Performance of Compressed Inverted List Caching

in Search
Jiangong Zhang Xiaohui
CIS Department
Polytechnic University
Brooklyn, NY 11201, USA

zjg@cis.poly.edu

ABSTRACT

Due to the rapid growth in the size of the web, web search esgin
are facing enormous performance challenges. The largénesom
particular have to be able to process tens of thousands dégueer
second on tens of billions of documents, making query thinpug

a critical issue. To satisfy this heavy workload, searchireguse a
variety of performance optimizations including index coagsion,
caching, and early termination.

We focus on two techniques, inverted index compressionmand i
dex caching, which play a crucial rule in web search engirges
well as other high-performance information retrieval syss. We
perform a comparison and evaluation of several invertedtm-
pression algorithms, including new variants of existingoaithms
that have not been studied before. We then evaluate diffémen
verted list caching policies on large query traces, andlfirslidy
the possible performance benefits of combining compresaioh
caching. The overall goal of this paper is to provide an updialis-
cussion and evaluation of these two techniques, and to shavich
select the best set of approaches and settings dependirayam{p
eter such as disk speed and main memory cache size.

Categories and Subject Descriptors

H.3.1 Information Systemg: Content Analysis and Indexing—
Indexing methods; H.3.3 [Information Systemg): Information Search
and Retrieval—Search process.

General Terms
Performance, Experimentation.

Keywords
Search engines, inverted index, index compression, indetiag.

1. INTRODUCTION

Web search engines are probably the most popular tools for |
cating information on the world-wide web. However, due te th

Microsoft Corporation
One Microsoft Way
~ Redmond, WA 98052
xiaohui.long@microsoft.com

Engines:
Long Torsten Suel
CIS Department
Polytechnic University
Brooklyn, NY 11201, USA

suel@poly.edu

servers, where each server is responsible for searchingsetsof
the web pages, say a few million to hundreds of millions ofgzag
This architecture successfully distributes the worklogdranany
servers. Thus, to maximize overall throughput, we need ti-ma
mize throughput on a single node, still a formidable chajéegiven
the data size per node. Current search engines use sewdral te
nigues such as index compression, index caching, resutir@ac
and query pruning (early termination) to address this issue

We consider two important techniques that have been prslyiou

étudied in web search engines and other IR systems, invieded

compression and inverted index caching. Our goal is to deoan
evaluation of state-of-the-art implementations of theshniques,
and to study how to combine these techniques for best oyezgll
formance on current hardware. To do this, we created highly o
timized implementations of existing fast index compressidgo-
rithms, including several new variations of such algorishrand
evaluated these on large web page collections and realhsearc
gine traces. We also implemented and evaluated variousncach
schemes for inverted index data, and studied the perforengaios
of combining compression and caching depending on dislsfean
rate, cache size, and processor speed. We believe thattkiggs
an interesting and up-to-date picture of these technidugiscan
inform both system developers and researchers interasiguakiry
processing performance issues.

2. TECHNICAL BACKGROUND

Web search engines as well as many other IR systems are based
on an inverted index, which is a simple and efficient datacttine
that allows us to find all documents that contain a partictdam.
Given a collection ofN documents, we assume that each docu-
ment is identified by a uniquéocument ID (docID) betweer and
N — 1. Aninverted index consists of many inverted lists, where
each inverted lisf,, is a list of postings describing all places where
termw occurs in the collection. More precisely, each posting con-
fains the docID of a document that contains the ternthe number
of occurrences ofv in the document (calleftequency), and some-

rapid growth of the web and the number of users, search enging o< aiso the exact locations of these occurrences in thendent

are faced with formidable performance challenges. On one,ha
search engines have to integrate more and more advanced t
niques for tasks such as high-quality ranking, person#izaand
spam detection. On the other hand, they have to be able teggoc
tens of thousands of queries per second on tens of billiopagés;
thus query throughput is a very critical issue.

In this paper, we focus on the query throughput challenge.
guarantee throughput and fast response times, curreet $aaych

engines are based on large clusters of hundreds or thous&ndqﬁ;

* Research supported by NSF ITR Award CNS-0325777. Work bgéwend author
was performed while he was a PhD student at Polytechnic sitye

Copyright is held by the International World Wide Web Coefeze Com-
mittee (IW3C2). Distribution of these papers is limited tassroom use,
and personal use by others.

VWMV 2008, April 21-25, 2008, Beijing, China.

ACM 978-1-60558-085-2/08/04.

alledpositions), plus maybe other context such as the font size of
term etc. The postings in an inverted list are typicatifesd by
doclID, or sometimes some other measure.
We consider two cases: (i) the case where we have docIDs and
frequencies, i.e., each posting is of the fofd, f;), and (ii) the
case where we also store positions, i.e., each posting edbtm

TPdi, fi iy -, pi,freq—1). We use word-oriented positions, i.e.,

4 = k if a word is thek-th word in the document. For many
ell-known ranking functions, it suffices to store only dosland
frequencies, while in other cases positions are needed.

On first approximation, search engines process a searcly quer
“dog, cat” by fetching and traversing the inverted lists fdog”
and “cat”. During this traversal, they intersect (or mertge) post-
ings from the two lists in order to find documents containitigax
at least one) of the query terms. At the same time, the endgoe a

computes a ranking function on the qualifying documentscterd During query processing, it is often beneficial to be ablesieks
mine the topk results that should be returned to the user. This rankerward in an inverted list without reading and decodingpalst-
ing function should be efficiently computable from the imf@tion ings, and inverted index structures often store extra pointhat
in the inverted lists (i.e., the frequencies and maybe pos]) plus allow us to skip over many of the postings; see, e.g., [18718].

a limited amount of other statistics stored outside thertieeeindex This is easily achieved as follows: For each chunk, we séglgra
(e.g., document lengths or global scores such as Pagetartkis store the size of this chunk (in bytes or words), and in uncesged
paper, we are not concerned with details of the particulakingg form the largest (last) docID in the chunk. This data can beest
function that is used. Many classes of functions have bagtiest; in separate smaller arrays in main memory, or in the meta atata

see, e.g., [5] for an introduction and overview. the beginning of each block. This allows skipping over onmore
. . chunks of postings by comparing the docID we are searchingpfo
2.1 Compressed Index Organization the uncompressed values of the largest docIDs in the chifrtks;

In large search engines, each machine typically searchel-a sdesired value is larger, we can skip the chunk. We note tlsétaal
set of the collection, consisting of up to hundreds of milioof of having a constant number of postings per chunk, one cdsitd a
web pages. Due to the data size, search engines typicalg/tbav fix the size of each chunk (say 266 bytes or one CPU cache line)
store the inverted index structure on disk. The invertad b§com- and then try to store as many postings as possible in thiespads
mon query terms may consist of millions of postings. To allowhas the advantage that we can align chunks with cache linedeou
faster fetching of the lists from disk, search engines ughist- aries, but for many compression schemes there are soméngsul
cated compression techniques that significantly reduceiteeof complications, especially if positions are also stored.
each inverted list; see [26] for an overview, and [1, 11, 214,f@r In our implementation and experiments, we use this inde&-org
recent methods that we consider in this paper. We descrine so nization on disk. For simplicity, we assume that during gumo-
of these techniques in more detail later. However, the mid@a i cessing, all chunks of the relevant inverted lists have tddmaded.
is that we can compress doclDs by storing not the raw doclID bun reality, we may only have to decode half or less of all therdts,
the difference between the doclDs in the current and theeprec as we may be able to skip over the other chunks. However, the
ing posting (which is a much smaller number, particularlyviery possible benefit due to skipping depends on the ranking ifumct
long lists with many postings). We can compress the fregeenc which is largely orthogonal to our work. We believe that osf a
because most of these values are fairly small as a term of@nw® sumption provides a good approximation of the real decossioa
only once or twice in a particular document. In general, ite@@ cost, which could be easily adjusted depending on the p&gen
list compression benefits from the fact that the numbersribatl of chunks that are actually decoded
to be coded are on average small (though some may be larger). . . .

