
A Super-Logarithmic Lower Bound
for Shuffle-Unshuffle Sorting Networks1

C. Greg Plaxton2 Torsten Suel3
Abstract

Shuffle-unshuffle sorting networks are a class of comparatornetworks whose structure maps ef-
ficiently to the hypercube and any of its bounded degree variants. Recently,n-input shuffle-

unshuffle sorting networks with depth2O(plg lgn) lgn have been discovered. These networks are
the only known sorting networks of deptho(lg2 n) that are not based on expanders, and their ex-
istence raises the question of whether a depth ofO(lg n) can be achieved by any shuffle-unshuffle

sorting network. In this paper, we resolve this question by establishing an
 � lgn lg lgnlg lg lgn � lower
bound on the depth of anyn-input shuffle-unshuffle sorting network. Our lower bound can be ex-
tended to certain restricted classes of non-oblivious sorting algorithms on hypercubic machines.

1 A preliminary version of this paper was presented at the 21stInternational Colloquium on Automata, Languages,
and Programming (ICALP), 1994.2 Department of Computer Science, University of Texas, Austin, TX 78712. Email:plaxton@cs.utexas.edu.
Supported by NSF Research Initiation Award CCR–9111591, and the Texas Advanced Research Program under Grant
Nos. 003658–480 and 003658–461.3 CIS Department, Polytechnic University, Brooklyn, NY 11201. Email:suel@photon.poly.edu. Part of this
work was performed while the author was a graduate student atthe University of Texas, and was supported by the
Texas Advanced Research Program under Grant Nos. 003658–480 and 003658–461, and by a Schlumberger Graduate
Fellowship.

1 Introduction

A variety of different classes of sorting networks have been described in the literature. Of particular

interest here are the so-called AKS network [1] discovered by Ajtai, Komlós, and Szemerédi, and the

sorting networks proposed by Batcher [3]. While the AKS network is the only known sorting net-

work withO(lg n) depth, it also suffers from two significant shortcomings. First, the multiplicative

constant hidden by theO-notation is impractically large. Through a series of improvements [2, 4, 15],

this constant has been reduced to below2000, but remains impractical. Second, the structure of the

network is highly irregular, and does not seem to map efficiently to any of the common interconnec-

tion schemes. For example, Cypher [7] has shown that any emulation of the AKS network on the

cube-connected cycles requires
(lg2 n) time. (A sorting algorithm emulates the AKS network if it

performs the same sequence of comparisons on any input.)

In contrast, the networks proposed by Batcher have a relatively simple structureand a small as-

sociated constant, and can be efficiently implemented on many common interconnection schemes,

including meshes and hypercubic networks. Partly because of these properties, Batcher’s networks

have been used in many practical applications, even though they have depth�(lg2 n) and are thus

asymptotically inferior to AKS. This situation has motivated a number of attempts to constructO(lg n)-
depth sorting networks with simpler, more regular topologies, and/or a considerably smaller constant.

Three classes of networks that have received particular attention are Shellsort networks, periodic sort-

ing networks, and shuffle-unshuffle (also called hypercubic [14]) sorting networks.

Shellsortnetworks have a very simple structure that is based on the sequentialShellsortsorting

algorithm. A class of Shellsort networks with depth�(lg2 n) was given by Pratt [19]. For Shell-

sort networks based on monotonically decreasing increment sequences, Cypher [6] has established

a lower bound of
(lg2 n= lg lg n). Recently, more general lower bounds were shown [16, 18] that

hold for arbitrary Shellsort networks and even sequential Shellsort algorithms,thus answering in the

negative the longstanding open problem of whether a running time ofO(n lg n) can be achieved by

any Shellsort algorithm.

A comparator network is called aperiodic sorting network if every input permutation can be

sorted by repeatedly passing it through the network. The primary motivation for suchperiodic net-

works is the reduction in hardware cost achieved by applying the same network repeatedly to the

input. A periodic sorting network of depthO(lg n) and running timeO(lg2 n) was given by Dowd,

Perl, Rudolph, and Saks [9]. Very recently, Kutyłowski, Loryś, Oesterdiekhoff, and Wanka [12] have

shown the existence of periodic networks of depth5 and running timeO(lg2 n) based on expanders.

No non-trivial lower bounds for periodic sorting networks are currently known.

