A Super-Logarithmic Lower Bound
for Hypercubic Sorting Networks

C. Greg Plaxton™ Torsten Suel T

Department of Computer Science
University of Texas at Austin

Abstract

Hypercubic sorting networks are a class of comparator networks whose
structure maps efficiently to the hypercube and any of its bounded de-
gree variants. Recently, n-input hypercubic sorting networks with depth

2°(V1818 %) 1oy have been discovered. These networks are the only known
sorting networks of depth o(lg? n) that are not based on expanders, and
their existence raises the question of whether a depth of O(lgn) can be
achieved by any hypercubic sorting network. In this paper, we resolve
this question by establishing an (%ﬁfn—") lower bound on the depth
of any n-input hypercubic sorting network. Our lower bound can be ex-
tended to certain restricted classes of non-oblivious sorting algorithms on
hypercubic machines.

1 Introduction

A variety of different classes of sorting networks have been described in the literature.
Of particular interest here are the so-called AKS network [1] discovered by Ajtai,
Komlés, and Szemerédi, and the sorting networks proposed by Batcher [2]. While the
AKS network is the only known sorting network with O(lgn) depth, it also suffers
from two significant shortcomings. First, the multiplicative constant hidden by the O-
notation is impractically large. Through a series of improvements [3, 14], this constant
has been reduced to below 2000, but remains impractical. Second, the structure of the
network is highly irregular, and does not seem to map efficiently to any of the common
interconnection schemes. For example, Cypher [6] has shown that any emulation of
the AKS network on the cube-commected cycles requires (lg®n) time. (A sorting
algorithm emulates the AKS network if it performs the same sequence of comparisons
on any input.)

In contrast, the networks proposed by Batcher have a relatively simple structure
and a small associated constant, and can be efficiently implemented on many common
interconnection schemes, including meshes and hypercubic networks. This makes them

*Email: plaxton@cs.utexas.edu. Supported by NSF Research Initiation Award CCR-
9111591, and the Texas Advanced Research Program under Grant Nos. 003658-480 and
003658-461.

tEmail: torsten@cs.utexas.edu. Supported by the Texas Advanced Research Program
under Grant Nos. 003658—480 and 003658-461, and by a Schlumberger Graduate Fellowship.

the networks of choice in many practical applications, even though they have depth
O(lg? n) and are thus asymptotically inferior to AKS. This situation has motivated a
number of attempts to construct O(lg n)-depth sorting networks with simpler, more
regular topologies, and/or a considerably smaller constant. Three classes of networks
that have received particular attention are Shellsort networks [5, 10, 16, 19], periodic
sorting networks [8, 9], and hypercubic sorting networks [13, 15].

In this paper, we focus on the class of hypercubic sorting networks, a notion that
is formalized below. We establish a lower bound of €2 (%ﬁfn—") for the depth of any
sorting network in this class. In fact, our lower bound argument can be extended to
apply to certain restricted classes of non-oblivious sorting algorithms on hypercubic
networks and multi-dimensional meshes. Before elaborating any further on these re-
sults, we will briefly describe the comparator network model, and define several classes
of hypercubic networks.

1.1 Hypercubic Sorting Networks

A comparator network is most commonly defined as an acyclic circuit of comparator
elements, each having two input wires and two output wires. One of the output wires
is labeled as the maz-output, which receives the larger of the two input values; the
other output is called the min-output, and receives the smaller value. We will use this
model of a comparator network throughout most of the paper, but will also briefly
consider the following alternative model.

In this model, a comparator network on n registers is determined by a sequence of
pairs (II;, &;), 0 < ¢ < £, where II; is a permutation of {0, ...,n—1} and &; is a vector
of length |[n/2| over {+,—,0,1}. The network receives as input a permutation of
{0, ...,n— 1} that is initially stored in the registers, and then operates on the input in
£ consecutive steps. In step 1, 0 < @ < £, the register contents are permuted according
to IT;, and then the operation stored in the kth component of #; is applied to registers
2k and 2k+1. In a “4” operation, the values stored in the two registers are compared,
and the smaller of the values is stored in register 2k, the larger one in 2k+1. In a “—”
operation, the values are stored in the opposite order. A “0” means that no operation
takes place on the corresponding pair of registers. A “1” operation simply exchanges
the values of the two registers. A comparator network is called a sorting network if it
maps every possible input permutation to the same output permutation.

The shuffle permutation msr, on n = 2% inputs may be defined as follows. If
Jd—1 -+ jo denotes the binary representation of some integer j, 0 < j < n, then w.x(y)
has binary representation jq—s---joja—1. A sorting network is called hypercubic if
II; = wep or II; = ﬂ'S_hl holds for all . A natural subclass of the hypercubic networks
can be obtained by requiring II; = #.; for all 7; we say that a network satisfying
this condition is shuffle-based. Similarly, if II; = ﬂ'S_hl for all ¢, then the network is
unshuffle-based.