We now describe in more detail how to organize a compressedl. 2 Caching in Search Engines
inverted index structure on disk, using as example our owh-hi Caching is a standard technigue in computer systems, anthsea
performance query processor. We believe that this is g/fgipical engines use several levels of caching to improve query tfimout.
organization on disk, though the details are not often desdrin The most common mechanisms are result caching and listrgachi
the literature. The overall structure of our index is showrFig- [20]. Result caching basically means that if a query is idaht
ure 1. The index is partitioned into a large numbeblaicks, say to another query (by possibly a different user) that wasmége
of size64 KB. An inverted list in the index will often stretch across processed, then we can simply return the previous ressigaisg
multiple blocks, starting somewhere in one block and endome- no major changes in the document collection and no comjuitsit
where in another block. Blocks are the basic unit for fetghimlex due to localization or personalization). Thus, a resulheastores
data from disk, and for caching index data in main memory. the top4 results of all queries that were recently computed by the
engine. List caching (or inverted index caching), on theepttand,
caches in main memory those parts of the inverted index tigat a
all | frequently accessed. In our case, list caching is basedednldlcks
== oo described in the previous subsection. If a particular teotucs

Inverted List Inverted List Inverted List

Inverted |
Index

B | Metadatal{poc_ip|| Freq || Pos Jijpoc_io]| Freq || Pos |i-- frequently in queries, then the blocks containing its iteerlist
= e are most likely already in cache and do not have to be fetatued f

ot | 25105 (23621, | 252,189,318, 100 3. | disk. Search engines typically dedicate a significant aroitheir
128 DocIDs 128 Frequencies Al Positions for 128 Docs main memory to list caching, as it is crucial for performanidete

Figure 1: Disk-based inverted index structure with blocks for cachig ~ that the cached data is kept in compressed form in memorg sinc

and chunks for skipping. DoclDs and positions are shown aftetaking the uncompressed data would typically be alibtat 8 times larger
the differences to the preceding values. depending on index format and compression method; as weell

Thus, each block contains a large number of postings fronobne decompression can be made fast enough to justify this decisi

more inverted lists. These postings are again dividedéhtmks. .

For example, we may divide the postings of an inverted ligt in Query Integrator
chunks with1 28 postings each. A block then consists of some meta

data at the beginning, with information about how many iteer /\

lists are in this block and where they start, followed by a few- Memory l e Caone l l ror l l prr l
dred or thousand such chunks. In each chunk2¥ postings, it ~ _____ iL———-—' A A _
is often beneficial to separately store ##8 doclDs, then the 28 Disk {[Inverted Index|{ [Inverted index| {[Inverted Index]
corresponding frequency values, followed by the positialues if Sorver Sorver o

applicable. Chunks are our basic unit for decompressingried Figure 2: Two-level architecture with result caching at the query inte-
index data, and decompression code is tuned to decomprbaslka ¢ grator and inverted index caching in the memory of each serve

in fractions of a microsecond. (In fact, this index orgatimaal- 7 __ _

| to first decode all doclDs of a chunk. and then later th I_:or example, for conjunctive queries our query procgssoodied the doclIDs of
OWs us - - °) §|ghtly more than half, and the frequencies of only abotiir} of all chunks. But for
frequencies or positions if needed.) other types of queries the numbers would be higher, assumairegrly termination.

Figure 2 shows a simple parallel search engine architeatitne 4. INVERTED INDEX COMPRESSION

two levels of caching. Queries enter the engine \igiay integra- In this section, we study index compression methods and thei
tor that first checks its local result cache. Ifthe resultis etche, performance. We first describe the methods we consider and ou
itis returned to the user. Otherwise, the query integratoadicasts experimental setup, and then evaluate the performancesofah
the query to a number of machines, each responsible for @subgys methods. We note that there are a large number of imerte
of the collection. Each machine computes and return the:tos- jndex compression techniques in the literature; see, [26j],for
sults on its own data, and the query integrator determireegltibal g overview. We limit ourselves to techniques that allowyviast
top-k _results._ In this grchitecture,_ list caching tak_es placesaah decompression, say, in excess of a hundred million intqgarsec-
machine, which runs its own caching mechanism independéino onq. While techniques such as Gamma or Delta coding or \@riou
other machines. In this paper, we focus on the list cachinghere |ocal models are known to achieve good compression [26§, ahe

nism.

However, we account for the existence of result cachin ynjikely to be used in web search engines and other large #Ral

removing from our traces any duplicate queries that woulthlls systems due to their much slower decompression speeds.
be handled by result caching. Note that keeping these duplic

queries would result in better but unrealistic hit rates. 4.1 Algorithms for List Compression

The performance benefits of result caching were previoustys
iedin[15, 23, 13, 6, 10, 3, 4]. The benefits can vary signitigare-
tween search engines, however, based on whether termrayderi
queries is considered or stemming is performed. Early warke
dex caching in IR systems appears in [12], but with a somedifiat
ferent setup from that of current search engines. Two-lexeting,
i.e., the combination of result caching and list cachings staidied
in [20], where an LRU policy was used for list caching, andén [
3], where several methods are compared but under somewhat
ferent architectural models and objective functions. Wediscuss i
these differences in Section 5, where we compare LRU witbrsgv

We implemented five different compression methods, Vagiabl
Byte coding (var-byte) [21], Simple9 (S9) [1], a new extemsi
called Simplel6 (S16), PForDelta [11, 27], and the clat&dze
coding [26]. We now describe each of these algorithms briefly
and then discuss our implementation. In all the methods, swe a
sume that the docID, frequency, and position values in eask p
ing p; = (ds, fi,pi,0,--. ,Ppi,f,—1) have been preprocessed as fol-
djws before coding: Each docl@; with i > 0 is replaced by

—d;_1 — 1, eachf; is replaced byf; — 1 (since no posting
can have a frequency 6§, and eaclp; ; with j > 0 is replaced by

other caching policies and show that there are in fact mutiebe P — Pii—1 — 1.

list caching policies than LRU for typical search enginergueaces
under our model. Finally, recent work in [14] proposes adHevel
caching scheme that inserts an additional level of cachatgyéden
result caching and list caching; we do not consider thisrsehigere.

3.

Variable-Byte Coding: In variable-byte coding, an integeris
compressed as a sequence of bytes. In each byte, we use &n& low
bits to store part of the binary representatiompénd the highest bit
as a flag to indicate if the next byte is still part of the cutmmber.
Variable-byte coding usgsog, ,s (1) | +1 bytes to represent a num-

bern; for example,n = 267 = 2 - 128 + 11 is represented by the
CONTRIBUTIONS OF THIS PAPER two bytes 10000010 00001011. Variable-byte coding is snpl

We study the problem of improving the query throughput igéar implement and known to be significantly faster than tradaidit-
search engines through use of index compression and indainga oriented methods such as Golomb, Rice, Gamma, and Deltag:odi
techniques. We implement a number of different technigires, [26]. In particular, [21] showed that variable-byte codiegults in
cluding some new variations, and show that very significenfogp- significantly faster query evaluation than those previoeshuods,
mance benefits can be obtained. In particular, our conidibsiare: which were CPU limited due to their large decompressionscost

@)

)

©)

4)