In this paper, we focus on the class ofshuffle-unshufflesorting networks, a notion that is formal-

ized below. We establish a lower bound of
 � lgn lg lgnlg lg lgn � for the depth of any sorting network in this

class. In fact, our lower bound argument can be extended to certain restricted classes of non-oblivious

1

sorting algorithms on hypercubic networks and multi-dimensional meshes. Before elaborating any

further on these results, we will briefly describe the comparator network model, and define the classes

of sorting networks that we consider.

1.1 Shuffle-Unshuffle Sorting Networks

A comparator network is most commonly defined as an acyclic circuit of comparatorelements, each

having two input wires and two output wires. One of the output wires is labeled as themax-output,

which receives the larger of the two input values; the other output is called themin-output, and re-

ceives the smaller value. We will use this model of a comparator network throughout most of the

paper, but will also briefly consider the following alternative model.

In this model, a comparator network onn registers is determined by a sequence of pairs(�i; ~xi),0 � i < `, where�i is a permutation off0; : : : ; n � 1g and~xi is a vector of lengthbn=2c overf+;�; 0; 1g. The network receives as input a permutation off0; : : : ; n � 1g that is initially stored

in the registers, and then operates on the input in` consecutive steps. In stepi, 0 � i < `, the

register contents are permuted according to�i, and then the operation stored in thekth component

of ~xi is applied to registers2k and2k + 1. In a “+” operation, the values stored in the two registers

are compared, and the smaller of the values is stored in register2k, the larger one in2k+1. In a “�”

operation, the values are stored in the opposite order. A “0” means that no operation takes place on

the corresponding pair of registers. A “1” operation simply exchanges the values of the two registers.

A comparator network is called a sorting network if it maps every possible input permutation to the

same output permutation.

It is well known that the two models of comparator networks described above are equivalent.

(That is, given any network in one model, there exists a network in the other model with the same

size and depth that implements the same mapping from inputs to outputs.) While the first model

often appears more intuitive, we can use the second one to define some interesting special classes of

networks by restricting the possible choices for the permutations�i.
The shuffle permutation�sh on n = 2d inputs may be defined as follows. Ifjd�1 � � � j0 de-

notes the binary representation of some integerj, 0 � j < n, then�sh(j) has binary representationjd�2 � � � j0jd�1. A sorting network is called ashuffle-unshufflenetwork if�i = �sh or�i = ��1sh holds

for all i. A natural subclass of the shuffle-unshuffle networks can be obtained by requiring�i = �sh
for all i; we say that a network satisfying this condition isshuffle-based. Similarly, if �i = ��1sh for

all i, then the network isunshuffle-based.

The primary motivation for the definition of these two classes of networks is givenby the fact

that they can be efficiently implemented on any of the hypercubic interconnection networks (i.e., the

hypercube, butterfly, cube-connected cycles, or shuffle-exchange). More precisely,the structure of

shuffle-unshuffle sorting networks corresponds exactly to the class ofnormalalgorithms on the hy-

2

percube, while the structures of the shuffle-based and unshuffle-based networks correspond to the

classes ofdescendandascendalgorithms, respectively (see [13] for a definition of these classes).

Most of the important algorithms that have been proposed for the hypercube are normal (e.g.,Fast

Fourier Transform, parallel prefix, bitonic merging and sorting). In fact, it can be argued that the pri-

mary motivation for the definition of the bounded-degree variants of the hypercube (i.e., thebutterfly,

cube-connected cycles, and shuffle-exchange) has been the capability of these networks to efficiently

implement the class of normal algorithms.

The study of shuffle-based sorting networks was proposed by Knuth [11, Exercise 5.3.4.47].The

best upper bound for this class is given by Batcher’s bitonic sort [3], with a depth ofO(lg2 n). A lower

bound of
(lg2 n= lg lg n) was established by Plaxton and Suel [17]. However, this lower bound does

not extend to arbitrary shuffle-unshuffle networks.

The class of shuffle-unshuffle (also called hypercubic) sorting networks was definedby Leighton

and Plaxton [14], who show the existence of a family of shuffle-unshufflesorting networks with depth2O(plg lgn) lgn. The construction of these networks is based on a “probabilistic” sorting network

described in [14], which sorts all but a super-polynomially small fraction of the possible input per-

mutations. We point out that the depth of the above shuffle-unshuffle networks iso(lg1+� n), for all� > 0, and that they represent the only known sorting networks of deptho(lg2 n) that are not based

on expanders. Naturally, this raises the question of whether a depth ofO(lg n) can be achieved by

any shuffle-unshuffle sorting network.