The primary motivation for the definition of these two classes of networks is given
by the fact that they can be efficiently implemented on any of the hypercubic inter-
connection networks (i.e., the hypercube, butterfly, cube-connected cycles, or shuffle-
exchange). More precisely, the structure of the hypercubic sorting networks corre-
sponds exactly to the class of normal algorithms on the hypercube, while the structures
of the shuffle-based and unshuffle-based networks correspond to the classes of descend
and ascend algorithms, respectively (see [11] for a definition of these classes). Most of
the important algorithms that have been proposed for the hypercube are normal (e.g.,
Fast Fourier Transform, parallel prefix, bitonic merging and sorting). In fact, it can
be argued that the primary motivation for the definition of the bounded-degree vari-
ants of the hypercube (i.e., the butterfly, cube-connected cycles, and shuffle-exchange)
has been the capability of these networks to efficiently implement the class of normal

algorithms.

The study of sorting networks based on the shuffle permutation was proposed
by Knuth [10, Exercise 5.3.4.47]. The best upper bound for this class is given by
Batcher’s bitonic sort [2], with a depth of O(lg? n). A lower bound of Q(lg? n/lglg n)
was recently established by Plaxton and Suel [17]. However, this lower bound does
not extend to arbitrary hypercubic networks.

The class of hypercubic sorting networks was defined by Leighton and Plaxton [13,
15], who show the existence of a family of hypercubic sorting networks with depth

20(V1slg) Ig n. The construction of these networks is based on a “probabilistic” sort-
ing network described in [12], which sorts all but a superpolynomially small fraction of
the possible input permutations. We point out that the depth of the above hypercubic
networks is o(lgH'6 n), for all € > 0, and that they represent the only known sorting
networks of depth o(lg2 n) that are not based on expanders. Naturally, this raises
the question of whether a depth of O(lgn) can be achieved by any hypercubic sorting
network.

1.2 Overview of this Paper

In this paper, we resolve this question by showing a lower bound of € (%ﬁfn—")
on the depth of any hypercubic sorting network. Our lower bound also extends to
certain restricted classes of non-oblivious sorting algorithms on hypercubic machines
and multi-dimensional meshes. However, our lower bound argument does not allow the
copying of elements by the algorithm. Thus, the Sharesort sorting algorithm of Cypher
and Plaxton [7], which achieves a running time of O(lgnlglgn) (with preprocessing)
on any of the hypercubic machines, is not subject to our lower bound. Nonetheless, we
believe that our present results are already interesting in their own right, and that they
may constitute an important step towards more general lower bounds for sorting on
hypercubic machines. Due to space constraints, some of the proofs have been omitted
from this abstract. A more detailed description of our results can be found in [18].

The remainder of the paper is organized as follows. Section 2 describes some of
the basic ideas underlying our lower bound argument. Section 3 establishes a lower
bound for a restricted class of hypercubic networks. Section 4 then shows our general
lower bound. Some possible extensions and implications of our results are discussed
in Section 5. Finally, Section 6 lists some open questions for future research.

2 Overview of the Proof

In this section, we give a very informal description of the most important ideas in the
proof of our lower bound. To do so, we will first review the lower bound argument for
shuffle-based networks given in [17], and explain why this relatively simple argument
does not extend to the more general class of hypercubic sorting networks. We will
then describe the new proof ideas that are needed in order to get a lower bound for
arbitrary hypercubic sorting networks.

2.1 A Naive Proof Idea

A simple observation concerning comparator networks is that a sorting network must
perform a comparison on every pair of adjacent values in every input, that is, every
pair of values {m, m + 1} must appear on the input wires of some comparator element.
(We assume the inputs to be permutations of {0, ...,n—1}.) Thus, one might attempt
to prove a lower bound of £ for the depth of a class of comparator networks by showing,
for all networks in the class, the existence of an input permutation 7, and of a set of
adjacent values {m, ..., m~+1} in 7, such that no two elements of the set are compared

up to level £ of the network. In the following, we will call such a set an incomparable
set. If we apply this proof idea to a hypercubic network, starting out with the set of all
values as our incomparable set, and, whenever two elements of the set get compared,
removing one of them from the set, then we might lose up to half of the elements in
any given level. So using this simple approach, we could only show the trivial lower
bound of Q(lgn) for the depth of a sorting network.

