steps 1 and 1’ remove all symbols M, and &; ; with ¢() <@ < t(I+1)
from the patterns. Then Steps 2 and 2’ can be executed to perform the matching
between the sets My,; and M, ;. Note that Steps 1 and 1’ are not really necessary
since we can assume that the patterns ¢o and ¢; themselves have been constructed
using the above refinement steps, and that, therefore, no symbols M; and A&;; with
t(l) < i < t(l 4+ 1) exist in the pattern. However, in order to simplify our induction
hypothesis, we have chosen not to make this assumption.

The pattern ¢ = ¢} @ ¢; has been constructed such that the sets M; are the [M;]-sets
of ¢, so Property (1) is satisfied.

To see that Property (2) holds, note that C; ;, the set of input wires of My ; that collide
with an input wire of M, ; in I'j1; under go @ ¢1, also contains the same colliding wires
with respect to ¢ = ¢; @ ¢;. The sets My, are noncolliding in Ag under ¢ and, thus,
also noncolliding in A under ¢. Similarly, the sets M; ; are noncolliding in A under g¢.
Hence,

Mj = (Mo; \ Cjjiy) UMy,

is noncolliding in A under gq.

Theorem 4.1 Let A be a (d,[)-iterated reverse delta network with d,/ > 0. Let W be the
set of input wires of A, and let n = |W| > 8 be the number of input wires of A. Then there

exists an input pattern p such that the following properties hold, where D is the [M,]-set of

p:

(1) Only the symbols Sy, Mg, and Ly occur in p,
(2) D is noncolliding in A under p, and
(3)10] > e

Proof: We will prove the theorem by induction over d, the number of consecutive reverse

delta network in A.

14

Induction Start: d =0
Choose D = W and p such that p(w) = M, for all w in W.

Induction Step: d — d +1

A (d + 1,1)-iterated reverse delta network A consists of a (d,[)-iterated reverse delta
network Ag followed by a single reverse delta network A, or, formally, A € Ay @ A.

By the induction hypothesis there exists a pattern p’ such that the following properties
hold, where D’ is the [M]-set of p':

e Only the symbols Sy, My, and Ly occur in p/,
e D' is noncolliding in Ag under p’, and

o« D>

Then the input pattern ¢’ = Ag(p’) for A contains only the symbols Sy, Mg, and Lo.
The [Myg]-set B’ of ¢’ has size |B'| = |D'| > =&

Igtdn -~

We can now apply Lemma 4.1 with A, ¢, and [= & = Ign. By the lemma, there exists
an input pattern ¢” with ¢/ D/ ¢” and t(Ign) = 21g” n disjoint sets Mo, ..., Mg ny—1
of input wires of A such that

o cvery M, is the [M,]-set of ¢”,

e every M; is noncolliding in A under ¢”,

o B"C B, and

B'|1
o |BY 2 |B| - Ben > 1 L),

where B" = Uo<i<t(ign) Mi-

lgn

By averaging, there exists a set M;,, 0 < iy < 21g” n, of size at least

0?7

n) 1 S n
9 1g4d+3 n - lgn) = 1g4(d+1) o
where the last inequality follows from the fact that (1 —1/lgn) > 1/lgn for all n > 8.

By Lemma 3.3, there exists an input pattern p” for A with p’ Dp/ p” such that ¢” =
Ao(p"). The set M, is noncolliding in A, hence the [M;,]-set D of p” is noncolliding
in A € Ag ® A under p”.

Then, by Lemma 3.4, there exists an input pattern p such that

e only the symbols Sy, My, and Ly occur in p, and

e [is noncolliding in A under p.

Furthermore, we have |D| = |M,,| > W. This concludes the induction step.

15

Czro}la)ry 4.1.1 All n-input sorting networks with iterated delta topology have depth
().
Iglgn

Proof: Let A be a (d,lgn)-iterated reverse delta network with d < Mlggﬁ. Then by
Theorem 4.1 there exists an input pattern p and a set D C W such that

e D is the [My]-set of p,

e [is noncolliding in A under p, and

.|D|Zlg4ndn>l - =1.