The disadvantage of variable-byte coding is that it doesdloieve

We perform a detailed experimental evaluation of fastest the same reduction in index size as bit-aligned methods.nTéia
of-the-art index compression techniques, including \idéia reason is that even for very small integers, at least one isyte
Byte coding [21], Simple9 coding [1], Rice coding [26], and needed; this puts variable-byte coding at a disadvantage wbm-
PForDelta coding [11, 27]. Our study is based on highlypressing frequencies, or docIDs in very long lists wheredifie
tuned implementations of these techniques that take into aferences between consecutive docIDs are small. Variasook
count properties of the current generation of CPUs. as nibble-oriented coding have been proposed [21], but oriti
We also describe several new variations of these teabsjq Slight additional benefits.
including an extension of Simple9 called Simple16, which Simple9 (S9) Coding:This is a recent algorithm proposed in [1]
we discovered during implementation and experimentakevathat achieves much better compression than variable-lyding
uation. While algorithmically not very novel, these vaigais ~ While also giving a slight improvement in decompressionespe
give significant additional performance benefits and ars thuSimple9 is not byte-aligned, but can be seen as combiningl wor
likely to be useful. alignment and bit alignment. The basic idea is to try to pagk a
We compare the performance of several caching policies f ManY integers as possible into jibit word. To do this, Simple9
inverted list caching on real search engine query traceﬁ*m(AOd!V'Oles each_vx_/ord intd status bits ands data bits, whe_re the data
and Excite). Our main conclusion is that LRU is not a goo its can be divided up if different ways. For example, 'T the next

values are all less thai6, then we can store them asl-bit values.

policy in this case, and that other policies achieve signifi-<"
cantly higher cache hit ratios. Or if the next3 values are less thakl2, we can store them &

. Lo ! 9-bit values (leaving one data bit unused).
Our main novel contribution is a study of the benefits aheo Overall, Simple9 has nine different ways of dividing up the

bining index compression and index caching which shows thg, 4 pits:28 1-bit numbers]4 2-bit numbers9 3-bit numbers (one
impact of compression method, caching policy, cache sizgyit ynysed),7 4-bit numbers,5 5-numbers (three bits unused),

and disk and CPU speeds on the resulting performance. Oyt nymbers3 9-bit numbers (one bit unused),14-bit numbers,
conclusion is that for almost the entire range of system pasy 1 93-hit number. We use the four status bits to store which of the
rameters, PForDelta compression with LFU caching achieves cases is used. Decompression can be done in a highly efficient
the best performance, except for small cache sizes anyl fairhyanner by doing a switch operation on the status bits, wherk e
slow disks when our optimized Rice code is slightly better. o the g cases applies a fixed bit mask to extract the integers.

Simplel6 (S16) Coding:Simple9 wastes bits in two ways, by per element, but it only applies to a relatively small numbér
having only9 cases instead of this that can be expressed with exceptions. This is in fact the main insight behind the Prettd
4 status bits, and by having unused bits in several of thessscasmethod, that significantly faster decompression can beeaetiby

This motivated us to come up with a new variation that avdiits t
Consider for example the casef®b-bit numbers in Simple9, with
3 bits unused. We can replace this with two new ca%éshit num-

bers followed by2 5-bit numbers, and 5-bit numbers followed by

avoiding branches and conditions during decompressiorcoim
trast, while variable-byte coding is conceptually very gleq it in-
volves one or more decisions per decoded integer, as we oéest t
the leading bit of each byte to check if another byte is folfayv

3 6-bit numbers. Thus, if four of the five next values are lessithaThis limits the performance of variable-byte coding on eatrmpro-
32, and the other one less thén, then at least one of these two cessors. Simple9 has to perform one branch for each conepress

cases is applicable, while Simple9 would we able to fit onlyr fof
the numbers into the next word usidg-bit numbers. Overall, we
identified several such cases, including cases suth asit num-
bers followed by8 1-bit numbers and vice versa, for a total iaf

word, i.e., typically every to 7 numbers that are decoded.

We made two changes in our implementation compared to the
description in [11, 27]. We us® or 16 or 32 bits per exception
instead of always2, and we allow any value df while [11, 27]

cases where each case uses all bits. This can again be inmpézime prefers to use a minimum value bf= 8. Each of these changes re-

using a switch statement and fixed bit masks for each case.
We note here that [1] also proposed two methods c&i#dtel0

sulted in significant decreases in compressed size whiledvead
observe significant decreases in decompression speed.e3iiesr

and Carryover12 that in some cases achieve slight improvementin [11, 27] show a larger compressed size than variable-dndeng

over Simple9. We found that Simplel6 fairly consistentlypeu-

for PForDelta; our results will show a much smaller compedss

formed these two methods, though some of their ideas could psize, comparable to Simple9 (see Figures 4 and 7).

tentially also be added to Simplel6. We also experimentdd wi

a number of variations of Simplel6 that select tisecases differ-
ently; while some of these obtained improvements for the cds
small values (i.e, frequency values, or docIDs in very loists),
overall the extra benefits were limited (upd% additional size re-
duction if we select the best settings for each list). Rewenk in
[2] also proposed another variation of Carryoverl?2 cafiéde.

Rice Coding: Rice Coding is one of the oldest bit-aligned meth-
ods. It performs well in terms of compressed size, but is liisua
fairly slow compared to more recent methods. Our goal hesetwa
try to challenge this assumption, by developing a highgrerfince
implementation based on some new tricks.

We first describe Golomb coding, where an integés encoded
in two parts: a quotienj stored as a unary code, and a remainder

PForDelta Coding: Our next method is a very recent techniquestored in binary form. To encode a set of integers, we firsbsto

proposed in [11, 27] for compression in database and IR sste
It is part of a larger family of compression schemes, and here
only describe and adapt the version that appears most euftab
inverted lists. PForDelta is neither word-aligned nor ksfigned.
It compresses integers in batches of multiple8f For example,
for our setup, we compress the négR integers in one batch.

To do so, we first determine the smalléstuch that most (say at
leastd0%) of the 128 values are less thari. We then code th#28

a parameteb; a good choice i$ = 0.69 - ave whereave is the
average of the values to be coded [26]. Then for a numbeae
computeg = |n/b] andr = n mod b. If b is a power of two, then
log(b) bits are used two store the remainderotherwise, either
Llog(b)] or [log(b)] bits are used, depending on

Rice coding is a variant of Golomb coding whérés restricted
to powers of two. The advantage is that the number of bitsaie st
ris fixed to belog(b), allowing for a simpler and more efficient im-

values by allocatind 28 b-bit slots, plus some extra space at the englementation through the use of bit shifts and bit masks. gsjtie

that is used for the few values that do not fit ibtoits, calledexcep-
tions. Each value smaller thatf is moved into its corresponding
b-bit slot. We use the unusédbit slots of the exceptions to con-

disadvantage is that the compressed data may require mace;sp
in practice the difference is usually very small.
Despite the restriction to powers of two, Rice coding is ofy-

struct a linked list, such that thebit slot of one exception stores the nificantly slower than variable-byte coding (by about adadif 4

offset to the next exception (i.e., we stard the current exception
is thei-th value and the next exception is ttie-x+1)-th value). In
the case where two exceptions are more taslots apart, we force
additional exceptions in between the two slots. We theredtoe
actual values of the exceptions after 8 b-bit slots. In [11, 27],
32 bits are used for each exception; instead, we use esthit, or
32 bits depending on the largest value in the batch. Finallyalse
store the location of the first exception (the start of thikdihlist),
the valueb, and whether we uset] 16, or 32 bits for the exception.

to 5). This is primarily due to the leading unary term as we need
to examine this term one bit at a time during decompressitftu-|
enced by the PForDelta method, we designed a new implerantat
of Rice coding that is significantly faster than the standguproach

as follows: As in PForDelta, we code8 (or some other multiple

of 32) numbers at a time. We first store all the binary parts of the
Rice code, usingog(b) bits each, in 128 - b)-bit field. Then we
store the unary parts. During decompression, we first wetrég!

the binary components, using the same optimized codes frco

Each batch of integers is decompressed in two phases. Inghe fiing fixed bit fields used in PForDelta. Then we parse the unartgp
phase, we copy th&28 b-bit values from the slots into an integer and adjust the decoded binary values accordingly. Thisrig et

array; this operation can be highly optimized by using a tadéd
bit-copy procedure for each value bf That is, as suggested in
[11], we have an array of function§0]() to f[31](), wheref[:]()

is optimized to copy(: + 1)-bit values in multiples 082, and call
the right function based on the valueiof Note that for any value
of b, we have word-alignment at least after evagyslots, allowing
efficient hardcoding of bit masks for copying a seBafb-bit num-
bers. (This is the reason for using batches of size a mubijpte.)