2.2 The Proof for Shufle-Based Sorting Networks

The key idea to overcome this problem is to modify the proof technique in a way that
allows us to exploit the structural properties of the particular class of networks that
we are studying. To explain this idea, we first consider the proof of the lower bound
for shuffle-based sorting networks in [17]; the case of the unshuffle-based networks is
symmetric. Note that a shuffle-based network can be seen as a concatenation of a
number of butterfly networks of depth lg n each. Thus, if we can show that the size of
our incomparable set decreases by at most a polylogarithmic factor in each butterfly,
then at least Q(lgn/lglgn) consecutive butterflies are needed in order to bring the
size of the incomparable set down to 1; this directly implies the Q(lg2 n/lglgn) lower
bound for shuffle-based sorting networks of [17].

The following recursive definition of a butterfly is crucial for understanding our
proof technique: A butterfly with 2¢ inputs and depth d consists of two parallel 2¢71-
input butterflies of depth d — 1, followed by a final level of up to 297! comparators.
Every comparator in the final level takes one input from the outputs of each of the two
291 input subnetworks. Finally, a 1-input butterfly is just a wire. This “tournament-
like” structure leads to the following important property of a butterfly: An observer of
a 2%input butterfly tournament who sees the outcomes of all comparisons in the two
29! input subnetworks, but not the outcomes of the final level of comparisons, will
not be able to say anything about the relative ordering of any two items taken from
different subnetworks. In other words, the observer will not be able to say anything
about the relative strength of the two “subtournaments” before the final stage. This
“disjointness property” of the subnetworks plays a crucial role in the lower bound
argument of [17].

Instead of maintaining only a single incomparable set, we now maintain a collection
of incomparable sets in each recursive subnetwork. More precisely, after entering a new
butterfly of depth lg n, we partition our current incomparable set into nlg? n disjoint
incomparable sets, most of which are empty, with lg®n sets entering on each wire.
(Recall that a single wire is a 1-input butterfly.)

Due to the recursive structure of a butterfly, in every level we recursively have
two different collections of ©(lg® n) incomparable sets coming from two disjoint sub-
networks. In [17], it is shown that there exists a partial matching between these two
collections of sets such that, if we combine the sets according to the matching and re-
move one element from every pair of elements from the same set that gets compared,
we obtain a new collection of incomparable sets while losing only a very small fraction
of our elements. The number of sets in this new collection is only slightly larger than
the number of sets in either of the two previous collections. The aforementioned “dis-
jointness property” of the two subnetworks is needed at this point to make sure that
the new sets in the collection each contain adjacent elements.

If we repeat this process over all g n levels of the butterfly, then we end up with
a single collection of @(lg® n) incomparable sets. The total number of elements in the
sets is only a constant factor smaller than it was when we entered the butterfly. If we
pick the largest of the @(lg3 n) sets as our new incomparable set, then we only lose a
polylogarithmic factor in the size of the set.

To formalize this proof idea, the notion of an input pattern representing a class

of similar inputs was introduced in [17]. A class of inputs with the desired property
(existence of a large incomparable set) was then constructed by stepwise refinement
of a given input pattern in every level of the network.

2.3 Hypercubic Sorting Networks

The above argument does not work for arbitrary hypercubic networks, as they do not
satisfy the “disjointness property” of the two subnetworks used in the argument. In
this paper, we overcome this obstacle, and derive a super-logarithmic lower bound for
arbitrary hypercubic sorting networks. To do so, we introduce the class of hypercubic
networks with “bounded overlap”.

Assume we are given an arbitrary hypercubic network A with ¢ levels (II;, £;),
0 < 1 < {, as described in the register model of a comparator network. In order
to define the “span” and “overlap” of A, it is convenient to introduce a number of
auxiliary variables. Let a; = 1 if II; = #sp and a; = —1if II; = ﬂ'S_hl, 0 <<t
(We remark that the value of ap has no impact on the definitions that follow.) Let
b = ZlSJSi aj, 0 < i < {. The span of A may now be defined as |[{b; : 0 < i < £}].
The overlap of A is the minimum integer r > 0 such that either: (i) b; < b; +r for all
0<i<j<{ or(i)b; >b;—rforall 0<i<j<{ Notethat a network has overlap
0 iff II; =1I; for all 1 <1 < 5 < £. Furthermore, the span of a network is always at
least as large as its overlap, with equality occurring only in the case £ = 0, where the
span and overlap are both 0.

The proof of the lower bound in this paper is based on two main new ideas. First,
we show in Section 3 how the lower bound argument for shuffle-based networks can
be modified to handle hypercubic networks with small overlap. The overall structure
of this proof is very similar to that in [17]. However, a number of subtle changes are
required in order to extend the argument to networks with non-zero overlap. The
modified proof is based on the observation that, informally speaking, a shuffle-based
network with small overlap still satisfies some relaxed version of the “disjointness
property”. More precisely, we will exhibit a trade-off between the overlap of the
network and the lower bound that can be shown.