Since | D| is an integer, D must contain at least two elements, wy and w. Since p(wg) =
p(wy) = Mg, we can refine p to an input 7 such that the wires wq and w; have adjacent input
values, that is, #(wg) = m and 7 (wy) = m + 1 for some integer m. Since D is noncolliding
in A under p, the input values m(wg) and 7(w;) never get compared in A under input 7.

Let 7’ be the input obtained from # by exchanging the input values 7(wg) and 7(wy).
Then the network A performs the same permutation on input 7 and on input #’. Hence, the
network cannot sort both 7= and =’'.

Note that the constant i obtained in this proof can be improved to 2%-5 by a sharper
analysis in Theorem 4.1.

a

5 Extensions of the Result

This section discusses a few implications and extensions of our lower bound.

First, we point out that the proof of the lower bound still holds if the network is allowed
to be “adaptive”, in the following sense: If we write the network as a sequence of pairs
(IL;, Z;), then the labeling #; of the ¢th level with elements from {4, —,0,1} can depend on
the outcome of all the comparisons made in all previous levels. Note that in our lower bound
argument, it was never assumed that the labeling is fixed beforehand; instead, in every level,
we allowed the “adversary” to choose the labeling in an arbitrary way. Hence, the validity
of the argument is not affected by allowing the construction of the network to be adaptive.

We can also fairly easily extend the argument to another more general class of networks.
So far, we have allowed an arbitrary permutation to occur in the network after every lgn
shuffle stages. It is easy to see that, if we would allow an arbitrary permutation every
(lglgn)? stages, our argument would immediately imply a léglg”n (Iglgn)? = lgnlglgn lower
bound for the resulting class of networks. In general, we could ask for a lower bound for
shuffle-based networks with an arbitrary permutation allowed to occur after every f(n)
stages, where f(n) = o(lgn). In order to get the best possible lower bounds for this case,
and, in particular, to get any meaningful lower bounds at all for f(n) = O(lglgn), we have to

modify our proof slightly. If we choose to split up the set of uncompared, adjacent values into

16

25(") . (f(n))° sets every time we enter a new, in this case truncated, reverse delta network,
then our technique will give a lower bound of Q(lglfffn) - f(n)). This compares to an upper

bound of O(lgn - f(n)) obtained by a straightforward emulation of the AKS network.

Leighton and Plaxton [8] have designed a shuffle-unshuffle comparator network (i.e.,
a comparator network in which the permutation between successive levels can be either
shuffle or unshuffle) of depth O(lgn) that sorts all but a superpolynomially small fraction
of the inputs. Their technique can be applied to construct a shuffle-based network of depth
O(lgnlglgn) that sorts all but a polynomially small fraction of the inputs. This implies
that we cannot hope to prove a lower bound close to Q(lg*n/lglgn) for the “average case”
complexity of shuffle-based networks, where the average case complexity is defined in the
following manner. First, determine for every possible input the depth of the first level
of the network at which the input “becomes sorted” (i.e., agrees with an appropriate fixed
assignment of ranks given to the nodes at that level). Then define the average case complexity
as the average of this depth over all inputs. It is not difficult to see that the O(lgnlglgn)
network mentioned above, followed by a bitonic sorter (say), achieves an average sorting
depth of O(lgnlglgn).

A similar argument can be used to show that we cannot hope to extend the lower bound
to the “randomized” complexity of shuffle-based sorting networks. In order to construct a
randomized shuffle-unshuffle network that sorts all inputs with high probability, Leighton
and Plaxton [8] use an additional “randomizing” circuit element that interchanges the input
values with probability 1/2, and leaves them unchanged otherwise. This new element can
be used to construct a shuffle-based randomized sorter of depth O(lgnlglgn).