In the second phase, callpdtch phase, we walk the linked list of

one, but eight bits at a time, thus processing the unary dozlesg-
ing to several numbers in a single step. In particular, wéoper
a switch on these eight bits, witth6 cases, where each case hard-
codes the resulting corrections to the numbers. (The cadhif®
consists of about500 lines generated by a script.)

This approach indicates an interesting relationship betwrice
coding and PForDelta: Essentially, PForDelta chooses w@eval
b large enough so that almost all numbers consist of only aryina
part, and then codes the few exceptions in a fairly sloppyfdmtt

exceptions and copy their values into the correspondirayaiots. way. Using the best choice férin Rice coding, many of the num-
The first phase of decompression is extremely fast, becairse i bers are larger thanand need to be adjusted based on the unary part
volves a hard-coded unrolled loop, with no branches thaldcbe of the code; thus we have to be more careful on how to code these

mispredicted by the processor. The second phase is muclersloveases (i.e., we cannot simply U2 bits each or use a linked list to

identify such numbers). Note that by choosinglightly larger in 80

our Rice code, we can get more speedup at a slight increasin s
Implementation: All methods were implemented and optimized

in C*T, taking into account the properties of current CPUs. The

code isavailabledttt p: // ci s. pol y. edu/ west | ab/ . Some

of the methods, in particular PForDelta and our impleméutanf

7.0 O Original Queries

6.0 O Queries w/o Duplications &
Stopwords
5.0
- N

Number of Queries (1 X 10%)
IS
°

Rice Coding, are not suitable for very short lists, as thesrate on 20

multiples of32 or 128 numbers. To address this issue, we always e m IR H
used variable-byte coding for any inverted list with fewart 100 O T Ty T s e s s e
postings, while for longer lists we padded the invertedslisith Number of Words Per Query

dummy entries as needed by the various compression met@ds. Figure 3. Number of queries before and after removing duplicate
note that such short lists make up more ti9&fi% of all inverted queries and stopwords in queries.

lists, but that they contain less thanl% of all index postings. . . .

Thus, our decision to use variable-byte on short lists didhave ~ dueries are more likely to be in the result cache. We are not co
a measurable impact on query processing performance. (kowe cerned with details of result caching such as cache size\actibe
for Rice and PForDelta, padding very short listsizs postings POlicy, which should only have a minor impact on our experitse

would increase index size by several percent.) 4.3 Comparison of Compression Algorithms
. We now present our results from the experimental evaluatfon
4.2 Experimental Setup the different compression algorithms. We focus on two perfo

Before presenting our experimental results, we describeaiup, Mmance measures, the sizes of the compressed index staiatue
which we also use in later sections. The data set we used iexeur the time it takes to decompress them. We are not overly coader
periments is a set af 39 million web pages selected randomly from With compression speed, as this is a one-time operatiorevdeit
a crawl of 120 million pages crawled by the PolyBot web crawler compression happens constantly during query processihmeth-
[22] in October of 2002. The total compressed size $66B (us- 0ds allow for reasonably fast compression, at least at cdtens
ing gzi p on files of aboutl00 pages each), and the total numberof millions of postings per second, but we did not optimize.th
of word occurrences was 5,868,439,426 (ali®dtwords per doc- 140 -
ument). After parsing the collection, we obtained 1,990,393 *:::::x';: :g:
postings (abou269 distinct words per document), and there were a 12.0 1 -+DocIDs
total of 20,683,920 distinct words in the collection. Tolexze our 100 | _@
compression algorithms and caching policies, we genesseetal
sets of inverted index structures using different compoesseth- 8.0 1
ods. All our experiments are run on a machine with a singl&Bi2 6.0 4
Pentium4 CPU and4 GB of memory. For caching, we chose a
block size of64 KB as the basic unit. We use this experimental
setup throughout this paper.

2.0
Our query trace was taken from a large log of queries issued to *—n——"\-’e—x

the Excite search engine from 9:00 to 16:59 PST on December 20 o0 Vbyte S3 S16 Probelta Rice

1999. We removed0 stopwords in the queries and eliminated any Compression Algorithm
duplicate queries as (most of) these would usually be hdralfea Figure 4: Total index size under different compression schemes. Re-
result caching mechanism. This gave us 1,135,469 uniqueegue sults are shown for docIDs, frequencies, positions, an inatewith docIDs
where each query has 3.43 words on average. Of these, we use positions only, and an index with all three fields.
1,035,469 to warm up our cache, and the remaining 100,00@ée m We first look at the resulting size of the entire index struefior
sure the performance of our compression and caching digmsit the 7.39 million pages, shown in Figure 4. In this figure, we add
In addition, we also experimented with two sets of queries exone additional method callesitropy that uses the global frequency
tracted from a recent trace of oveé million queries from about distribution of the compressed integers to provide a nawend
650,000 AOL users. We processed the trace in two ways suth then possible compression (assuming random assignment tidbsloc
the number of unique queries is equal to that of the Excitetrby and no clustering of word occurrences within documents).séée
limiting the time frame and by limiting the number of usersisio- that Rice coding performs best, and that variable-byteopers the
ered, in order to get a similar trace length to that of the @ssed worst in nearly all cases, with the exception of positioradahere
Excite trace. Even though this trace is much more recent,ate gS9 is slightly worse and S16 and PForDelta are about the Jaone.
very similar statistics for the lengths of queries and aseédn- frequencies, variable-byte results in a size at¥otat3 times larger
verted lists. Moreover, when we ran our experiments on afleh than the other methods, while for docIDs the differencesnaoee
sets, we obtained very similar numbers for the old Excitegttend modest. We note that an index structure with positions igajly
the much newer AOL data. Thus, we omit figures for the AOL data2.5 to 3 times larger than one without, since when a word occurs in
We comment briefly about our removal of duplicate queries. Wa document there are on average alfbatcurrences of that word.
considered queries containing the same words in a differeler to We now look at the results in more detail.
be duplicates, which might decrease the hit ratio of ourchsting Figure 5 shows how the compression ratio for docIDs depends
mechanism. Many current engines have to take word order s wen the lengths of the inverted lists. (Here, we divide theyeaof
as maybe other features such as user location into accoungdu list lengths between the shortest and longest list into fivervals
result caching. Also, by removing all duplicates we assumgthe of equal size to define the groups of lengths.) When lists are
result cache is large enough to cache all queries in the.ttdote very short, the gaps between the doclDs are large and cosisiigu
that our only goal here is to obtain query traces with raalfgtop- more bits per docID are needed. As lists get longer, comjaress
erties; on average queries after result caching have monsthéan improves significantly. However, improvements for varéablte
the queries submitted by users, as shown in Figure 3, siraéesh are limited by the fact that at least one byte is needed fdr eam-

4.0 -

Compressed Index Size (GB)

Entropy

1.6

-
>
o

~Total w/o Pos Total w Pos

~+-\/Byte S9
14 +516 ~<PForDelta 12.0 ~+DocIDs ~<Frequencies
1.2 4 ~-Rice Entropy Positions