Second, we show in Section 4 that any hypercubic network can be partitioned into
a number of consecutive hypercubic networks such that the overlap of each network
in the partition is sufficiently smaller than its depth.

3 Hypercubic Networks with Small Overlap

In this section, we show that a large incomparable set can be effectively maintained
over the levels of any hypercubic network with sufficiently small overlap. The main
result of this section 1s Lemma 3.4, which bounds the decrease in the size of the
incomparable set that can occur in any 2%input hypercubic network with span s < d
and overlap r. This lemma is used in Section 4 to establish our lower bound for
arbitrary hypercubic sorting networks.

The actual argument addressing the size of the incomparable set is contained in
the proof of Lemma 3.3, and is described with respect to a more general class of
networks, called (d, s, r)-hypercubic networks, which properly contains the class of
29 input networks with span s and overlap r. The proof of Lemma 3.3 has a very
similar structure to that of Lemma 4.1 in [17], and we only describe the necessary
modifications. Most of the notations used in this section are taken from [17]. For the
sake of completeness, we define these notations again in the following subsections.

The remainder of this section is organized as follows. In the first subsection, we
introduce the concepts of input patterns and input pattern refinement. Subsection 3.2

defines our notion of a comparator network and its action on an input pattern, and
introduces the class of (d, s, r)-hypercubic networks. Subsection 3.3 lists a few basic
lemmas. Finally, Subsection 3.4 contains the proof of the main lemma, and a lower
bound on the depth of hypercubic sorting networks with small overlap.

In the following, unless explicitly stated otherwise, the set of input wires of a
comparator network is denoted W. An input to a comparator network is a total
mapping from W to a set V of possible input values. We will restrict our attention to
inputs 7 that are permutations of {0, ...,n—1}, i.e., where |[W|=n,V = {0,...,n—1},
and 7 is one-to-one. The set of all one-to-one functions from a set A to a set B will
be denoted by (A — B), and so the set of all inputs of a given comparator network
may be written as (W — V). Furthermore, for a function f on a set A and a subset
B of A, let f|, denote the functional restriction of f to B. For two functions fo and
f1 on disjoint sets Ag and A;, we write fo @ f1 for the union of fy and fi:

aet | fo(xz) for all zin Ag, and
(fo® fi)(z) = { f(l)(x) for all in A(l).

3.1 Input Patterns and Refinement

In the following definitions, we introduce the notions of input patterns and input
pattern refinement, which are fundamental to our proof technique. Informally, an
input pattern describes a set of inputs with certain common properties. Input pattern
refinement is the process of imposing additional conditions on such a set of inputs.

Definition 3.1 Let P be a set and <p be a total ordering on P.

(a) An énput pattern is a total mapping from W to P.

(b) Let po, p1 be two input patterns. We say that po can be refined to p; (written
po Dw p1) if (po(w) <p po(w')) = (p1(w) <p p1(w')) holds for all w and w' in
w.

(c) Let p be an input pattern and = be an input. We say that p can be refined to =
(written p Dw #) if (p(w) <p p(w")) = (7(w) < m(w")) holds for all w and w’
in W.

The set P will be referred to as the pattern alphabet, and the elements of P are
called pattern symbols. Throughout this paper, pattern symbols are denoted by script
letters. An input pattern p may be viewed as a description of the set of inputs to which

p can be refined. This set is denoted p[V] = {# : = is an input such that p Dw =}
When we refine a pattern pg to p1 then we are imposing additional constraints on this
set of inputs. Formally, we have (po Dw p1) € (po[V] 2 p1[V]). Alternatively, the
reader may also view an input pattern p as a shorthand for a logical predicate that
holds for exactly the inputs in p[V].

Definition 3.2 Let p and ¢ be input patterns on W, and let U be a subset of W.

(a) The input pattern pj,, on U is the restriction of p to U.

(b) We say that p can be U-refined to g (written p Dv q) if p Dw g and p(w) = g(w)
holds for all win W\ U.

3.2 Comparator Networks

A comparator network is interpreted as a mapping from a set of possible inputs to a
set of possible outputs. More precisely, a comparator network A on input wires W and
output wires W' defines a mapping (which we also denote by A) from (W — V) to
(W' — V) such that every input = : W + V is mapped to an output =’ : W’ — V that

is a “permutation” of w. By this we mean that there exists a bijection p : W — W’
such that 7(w) = 7' (p(w)) holds for all win W.