1.2 Overview of this Paper

In this paper, we resolve this question by showing a lower bound of
 � lgn lg lgnlg lg lgn � on the depth of any

shuffle-unshuffle sorting network. Our lower bound also extends to certain restricted classes of non-

oblivious sorting algorithms on hypercubic machines and multi-dimensional meshes. However, our

lower bound argument does not allow the copying of elements by the algorithm, and does not extend

to randomized algorithms. Thus, neither the deterministicSharesortsorting algorithm of Cypher and

Plaxton [8], which achieves a running time ofO(lg n lg lg n) (with preprocessing) on any of the hy-

percubic machines, nor the randomized approach by Reif and Valiant and subsequent related schemes

[13, 20] are covered by our lower bound. Nonetheless, we believe that our present results are already

interesting in their own right, and that they may constitute an important steptowards more general

lower bounds for sorting on hypercubic machines.

The remainder of the paper is organized as follows. Section 2 describes some of thebasic ideas

underlying our lower bound argument. Section 3 establishes a lower bound for a restricted class of

shuffle-unshufflenetworks. Section 4 then shows our general lower bound. Somepossible extensions

and implications of our results are discussed in Section 5. Finally, Section6 lists some open questions

for future research.

3

2 Overview of the Proof

In this section, we give a very informal description of the most important ideas inthe proof of our

lower bound. To do so, we will first review the lower bound argument for shuffle-based networks

given in [17], and explain why this relatively simple argument does not extend to the more general

class of shuffle-unshuffle sorting networks. We will then describe the new proof ideasthat are needed

in order to get a lower bound for arbitrary shuffle-unshuffle sorting networks.

2.1 A Naive Proof Idea

A simple observation concerning comparator networks is that a sorting network must perform a com-

parison on every pair of adjacent values in every input, that is, every pair of valuesfm;m+1gmust

appear on the input wires of some comparator element. (We assume the inputs to be permutations

of f0; : : : ; n � 1g.) Thus, one might attempt to prove a lower bound of` for the depth of a class of

comparator networks by showing, for all networks in the class, the existence of an inputpermutation�, and of a set of adjacent valuesfm; : : : ;m+ ig in �, for somei � 0, such that no two elements of

the set are compared up to level` of the network. In the following, we will call such a set anincom-

parable set. If we apply this proof idea to a shuffle-unshuffle network, starting out with the set ofall

values as our incomparable set, and, whenever two elements of the set get compared, removing one

of them from the set, then we might lose up to half of the elements in any given level. So using this

simple approach, we could only show the trivial lower bound of
(lg n) for the depth of a sorting

network.

2.2 The Proof for Shuffle-Based Sorting Networks

The key idea to overcome this problem is to modify the proof technique in a way that allows us to

exploit the structural properties of the particular class of networks that we arestudying. To explain

this idea, we first consider the proof of the lower bound for shuffle-based sorting networksin [17]; the

case of the unshuffle-based networks is symmetric. Note that a shuffle-based network is equivalent

to a concatenation of a number of butterfly networks of depthlg n each. Thus, if we can show that

the size of our incomparable set decreases by at most a polylogarithmic factor in each butterfly, then

at least
(lg n= lg lg n) consecutive butterflies are needed in order to bring the size of the incompa-

rable set down to1; this directly implies the
(lg2 n= lg lg n) lower bound for shuffle-based sorting

networks of [17].

The following recursive definition of a butterfly is crucial for understanding our proof technique:

A butterfly with 2d inputs and depthd consists of two parallel2d�1-input butterflies of depthd � 1,

followed by a final level of up to2d�1 comparators. Every comparator in the final level takes one input

from the outputs of each of the two2d�1-input subnetworks. Finally, a1-input butterfly is just a wire.

This “tournament-like” structure leads to the following important property of a butterfly: An observer

4

of a 2d-input butterfly tournament who sees the outcomes of all comparisons in the two2d�1-input

subnetworks, but not the outcomes of the final level of comparisons, will not be able to say anything

about the relative ordering of any two items taken from different subnetworks. In other words, the

observer will not be able to say anything about the relative strength of the two “subtournaments”

before the final stage. This “disjointness property” of the subnetworks plays a crucial role in the

lower bound argument of [17].

Instead of maintaining only a single incomparable set, we now maintain a collection of incompa-

rable sets in each recursive subnetwork. More precisely, after entering anew butterfly of depthlgn,

we partition our current incomparable set inton lg3 n disjoint incomparable sets, most of which are

empty, withlg3 n sets entering on each wire (recall that a single wire is a1-input butterfly). Thus, ev-

ery2-input butterfly has two different collections oflg3 n incomparable sets arriving on its two input

wires. It is now possible to recombine these sets to get a new collection of roughlylg3 n incomparable

sets, containing all of the elements of the two collections.