-
o
o

1.0

g
o

0.8

6.0 -
0.6

4.0 -

201 M

0.4

0.2

Compressed Index Size (MB/Query)

Compressed Index Size (Bytes/Int)

0.0 0.0 T T T T T d
shortest shorter middle longer longest Vbyte s9 S16 PForDelta Rice Entropy
Length of Inverted List Compression Algorithm
Figure 5: Comparison of algorithms for compressing DocIDs on in- Figure 7: Average compressed size of the data required for processing
verted lists with different lengths. a query from the Excite trace.

pressed number, while the other methods use only arduipits

per doclD on the longest lists. For frequencies (not showetdu
space constraints), the numbers to be compressed incrihshev
lengths of the lists, since there is a higher chance of a tecuare
ring several times in a document. In this case, variable-bjmnost

always uses one byte per frequency value, while the Otheln'metdifferences. In particular, we find that the amount of datt th

ods usually use less thanbits, with slight increases as lists get ; .-.seq per query is now more thatimes larger for an index

longer. The values of the positions (also not shoyvn) tende_to Byith positions than for one without, while the differenceadiverall
much larger than the docID and frequency values; thus variab index size was only a factor @f5 to 3. This is due to the fact that

byte IISI Iissg:c?advanta%ed by its rhestnctlﬁnc;o byte bour?slaagg longer lists are used more frequently than shorter listsguquery
overall the differences between the methods are much smasde processing, and such longer lists also tend to have mulbipter-

we saw in Figure 4. rences of the word in a single document. For the same reason th
45.0 - T difference in compressed size between docIDs and freqeengi
Index w/o Pos now much smaller. Finally, we note that while the graph faclds
~+DociDs may seem almost flat in the figure, this is not quite the caseicth
~<Frequencies tal docID cost per query decreases frord9 MB for variable-byte
to aboutl.05 MB for PForDelta, a reduction of almo38%.

plete inverted lists of all terms are decompressed durieguion
of a query, without skips or early termination during indeaver-
sal. (Otherwise, the total cost would be lower though we woul
expect the same relative behavior of the different methodkhile
the overall picture is similar to that in Figure 4, there deda few

40.0 -
35.0 -

30.0 Positions

25.0
20.0 -
60 -
15.0

10.0
5.0 - _V

0.0

~+-Total w/o Pos
50 Total w Pos
<+DoclDs

Decompression Time (Secs)

20 | =+<Frequencies

! ! ! Positions
Vbyte S9 S16 PForDelta Rice
Compression Algorithm

Figure 6: Times for decompressing the entire inverted index. 0]

Next, we look at the decompression speed, which is extremely /
important as it impacts the speed of query processing. In Fig 10 1
ure 6, we show the times for decompressing the entire irénte ‘/
dex structure using our methods. (The numbers assume thait-th 0 e s si promers | Rie
dex data is already in main memory, and are based on totalexlap Compression Algorithm
time on a dedicated machine.) While Rice coding obtains &% b Figure 8: Average decompression time (CPU only) per query, based
compression ratio among the realistic algorithms (i.ecle}ng on 100, 000 queries from the Excite trace.
entropy), itis slowest when decompressing docIDs and &edies.
Note that variable-byte, which was worst in terms of comgi@s
ratio, is the second-slowest method on docIDs and freqaenand
even slower than Rice on position data. The poor speed afhiari
byte on position data is primarily due to the fact that positialues
are larger and more often requizebytes under variable-byte; this
case tends to be much slower due to a branch mispredict. \We a
note that PForDelta is the fastest of all the methods on rdkthata
fields, by a significant margin. S9 and S16 take about twiceras |
but are still faster than Rice and variable-byte.

These results are based on compressing and decompressing tt|1

30 o

Decompression Time (MSecs/Query)

Figure 8 shows the average time for decompressing all iegert
lists accessed by a query, based on 100,000 queries fronxdiie E
trace. Overall, the relative ordering of the methods isIsinto that
for the entire index in Figure 6.For docIDs and frequencies, the
times of variable-byte, S9, and S16 are similar, while Pdd
fé about twice as fast and Rice coding is two times slower. For
position data, however, Rice is slightly faster than vdediyte,
while PForDelta is about three times faster than S9 and Sd6 an
five times faster than variable-byte.

L . . . Algorithm T Total w/o Pos| Totalw Pos| DocID | Freq | Pos |
entire index. Hov_vever, not every m_verted list is equalkely to Veye 155 T T hoace a0 5 s
be accessed during query processing. Certain terms occig mo S9 76136 58513 | 437.29 | 488.25 | 228.39
frequently in user queries, and the likelihood of a term ogog S16 460.75 301.91 | 42547 | 502.41 | 246.62
in queries is often not related to that of occurring in thdemilon. PForDelta 889.14 798.38 | 889.69 | 888.59 | 748.68
To investigate the performance of the compression methodsgl Rice 185.60 196.30 | 191.23 | 180.30 | 203.95
query processing, we used the last 100,000 queries of tte. tra Table 1: Decompression speeds in millions of integers per second.

In F'gure 7, we look at the average amount of compressed dazﬁote that the cost of decompressing the entire index is airtolthat for about 000
that is accessed for each query. Here, we assume that the caeries, since many of the query terms are fairly common svord

Finally, in Table 1 we show the decompression speeds of the diall disk traffic in terms of bandwidth. Thus our results heaerot
ferent algorithms in millions of integers per second. We thee be directly compared to the recent work in [3] based on theyque
PForDelta not only has the highest speed, but its speeddshals oriented approach. In a nutshell, the main difference it gbad
much affected by the average values of the integers thateare colicies for the first two objectives should give strong prehce to
coded. In contrast, variable-byte and to a lesser extench&$46 keeping short lists in cache, while in our case this is notcdme.
become significantly slower for larger integer values suepasi- One similarity with [3, 6] is that we also observe that faislatic
tion values. Rice coding is also not much affected by theesmlu methods (LFU with a long history in our case vs. static asaigmt
In summary, it appears that variable-byte coding does ndope of lists to the cache in their work) perform well as the tersgfuen-
well when compared to other recent techniques, which ofdgpar cies in available query logs do not appear to change enough ov
it in terms of both compression ratio and speed, and thatBdita time to significantly impact caching performance.
in particular performs very well overall. Note that even though we do caching basediérkB blocks,

Finally, we also studied optimizations for frequency d#@taim- all blocks of one inverted list are kept sequentially on diskt are
portant difference between docIDs and frequencies (otipas) is usually not kept sequentially in cache. Also, while we treet
that a frequency value only needs to be retrieved when a ssoreblocks of an inverted list as separate entities, it usuatippens
computed. Also, decompressing a value does not necesserily that all blocks of a list are fetched together on a cache naisd,
quire decompression of all previous values in the chunk.ubiry are also evicted at (around) the same time under all our gchi
processing is based on intersection of the query terms,dhn policies (ignoring boundary blocks that also contain fragis of
relatively few frequencies need to be retrieved. This alldar a other lists). We use blocks here to avoid having to deal with t
variety of optimizations in organizing frequency data. Giraple issue of cache space fragmentation that would arise if whecac
approach combines pairs of consecutive frequencies intogles individual lists of variable size. This means that we caahertire
value by “shuffling” their bits (i.e., “000” followed by “1T1be- 64 KB block in order to access a short list with only a few possing
comes “010101"), and then applies PForDelta to the reguftin However, for large collections most inverted lists that aceessed
pairs in each chunk. This resulted in abdats better compres- extend over multiple blocks, and thus this is not such a msgure.
sion and almost twice as fast decompression. Of coursetualc We now describe the caching policies that we study.
use the frequency, we have to select the relevant bits frenurh

compressed number, but this is fast if applied to only a fethef 5§ 1 Pglicies for List Caching

ti It itted due t limits). . .
postings (results omitted due to space fimits) Least Recently Used (LRU)This is one of the most widely used

caching policies, and often used as a baseline to companesaga

5. LIST CACHING POLICIES LRU discards the least recently used block first when thee#ch

We now consider list caching policies. Search engines &figic full and a new block needs to be loaded into cache. To do so, LRU
use a significant amount of the available main memory, from se keeps track of the usage order of blocks in cache.
eral hundred megabytes to multiple gigabytes per machirkedp Least Frequently Used (LFU): LFU counts how often a block
the most frequently accessed parts of the inverted indexaim m was accessed during some limited time period, say sincesitasi
memory and thus reduce data transfers from disk during query placed into cache or over some longer time. We evict the block
cessing. Although modern operating systems also perfooming ~ with the lowest frequency of use. Thus, we need to keep tréck o
of disk data, search engines tend to employ their own mesheni the usage frequency of each block in cache, and possiblysaise
and policies for better performance. blocks currently out of cache if we keep track for a longeriquér