Let A, AT be two sets of n-input comparator networks. Then Aj ® AT, the serial
composition of A§ and Al, denotes the set of all networks A that can be obtained by
connecting the output wires of a network from AJ to the input wires of a network from
A7. In some cases, we may want to impose certain special conditions on this connection
between the output wires of the first network and the input wires of the second network.
If no conditions are stated, then the connections can be made according to an arbitrary
one-to-one mapping. As it happens, we often make use of the serial composition
operator in the context of singleton sets A5 and A}. In such a case, we may write, for
example, Ag ® A1 (where Ag, Ay are networks) rather than {A¢} @ {A1}.

Given two comparator networks Ao and A; on disjoint sets of input and output
wires, we obtain the parallel composition of Ag and Ay as the union of the two networks,
written Ag @ A;. The set of input (output) wires of Ag @ A 1s the union of the sets
of input (output) wires of Ag and A;.

Below we give an inductive definition of a class of comparator networks, called
(d, s, r)-hypercubic networks, which properly contains the class of 2% input hypercubic
networks with span s < d and overlap r. Note that the 2¢ output wires of a (d,s,r)-
hypercubic network are partitioned into 24" output groups of size 2".

Definition 3.3 For r < s < d, a 2%input comparator network A is called a (d,s,r)-
hypercubic network if:

(a) s —r = 0, A is a network containing no comparators at all (i.e., the 2% input
wires are directly connected to the 2¢ output wires), and the output wires of A
have been partitioned into 247" output groups of size 27, or

(b) s—r >0 and A is an element of (A¢ & A1) @ A, where

e A and Ay are (d — 1, s — 1, r)-hypercubic networks, and

e A is the parallel composition of 247" ! disjoint 2"t'-input comparator
networks A;, 0 < i < 247771 of arbitrary size and depth, such that: (i)
the 277! input wires of each network A; are connected to one output group
of size 27 of Ao and one output group of size 2" of A;, and (ii) the 27*!
output wires of each network A; are partitioned to form two of the 297"
output groups of network A.

A comparator network A was identified with a mapping from the set of inputs to
the set of outputs. The following definition extends A to a mapping from the set of
input patterns to the set of output patterns. (An output pattern is a mapping from
the set of output wires to the set of pattern symbols.)

Definition 3.4 Given a comparator network A, an input pattern po, and an output

pattern p; such that p; (W) = po(W), we define A(po) = p1 & A(po[V]) = p1[V].

Definition 3.5 We say that input wires wo and w; collide in a network A under input
= if the input values 7(wo) and 7(w1) are compared in A when = is given as input.

Given a network A and an input m, we can always determine whether two input
values are compared or not. (Recall that we only consider inputs that are permu-
tations.) This is not the case for input patterns, since an input pattern can contain
several occurences of the same pattern symbol. This motivates the following definition
of collision for input patterns:

Definition 3.6 Let A be a comparator network, let p be an input pattern for A, and
let wo and w; be two input wires of A.

(a) We say that wo and w1 collide in A under p if they collide in A under all inputs
7 with p Dw =.

(b) We say that wo and w; can collide in A under p if there exists an input = with
p Dw w such that we and w; collide in A under =.

(c) We say that wg and w; cannot collide in A under p if there is no input = with
p Dw w such that we and w; collide in A under =.

(d) A set U C W is called noncolliding in A under p if any two wires in U cannot
collide in A under p.

Note that, if two wires collide (cannot collide) in some network A under an input
pattern p, then they also collide (cannot collide) in A under any refinement p’ of p.
Similarly, if a set U is noncolliding in A under p, then it is also noncolliding in A under
p’. The property can collide is not preserved under arbitrary refinement.

In the remainder of this section, we restrict our attention to a fixed pattern alpha-
def

bet P = {S;, Xi;, M;, L; : 1,5 > 0}. The ordering <p on P is defined by S; <p Siy1,
Si <p Xoo, Xij <p Xy jy1, Xiy <p My, My <p Xij10, Mi <p L, and Liy1 <p L;,

for all nonnegative integers i, j.

Definition 3.7 For a pattern p and a pattern symbol P we define the [P]-set of p as
the set {w € W : p(w) = P}.

Definition 3.8 We say that a comparator network A has an incomparable set of size
m if there exists an input pattern p such that some [M;]-set of p is of size m and is
noncolliding in A under p.

We can now formally describe our proof strategy: To prove that a network A is not
a sorting network, we will show that the network has an incomparable set of size at
least 2. The input pattern p associated with the incomparable set can then be refined
to an input such that the wires in the [Mo]-set contain adjacent input values. This
implies that A does not sort all inputs. The input pattern p will be constructed by
stepwise refinement, starting with a pattern containing only the symbol M.