More generally, due to the recursive structure of a butterfly, in every level werecursively have

two different collections of�(lg3 n) incomparablesets coming from two disjoint subnetworks. In [17],

it is shown that there exists a partial matching between these two collections of sets such that, if we

combine the sets according to the matching and remove one element from every pair of elements

from the same set that gets compared, we obtain a new collection of incomparable sets while losing

only a very small fraction of our elements. The number of sets in this new collection is only slightly

larger than the number of sets in either of the two previous collections. The aforementioned “dis-

jointness property” of the two subnetworks is needed at this point to make sure that the newsets in

the collection each contain adjacent elements.

If we repeat this process over alllg n levels of the butterfly, then we end up with a single collection

of �(lg3 n) incomparable sets. The total number of elements in the sets is only a constant factor

smaller than it was when we entered the butterfly. If we pick the largest ofthe�(lg3 n) sets as our

new incomparable set, then we only lose a polylogarithmic factor in the size of the set.

To formalize this proof idea, the notion of aninput patternrepresenting a class of similar inputs

was introduced in [17]. A class of inputs with the desired property (existence of alarge incomparable

set) was then constructed by stepwiserefinementof a given input pattern in every level of the network.

2.3 Shuffle-Unshuffle Sorting Networks

The above argument does not work for arbitrary shuffle-unshufflenetworks, as they do not satisfy the

“disjointness property” of the two subnetworks used in the argument. In this paper, we overcome this

obstacle, and derive a super-logarithmic lower bound for arbitrary shuffle-unshufflesorting networks.

To do so, we introduce the class of shuffle-unshuffle networks with “bounded overlap”.

5

Assume we are given an arbitrary shuffle-unshuffle network� with ` levels(�i; ~xi), 0 � i < `,
as described in the register model of a comparator network. In order to define the “span” and “over-

lap” of �, it is convenient to introduce a number of auxiliary variables. Letai = 1 if �i = �sh andai = �1 if �i = ��1sh , 0 � i < `. (We remark that the value ofa0 has no impact on the definitions

that follow.) Letbi = P1�j�i aj, 0 � i < `. Thespanof � may now be defined asjfbi : 0 � i < `gj.
Theoverlapof � is the minimum integerr � 0 such that either: (i)bi � bj+ r for all 0 � i < j < `,
or (ii) bi � bj � r for all 0 � i < j < `. Note that a network has overlap 0 iff�i = �j for all1 � i < j < `. Furthermore, the span of a network is always at least as large as its overlap, with

equality occurring only in the casè= 0, where the span and overlap are both 0.

The proof of the lower bound in this paper is based on two main new ideas. First, we show

in Section 3 how the lower bound argument for shuffle-based networks can be modified to handle

shuffle-unshuffle networks with small overlap. The overall structure of this proof is very similar to

that in [17]. However, a number of subtle changes are required in order to extend the argument to

networks with non-zero overlap. The modified proof is based on the observation that, informally

speaking, a shuffle-based network with small overlap still satisfies some relaxed version of the “dis-

jointness property”. More precisely, we will exhibit a trade-off between the overlap of the network

and the lower bound that can be shown.

Second, we show in Section 4 that any shuffle-unshufflenetwork can be partitioned intoa number

of consecutive shuffle-unshuffle networks such that the overlap of each network in the partition is

sufficiently smaller than its depth.

3 Shuffle-Unshuffle Networks with Small Overlap

In this section, we show that a large incomparable set can be effectively maintained over the levels

of any shuffle-unshuffle network with sufficiently small overlap. The main resultof this section is

Lemma 3.6, which bounds the decrease in the size of the incomparable set that can occur in any2d-
input shuffle-unshuffle network with spans � d and overlapr. This lemma is used in Section 4 to

establish our lower bound for arbitrary shuffle-unshuffle sorting networks.

The actual argument addressing the size of the incomparable set is contained in theproof of

Lemma 3.5, and is described with respect to a more general class of networks,called(d; s; r)-hypercubic

networks, which properly contains the class of2d-input shuffle-unshuffle networks with spans and

overlapr. The proof of Lemma 3.5 has a very similar structure to that of Lemma 4.1 in [17],and

uses many of the techniques introduced in that paper. However, in addition to these techniques, we

need some new ideas to establish the result.

Most of the notations used in this section are taken from [17]. For the sake of completeness, we

define these notations again in the following subsections.