For the class of shuffle-based networks, our lower bound also rules out a seemingly
attractive way of designing small-depth sorting networks. The 0-1 principle says that every
comparator circuit that sorts the 2" inputs in {0,1}" is a sorting network. One might hope
to strengthen this result by showing that there exists a relatively “small” subset of the 0-1
permutations such that every network that sorts these permutations would be “nearly” a
sorting network. We formalize this idea by defining a representative set (with respect to the
class of shuffle-based networks) as a subset of {0, 1}" such that for any network I' that sorts
these permutations, there exists a shuffle-based network A of depth o(lg? n/lglgn) such that
I' ® A contains a true sorting network. Assuming the existence of a representative set of
polynomial size, and using Corollary 4.2.1 of [12], the existence of an O(lgnlglgn)-depth
shuffle-based network for sorting all but a polynomially small fraction of the inputs implies
the existence of a o(lg®n/lglgn)-depth shuffle-based sorting network. Since this would
contradict our lower bound, we can conclude that there does not exist a representative set
of polynomial size.

This argument can be strengthened somewhat. The technique of Leighton and Plax-
ton [8] can also be used to construct a o(lg®n/lglgn)-depth shuffle-based sorting network
that sorts all but an

def H—20(lgn/lglgn)
c= 9272

fraction of the inputs. Arguing as in the preceding paragraph, there cannot exist a repre-
sentative set of size less than 1/c.

17

6 Concluding Remarks

In this paper, we have shown an Q(lg® n/lglgn) lower bound on the depth of sorting networks
based on the shuffle permutation. It would certainly be interesting to close the O(lglgn)
gap that remains between the upper and lower bounds.

Another possible direction for future research would be to consider other classes of net-
works based on restricted sets of permutations. For instance, it would be interesting to prove
a w(lgn) lower bound for the class of sorting networks based on the shuffle and unshuffle
permutations. Of course, we cannot discount the possibility that depth O(lgn) may be
achievable within that class. Other interesting classes could be obtained by restricting the
number of different permutations that can appear in the network. We might ask, for example,
whether any small-depth sorting network exists that is based on a single permutation.

Finally, one might try to apply our proof technique of maintaining and recombining a
large number of incomparable sets to other sorting-related problems in connection with lower
bounds.

Acknowledgements: We would like to thank the anonymous referees for several suggestions
that helped to improve the quality of the presentation.

References

[1] M. Ajtai, J. Komlds, and E. Szemerédi. Sorting in clogn parallel steps. Combinatorica,
3:1-19, 1983.

[2] K. E. Batcher. Sorting networks and their applications. In Proceedings of the AFIPS
Spring Joint Computer Conference, vol. 32, pages 307-314, 1968.

[3] R. E. Cypher. A lower bound on the size of Shellsort sorting networks. SIAM J.
Comput., 22:62-71, February 1993.

[4] R. E. Cypher. Theoretical aspects of VLSI pin limitations. SIAM J. Comput., 22:58-63,
April 1993.

[5] D. E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, Reading,
MA, 1973.

[6] C. P. Kruskal and M. Snir. A unified theory of interconnection network structure.

Theoretical Computer Science, 48:75-94, 1986.

[7] F. T. Leighton. [Introduction to Parallel Algorithms and Architectures: Arrays, Trees
and Hypercubes. Morgan-Kaufmann, San Mateo, CA, 1991.

[8] F. T. Leighton and C. G. Plaxton. A (fairly) simple circuit that (usually) sorts. In
Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science,
pages 264-274, October 1990.

18

[9]

[10]

[11]

[12]

[13]

[14]

N. Linial and M. Tarsi. Interpolation between bases and the shuffle exchange network.
FEuropean Journal of Combinatorics, 10:29-39, 1989.

D. Parker. Notes on shuffle/exchange-type switching networks. IEEE Transactions on
Computers, 29:213-222, 1980.

M. S. Paterson. Improved sorting networks with O(log N') depth. Algorithmica, 5:75-92,
1990.

C. G. Plaxton. A hypercubic sorting network with nearly logarithmic depth. In Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Computing, pages 405-416,
May 1992.

C. G. Plaxton, B. Poonen, and T. Suel. Improved lower bounds for Shellsort. In
Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science,
pages 226-235, October 1992.

A. Varma and C. S. Raghavendra. Rearrangeability of multistage shuffle/exchange
networks. [EFE Transactions on Communications, 36:1138-1147, 1988.

19