3.3 Basic Lemmas
The following simple lemmas will be used in our lower bound argument.

Lemma 3.1 Let A be a comparator network in Ag ® A1, ¢ be a nonnegative integer,
and p be an input pattern for Ag such that its [M;]-set A is noncolliding in Ao under p.

Let ¢ &= Ao (p) be an input pattern for A; and B be the [M;]-set of g. Then for every
q' with ¢ Dp ¢ there exists a p’ with p Da p’ such that ¢' = Ag(p'). Furthermore, if
the [M]-set of ¢’ is noncolliding in A; under g’, then the [M;]-set of p’ is noncolliding
in A under p'.

Lemma 3.2 Let A be a comparator network, p be an input pattern for A, and A
be the [M;]-set of p. Let p;(p) be the input pattern obtained from p by changing all
pattern symbols P with P <p M; to So, all pattern symbols P with M; <p P to Lo,
and all pattern symbols M; to M. If A is noncolliding in A under p, then A is also
noncolliding in A under p;(p).

3.4 The Main Lemma

In this subsection, we establish our main lemma on the size of the incomparable set in
a hypercubic network with small overlap. The main technical difficulty is in the proof
of Lemma 3.3, which establishes the existence of a pattern p with a “large” [Mo]-set
that is noncolliding in a single (d, s, r)-hypercubic network under p.

Lemma 3.3 Let A be a (d, s, r)-hypercubic network with r < s < d, and p be an
input pattern for A such that only the pattern symbols Sy, Lo, and Mg occur in p.
Let A be the [Mog]-set of p, and k be any positive integer. Then there exists an input

pattern ¢ with p D4 ¢ and ¢(s) Lo B 4o (s —r) - k* sets M, 0 < i < (s), of
input wires such that the following properties hold, where B Lef Uo <i<t(s) M;:

(1) Every M; is the [M;]-set of q.

(2) Every M; is noncolliding in A under q.

(3) BCA.

(4) |B| > |A] - L=l

(5) No two elements of any [M;]-set of A(g) are located in the same output group

of A.

Proof: (Sketch) The proof is very similar to that of Lemma 4.1 in [17], and hence
we only sketch the necessary modifications. A complete proof can be found in [18].

The proof is by induction over s —r with base case s —r = 0. Properties (1) to (4)
are nearly the same as in [17]. In addition, the induction also has to maintain the new
Property (5). In order to do so, the number of sets M; has to be increased by a factor
of 2". This means that the number of possible matchings between the sets My ; and
M, ; in the induction step also increases by a factor of 2". Since each element in a set
My i can collide with at most 2" elements in the sets M; ;, by averaging there exists
a matching under which Property (5) can be maintained without throwing away too
many of the elements. O

Lemma 3.4 Let A be a 2%-input hypercubic network with span 3 < s < d and overlap
r, and let A be an arbitrary comparator network with an incomparable set of size v.
Then any network in A ® A has an incomparable set of size v/ > v/(s* - 27).

Proof: According to Definition 3.8, there exists an input pattern po such that some
[M;,]-set C of po is of size v and is noncolliding in A under po. By Lemma 3.2, we
can assume that 10 = 0, and that py contains only the symbols Sp, Mo, and Lo.

Every 2%input hypercubic network with span s < d and overlap r is equivalent
to a (d, s, r)-hypercubic network. Hence, we can apply Lemma 3.3 to A. Let k = s,
p = A(po), and A be the [Mg]-set of p. Then by Lemma 3.3, there exists an input
pattern ¢ with p D4 ¢ and t(s) < 25 - 2" disjoint sets M, 0 < i < t(s) of input wires
of A such that

e every M, is the [M;]-set of q,

e every M; is noncolliding in A under g,

e BCA, and

o |Bl>v-(1-1/s),
where B & U0§i<t(s) M;. By averaging, there exists a set Mj,, 0 < jo < t(s), of size
at least |B|/(2s% - 27) > v/(s* - 27), where the inequality follows from the fact that
%(1 —1/s) > 1/s for s > 3. By Lemma 3.1, there exists an input pattern go with
Po D¢ qo such that ¢ = A(go) and the [M;]-set of go is noncolliding in A ® A under
qo. Since ¢ = A(qo), the [M,]-set of o also contains at least v/(s* - 27) elements. O

By partitioning a hypercubic network of overlap r and depth £ into [{/d] consecu-
tive hypercubic networks of overlap r and depth at most d, and applying Lemma 3.4 to
each of these networks, we obtain the following lower bound for hypercubic networks
with bounded overlap. Note that for the special case r = 0, we obtain the result
n [17]. However, if the overlap is ©(d), we only get the trivial Q(Ign) lower bound.