6

The remainder of this section is organized as follows. In the first subsection, we introduce the

concepts ofinput patternsandinput pattern refinement. Subsection 3.2 defines our notion of a com-

parator network and its action on an input pattern, and introduces the class of(d; s; r)-hypercubic

networks. Subsection 3.3 lists a few basic lemmas. Finally, Subsection 3.4contains the proof of

the main lemma, and a lower bound on the depth of shuffle-unshuffle sorting networks with small

overlap.

In the following, unless explicitly stated otherwise, the set ofinput wiresof a comparator network

is denotedW . An input to a comparator network is a total mapping fromW to a setV of possible

input values. We will restrict our attention to inputs� that are permutations off0; : : : ; n � 1g, i.e.,

wherejW j = n, V = f0; : : : ; n� 1g, and� is one-to-one. The set of all one-to-one functions from

a setA to a setB will be denoted by(A 7! B), and so the set of all inputs of a given comparator

network may be written as(W 7! V). Furthermore, for a functionf on a setA and a subsetB ofA, let fjB denote the functional restriction off toB. For two functionsf0 andf1 on disjoint setsA0
andA1, we writef0 � f1 for theunionof f0 andf1:(f0 � f1)(x) def= 8<: f0(x) for all x in A0, andf1(x) for all x in A1.
3.1 Input Patterns and Refinement

In the following definitions, we introduce the notions ofinput patternsandinput pattern refinement,

which are fundamental to our proof technique. Informally, an input pattern describesa set of inputs

with certain common properties. Input pattern refinement is the process of imposing additional con-

straints on such a set of inputs.

Definition 3.1 LetP be a set and<P be a total ordering onP .

(a) An input patternis a total mapping fromW toP .

(b) Letp0, p1 be two input patterns. We say thatp0 can be refined top1 (written p0 �W p1) if(p0(w) <P p0(w0))) (p1(w) <P p1(w0)) holds for allw andw0 in W .

(c) Letp be an input pattern and� be an input. We say thatp can be refined to� (writtenp �W �)

if (p(w) <P p(w0))) (�(w) < �(w0)) holds for allw andw0 in W .

The setP will be referred to as thepattern alphabet, and the elements ofP are calledpattern

symbols. Throughout this paper, pattern symbols are denoted by script letters.

Example 3.1 LetW def= fw0; : : : ; wn�1g, P def= fS;M;Lg, and let the ordering<P onP be given byS <P M <P L. (Informally, the symbolsS,M, andL may be interpreted as “Small”, “Medium”,

7

and “Large”, respectively.) Then the input patternp assigningL tow0 andw1 andM to all other

wires can be refined to all inputs that assign the two largest values tow0 andw1. We could also

refinep to other input patterns, for example to a patternp0 such thatL is assigned tow0 andw1, S
is assigned tow2, andM is assigned to all other wires. The new patternp0 can itself be refined to

all inputs that assign the largest values tow0 andw1, and the smallest value tow2.
The relation�W defined above is a partial ordering on the set of input patterns. Note that the

setV of input values can be regarded as a special case of a pattern alphabet with the ordering of the

natural numbers. Every pattern can be refined to some input, and we could assume that the pattern

alphabetP is always a subset ofV . The pattern-to-pattern refinement in Part (b) of Definition 3.1

would then become a special case of the pattern-to-input refinement in Part (c).However, in the

following we will not restrict our choice ofP to subsets ofV . We will see that this gives us more

power of expression and, thus, simplifies the presentation of the proof.

We usually think of an input patternp as a description of the set of inputs to whichp can be

refined. This set is denotedp[V] def= f� : � is an input such thatp �W �g. When we refine a patternp0 top1, then we are imposing additional constraints on this set of inputs. Formally, we have(p0 �Wp1) , (p0[V] � p1[V]). Alternatively, the reader may also view an input patternp as a shorthand

for a logical predicate that holds for exactly the inputs inp[V].
Definition 3.2 Let p andq be input patterns onW , and letU be a subset ofW .

(a) The input patternpjU onU is therestrictionof p to U .

(b) We say thatp can beU -refined toq (writtenp �U q) if p �W q andp(w) = q(w) holds for allw in W n U .

