Scalable Sweeping-Based Spatial Join

Lars Argé€ Octavian Procopilc Sridhar Ramaswaniy
Torsten Suel Jeffrey Scott Vittet
1 Introduction and Motivation
Abstract

In this paper, we consider the filter step of the
spatial join problem, for the case where neither
of the inputs are indexed. We present a new al-
gorithm, Scalable Sweeping-Based Spatial Join
(SSSJ), that achieves both efficiency on real-life
data and robustness against highly skewed and
worst-case data sets. The algorithm combines
a method with theoretically optimal bounds on
I/O transfers based on the recently proposed
distribution-sweeping technique with a highly
optimized implementation of internal-memory
plane-sweeping. We present experimental re-
sults based on an efficientimplementation of the
SSSJ algorithm, and compare it to the state-of-
the-art Partition-Based Spatial-Merge (PBSM)
algorithm of Patel and DeWitt.

*Center for Geometric Computing, Department of Computer Sci
ence, Duke University, Durham, NC 27708-0129. Supporteohit
by U.S. Army Research Office grant DAAH04-96-1-0013. Email:
| arge@s. duke. edu.
T Center for Geometric Computing, Department of Computer Sci
ence, Duke University, Durham, NC 27708-0129. Supporteohit
by the U.S. Army Research Office under grant DAAH04-96-13001
and by the National Science Foundation under grant CCR-®&22
Email:t avi @s. duke. edu.

¥ Information Sciences Research Center, Bell Laborato6s,

Mountain Avenue, Box 636, Murray Hill, NJ 07974-0636. Email
sri dhar @esear ch. bel | -1 abs. com

§ Information Sciences Research Center, Bell Laborato6es,

Mountain Avenue, Box 636, Murray Hill, NJ 07974-0636. Email
suel @esearch. bel | -1 abs. com

TCenter for Geometric Computing, Department of Computer Sci
ence, Duke University, Durham, NC 27708-0129. Supportg@aihby
the U.S. Army Research Office under grant DAAH04-96-1-0018 a
by the National Science Foundation under grant CCR-952204rt
of this work was done while visiting Bell Laboratories, Mayr Hill,
NJ. Email:j sv@s. duke. edu.

Permission to copy without fee all or part of this materialgimnted
provided that the copies are not made or distributed forctimmmer-
cial advantage, the VLDB copyright notice and the title cf thub-
lication and its date appear, and notice is given that copyis by
permission of the Very Large Data Base Endowment. To comr-oth
wise, or to republish, requires a fee and/or special periaisfrom the
Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

Geographic Information Systems (GIS) have gener-
ated enormous interest in the commercial and research
database communities over the last decade. Several
commercial products that manage spatial data are avail-
able. These include ESRI's ARC/INFO [ARC93], Inter-
Graph’s MGE [Int97], and Informix [Ube94]. GISs typi-
cally store and manage spatial data such as points, lines,
poly-lines, polygons, and surfaces. Since the amount
of data they manage is quite large, GISs are often disk-
based systems.

An extremely important problem on spatial data is the
spatial join, where two spatial relations are combined to-
gether based on some spatial criteria. A typical use for
the spatial join is thanap overlayoperation that com-
bines two maps of different types of objects. For exam-
ple, the query “find all forests in the United States that
receive more than 20 inches of average rainfall per year”
can be answered by combining the information in a land-
cover map with the information in a rainfall map.

Spatial objects can be quite large to represent. For ex-
ample, representing a lake with an island in its middle
as a non-convex polygon may require many hundreds,
if not thousands, of vertices. Since manipulating such
large objects can be cumbersome, it is customary in spa-
tial database systems approximatespatial objects and
manipulate the approximations as much as possible. One
technique is to bound each spatial object by the smallest
axis-parallel rectangle that completely contains it. This
rectangle is referred to as the spatial objentigimum
bounding rectangle (MBR)Spatial operations can then
be performed in two steps [Ore90]:

e Filter Step: The spatial operation is performed on
the approximate representation, such as the MBR.
For example, when joining two spatial relations,
the first step is to identify all intersecting pairs of
MBRs. When answering a window query, all MBRs
that intersect the query window are retrieved.

¢ Refinement Step: The MBRs retrieved in the filter
step are validated with the actual spatial objects. In
a spatial join, the objects corresponding to each in-
tersecting MBR pair produced by the filter step are
checked to see whether they actually intersect.

The filter step of the spatial join has been studied ex-
tensively by a number of researchers. In the case where

spatial indices have been built on both relations, thes@lane-sweeping algorithm after the initial sorting step.
indices are commonly used in the implementation of theThe result is a conceptually very simple algorithm, which
spatial join. In this paper, we focus on the case in whichfrom an I/O perspective just consists of an external sort
neither of the inputs to the join is indexed. As discussedollowed by a single scan through the data. We im-
in [PD96] such cases arise when the relations to be joineglemented our algorithm such that partitioning is only
are intermediate results, and in a parallel database envilone when the sweepline structure does not fit in mem-
ronment where inputs are coming in from multiple pro- ory. This assures that it is not only extremely efficient

Cessors. on real-life data, but also offers guaranteed worst-case
bounds and predictable behavior on highly skewed and
1.1 Summary of this Paper worst-case input data

We present a new algorithm for the filter step called, '€ overall performance of SSSJ depends on the ef-
Scalable Sweeping-Based Spatial J(86SJ). The al- ficiency of the internal plane-sweeping algorithm that is
gorithm uses several techniques for I/O-efficient com-€MPloyed. The same is of course also true for PBSM
puting recently proposed in computational geometryanOI other spatial join algonthmsthatuse plane-sweepl_ng
[APR+98, GTVV93, Arg95, AVV98, Arg97], plus the at the lower level. This motivated us to perform experi-

well-known internal-memory plane-sweeping techniquemems with a number of different techniques for perform-

(see, e.g., [PS85]). It achieves theoretically optimali"d the plane-sweep. By using an efficient partitioning
worst-case bounds on both internal computation time an?eur!stm, we were able to decrease the time spent on per-
/O transfers, while also being efficient on the more well- forMing the intermnal plane-sweep in PBSM by a factor of
behaved data sets common in practice. We present expe"f-as com_pared to the original implementation of Patel
imental results based on an efficient implementation ofind Dewitt [PD9E].)

the SSSJ algorithm, and compare it to the original as wel| "€ data we used is a standard benchmark data for
as an optimized version of the state-of-the-art PartitioniN€ Spatial join, namely the Tiger/Line data from the

Based Spatial-Merge (PBSM) algorithm of Patel and De-US Bureau of Census [Tig92]. Our experiments showed
Witt [PD96]. that SSSJ performs at lea®§% better than the origi-

The basic idea in our new algorithm is the follow- nal PBSM. On the other hand, the improved version of
ing: An initial sorting step is performed along the verti- PBSM actually performed about’ better than SSSJ.
cal axis, after which the distribution-sweeping technique®” the real-life data we used - we believe that this is
is used to partition the input into a number of vertical 9U€ to an inefficiency in our implementation of SSSJ as
strips, such that the data in each strip can be efficienthf*Plained in Section 7. To illustrate the effect of data
processed by an internal-memory plane-sweeping alggsk€W on PBSM and SSSJ, we also ran experiments on
rithm. This basic idea of partitioning space such that the>YNthetic data sets. Here, we observe that SSSJ scales
data in each partition fits in memory, and then solving theSM0Othly with data size, while both versions of PBSM
problem in each partition in internal memory, has beenf€ Very adversely affected by skew.
used in many algorithms, including, e.g., the PBSM al- Th_us, our conclusion is that _|f we can assume that the
gorithm [PD96]. datfa\ is well-behaved, then a_S|mpIe sort_followed_ by an

However, unlike most previous algorithipeur algo- optimized plane-sweep provides a solution that is very
rithm only partitions the data alongneaxis. Another €Sy to implement, particularly if we can leverage an
important property of our algorithm is its theoretical op- €XiSting optimized sort procedure, and that achieves a
timality, which is based on the fact that, unlike in most Performance that is at least competitive to that of previ-
other algorithms, no data replication occurs. ous, usually more complicated, spatial join algorithms.