Theorem 3.1 Any n-input hypercubic sorting network with overlap r has depth
Q (152 n

max{rlglgn}

4 A Lower Bound for Hypercubic Networks

In this section we establish our main result, a lower bound on the depth of arbitrary
hypercubic sorting networks. In order to prove the result, we need one more lemma.
Informally, Lemma 4.1 below states that we can maintain a fairly large incomparable
set over the levels of any hypercubic network. The proof of the lemma is based on the
idea that any hypercubic network with depth £ either has a small overlap relative to
£, or can be (recursively) partitioned into several consecutive networks satisfying this
property. In the first case, we can use Lemma 3.4 to bound the size of the incomparable
set. The second case is handled by induction.

Lemma 4.1 Let A be a hypercubic network with depth £ and span s < d, let

def

a(l,s) = (£ —s/2)/(lgs/1lglgs), and let A be an arbitrary comparator network with
an incomparable set of size v. Then any network in A ® A has an incomparable set of
size V', where
5 — 54 . ZO(a(l,s)).

Proof: We prove that v/v’ < ¢-s?- 22°2(b2) holds for some positive constant c.
The proof i1s by induction on the depth £ of the network. For the base case, it can be
checked that the statement is true for small constant values of . Now assume that
the statement has been shown for all networks of depth less than £.

For the induction step, we assume a hypercubic network A with depth £, overlap
r, and span s < d. Now suppose that r < 9-«a(l,s). In this case, the claim follows for
any ¢ > 1 by a simple application of Lemma 3.4.

Hence, in the following we have

9s

9-all >
re a(l,s) 21gs/lglg s

> (1)
Due to the definition of overlap, there exist hypercubic networks A;, 0 <1 < 2, with
depth {; and span s;, such that A belongs to Ag @ Ay, fo+ €1 = £, and so+s51 = s+r.
By applying the induction hypothesis first to A and Ag , and then to A ® Ag and Ay,
we obtain

v 4 29~a(lu,su) 4 .29~o¢(l1,sl) 2 4 4 .29.r7

— < ¢3¢ -Cc- 8 = c -39-8;

N

where = dZEfoz(lo,so) + a(ly, s1). Using sg > r, s1 > r, and Equation (1) we can show

that
min Ig so 7 Ig s1 > lg s - 2lglg s .
Iglg so " 1glg s1 Iglg s Ig s

Using this bound, and the fact that 1/(1—e¢) < 14 2¢ holds for sufficiently small € > 0,
we obtain

2
Lo — s0/2 1 —s51/2 Iglg s
< o — 244 — 2) -4
T lgs/lglgs+lgs/lglgs+(0 s0/2+ b —1/2) Ig s

2

£—s/2—r/[2 Iglg s

= — {—s/2—r/2)- 4| =——
lgs/lglgs +(E=s/2=1/2) (Ig s '

10

where the last step follows from ¢+ ¢, = £ and so+s1 = s+r. Applying Equation (1)7
we obtain

r 4 4r — a(l,s)— r
2lgs/lglgs * 9lgs/lglgs ’ 181g s/1glg s

z < a(l,s) —

Hence, for s sufficiently large, we have v/v’ < c¢-s*. 2%albe) o

Theorem 4.1 Any n-input hypercubic sorting network has depth 2 (%ﬁfn—").
Proof: Let A be an n-input hypercubic network of depth £, n = 2¢. Then we can
partition A into k = [£/d] consecutive hypercubic networks A;, 0 < i < k, with depth
£; and span at most d.

Let A be a network containing no comparator elements at all. Clearly, A belongs
to A® A, and A has an incomparable set of size n. We now apply Lemma 4.1 once for
each network A;, 0 < i < k. It follows that there exists an incomparable set of size n’
in A, such that

(£;—d/2))
= H d4.20<1gd/lglgd> = 20<1€d/1g1gd>.
0<i<k

Hence, if £ < c¢-dlgd/lglgd for some sufficiently small positive constant ¢, we find
that n’ > 1, and it follows that A cannot be a sorting network. O

5 Extensions

The lower bound for hypercubic sorting networks can be extended to certain restricted
classes of non-oblivious sorting algorithms on hypercubic machines. More precisely,
the particular function computed by a comparator (that is, “+7, “-”, “0”, or “1”) may
depend on the outcomes of all comparisons made in previous levels of the network.
Also, the lower bounds still hold in the case where a node can hold more than one
element, provided that elements cannot be copied. It remains unclear whether our
results can be extended to a model where copying of elements is allowed. Finally,
our lower bound technique can also be applied to some restricted classes of sorting
algorithms on multi-dimensional meshes. Examples of algorithms in these classes were
recently given by Corbett and Scherson [4] and Wanka [20].