Definition 3.3 LetU0 andU1 be disjoint subsets ofW , p0 be an input pattern onU0, andp1 be an

input pattern onU1. Thenq = p0 � p1 is the input pattern onU0 [U1 such thatqjU0 = p0 andqjU1 = p1.
If for two patternsp0 andp1 bothp0 �W p1 andp1 �W p0 hold, then we say thatp0 andp1 are

equivalent. In this case, we havep0[V] = p1[V], and the refinement steps fromp0 to p1 and vice

versa can be achieved by simply renaming the pattern symbols in a way that preserves the ordering<P . Hence, we call this special case of a refinement step anorder-preserving renaming.

Example 3.2 LetW def= fw0; : : : ; wn�1g andP def= fPi : i � 0g withPi <P Pi+1 for all i � 0. Then

any input patternp is equivalent to the input patternpk, k � 0 obtained fromp by substituting every

pattern symbolPi in p byPi+k, for all i.
8

3.2 Comparator Networks

We now further formalize our notion of a comparator network, and explain how its domain of oper-

ation can be extended from the set of inputs to the set of input patterns.

In the following, a comparator network is interpreted as a mapping from a set of possible inputs

to a set of possible outputs. More precisely, a comparator network� on input wiresW and output

wiresW 0 defines a mapping (which we also denote by�) from (W 7! V) to (W 0 7! V) such that

every input� : W 7! V is mapped to an output�0 : W 0 7! V that is a “permutation” of�. By this

we mean that there exists a bijection� : W 7! W 0 such that�(w) = �0(�(w)) holds for allw in W .

Let ��0, ��1 be two sets ofn-input comparator networks. Then��0
 ��1, theserial composition

of ��0 and��1, denotes the set of all networks� that can be obtained by connecting the output wires

of a network from��0 to the input wires of a network from��1. In some cases, we may want to im-

pose certain special conditions on this connection between the output wires of the first network and

the input wires of the second network. If no conditions are stated, then the connections can be made

according to an arbitrary one-to-one mapping. As it happens, we often make use of the serial compo-

sition operator in the context of singleton sets��0 and��1. In such a case, we may write, for example,�0
�1 (where�0, �1 are networks) rather thanf�0g
 f�1g.
Given two comparator networks�0 and�1 on disjoint sets of input and output wires, we obtain

theparallel compositionof �0 and�1 as the union of the two networks, written�0��1. The set of

input (output) wires of�0 � �1 is the union of the sets of input (output) wires of�0 and�1.
Below we give an inductive definition of a class of comparator networks, called(d; s; r)-hypercubic

networks, which properly contains the class of2d-input shuffle-unshuffle networks with spans � d
and overlapr. Note that the2d output wires of a(d; s; r)-hypercubic network are partitioned into2d�r output groupsof size2r.
Definition 3.4 For r � s � d, a 2d-input comparator network� is called a(d; s; r)-hypercubic

network if:

(a) s � r = 0, and� is a network containing no comparators at all (i.e., the2d input wires are

directly connected to the2d output wires), and the output wires of� have been partitioned into2d�r output groups of size2r, or

(b) s� r > 0 and� is an element of(�0 ��1)
 �, where� �0 and�1 are (d� 1; s � 1; r)-hypercubic networks, and� � is the parallel composition of2d�r�1 disjoint2r+1-input comparator networks�i, 0 �i < 2d�r�1, of arbitrary size and depth, such that: (i) the2r+1 input wires of each network�i are connected to one output group of size2r of �0 and one output group of size2r of

9

�1, and (ii) the2r+1 output wires of each network�i are partitioned to form two of the2d�r output groups of network�.

We remark that the class of(d; s; r)-hypercubic networks may not appear to be a very natural or

interesting class of networks, and that we only introduce it to simplify the lower bound argument in

this paper.

A comparator network�was identified with a mapping from the set of inputs to the set of outputs.

The following definition extends� to a function from the set of input patterns to the set of output

patterns. (An output pattern is a mapping from the set of output wires to the set of pattern symbols.)

Definition 3.5 Given a comparator network�, an input patternp0, and an output patternp1 such

thatp1(W) = p0(W), we define�(p0) = p1 , �(p0[V]) = p1[V]:
Note that this definition characterizes the behavior of a comparator network on an input pattern in

the way we would expect: If two pattern symbolsP0 andP1 arrive on the input wires of a comparator

gate, then the symbol that is larger according to the ordering<P will appear on the max-output of

the gate, and the smaller one will appear on the min-output. This implies that any set of inputs that

can be expressed by an input pattern will produce a set of outputs that can be expressedby an output

pattern.

Definition 3.6 We say that two input wiresw0 andw1 collide in a network� under an input� if the

input values�(w0) and�(w1) are compared in� when� is given as input.