A key observation that allowed us to greatly improve'f' on the other hand, .the data cannot be assumed to
the practical performance of our algorithm is that in 0 Well-behaved, then it appears that PBSM, as well as
plane-sweeping algorithms not all input data is neededn@ny other proposed spatial-join algorithms, may not
in main memory at the same time. Typically only the so-faré much better on such data than the simple plane-
calledsweepline structuraeeds to fit in memory, thatis, SWeeping solution, as they are also susceptible to skew
the data structure that contains the objects that intersed®? the datd. In this case, an algorithm with guaranteed
the current sweepline of the plane-sweeping algorithmPounds on the worst-case running time, such as SSSJ,
During our initial experiments, we observed that on all2PP€ars to be a better choice. .
our realistic data sets of sizg, this sweepline structure The remainder of this paper is organized as follows.
never grew beyond size(v/N). In Section 2 we discuss related research in more detail.

This observation, which is known as the square-root! S€ction 3, we describe a worst-case optimal solution to
rule in the VLS literature (see, e.g., [GS87]), seems tothe spatial-join problem. Section 4 discusses the square-

have b.een largely OyerIOOKed in the s_patlgl join litera- 2We believe that SSSJ should also scale well with the dimansio
ture (with t_he exception of [BG92]). It implies th_at for 4, though this remains to be demonstrated experimentally.watd
most real-life data sets, we can bypass the vertical pafexpect the sweepline structure to growa&— /¢, which can exceed

titioning step in our algorithm and directly perform the the size of main memory even for reasonable value¥ of
3Most previous papers seem to limit their experiments to -well
Lwith the exception of the work in [GS87] behaved data.

root rule and its implications for plane sweeping algo-seed. Once the index is constructed, the tree join algo-
rithms. Section 5 presents the SSSJ algorithm. In Secdthm of [BKS93] is used to perform the actual join.
tion 6 we describe and compare different implementa- The other major direction for research on the spatial
tions of the internal-memory plane-sweeping algorithm.join has focused on the case where neither of the input
Section 7 presents our main experimental results comrelations has an index. Lo and Ravishankar [LR95] pro-
paring SSSJ with PBSM. Finally, Section 8 offers somepose to first build indices for the relations on the fly using
concluding remarks. spatial sampling techniques and then use the tree join al-
gorithm of [BKS93] for computing the join. Another re-
> Related Research ﬁigt ;:?S;L [:;SQ?] proposes an algorithm based on a filter
Patel and DeWitt [PD96] and Lo and Ravis-
hankar [LR96] both proposkeashbased spatial join al-
gorithms that use a spatial partitioning function to sub-
rqivide the input, such that each partition fits entirely in

only the filter step. In this section, we discuss the vari-memory. Patel and DeWitt then use a plane-sweeping al-

ous approachesthat have been proposed to solve the ﬁltgprithm proposed in [BKS93] to perform the join within

step. (For the rest of the paper, we will use the term “spa-eaCh partition, while Lo and Ravishankar use an indexed

tial join” to refer to the filter step of the spatial join unges "eSted loop join.
ejxpjli(I:itIy stated otherV\;ise.) P patialjoinu Guting and Schilling [GS87] give an interesting dis-

An early algorithm proposed by Orenstein [Ore%,cussion of plane-sweeping for computing rectangle inter-

OM88, Ore89] uses a space-filling curve, called Peangjzt,f(;grs{rﬁgd Fgl;?;r?qmmim;?gr;ﬁsr(‘)ctehgfftirset t?)qg(?rzgi-(;g(r)t
curve or z-ordering, to associate each rectangle with p ' y

set of small blocks, calledixels on that curve, and then e effect of l/O from an analytical standpoint; the algo-

performs a sort-merge join along the curve. The perfor_rithmic bounds they obtain are slightly suboptimal in the

mance of the resulting algorithm is sensitive to the size O]number of I/O operations. Their algorithm was subse-

the pixels chosen, in that smaller pixels leads to betterfil—quently implemented in the Gral system [BG92], an ex-

tering, but also increase the number of pixels associateggiréen%?tg\?vzsrg 3’?;?mef)(()regr?;;etg:C;Enp“;ﬂgggsv;/i?#t
with each object. y exp p

. other approaches.
In another transformational approach [BHF93], the - ; -
MBRs of spatial objects (which are rectangles in two The work in [GS87, BG92] is probably the previous

. ;) L : contribution most closely related to our approach. In par-
dimensions) are transformed into points in four dimen- y bp P

. Th i int tored i lti-attribut ticular, the algorithm that is proposed is similar to ours in
slons. The resuiting points are stored in a mutti-atiributey, ., ;; partitions the input along a single axis. However,

flhata stru&:';urethsu;;lrtl astthe grid file [NHS84], which IS at each level the input is partitioned into only two strips
enusedtor the hiter step. as opposed t6)(y/m) strips in our algorithm, resulting

Rotem [Rot91] proposes a spatial join algorithm iy 51 additional factor o (log, m) in the running time.
based on the join index of Valduriez [Val87]. The join

index used in [Rot91] partially computes the result of the
spatial join usi[ng a g]riﬂ file. yeomp 3 An Optimal Spatial Join Algorithm
There has recently been much interest in usindn this section, we describe a spatial join algorithm that is
spatial index structures like the R-tree [Gut85]/-R worst-case optimal in terms of the number of I/O trans-
tree [SRF87], R-tree [BKSS90], and PMR quad- fers. This algorithm will be used as a building block in
tree [Sam89] to speed up the filter step of the spatial jointhe SSSJ algorithm described in the next section. We
Brinkhoff, Kriegel, and Seeger [BKS93] propose a spa-point out that this section is based on the results and
tial join algorithm based on Rtrees. Their algorithm is theoretical framework developed in [APRS8]. The al-
a carefully synchronized depth-first traversal of the twogorithm uses the distribution-sweeping technique devel-
trees to be joined. Animprovement of this algorithm wasoped in [GTVV93] and further developed in [Arg95,
recently reported in [HIR97]. (Another interesting tech- Avv98].
nique for efficiently traversing a multi-dimensionalindex Following Aggarwal and Vitter [AV88] we use the fol-
structure was proposed in [KHT89] in a slightly different |owing 1/0-model: We make the assumption that each
context.) Gunther [GUn93] studies the tradeoffs betweerccess to disk transmits one disk block wihunits of
using join indices and spatial indices for the spatial join.data, and we count this as one I/O operatidfle denote
Hoel and Samet [HS92] propose the use of PMR quadthe total amount of main memory by/. We assume
trees for the spatial join and compare it against membergat we are given two set® = {pi | i € [\;]} and
of the R-tree family.
Lo and Ravishankar [LR94] discuss the case where 4In practice there is, of course, a large difference betwherper-

exactly one of the relations does not have an index Theﬁ:rmame of random and sequential I/O. The correct way Erjmet
’ e theoretical results of this section in a practical cxrieto assume

construct an index for that relation on the fly, by using that the disk block size is large enough to mask the differdratween
the index on the other relation as a starting point (therandom and sequential I/0.