On the other hand, our lower bounds do not apply to “probabilistic” sorting net-
works that sort the vast majority of input permutations, or to “randomized” sorting
networks that contain additional “randomizing” circuit elements. For these types of
networks, Leighton and Plaxton [12] have given hypercubic constructions of depth
O(lgn). A more detailed discussion of these extensions and limitations can be found
in [18].

6 Concluding Remarks

In this paper, we have established an 2 (L:iLl:hlﬁ_") lower bound on the depth of hyper-
glglgn
cubic sorting networks. The proof technique also applies to certain restricted classes
of non-oblivious sorting algorithms on hypercubes and multi-dimensional meshes. A
gap remains between our lower bound and the best upper bound known, and it would
certainly be an interesting improvement to narrow or close this gap.
An important open question is whether we can extend our lower bounds to more

general classes of non-oblivious sorting algorithms on the hypercube. Of particular

11

interest in this respect would be the class of normal comparison-based sorting algo-
rithms, or any other natural class of algorithms including the Sharesort algorithm of
Cypher and Plaxton [7].

Another possible direction for future research would be to consider other restricted
classes of sorting networks. Finally, it is an open problem whether our lower bound
technique can be applied to selection networks.

References

[1] M. Ajtai, J. Komlés, and E. Szemerédi. Sorting in clogn parallel steps. Combinatorica,
3:1-19, 1983.

[2] K. E. Batcher. Sorting networks and their applications. In Proceedings of the AFIPS
Spring Joint Computer Conference, vol. 32, pages 307-314, 1968.

[3] V. Chvatal. Lecture notes on the new AKS sorting network. Technical Report DCS—
TR-294, Department of Computer Science, Rutgers University, 1992.

[4] P. F. Corbett and I. D. Scherson. Sorting in mesh connected multiprocessors. IEEFE
Transactions on Parallel and Distributed Systems, 3:626—-632, 1992.

[5] R.E. Cypher. A lower bound on the size of Shellsort sorting networks. SIAM J. Comput.,
22:62-71, 1993.

[6] R. E. Cypher. Theoretical aspects of VLSI pin limitations. STAM J. Comput., 22:58-63,
1993.

[7] R. E. Cypher and C. G. Plaxton. Deterministic sorting in nearly logarithmic time on the
hypercube and related computers. JCSS, 47:501-548, 1993.

[8] M. Dowd, Y. Perl, L. Rudolph, and M. Saks. The periodic balanced sorting network.
JACM, 36:738-757, 1989.

[9] M. Kik, M. Kutylowski, and G. Stachowiak. Periodic constant depth sorting networks. In
Proceedings of the 11th Symposium on Theoretical Aspects of Computer Science, pages
201-212, February 1994.

[10] D. E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, Reading,
MA, 1973.

[11] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees
and Hypercubes. Morgan-Kaufmann, San Mateo, CA, 1991.

[12] F. T. Leighton and C. G. Plaxton. A (fairly) simple circuit that (usually) sorts. In
Proceedings of the 81st Annual IEEE Symposium on Foundations of Computer Science,
pages 264—-274, October 1990.

[13] F.T. Leighton and C. G. Plaxton. Hypercubic sorting networks. Unpublished manuscript,
August 1993.

[14] M. S. Paterson. Improved sorting networks with O(log N) depth. Algorithmica, 5:75-92,
1990.

[15] C. G. Plaxton. A hypercubic sorting network with nearly logarithmic depth. In Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Computing, pages 405-416,
May 1992.

[16] C. G. Plaxton, B. Poonen, and T. Suel. Improved lower bounds for Shellsort. In Proceed-
wngs of the 83rd Annual IEEE Symposium on Foundations of Computer Science, pages
226-235, October 1992.

[17] C. G. Plaxton and T. Suel. A lower bound for sorting networks based on the shuffle
permutation. In Proceedings of the 4th Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 70-79, June 1992. To appear in Mathematical Systems Theory.

[18] C. G. Plaxton and T. Suel. A super-logarithmic lower bound for hypercubic sorting
networks. Technical Report TR-94-08, University of Texas at Austin, Department of
Computer Science, April 1994. Available via anonymous ftp from ftp.cs.utexas.edu.

[19] V. R. Pratt. Shellsort and Sorting Networks. PhD thesis, Stanford University, Depart-
ment of Computer Science, December 1971. Also published by Garland, New York, 1979.

[20] R. Wanka. Fast general sorting on meshes of arbitrary dimension without routing. Tech-
nical Report TR-RI-91-087, Department of Computer Science, University of Paderborn,
August 1991.

12