According to the above definition, two wires whose respective values meet in a noncomparator

element, that is, a “0” (do nothing) or “1” (exchange) switch, are not regarded as colliding. In the

rest of the paper, we do not have to distinguish between the different circuit elements any more, since

the entire lower bound argument is based on the notion of collision introduced above and extended

to input patterns in the following.

Given a network� and an input�, we can always determine whether two input values are com-

pared or not. (Recall that we only consider inputs that are permutations.) This is notthe case for

input patterns, since an input pattern can contain several occurrences of the same pattern symbol.

This motivates the following definition of collision for input patterns:

Definition 3.7 Let� be a comparator network, letp be an input pattern for�, and letw0 andw1 be

two input wires of�.

10

(a) We say thatw0 andw1 collide in � underp if they collide in� under every input inp[V].
(b) We say thatw0 andw1 can collidein � underp if there exists an input inp[V] such thatw0 andw1 collide in�.

(c) We say thatw0 andw1 cannot collidein � underp if there is no input inp[V] such thatw0 andw1 collide in�.

(d) A setU � W is callednon-collidingin � underp if any two wires inU cannot collide in�
underp.

Example 3.3 LetW def= fw0; w1; w2; w3g, P def= fS;M;Lg, and let the ordering<P onP be given

by S <P M <P L. Let the network� consist of a comparator betweenw1 andw2, followed by

a comparator betweenw2 andw3, followed by a comparator betweenw0 andw3, where all com-

parators are directed such that the larger value is output on the wire with the larger index. Then the

following holds under the input patternp that mapsw0 to S, w1 andw2 toM, andw3 toL:

(1) Wiresw1 andw2 collide in� underp since the very first comparator is between these two wires.

(2) Wiresw1 andw3 can collide in� underp, since we can refinep to an input� that assigns a

larger value tow1 than tow2. In that case, the input value assigned tow1 will be compared to

that ofw3 in the second comparator. Similarly,w2 can collide withw3 in � underp.
(3) Wiresw0 andw3 collide in� underp, since no exchange can occur in the second comparator

of the network under any input� with p �W �. Also,w0 andw1 (resp.w2) cannot collide in� underp.
Note that, if two wires collide (cannot collide) in some network� under an input patternp, then

they also collide (cannot collide) in� under any refinementp0 of p. Similarly, if a setU is non-

colliding in � underp, then it is also non-colliding in� underp0. The propertycan collideis not

preserved under arbitrary refinement.

In the following we restrict our attention to a fixed pattern alphabetP which is used throughout

the lower bound argument: P def= fSi;Xi;j;Mi;Li : i; j � 0g:
The ordering<P onP is defined by Si <P Si+1;Si <P X0;0;Xi;j <P Xi;j+1;

11

Xi;j <P Mi;Mi <P Xi+1;0;Mi <P Lj ; andLi+1 <P Li;
for all nonnegative integersi, j.

Note that these inequalities imply thatXi;j <P Xi+1;j, Mi <P Mi+1, andSi <P Mj <P Lk
for all nonnegativei; j; k. (Thus, the lettersS, M, andL are chosen to denote various classes of

“small”, “medium”, and “large” input values.)

Definition 3.8 For a patternp and a pattern symbolP we define the [P]-set ofp as the setfw 2W : p(w) = Pg.
Definition 3.9 We say that a comparator network� has anincomparable setof sizem if there exists

an input patternp and an integeri such that the [Mi]-set ofp is of sizem and is non-colliding in�
underp.

We can now formally describe our proof strategy: To prove that a network� is not a sorting

network, we will show that the network has an incomparable set of size at least2. The input patternp associated with the incomparable set can then be refined to an input such that the wires in the [Mi]-
set contain adjacent input values; this implies that� does not sort all inputs inp[V]. The input patternpwill be constructed using stepwise refinement, starting out with a pattern containing only the symbolM0.
3.3 Basic Lemmas

The following lemmas will be used in our lower bound argument. Their proofs are fairly straightfor-

ward and we will only sketch some of the proof ideas.

Lemma 3.1 Let p be an input pattern onW such that only the pattern symbolsS0, M0, andL0
appear inp. LetW0 andW1 be disjoint subsets ofW withW =W0 [W1 and letA be the [M0]-set

of p. Letq0 andq1 be input patterns onW0 andW1, respectively, withS0 <P q0(w); q1(w) <P L0
for all w in A. Then frompjW0 �A\W0 q0 andpjW1 �A\W1 q1, we can inferp �A q0 � q1.