Recall that the spatial join is usually solved in two steps:
a filter step followed by a refinement step. These two

Q = {q¢: | i € [N2]} of rectangles, wherf/] denotes and L can be efficiently maintained in external mem-
the set{0,1,...,v — 1}. For convenience, we define ory. As it turns out, it suffices if we keep only a single
N = N; + N,. We useT to denote the number of pairs block of each list in main memory. To add an interval to
of intersecting rectangles reported by the algorithm. Wea list, we add it to this block, and write the block out to
use lower-case notation to denote the size of the corredisk whenever it becomes full. To scan the list for inter-
sponding upper-case quantities when measured in termgections, we just read the entire list and write out again
of the number of disk blocksn = N/B,t = T/B, all intervals that are not deleted. We will refer to this
m = M/B. We definelog,, n = max{1, llgé%:l}_ The simple implemenf[ation of a list gs_zM@-list. _
efficiency of our algorithms is measured in terms of the 10 See that this scheme satisfies the claimed bound,
number of I/O operations that are performed. All boundsnote that each interval ifi is added to an I/O-list only
reported in this section are provable worst-case bounds©Nce, and that in each subsequent scan of an I/O-list, the
We solve the two-dimensional join problem in two intérvalis either permanently removed, or it produces an
steps. We first solve the simpler one-dimensional joinintersection with th_e interval that initiated t_he scan.cgin
problem of reporting all intersections between two sets2!l output is done in complete blocks, this results in at
of intervals. We then use this as a building block in theMm0St + ¢ reads and: + ¢ writes to maintain the lists
two-dimensional join, which as based on the distributionL» @ndLq, plus anothet writes to output the result, for

sweeping technique. atotal of2n + 3t I/O operations in the algorithm. Thus,
we have the following Lemma.
3.1 One-dimensional Case: Interval Join Lemma 3.1 Given a list of intervals fromP and Q

sorted by their lower boundaries, Algorithrinter-
val_Join computes all intersections between intervals
from P and @ usingO(n + t) /O transfers.

Inthe one-dimensional join problem, each intenval P
orr € Q is defined by a lower boundary,;, and an
upper boundary,,,.x. The problem is to report all in-
tersections between an interval fhand an interval in . . .
Q. We assume that at the beginning of the algorithm,3'2 The Two-dimensional Case: Rectangle Join
P and Q have already been sorted into one listof Recall that in the two-dimensional join problem, each
intervals by their lower boundaries, which can be donerectangler € P orr € () is defined by a lower bound-
in O(nlog,,n) /O operations using, say, the optimal aryrZ, and upper boundamng, .. in thez-axis, and by
sorting algorithm from [AV88]. We will show that the a lower boundary?. and upper boundars, .. in the
following algorithm then completes the interval join in y-axis. The problem s to report all intersections between

min

O(n + t) I/O operations. a rectangle inP and a rectangle iy. We will show that
the following algorithm perform® (n log,, n + t) I/O
Algorithm Interval Join: operations, and thus asymptotically matches the lower

bound implied by the sorting lower bound of [AV88] (see
(1) Scan the list in order of increasing lower bound-also [AM]). It can be shown that the algorithm is also op-
aries, maintaining two initially empty listsp and timal in terms of CPU time. We again assume that at the
L of “active” intervals fromP and@). More pre- beginning of the algorithmP and(have already been
cisely, for every intervat in L, do the following: sorted into one lisL. of rectangles by their lower bound-
aries in they-axis, which can be done i@(nlog,, n)

(@) Ifr € P, then add to Lp, and scan through |, operations.

the entire listL,. If an intervalg in L, inter- . .
sects withr, output the intersection and keep Algorithm RectangleJoin:

qin Lq; otherwise deletg from L. (1) Partition the two-dimensional space iritovertical

(b) If r € Q, then addr to L, and scan through strips (not necessarily of equal width) such that at
the entire listL p. If an intervalp in Lp inter- most2N/k rectangles start or end in any strip, for
sects withr, output the intersection and keep somek to be chosen later (see Figure 1).

pin Lp; otherwise deletp from Lp. (2) Arectangle is calledmallif it is contained in a sin-

gle strip, andarge otherwise. Now partition each
large rectangle into exactly three pieces, temd
piecesn the first and last strip that the rectangle in-
tersects with, and oneenter piecen between the
end pieces. We then solve the problem in the fol-
lowing two steps:

In order to see that this algorithm correctly outputs all
intersections exactly once, we observe that paies P
andg € (@ that intersect can be classified into two
cases: (i)p begins beforeg and (ii) ¢ begins before
p. (Coincident intervals are easily handled using a tie-
breaking strategy.) Step (1)(a) reports all intersections

of an interval fromP with currently “active” intervals (a) First compute all intersections between a cen-

from @, thus handling case (ii), while step (1)(b) simi- ter piece fromP and a center piece fro,

larly handles case (i). and all intersections between a center piece
In order to establish the bound 6f(n + ¢) 1/0 opera- from P and a small rectangle frof, or a cen-

tions for the algorithm, we need to show that the liis ter piece from) and a small rectangle from.

(b) Ineach strip, recursively compute all intersec-(2a) Scan list_ in order of increasing value ef, ;. For
tions between an end piece or small rectangle every interval- in L do the following:

from P and an end piece or small rectangle)
from Q. (i) If » € P andr is small and contained in strip

i, then insertr into L. Perform a scan of
————————————————————— every listL™7 with h < i < j, computing in-

| Stripl | I Strip 41
! ’ ! ! ! ’ ! tersections and deleting every element of the
| | | ; > goes into > * list that does not intersect with Also, write
| E‘ﬁ]—\:‘ P outr lazily to disk for use in the recursive sub-
goesino®® 1 EL_—H problem in stripi.
_:, ! ! ! (i) If r € P andr is large and its center piece
goesintat 2] 1 :E‘ - iwnﬁ”i%%t?ﬁtgifecfui;ﬁg consists of strips, i + 1, ..., j, then insert
p—EH | | 7 subproblems rinto L7, Perform a scan of every list
i X o Lg’f with i < j’ andj > i', computing in-
Figure 1: An example of the partitioning used by the tersections and deleting every element of a list
two-dimensional join algorithm. Heré, = 4, and each that does not intersect with Also, write out
strip has no more than three rectangles that will be han- the end pieces of lazily to disk for use in the
dled further down in the recursion. (Such rectangles are appropriate recursive subproblems.

shown as shaded boxes.) The I/O-lists that rectangles

will get added into are shown for some of the rectangles. (i) If 7 € @ andr is small, do (i) with the roles of

P and(reversed.
We can compute the bogndaries of the strips in (iv) If » € Q andr is large, do (ii) with the roles
Step (1) by sorting the-coordinates of the end points, of P and() reversed.
and then scanning the sorted list. In this case, we have

to be careful to split the sorted list into several smaller_emma 3.2 AlgorithmRectangleJoinoutputs all inter-

sorted lists as we recurse, since we cannot afford to sodections between rectangles i and rectangles inQ
again in each level of the recursion; the same is also theorrectly and only once.

case for the list.. (In practice, the most efficient way
to find the strip boundaries will be based on sampling.)Proof: (sketch) We first claim that if a rectangle is
The recursion in Step (2)(b) terminates when the entirdarge, then Step (2)(a) reports all the intersections be-
subproblem fits into memory, at which point we can usetween the large rectangle’s center piece and all other rect-
an internal plane-sweeping algorithm to solve the prob-angles in the other set. To see this, we classify all the
lem. Note that the total number of input rectangles at(p, ¢)-pairs that intersect, and whepds large, into two
each level of the recursion is at masV, since every cases:) ¢2;, < pu., and @) p2. < ¢2.,. (Equal-
interval that is partitioned can result in at most two endities are easily handled using a tie-breaking strategy.)
pieces. Steps (2)(a)(i) and (ii) clearly handle all intersections