In our implementation, the inverted index consists of 64Kd&ks of time. The performance of LFU depends on the length of the
of compressed data, and the inverted list for a word is storede history that we keep: Increasing the period of time over Whie
or more of these blocks. Inverted lists usually do not stagral at track the frequency of a block may increase performance \ithen
block boundaries. We use these blocks as our basic unit bfragc query distribution is fairly stable, but makes it more difilicfor the
and our goal is to minimize the number of blocks that are fedch cache to adapt to fast changes in the query distribution. e e
from disk during query processing. We note here that thezeatar perimented with several settings for the length of the hjsthlote
least three different objective functions that have beedisr list that the space of the statistics is not much of a problem ircase,
caching in search engines: (qyery-oriented, where we count a since each block is fairly large. We also explored some tiana
cache hit whenever all inverted lists for a query are in caelne of LFU, in particular a weighted LFU policy where we give high
a miss otherwise, (Hjst-oriented, where we count a cache hit for importance to recent queries when computing the usagednegu
each inverted list needed for a query that is found in caahe(e) However, despite trying various weighting schemes we dicsae
block- or data size-oriented, where we count the number of blocks any significant performance over basic LFU.
or amount of data served from cache versus fetched from disk d Optimized Landlord (LD): Landlord is a class of algorithms for
ing query processing. weighted caching that was proposed and studied in [9, 24]yen

The query-oriented objective was recently studied in [3] &1 cently applied to another caching problem in search engimid<l].
more appropriate for architectures where a node holding anl When an object is inserted into the cache, it is assigned @lidea
cache of inverted lists can evaluate a query locally if a@ltsliare given by the ratio between its benefit and its size. When wet ani
in its cache, and otherwise has to forward it to another nmachi object, we choose the one with the smallest deadling, and also
or backend search engine cluster. (Thus, the goal is to riEaim deductd...;», from the deadlines of all remained objects. (This can
the number of forwarded queries.) The list-oriented objecis be implemented more efficiently by summing up everything tha
appropriate when the cache is on the same machine as the indes been deducted in a single counter, rather than deduobimg
and we want to minimize the number of disk seeks. This is suiievery deadline.) Whenever an object already in cache isaede
able for collections of moderate size, where the cost ohfatra its deadline is reset to some suitable value. In our casey ebgect
list is dominated by the disk seek. In our experiments, wethise has the same size and benefit since we have an unweightedgachi
third objective, which we feel is more appropriate for veayge problem. In this case, if we reset each deadline back to time sa
collections of tens to hundreds of millions of pages per n@ofel original value upon access, Landlord becomes identicaRid.L
thus very long inverted lists), where the goal is to minimizer- However, when we follow a different rule for resetting thede

lines, we obtain a new class of policies that is in fact quieful
for certain unweighted caching problems. This set of petiavas
first proposed in [14], and we call @ptimized Landlord. We use
the following two modifications: First, in order to give a lsbdo
blocks that have already proven useful, we give longer deasito
blocks that are being reused compared to blocks that justezht
the cache. In particular, a renewed block gets its origiealdiine
(upon insertion) plus a fraction of its remaining (unused) dead-
line. We usen = 0.5, which works well on our data as well as the
one in [14]. Second, we use a cache admission policy, as steghe
in [14], and only insert a block into cache if it was previgusked
at least once during some suitably chosen time window. Muila
inserting objects that are unlikely to be accessed evenalja to
the highly skewed distribution of terms in queries. (Th&uis was
also recently addressed in [4] for the case of result caching
Multi-Queue (MQ): MQ is studied in [25]. The idea is to use not
one butm (say,m = 8) LRU queuexQo, @1,... ,Qm—1, Where
Q: contains pages that have been seen at {édshes but no more
than2i* — 1 times recently or that have been seen at le&st

times but have been evicted from queues at a higher level. The

algorithm also maintains a history buffé},.:, which keeps the
frequency information about pages that were recently ejeddn a
cache hit, the frequency of the block is incremented andlteklis
placed at the Most-Recently-Used (MRU) position of the appr
ate queue, and iexpireTimeis set tocurrentTime + lifeTime, where
lifeTimeis a tunable parameter. On each accessexpieeTime for
the LRU position in each queu@; with i > 0 is checked, and if it
is less tharcurrentTime, then the block is moved to the MRU posi-
tion of the next lower queue. When a new block is inserted &nto
full cache, the LRU block in the lowest nonempty queue istedc
and its frequency information is put int@o., .

Adaptive Replacement Cache (ARC):This policy was pro-
posed in [16, 17], and like Landlord and MQ also tries to bedan
recency (LRU) and frequency (LFU). Conceptually, ARC opesa
on two levels: it maintains (i) two list€; and L, referring toc

pages each that were recently accessed but that may or mag no

in cache, and (ii) the actual cache of sizd.; keeps track of pages
that have been recently seen only once, wlhilekeeps track of
pages that have been seen at least twice. Thusnd L, together
keep track of2¢ pages of whiche are in cache while the others
were recently evicted. Of the pages actually in the cacheutab
are fromL; andc — p from L, wherep € [0, ...c] is a parame-
ter tuned in response to the observed workload. Evictiom fitoe
actual cache is then done according to a (slightly invohest)of
rules that takeg.1, L2, andp into account; see [16, 17] for details.

5.2 Comparison of List Caching Policies

1.0
O Cache Size

3 X Cache Size
[]5 X Cache Size

5%

14
©

o
3

Cache Hit Ratio
e
q

e
EY

0.5

]

|1
10% 15% 20% 25%
Percentage of Cached Index

Figure 9: Impact of history size on the performance of LFU, using an
index compressed with PForDelta.

30%

all the possible benefit. One drawback of a longer histonhés t
space overhead, but this is small since we only need a fevs fiyte
each64 KB block. The impact of history size is negligible when
more thar25% percent of the index fits in cache.

1.0

0.9

o
3

~-LRU
ARC
LD (0.1)
*=MQ
>LFU

Cache Hit Ratio
o
~

0.6
Optimal

0.5

15% 20% 25% 30% 35% 40% 45% 50%

Percentage of Cached Index
Figure 10: Cache hit rates for different caching policies and relative
cache sizes. The graphs for LFU and MQ are basically on top ofazh
other and largely indistinguishable. Optimal is the clairvoyant algo-
rithm that knows all future accesses and thus provides an upgr bound
on hit ratio. Each data point is based on a complete run over ouquery

5% 10%

ttrace, where we measure the hit ratio for the last 100,000 quies.