What remains is to describe the implementation offrom case ¢) because the currently “active” intervals are
Step (2)(a). The problem of computing the intersec-stored in the various I/O-lists, and Steps (2)(a)(i) and (ii
tions involving center pieces in (2)(a) is quite similar intersecp with all of the lists that intersect with its center
to the interval join problem in the previous section. In piece. Steps (2)(a)(iii) and (iv) similarly handle cagg. (
particular, any center piece can only begin and end aThe case where the interval frogris large follows from
the strip boundaries. This means that a small rectanglsymmetry.
r contained in strip; intersects a center piecgegoing In order to avoid reporting an intersection multiple
through stripi if and only if the intervals(r?, ,r%..) times at different levels of the recursion, we keep track
and(s?. ,s¥..) intersect. Thus, we could compute the of intervals whose endpoints extend beyond the “current
desired intersections by runnikgdnterval joins alongthe boundaries” of the recursion and store them in separate
y-axis, one for each strip. distinguished I/O-lists. (There are at m@stsuch lists.)

However, this direct solution does not guarantee theBy never comparing elements from distinguished lists of
claimed bound, since a center piece spanning a larg€ and@, we avoid reporting duplicates.]
number of strips would have to participate in each of the
corresponding interval joins. We solve this problem by To show a bound on the number of I/Os used by the
performing all these interval joins in a single scan of thealgorithm, we observe that as in the interval join algo-
rectangle listL. The key idea is that instead of using two rithm from the previous section, each small rectangle and
I/O-lists L p andL¢, we maintain a total ofk+2)(k+3) ~ €ach center piece is inserted in a list exactly once. A
1/O-lists Lz;}j and Ly with 0 < i < j < k + 1 (refer _rectangle in a list produces an intersection every time it
again to Figure 1). The algorithm for Step (2)(a) then'S $canned,_excep'g for the last time, when it is deleted.
proceeds as follows: 'I_'hls analysis requires that each of the rougkﬁyl_/O-

lists has exclusive use of at least one block of main mem-

Algorithm RectangleJoin (continued): ory, so the partitioning factdr of the distribution sweep

should be chosen to be at mggin. Thus, the cost of 4.2 The Square-Root Rule

Step (2)(a) is linear in the input size and the number

of intersections produced in this step, and the total cos}? MOSt !mplementatlonsf of plane-sweeplngdalgqntjhms,
over theO(log, 1 = O(log,. n)) levels of recursion is 1€ Maximum amount of memory ever needed is deter-

O(nlog,, n +). mined by the maximum number of rectangles that are

Note that the sublists of created by Step (2)(a) for intersected by a single horizontal line. For most “real
use in the recursive computations inside the strips are ifffe” input data this number, which we will refer to as the

sorted order. Putting everything together, we have thénaximum overlapf a data set, is actually significqntly
following theorem ' Smaller than the total number of rectangles. This ob-

servation has previously been made by other researchers

(see [GS87] and the references therein), and is known as

the “square-root rule” in the VLSI literature. That is, for

a data set of sizé&/, the number of rectangles intersected

by any horizontal or vertical line is typicallQ (v/N),

with a moderate multiplicative constant determined by

. the data set.

4 Plane Sweeping and the Square-Root \we consider the standard benchmark data for spa-
Rule tial join, namely the US Bureau of the Census

TIGER/Line [Tig92] data. These data files consist of

As discussed in the introduction, the overall efficiency . S . .

of many spatial join algorithms is greatly influenced by polygona_l line entities representing physical features
the plane-sweeping algorithm that is employed as a su such as rivers, roads, railroad lines, etc. We used the data
routine. Several efficient plane-sweeping algorithms for;r:(;r;\?ei\ta\iﬁfk()fggg ‘:]Lesrﬁs)%//\’/sr\’tzgdr?\allili?nnl?rh%?,l?':sg:lg?t
rectangle intersection have been proposed in the com- les th) X db hori line. f
putational geometry literature. Of course, these algo_rectang es that are intersected by any horizontal line, for
rithms were designed under the assumption that the dattﬁqe road and hydrog_raphlc_: featL_Jres of the four data Sets.
e number of spatial objects in each data set is given

fits completely in main memory. In this section we will ; . .
. - . long with the maximum number of the corresponding
show that under certain realistic assumptions about th ; : .
BR rectangles that overlap with any horizontal line.

input data, many of the internal-memory algorithms can

in fact be applied to input sets that are much larger tha|J1\]Ote tha‘;)the maximum _oxetr]Iap for the TIGET data ap-
the available memory. pears to be consistent with the square-root rule.

Thus, if a data set satisfies the square-root rule, then
we can use plane sweeping to solve the spatial join prob-
lem on inputs that are much larger than the available
The rectangle intersection problem can be solved in mai@mount of memory, as long as the data structure used
memory by app|y|ng a technique callé®dane Sweep- by the plane sweep never grows beyond the size of the
ing. Plane sweeping is one of the most basic algorithmidnemory.
paradigms in computational geometry (see, e.g., [PS85])
Simply speaking, a plane-sweeping (or sweepline) algo-

Theorem 3.3 Given a list of rectangles fron¥ and @)
sorted by their lower boundaries in one axis, Algorithm
RectangleJoinreports all intersections between rectan-
gles fromP and@ usingO(n log,,, n + t) I/O transfers.

4.1 Plane Sweeping

Road Max. Hydro Max.

rithm attempts to solve a geometric problem by mov- O%/ggzp %‘%Bp
ing a vertical or horizontasweeplineacross the scene, Rhode Sland 68577 578 <013 =7

processing objects as th_ey are rgached by the sweepl!ne.Connecticut 188642 | 932 28775 145
CIearI_y, for any pair of intersecting rectangles there is| ey Jersey | 414442| 1600 | 50853 156
a horizontal line that passes through both rectangles| New York 870412 | 2649 | 156567| 362
Hence, a plane-sweeping algorithm for rectangle inter-
section only has to find all intersections between rect-Table 1: Characteristics of road and hydrographic data
angles located on the same sweepline, thus reducing thfeom TIGER/Line data.
problem to a (dynamic) one-dimensional interval inter-
section problem. . . _ 5 Scalable Sweeping-Based Spatial Join

A typical plane-sweeping algorithm for rectangle in-
tersection uses a dynamic data structure that allows insei/e now describe the SSSJ algorithm, which is obtained
tion, deletion, and intersection queries on intervals.tRec by combining the theoretically optim&ectangleloin
angles are inserted into the structure as they are reachedgorithm presented in Section 3 with an efficient plane-
by the sweepline, at which time a query for intersectionssweeping technique. The resulting SSSJ performs an ini-
with the new rectangle is performed, and are removedial sort, and then directly attempts to use plane-sweeping
after the sweepline has passed over them. Many optito solve the join problem. The vertical partitioning step
mal and suboptimal dynamic data structures for intervalén RectangleJoin is only performed if the sweeping
have been proposed; important examples are the intervalructure used by the plane-sweep grows beyond the size
tree [Ede83], the priority search tree [McC85], and theof the main memory.
segment tree [Ben77]. Alternatively, we could use random sampling to es-

Scalable Sweeping-Based Spatial Join:

Sort sets” and() on their lowery-coordinates
Initiate an internal-memory plane-sweep
if the plane-sweep runs out of main memory

perform one level of partitioning usin
RectangleJoinand recursively call SSSJ o
each subproblem

5 K

Figure 2: SSSJ algorithm for computing the join between

two setsP and(of rectangles.

timate the overlap of a data set with guaranteed confi
dence bounds, and then use this information to decid
whether the input needs to be partitioned; the details ar
omitted due to space constraints. In our implementatio
we followed the slightly less efficient approach describe
above. After the initial sort we simply start the internal
plane-sweeping algorithm, assuming that the sweeplin
structure will fit in memory. During the sweep we moni-
tor the size of the structure, and if it reaches a predefine
threshold we abort the sweep and ddictangleJoin.
Given the large main memory sizes of current work-

stations, we expect that in most cases, we can proces

data sets on the order of several hundred billion rectan
gles with the internal plane-sweeping algorithrow-
ever, if the data is extremely large, or is highly skewed,
then SSSJ will invoke the vertical partitioning at a mod-
erate increase in running time.

In most cases, SSSJ will skip the vertical partition-
ing, and our spatial join algorithm is reduced to an ini-
tial external sorting step, followed by a scan over the
sorted data (during which the internal plane-sweeping al
gorithm is run). We believe that this observation is con-|
ceptually important for two reasons. First, it provides a
very simple and insightful view of the structure and 1/0
behavior of our spatial join algorithm. Second, it allows
for a simple and fast implementation, by leveraging the
performance of the highly tuned sorting routines offered
by many database systems. There has been considera
work on optimized database sorts in recent years (se
e.d,, [Aga96, DDCG 97, NBC"94]), and it appears wise
to try to draw on these results.

6 Fast Plane-Sweeping Methods

As mentioned already, the overall efficiency of many spa
tial join algorithm is greatly influenced by the internal-

memory join algorithm used as a subroutine. In this sect

tion we describe and compare several internal-memor,

plane-sweeping algorithms. We present the algorithms

in Subsection 6.1 and report the results of experiment
with the TIGER/line data set in Subsection 6.2.

5We estimate that the TIGER/Line data for #etire United States
will be no more tharb0 million rectangles.

6.1 Algorithms

Recall from Section 4.1 that the most common plane-
sweeping algorithm for the rectangle intersection prob-
lem is based on an abstract data structure for storing
and querying intervals. We implemented several ver-
sions of this data structure. In the following we first give
a generic description of the plane-sweeping algorithm,
and then describe the different data structure implemen-
tations. We also describe the plane-sweeping algorithm
used in PBSM, which we also implemented for compari-
son. This algorithm was proposed in [BKS93], and does
not use an interval data structure.
As before, assume that we have two sBts= {p; |
i € [Mq]}and@ = {¢; | i € [N2]} of rectangles,
sorted in ascending order by their lower boundary in the
y-axis. We want to find intersections betweé&nand
by sweeping the plane with a horizontal sweepline.

or a rectangler (r;in,r;ax,rgﬁn,rgm_), we call

L e the interval ofr, r¥. the starting time of
r, andr? _ the expiration time of. Let D be an in-
stance of the generic data structPethat supports the

max

?ollowing operations on rectangles and their associated

Hﬂervals:
(1) Insert(D,r) inserts a rectangle intb.

gZ) Deletg D, y) removes fromD all rectangles with

expiration timer¥ . < y.

max

(3) Query(D,r) reports all rectangles iV whose in-
terval overlaps with that of.

Figure 3 shows the pseudocode for the resulting algo-
rithm SweepJoin_Generic

Algorithm SweepJoin_Generic:

- /*x Head P) and Head() denote the current first el
ements in the sorted list8 and @ of rectangles, ang
Dp andD, are two initially empty data structures/

repeatuntil P and@ are empty
Letp = Head P) andg = Head Q)
If pglin < qglin
Inser{Dp, p)
Deleté Dg,p?,..)
QueryDg, p)
Removep from P
else
Inser{Dg, q)
Delete{DP: qiynin)

QueryDp, q)
Removeg from

ple

y

igure 3: Generic plane-sweeping algorithm for comput-
ing the join between two se® and(of rectangles.

We implemented three different versionsdaind ob-
tained three different versions of the generic algorithm:

Tree SweepnvhereD is implemented as an interval tree small rectangles and that are not extremely clustered in
data structurel.ist SweepwhereD is implemented us- one area.

ing a single linked list, and&tripedSweepwhereD is Algorithm Forward _Sweepis the plane-sweeping
implemented by partitioning the plane into vertical strips algorithm employed by Patel and DeWitt in PBSM, and
and using a separate linked list for each strip. Finally, wewas first proposed in [BKS93]. This algorithm is some-
refer to the algorithm used in PBSM Bsrward_Sweep what similar in structure td.ist Sweep except that it

In the following we discuss each of these algorithms. does not use a linked list data structure to store inter-

Algorithm Tree _Sweepuses a data structure that is vals encountered ip the recent pqst: but scans forward in
essentially a combination of an interval tree [Ede83] ano_the sortgd lists for mterval; that will intersect the cutre
a skip list [Pug90]. More precisely, we used a simplified interval in the future; see Figure 4 for the structure of the
dynamic version of the interval tree similar to that de- algorithm. The worst-case running time of this algorithm
scribed in Section 15.3 and Exercise 15.3-4 of [CLR90]S ©(N?) (O(NV'N) if we assume that the square root
but implemented the structure using a randomized skigule applies).
list instead of a balanced tree structure. (Another, though
somewhat different, structure combining interval treeg
and skip lists has been described in [Han91].) Our red
son for using a skip list is that it allows for a fairly simple
but efficient implementation while matching (in a prob-
abilistic sense) the good worst-case behavior of a bal- repeatuntil P andQ are empty
anced tree. With this data structure, the expected time fqg Letp = Head P) andq = Head Q)
an insertion can be shown to B¥log V), while query it b= e 4=
and deletion operations take til¥7" log V), whereT " Prnin < Grmin

| Algorithm Forward Sweep:
/+ Head P) and Head) denote the current first elg
ments in the sorted list8 and(@ of rectangless/

=

is the number of rectangles reported or deleted during Removep from P »

the operation. The worst-case running time of this algo Scan(from the current position and

rithmisO(N log N 4+ T log N), which is at most &g N report all rectangles that intersept

factor away from the optima® (N log N + T') bound. Stop yvheyn the current rectangies @

However, on real-life data, the intersection query time satisfies ;, > plhax-

is usuallyO(log N + T'), as most intersecting rectan- else

gles are typically close to each other in the tree. Thus, Remove; from @

we would not expect significant improvements from ScanP from the current position angd

more complicated, but asymptotically optimal data struc report all rectangles that interseats

tures [McC85, Ede83]. Stop when the current rectangles P
Algorithm List Sweepuses a simple linked-list data satisfies,;, > fax-

structure. To decrease allocation and other overheads and
improve locality, each element of the linked list can hold
up to 16 rectangles. Insertion is done in constant time,Figure 4: AlgorithmForward Sweepused by PBSM for
while query and deletion both take time linear in the computing the join betweeR and().