After tuning LFU, we now compare all algorithms in terms df hi
rate; results are shown in Figure 10. We see that LRU perfoons
sistently worst, while LFU and MQ perform best. Both Landlor
and ARC also come close to the best methods. Note that the im-
provements over LRU are quite significant, with hit rateseéasing
by up t010% in absolute terms (for small cache size), or conversely
with miss rates and thus total disk traffic decreased by ughoc

Note that we plot on the-axis not the absolute size of the cache,
but the percentage of the total index that fits in cache. Eigr
was obtained or1.36 million pages using PForDelta for list com-
pression, but we found that results were basically idehfiicather

In the following experiments, we use the same data and sstup éompression methods and other (sufficiently large) catlastsizes.

in the previous section. All results are based on an indeRowit
positions compressed using PForDelta. (Overall behagivery
similar for an index with positions, assuming cache sizecaesd
with increased total index size.) We always make sure to wal

That is, the cache hit rate depends primarily on the cachitigyp
and the percentage of the index that fits into cache, and nobioR
pression method and absolute index size.

r
up the cache by first running over most of the query log, and th(-;%-3 Burstiness, Static CaChmg’ and a Hyb”d

measuring only the performance of the last 100,000 queBiefare
comparing all methods, we first run experiments to tune LFth wi
respect to the history size that is kept.

Figure 9 compares the cache hit ratios of LFU with differaat h
tory lengths. In particular, a history é&fx Cache Sze means that
we can keep frequency statistics fotimes as many blocks as fit

In our experiments, LFU at least slightly outperformed dfier
methods. While LFU is a natural fit for traces where term feagu
cies are fairly stable over longer periods of time, it is nobd at
exploiting any local bursts where a particular item occapeatedly
over a short period of time. Such burstiness is known to bei@ru
for the performance of result caching policies [15, 23], inading

into cache. Fok = 1, we keep only stats about pages that are ifybrid schemes such as SDC in [10]. We ran several experiment

cache, while for largek the history itself is also maintained using
LFU. For small cache sizes (up 16% of the total index size), we
observe a measurable benefit (ug % higher hit rate) from having
a longer history. However, a value bf= 5 suffices to get almost

to evaluate whether we could get an improvement over LFU by ex
ploiting burstiness. An analysis of the gaps between oecass

of terms in the trace showed almost no burstiness. An attéonpt
design a hybrid scheme that uses the total number of oca@sen

as well as the distance to the last occurrence and the gapedret
recent occurrences led to only tiny improvements (detailgted).

1.0

o
©

Optimal

List Static

e
®

==LFU

Cache Hit Ratio

-#+Block Static

e
N

0.6

10% 15% 20% 25% 30% 35% 40% 45% 50%
Percentage of Cached Index

5%

Figure 11: LFU, static block-based, and static list-based caching.

This seems to agree with recent work in [3] that suggestgusin
static assignment of lists to the cache (though for a diffecaching
model). Thus, we ran another experiment that compares LEkdo
versions of a simple static scheme adapted from [3]: oneuted

blocks (as our LFU) and one that uses lists. (One advantage of

static scheme is that cache fragmentation is not an issuenga
it more attractive to use lists rather than blocks.) We ubeditst
1,035,469 queries in our trace to compute a static cachgremsent,

while Rice and the theoretical Entropy achieves the besiveher,
S9, S16, and PForDelta are also significantly better thaiahlar
byte, and quite close to the optimal. Overall, absolutedtits are
improved by abous to 5%. In fact, for a cache size df280 MB,
the cache miss rate, and thus total disk traffic, is almosinchalf
by switching from variable-byte to Rice coding. Thus, inadem-
pression methods have an important extra benefit in cachiremnw
disk bandwidth is a performance bottleneck.

1.0

4
©

-+-VByte
S9

-+516

=<PForDelta

Cache Hit Ratio
o
-

-Rice

o
N

Entropy

0.6

768 1024 1280 1536 1792
Cache Size (MB)

Figure 12: Comparison of compression algorithms with different
memory size, using 100,000 queries and LFU for caching. Tdtindex

128 256 512 2048

and the last 100,000 queries to test the assignment. Thésresisize varied betweent.3 GB for variable-byte and 2.8 GB for Entropy.

are shown in Figure 11, which indicates that the performanfce
LFU is essentially identical to a static assignment. Usirlgsta
based static assignment results in a very slightly loweratio, but
there is a catch: In our block-based schemes, slightly mate d
will be fetched at the same hit ratio, since we fetch an elivek
whenever some part of it is needed for query processing. allyer
all three schemes result in almost the same amount of difictra
Note however that a static approach may not be suitable ivasics
where query distribution changes periodically due to,,eugers
from different countries and time zones doing searchesfierdnt
languages on the same engine.

Finally, we also experimented with a hybrid cost model agd-al
rithms where both disk seeks and data transfer times ara tat@
account; we found that meaningful performance improvem@m
to 12% reduction in disk access time) can be obtained foros®
million document collection by modifying LFU to take seekngés
into account, particularly for large cache sizes.

6. COMPRESSION PLUS CACHING

In previous sections, we separately discussed and evdlliste
compression and list caching techniques. As we found, thexe
significant differences between the methods, and also thieelf
the best caching policy does not depend on the choice of asnpr
sion. However, this does not mean that the performance diirgc
is independent of compression. In real systems, for a gieiac:

tion size we have a fixed absolute amount of memory that can be
used for caching. Thus, a better compression method means th

a larger fraction of the total index fits in cache, and thusghéi
cache hit ratio should result. In this section, we study thgact of

combining index compression and index caching, which da¢s n

seem to have been previously addressed. All experimentsisn t
section are run on an index without positions using the cetepl
query trace, but measuring only the last 100,000 queries.

6.1 Evaluation of the Combination

Next, we try to analyze the combined performance of compres-
sion and caching using a simple performance model. Hereswe a
sume that the cost of a query consists of the time for disksacce
(if any) and the time spent on decompression of the inveites |
retrieved from either disk or cache. We note that this is aesom
what naive model, as it assumes that inverted lists areddtfriom
disk in their entirety (no early termination), that they aecom-
pressed in their entirety (no skipping over compressedkd)uand
that other costs such as score computation are minimal.eTaes
sumptions are not really realistic for large engines, butcaeld
modify the model to account for the percentage of each list th
is actual decompressed; the most suitable choice of maiilifisa
however depends on various details of query execution ardng
function and thus we stick to our simple model. We believe itha
does provide a useful benchmark of the lower search engyee la
involving index fetch and decompression. We also limit elwss
to three methods, PForDelta, S16, and Rice coding, sincetlies
two methods are strictly dominated by these three.

® ©
S o

osie
@ PForDelta

~
=)

O Rice

Processing Speed (MSecs/Query)
N w B v (-2
o =] o o o

-
o

o

128 256 512 768 1024 1280

Cache Size (MB)
Figure 13: Comparison of PForDelta, S16, and Rice coding, using
LFU caching and assuming 10MB/s disk speed.

Not surprisingly, as shown in Figure 13, query processirgso
decrease significantly with larger cache sizes when dislovg $n
this case, Rice coding performs better than S16 and PFarelt

1536 1792 2048

Figure 12 compares the performance of the LFU caching posmall cache sizes, where its better compression ratiol&atassinto

icy with different compression methods applied to the indéx
this case, the memory size is in MB, and thus a better compress
method results in a higher percentage of the index in cacbes&
quently, we see that variable-byte achieves the worst daithate,

a higher cache hit rate. For larger cache sizes, disk is festaotor
and thus PForDelta substantially outperforms the otherreth-
ods. The situation changes somewhat for faster disk$4B/s), as
shown in Figure 14. Here, PForDelta dominates for the erdinge

w
o

is to design other methods that improve on PForDelta in tans
compression while matching (or coming close to) its speed.
Another interesting open question concerns the compessio
position data. As we saw in our experiments, an index witlitijoos
information requires aboutto 5 times as much data to be traversed
per query than an index without positions, while the amotidata
fetched from disk is often an order of magnitude higher siace
much smaller fraction of such an index fits in cache. Thereaare
number of compression methods (see, e.g., [26]) that camifsig

os16

N
a

@ PForDelta
ORice

= - ~
15} @ =)

Processing Speed (MSecs/Query)
«

o

128 256 512 768 1024 1280

Cache Size (MB)
Figure 14: Comparison of PForDelta, S16, and Rice coding, using
LFU caching and assuming 50MB/s disk speed.