number of elements in the list in the worst case. Thus,

the worst case running time of the algorithmQgN?) _

(O(NVN) if we assume that the square root rule ap-6-2 Experimental Results

plies). In order to compare the four algorithms we conducted
Algorithm Striped _Sweep uses a data structure experiments joining the road and hydrographic line fea-
based on a simple partitioning heuristic. The basic idedures from the states of Rhode Island, Connecticut and
is to divide the domain into a number of vertical strips of New Jersey. The input data was already located in main
equal width and use one instance of the linked list strucimemory at the start of each run. The experiments were
ture fromList. Sweepn each strip. Intervals are stored conducted on a Sun SparcStation 20 vdthmegabytes
in each strip that they intersect. The key parameter irof main memory (we were thus unable to fit the New
this data structure is the number of strips used. By usingrork data into internal memory). To decrease the cost
s strips, we hope to achieve an improvement of up to aof deletion operations, we introducedsay factor/ and
factor of s in query and deletion time. However, if there only actually performed the deletion operation evihy
are too many strips, many intervals will intersect moretime it was called. We chode= 10 in Tree Sweepand
than one strip, thus increasing the size of the data strud-ist Sweepand! = 5 in StripedSweep We varied the
ture and slowing down the operations. We experimenteciumber of strips irStriped Sweegdrom 4 to 256.
with a number of values for the number of strips to de- Table 2 compares the running times of the four plane-
termine the optimum. Insertions can be done in constansweeping algorithms (excluding the sorting times). We
time, while searching and deletion both can be linear incan clearly see th&tripedSweemutperforms the other
the worst case. However, we expect this algorithm toalgorithms by a factor of to 5. The algorithm achieves
perform very well for real-life data sets that have manythe best performance fd4 to 128 strips; beyond this

7.1 Sketch of the PBSM Algorithm

Algorithm RI CT NJ .) N

Tree Sweep 228| 8.57 | 16.65 The filter step of PBSM consists of a decomposition step
Forward Sweep 1.18| 12.0 | 15.8 followed by a plane-sweeping step. In the first step the
List Sweep 1.30| 10.19| 14.83 input is divided intop partitions such that each parti-
Striped Swee4) 0721 4.02 | 6.91 tion fits in memory. In the second step, each partition is
Striped Swee(8) 056| 2.72 | 4.91 loaded into memory and intersections are reported using
StripedSweefl6) | 0.48| 1.97 | 3.73 an internal-memory plane-sweeping algorithm.
StripedSwee(32) | 0.43| 1.57 | 3.18 To form the partitions in the first step, a spatial par-
StripedSwee(64) | 0.42| 1.39 | 3.06 titioning function is used. More precisely, the input is
StripedSwee(128) | 0.45| 1.36 | 2.91 inided into tiles of some fixed size. The number of tiles
StripedSwee(256) | 0.54| 1.61 | 3.25 is somewhat larger than the number of partitignsTo

form a partition, a tile-to-partition mapping scheme is
Table 2: Performance comparison of the four plane-used thatcombines severalftiles into one partition. Anin-
sweeping algorithms in main memory (times in seconds)Put rectangle is placed in each partition it intersects with
The tile-to-partition mapping scheme is obtained by
rdering the tiles in row-major order, and using either
und robin or hashing on the tile number. Figure 5 il-
lustrates the round-robin scheme, which was used in our
) implementations of PBSM. Note that an input rectangle
20% on the other two s_ets._) Algorlthnfs)rward_$we_ep cag appear in more than one partition, wrl?ich makeg it
andList. Sweerare similar in performance, which is to very difficult to compute a priori the number of partitions

be expgcte_d tgh“’if‘ tLhSew S'm”"f[‘r sﬁructutre. fMay;ce): a bltsuch that each partition fits in internal memory. Instead,
surprising 1S that.ist.sweepactually outperiormsor 5, astimation is used that does not take duplication into
ward_Sweegslightly on the larger data sets, even thoughaccount

it has additional overheads associated with maintaining

point, the performance slowly degrades due to increase
replication. (Fork = 256, we get a replication rate of
more thard0% on the smallest data set, and more than

a data structure. Finallfiree Sweeps slower tharfor- oo T T oo A I

ward_SweemndList Sweempn small (RI) and thin (NJ) | | | | i

sets, and faster on wide (CT) and large (NY) Sets. | TileO/Part0; TileUPartl Tile2/Part2 Tile 3/Part0
We point out thatTree Sweepis the only algo- |~~~ "~~~ Tt [Tttt !

rithm that has a good worst-case behavior. WhiIe: | ‘ | |
StripedSweeps the fastest algorithm on the tested data, i gpart1; Tile /Fart 2, Tile 6/Part§ Tile 7/Part 1
sets, Tree Sweepis useful because it offers reasonablyr ——————— 1= -STropTTT o T T - 1
good performance even on very skewed data. As disr | ! | |
cussed in the next section we therefore decided to use _ U U A !
both of them in our practically efficient, yet skew resis- . _ ¢ 8/Part2,_ Tile 9/Part0, Tile 10/Parti Tile 11/Part 2

tant, SSSJ algorithm. Figure 5: Partitioning witt8 partitions andl?2 tiles us-
ing the round-robin scheme. The rectangle drawn with a
solid line will appear in all three partitions.

7 Experimental Results

In this section, we compare the performance of the SSS3.2 Implementation Details

and PBSM algorithms. We implemented the SSSJ algoyye implemented the three algorithms using the
rithm along with two versions of the PBSM algorithm, rrangparent Parallel 110 Programming Environment
one that follows exactly the description of Patel and De'(TPIE) system [Ven94, Ven95, VV96] (see also
Witt [PD96] and one that replaces their internal-memoryp,. /xyww.cs.duke.edu/TPIE/). TPIE is a collection of
plane-sweeping procedure wiBtripedSweep We re- ampiated functions and classes to support high-level
fer to the original and improved PBSM as QPBSM andy ¢ efficient implementations of external-memory algo-
MPBSM, respectively. rithms. The basic data structure in TPIE isteeam rep-

We begin by giving a sketch of the PBSM algorithm. resenting a list of objects of an arbitrary type. The sys-
We then describe the details of our implementationstem contains I/O-efficient implementations of algorithms
and compare the performance of SSSJ against that @ér scanning, merging, distributing, and sorting streams,
QPBSM and MPBSM on TIGER/Line data sets. Finally, which are building blocks for our algorithms. This made
we compare the performance of the three algorithms orthe implementation relatively easy and facilitated mod-
some artificial worst-case data sets that illustrate the roglar design. The input data consists of two streams of
bustness of SSSJ. rectangles, each rectangle being a structure containing

the coordinates of the lower left corner and of the upper
6The claim for the New York data set was verified with additiona i@ht corner, and an ID, for a total of 40 bytes. The out-
runs on a different machine with larger main memory. put consists of a stream containing the IDs of each pair

7000 T T

“QPBSM“ o N
) 6000 "MPBSM" -— .
AL "SS5
5000]
n
©
& S 4000 1
@ Phase 2
£ o L
g © 3000 g
IS a
w0 NI [
& 2000 .
50 4
RI
. | []| 1000]

sss)
MPBSM|
QPBSM
sss3
MPBSW|
QPBSM
sss)
MPBSM|
sss3
MPBSW|
QPesM
sssi|
MBS
QPBSM

orithm 0 I i I | | I | | |
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 le+06

Number of rectangles

>
& QPBSM|

Figure 6: Running times for TIGER data. For MPBSM _ o
and QPBSM, Phase 1 consists of the partitioning step, Figure 7: Running times fdral | _r ect

while for SSSJ, it consists of the initial sorting step. The) _ _ _
remaining steps are contained in Phase 2. size of4 kilobytes, in order to achieve a high transfer

rate.

of intersecting rectangles. Figure 6 shows the running times of the three pro-

As described in Section 6.1, SSSJ first performs a sorigrams on the TIGER data sets. It can be seen that
We used TPIE’s external-memory merge sorting routingdoth SSSJ and MPBSM clearly outperform QPBSM:
in our implementation. Then SSSJ tries to perform theSSSJ performs at lea85% better than QPBSM, while
internal-memory plane-sweeping directly, and reverts tdVIPBSM performs approximately0% better than SSSJ.
Rectangleloin to partition the data only if the sweep The gain in performance over QPBSM is due to the use
runs out of main memory. We us&iripedSweems the of StripedSweepin SSSJ and MPBSM. As the max-
default internal memory algorithm for the first sweep at-imum overlap of the five data sets is relatively small,
tempt, and switched tBree Sweemnce partitioning has SSSJ only runs the TPIE external-memory sort and the
occurred. InRectangleloin, we used random sampling internal-memory plane-sweep.
to determine the strip boundaries, thus avoiding an ad- From an I/O perspective, the behavior of MPBSM and
ditional sort of the data along thedimension. The /O SSSJ is as follows. SSSJ first performs one scan over
lists used byRectangleloin were implemented as TPIE the data to produce sorted runs and then another scan
streams. to merge the sorted runs (in the TPIE merge sort), be-

The PBSM implementations, QPBSM and MPBSM, fore scanning the data again to perform the plane-sweep.
consist of three basic steps: A partitioning step, whichMPBSM, on the other hand, first distributes the data to
uses 1024 tiles,and then for each generated partition the partitions using one scan, and then performs a sec-
an internal-memory sorting step and finally a plane-ond scan over the data that sorts each partition in inter-
sweeping step. The two PBSM programs differ in thenal memory and performs the plane-sweep on it. Thus,
way they perform the plane-sweep: QPBSM uses thélPBSM has a slight advantage in our implementation
Forward Sweepof Patel and DeWitt, while MPBSM because it makes one less scan of the data on disk.

uses our fasteBtriped Sweep A more efficient implementation of SSSJ would feed
the output of the merge step of the TPIE sort directly
7.3 Experiments with TIGER Data into the scan used for the plane-sweep, thus eliminat-

ing one write and one read of the entire data. We be-
eve that such an implementation would slightly outper-
orm MPBSM. While conceptually this is a very simple

change, it is somewhat more difficult in our setup as it

no restrictions on the amount of internal memor thatWOUId require us to open up and modify the TPIE merge
y sort. In general, such a change might make it more dif-

QPBSM and MPBSM.COU|d use, and thus the Vlrtual'ficult to utilize existing, highly optimized external sort
memory system was invoked when needed. However, rocedures

the amount of internal memory used by SSSJ was limite '
to 12 megabytes, which was the amount of free memor

on the machine when the program was running. For al)le'4 Experiments with Synthetic Data

experiments, the logical block transfer size used by then order to illustrate the effect of skewed data distribu-
TPIE streams was set # times the physical disk block tions on performance, we compared the behavior of the
"This is the value used by Patel and DeWitt in their experisient three algorithms on synthetically generated data sets. .\Ne
They also found that increasing the number of tiles halaffect on ~ 9€Nerated two data sets of skewed rectangles, following
the overall execution time. a procedure used in [Chi95]. Each data set contains two

We performed our experiments on a Sun SparcStation 2
running Solaris 2.5, with 32 megabytes of internal mem-
ory. In order to avoid network activity, we used a local
disk for the input files as well as for scratch files. We put

1000+ "MPBSM" +— N
"QPBSM" +—
"SSSJ" e

800 -

Time (seconds)
(2]
3
T

IN

o

=]
T

200 -

0 200000

400000 600000
Number of rectangles

800000

In our future work, we plan to compare the perfor-
mance of SSSJ against tree-based methods [BKS93]. We
also plan to study the problem of higher-dimensional
joins. In particular, three-dimensional joins would be in-
teresting since they arise quite naturally in GIS. Finally,
a question left open by our experiments with internal-
memory plane-sweeping algorithms is whether there ex-
ists a simple algorithm that matches the performance of
1 Striped Sweepbut that is less vulnerable to skew.

- Acknowledgements

We would like to thank Jignesh Patel for his many clari-
1e+06 Tications on the implementation details of PBSM.

References

Figure 8: Running times foni de_r ect

[Aga9gs6]
sets ofV/2 rectangles each, placed in tile N] x [0, N]
square. In order to guarantee that the reporting cost do iM]
not dominate the searching cost, the rectangles are cho-
sen such that the total number of intersections between
rectangles from the two sets@ V). The first data set, [apr*og]
calledt al | rect, consists of long and skinny verti-
cal rectangles which result in a large maximum over-
lap. To construct the data, we used a fixed wiltfor
each rectangleh(= 10 in the experiments), and chose [ARCO3]
the height uniformly in[0, N/2]. We also chose the
andy coordinates of the lower left corner uniformly in
[0, N — h] and [0, N/2], respectively. The second data [Arg95]
set, calledn de_r ect , can be obtained by rotating the
tal | _rect datasetby90degrees. It has the same num-
ber of intersections, but a small expected maximum over-
lap.

Figure 7 shows the running times of the three algo-[Arg97]
rithms on thet al | rect data set. The performance
of MPBSM degrades quickly, due to the replication
of each input rectangle in several partitions. QPBSM
performs even worse because of @$/N?) worst-case
plane-sweep: The rectangles are tall, and as we are scalfV88]
ning in they direction, the time for each query becomes
©(N). This problem can be somewhat alleviated if we
increase the number of partitions. However, this would
further increase replication.

Figure 8 shows the running times on thiede r ect
data set. In this data set the maximum overlap is small
(constant), which is advantageous for all three programs.
However, the PBSM implementations still suffer from [Ben77]
excessive replication.

[AVV98]

8 Conclusions and Open Problems [BG92]
In this paper, we have proposed a new algorithm for

the spatial join problem called Scalable Sweeping-BaseghFg3;
Spatial Join (SSSJ), which combines efficiency on re-

alistic data with robustness against highly skewed and
worst-case data. We have also studied the performance of
several internal-memory plane-sweeping algorithms andPKS93]
their implications for the overall performance of spatial

joins.

Ramesh C. Agarwal. A super scalar sort algorithm
for RISC processors. IRroc. SIGMOD Intl. Conf.
on Management of Datgages 240-246, 1996.

L. Arge and P. B. Miltersen. On showing lower
bounds for external-memory computational geom-
etry. Manuscript, 1998.

L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel,
and J. S. Vitter. Theory and practice of 1/O-
efficient algorithms for multidimensional batched
searching problems. IRroc. ACM-SIAM Symp.
on Discrete Algorithmspages 685—-694, 1998.

ARC/INFO. Understanding GIS—the ARC/INFO
method ARC/INFO, 1993. Rev. 6 for worksta-
tions.

L. Arge. The buffer tree: A new technique for
optimal I/O-algorithms. IrProc. Workshop on Al-
gorithms and Data Structures, LNCS 95fages
334-345, 1995. A complete version appears as
BRIES Technical Report RS-96-28, University of
Aarhus.

L. Arge. External-memory algorithms with ap-
plications in geographic information systems. In
M. van Kreveld, J. Nievergelt, T. Roos, and P. Wid-
mayer, editors Algorithmic Foundations of GIS
Springer-Verlag, Lecture Notes in Computer Sci-
ence 1340, 1997.

A. Aggarwal and J. S. Vitter. The Input/Output
complexity of sorting and related problentSom-
munications of the ACMB1(9):1116-1127, 1988.

L. Arge, D. E. Vengroff, and J. S. Vitter. External-
memory algorithms for processing line segments
in geographic information systemg#lgorithmica

(to appear in special issues on Geographical In-
formation Systems)1998. Extended abstract ap-
pears in Proc. of Third European Symposium on
Algorithms, ESA'95.