1536 1792 2048

of cache sizes, followed by S16 and then by Rice coding. Tae reg,
son is that the slightly higher cache hit rates for S16 and iz [1]
not make up for the much slower decompression. 2

[3

~-516
PForDelta

~
o

=+Rice

[4

[L-)
S o

N
=)

5

w
=]

6

N
=)

Processing Speed (MSecs/Query)

=
o

[7

o

10 20 30 40 50 60 70

Disk Speed (MB/S)

Figure 15: Comparison of query processing costs for different disk
speeds, using LFU and a 128MB cache.

Finally, we look at the impact of disk speed for a fixed cache.si
In Figure 15, we show results for a cache sizé 26 MB and disk
speeds betweeh) to 100 MB/s. We see that when the disk has a
transfer rate up ta@0 MB/s, Rice is faster than the other compres-
sion algorithms, but otherwise PForDelta is best. (To beipeg
S16 is briefly the champion arour2® MB/s, by a very slim mar-
gin.) Looking at disk speeds &f0 MB/s or less may seem like
a useless exercise given that current cheap disks alreduigvac
transfer rates of aboui0 MB/s, but we note that our results are
really based on the ratio between disk transfer rate andnolees-
sion speed: If CPUs increase in speed by a factd tiis would
have the same effect in relative terms as disk speeds bainged
by a factor of2. Thus, architectural trends in the future may maketle]
techniques such as Rice coding relevant again. For currehi-a
tectures, PForDelta plus LFU appears to be the best choice.

80 90 100

(8]
E)

[10]

[11]

[12]

[13]
[14]

(18]

[17]

7. CONCLUDING REMARKS el

In this paper, we studied techniques for inverted index aesyp
sion and index caching in search engines. We provided aleltai 20
evaluation of several state-of-the-art compression nusttamd of
different list caching policies. Finally, we looked at therfor-
mance benefits of combining compression and caching, and gt
plored how this benefit depends on machine parameters sudiskas
transfer rate, main memory, and CPU speed.

There are several interesting remaining open problemst, e
recent work on PForDelta in [11, 27] shows that decomprassio[zs]
speed depends not so much on questions of bit versus byte alig24
ment, but on the amount of obliviousness in the control artd da
flow of the algorithm. Any approach that requires a decismbe
made for each decoded integer will be at a severe disadwaittag
terms of speed. We have shown here that ideas similar to RftarD
can also be used to increase the speed of Rice decodingmmply [27]
trade-off between speed and compression. An interestiakgecige

[19]

=

[22]

[25]

[26]

icantly improve compression over the simple methods cemsiti
here. However, these methods tend to be fairly slow, andaitsis
not clear how to best apply them to position information inbwe
page collections. We plan to address this in future work.

REFERENCES

V. Anh and A. Moffat. Index compression using fixed binagdewords. In
Proc. of the 15th Int. Australasian Database Conference, pages 61-67, 2004.
V. Anh and A. Moffat. Improved word-aligned binary congssion for text
indexing.|EEE Trans. on Knowledge and Data Engineering, 18(6), 2006.

R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, MdRouras, and

F. Silvestri. The impact of caching on search engine®rbt. of the 30th
Annual SIGIR Conf. on Research and Development in Inf. Retrieval, 2007.

R. Baeza-Yates, F. Junqueira, V. Plachouras, and H.cWéis Admission
policies for caches of search engine result®1oc. of the 14th String
Processing and Information Retrieval Symposium, September 2007.

R. Baeza-Yates and B. Ribeiro-Netdodern Information Retrieval. Addision
Wesley, 1999.

R. Baeza-Yates and F. Saint-Jean. A three-level seamngime index based in
query log distribution. IrProc. of the 10th Sring Processing and Information
Retrieval Symposium, September 2003.

P. Boldi and S. Vigna. Compressed perfect embedded wi#pfbr quick
inverted-index lookups. IRroc. of the Int. Symp. on String Processing and
Information Retrieval, pages 25-28, 2005.

St. Biittcher and C. Clarke. Index compression is goopeeislly for random
access. IProc. of the 16th ACM Conf. on Inf. and Knowledge Manag., 2007.

P. Cao and S. Irani. Cost-aware WWW proxy caching algarg. InProc. of the
USENIX Symp. on Internet Technologies and Systems, 1997.

T. Fagni, R. Perego, F. Silvestri, and S. Orlando. Biogsthe performance of
web search engines: Caching and prefetching query resuéspioiting
historical usage dat&ACM Trans. on Information Systems, 24, 2006.

S. Heman. Super-scalar database compression betwedraRd CPU-cache.
MS Thesis, Centrum voor Wiskunde en Informatica (CWI), Aendam, 2005.
B. Jonsson, M. Franklin, and D. Srivastava. Interactbquery evaluation and
buffer management for information retrieval.Pnoc. of the ACM SSGMOD Int.
Conf. on Management of Data, pages 118-129, June 1998.

R. Lempel and S. Moran. Predictive caching and prefatebf query results in
search engines. IAroc. of the 12th Int. World-Wide Web Conference, 2003.

X. Long and T. Suel. Three-level caching for efficieneguprocessing in large
web search engines. Froc. of the 14th Int. World W de Web Conference, 2005.
E. Markatos. On caching search engine query resulthiinternational Web
Caching and Content Delivery Workshop, May 2000.

N. Megiddo and D. Modha. ARC: A self-tuning, low overlde@placement
cache. InProc. of the USENIX Conf. on File and Storage Technologies, 2003.
N. Megiddo and D. Modha. Outperforming LRU with an ade@treplacement
cache algorithmlEEE Computer, 37(4), 2004.

A. Moffat and J. Zobel. Self-indexing inverted files flast text retrieval ACM
Trans. on Information Systems, 14(4):349-379, 1996.

G. Navarro, E. de Moura, M. Neubert, N. Ziviani, and ReBa-Yates. Adding
compression to block addressing inverted indekgsRetrieval, 3(1), 2000.

P. Saraiva, E. de Moura, N. Ziviani, W. Meira, R. Fonsexad B. Ribeiro-Neto.
Rank-preserving two-level caching for scalable searclinesgInProc. of the
24th Annual SIGIR Conf. on Research and Development in Inf. Retrieval, 2001.
F. Scholer, H. Williams, J. Yiannis, and J. Zobel. Coegsion of inverted
indexes for fast query evaluation. Rmoc. of the 25th Annual SIGIR Conf. on
Research and Development in Information Retrieval, August 2002.

V. Shkapenyuk and T. Suel. Design and implementatiom lifyh-performance
distributed web crawler. IRroc. of the Int. Conf. on Data Engineering, 2002.
Y. Xie and D. O’Hallaron. Locality in search engine gigsrand its implications
for caching. InProc. of the Infocom Conference, 2002.

N. Young. On-line file caching. IRroc. of the 9th Annual ACM-SIAM Symp. on
Discrete algorithms, 1998.

Y. Zhou, J. Philbin, and K. Li. The multi-queue replaceamhalgorithm for
second level buffer caches. Rroc. of the USENIX Annual Techn. Conf., 2001.
J. Zobel and A. Moffat. Inverted files for text search eveg.ACM Computing
Surveys, 38(2), 2006.

M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-s¢aeM-CPU cache
compression. IfProc. of the Int. Conf. on Data Engineering, 2006.