J. L. Bentley. Algorithms for Klee's rectangle
problems. Dept. of Computer Science, Carnegie
Mellon Univ., unpublished notes, 1977.

L. Becker and R. H. Giiting. Rule-based opti-
mization and query processing in an extensible ge-
ometric database systemACM Transactions on
Database Systems7(2):247-303, 1992.

L. Becker, K. Hinrichs, and U. Finke. A new algo-
rithm for computing joins with grid files. linter-
national Conference on Data Engineeringages
190-198, 1993. IEEE Computer Society Press.
T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Ef-
ficient processing of spatial joins using R-trees.
In Proc. SIGMOD Intl. Conf. on Management of
Data, 1993.

[BKSS90]

[Chigs]

[CLR9O]

[DDC*97]

[Ede83]

[GS87]

[GTVV93]

[Gung3]

[Gut85]

[Han91]

[HIR97]

[HS92]

[Int97]

[KHT89]

[KS97]

[LR94]

[LR95]

[LR96]

N. Beckmann, H.-P. Kriegel, R. Schneider, and [McC85]
B. Seeger. The R*-tree: An efficient and robust
access method for points and rectanglesPiioc.
SIGMOD Intl. Conf. on Management of Data
1990.

Y.-J. Chiang. Experiments on the practical /O
efficiency of geometric algorithms: Distribution
sweep vs. plane sweep. Rroc. Workshop on Al-
gorithms and Data Structures, LNCS 95%ages
346-357, 1995.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms The MIT Press, Cam-
bridge, Mass., 1990.

A. C. Arpaci Dusseau, R. H. Arpaci Dusseau, D. E.
Culler, J. M. Hellerstein, and D. A. Patterson.
High-performance sorting on networks of work-
stations. InProc. SIGMOD Intl. Conf. on Man-
agement of Datgpages 243254, 1997.

H. Edelsbrunner. A new approach to rectangle in-
tersections, part lint. J. Computer Mathematics
13:209-219, 1983.

R. H. Giting and W. Schilling. A practical divide-
and-conquer algorithm for the rectangle intersec- orego]
tion problem. Information Sciences42:95-112,

1987.

M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and
J. S. Vitter. External-memory computational ge-
ometry. InProc. IEEE Symp. on Foundations of
Comp. Sci.pages 714-723, 1993.

O. Gunther. Efficient computation of spatial jgin
In International Conference on Data Engineering [psg5]
pages 50-60, 1993. IEEE Computer Society Press.

A. Guttman. R-trees: A dynamic index struc-
ture for spatial searching. Froc. ACM-SIGMOD
Conf. on Management of Datpages 47-57, 1985.

E. N. Hanson. The interval skip list: A data struc-
ture for finding all intervals that overlap a point. [Rot91]
In Proceedings of Algorithms and Data Structures
(WADS '91) volume 519 ofLNCS pages 153—
164. Springer, 1991.

Y.-W. Huang, N. Jing, and E. A. Rundensteiner.
Spatial joins using R-trees: Breadth-first traversal
with global optimizations. IProc. IEEE Interna-
tional Conf. on Very Large Databasgsages 396—
405, 1997.

E. G. Hoel and H. Samet. A qualitative comparison _
study of data structures for large linear segment[Tig92]
databases. IProc. ACM SIGMOD Conf.page
205, 1992.

Intergraph Corp. MGE 7.0, “http://www.inter-
graph.com/iss/products/mge/mge-7.0.htm”, 1997.

M. Kitsuregawa, L. Harada, and M. Takagi. Join [Val87]
strategies on kd-tree indexed relations. Irier-
national Conference on Data Engineeringages
85-93, 1989. IEEE Computer Society Press.

N. Koudas and K. C. Sevcik. Size separation spa-

[NBC*94]

[NHS84]

[oM88]

[Ore86]

[Ore89]

[PD96]

[Pug90]

[Sam89]

[SRF87]

[Ube94]

[Ven94]

tial join. In Proc. SIGMOD Intl. Conf. on Manage- [Ven95]
ment of Datapages 324—-335, 1997.

M.-L. Lo and C. V. Ravishankar. Spatial joins us-

ing seeded trees. IAroc. SIGMOD Intl. Conf. on
Management of Datgpages 209—-220, 1994. [VV96]

M.-L. Lo and C. V. Ravishankar. Generating
seeded trees from data setsPioc. International
Symp. on Large Spatial Databasd995.

M.-L. Lo and C. V. Ravishankar. Spatial hash-
joins. InProc. SIGMOD Intl. Conf. on Manage-
ment of Datapages 247—-258, 1996.

E.M. McCreight. Priority search treeSIAM Jour-
nal of Computing14(2):257-276, 1985.

C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray,
and D. Lomet. AlphaSort: A RISC machine sort.
In Proc. SIGMOD Intl. Conf. on Management of
Data, pages 233-242, 1994.

J. Nievergelt, H. Hinterberger, and K.C. Sevcik.
The grid file: An adaptable, symmetric multikey
file structure ACM Transactions on Database Sys-
tems 9(1):257-276, 1984.

J. A. Orenstein and F. A. Manola. PROBE spatial
data modeling and query processing in an image
database applicationEEE Transactions on Soft-
ware Engineering14(5):611-629, 1988.

J. A. Orenstein. Spatial query processing in an
object-oriented database system. In Carlo Zaniolo,
editor, Proceedings of the 1986 ACM SIGMOD In-
ternational Conference on Management of Data
pages 326-336, 1986.

J. A. Orenstein. Redundancy in spatial databases.
SIGMOD Record (ACM Special Interest Group on
Management of Data)l8(2):294—-305, June 1989.

J. A. Orenstein. A comparison of spatial query
processing techniques for native and parameter
spaces. SIGMOD Record (ACM Special Interest
Group on Management of Data)9(2):343-352,
June 1990.

J. M. Patel and D. J. DeWitt. Partition based
spatial-merge join. IProc. SIGMOD Intl. Conf.
on Management of Datgages 259-270, 1996.

F. P. Preparata and M. |. Sham@omputational
Geometry: An Introduction Springer-Verlag,
1985.

W. Pugh. Skip lists: A probabilistic alternative
to balanced treesCommunications of the ACM
33(6):668-676, June 1990.

D. Rotem. Spatial join indices. limternational
Conference on Data Engineeringages 500-509,
1991. IEEE Computer Society Press.

H. Samet. The Design and Analyses of Spatial
Data Structures Addison Wesley, MA, 1989.

T. Sellis, N. Roussopoulos, and C. Faloutsos. The
RT-tree: A dynamic index for multi-dimensional
objects. InProc. IEEE International Conf. on Very
Large Databasesl987.

Tiger/line files (tm), 1992 technical documenta-
tion. Technical report, U. S. Bureau of the Census.

M. Ubell. The montage extensible datablade ar-
chitecture. InProc. SIGMOD Intl. Conf. on Man-
agement of Datal994.

Patrick Valduriez. Join indiceACM Transactions
on Database Systemk2(2):218-246, June 1987.

D. E. Vengroff. A transparent parallel /O environ-
ment. InProc. 1994 DAGS Symposium on Parallel
Computation 1994.

D. E. Vengroff. TPIE User Manual and Ref-
erence Duke University, 1995 with sub-
sequent revisions. Avallable via WWW at
http://ww. cs. duke. edu/ TPI E.

D. E. Vengroff and J. S. Vitter. 1/O-efficient sci-
entific computation using TPIE. IAroceedings of

the Goddard Conference on Mass Storage Systems
and TechnologiesNASA Conference Publication
3340, Volume II, pages 553-570, 1996.