This lemma ensures that, given an input patternp for a network� = �0 � �1, we obtain a

refinement ofp if we separately refine the input patternspjW0 for �0 andpjW0 for �1 according to the

above rules, whereW0 andW1 are the sets of input wires of�0 and�1, respectively.

12

Lemma 3.2 Let� be a comparator network,p be an input pattern for�, andA be the [Mi]-set ofp, for somei � 0. If A is non-colliding in� underp, then for every input wirew in A there exists a

unique output wirew0 such that�(w) = �(�)(w0) holds for all� in p[V].
Informally, the above lemma states that an input value on a wirew in a non-colliding [Mi]-set

follows the same “path” through the network under all inputs inp[V]. The proof of the lemma is by

a simple induction on the depth of the network. This one-to-one correspondence between the input

and output wires of a non-colliding [Mi]-set is also the underlying idea in the next lemma.

Lemma 3.3 Let� be a comparator network in�0
 �1, i be a nonnegative integer, andp be an

input pattern for�0 such that its [Mi]-setA is non-colliding in�0 underp. Let q def= �0(p) be an

input pattern for�1 andB be the [Mi]-set ofq. Then for everyq0 with q �B q0 there exists ap0 withp �A p0 such thatq0 = �0(p0). Furthermore, if the [Mi]-set ofq0 is non-colliding in�1 underq0,
then the [Mi]-set ofp0 is non-colliding in� underp0.

To verify the validity of the final lemma, note that the paths taken by theMi-symbols through a

network are not changed if we rename the rest of the symbols in the way described inthe lemma.

Lemma 3.4 Let� be a comparator network,p be an input pattern for�, andA be the [Mi]-set ofp, for somei � 0. Let�i(p) be the input pattern obtained fromp by changing all pattern symbolsP
withP <P Mi to S0, all pattern symbolsP withMi <P P to L0, and all pattern symbolsMi toM0. If A is non-colliding in� underp, thenA is also non-colliding in� under�i(p).
3.4 The Main Lemma

In this subsection, we establish our main lemma (Lemma 3.6) on the size of the incomparable set

in a shuffle-unshuffle network with small overlap. The main technical difficultyis in the proof of

Lemma 3.5, which establishes the existence of a patternpwith a “large” [M0]-set that is non-colliding

in a single(d; s; r)-hypercubicnetwork underp. By a direct application, we also obtain a strong lower

bound for shuffle-unshuffle sorting networks with bounded overlap that generalizes the result in [17].

Lemma 3.5 Let� be a(d; s; r)-hypercubic network withr � s � d, andp be an input pattern for� such that only the pattern symbolsS0, L0, andM0 occur inp. LetA be the [M0]-set ofp, andk be any positive integer. Then there exists an input patternq with p �A q and t(s) def= 2r � k3 +(s� r) � 2r � k2 setsMi, 0 � i < t(s), of input wires such that the following properties hold, whereB def= S0�i<t(s)Mi:
(1) EveryMi is the [Mi]-set ofq.

13

(2) EveryMi is non-colliding in� underq.
(3) B � A.

(4) jBj � jAj � (s�r)�jAjk2 .

(5) No two elements of any [Mi]-set of�(q) are located in the same output group of�.

Proof: The proof is by induction ons� r.
Base Case:s� r = 0

In this case the network� does not contain any comparator elements. We define the setsMi,0 � i < t(0), by partitioningA into2r �k3 sets such that no two elements in any set are located

in the same output group. (Each output group has size2r � 2r � k3, so this is clearly possible.)

If we defineq as the pattern obtained fromp by relabeling each wire in setMi with Mi, for0 � i < t(0), then Properties (1) to (5) are satisfied.

Induction Step:s� r > 0
A (d; s; r)-hypercubic network consists of two(d � 1; s � 1; r)-hypercubic networks�0 and�1, and a network� satisfying the conditions of Definition 3.4. The input wiresW of � can

be partitioned into the setsW0 andW1 of input wires of�0 and�1, respectively. Letp0 def= pjW0
andp1 def= pjW1 . ThenA0 def= A\W0 is the [M0]-set ofp0 andA1 def= A\W1 is the [M0]-set ofp1.
Applying the induction hypothesis to�0, p0, andA0, we can infer the existence of an input

patternq0 with p0 �A0 q0, and oft(s� 1) disjoint setsM0;i, 0 � i < t(s� 1), such that� everyM0;i is the [Mi]-set ofq0,� everyM0;i is non-colliding in�0 underq0,� B0 � A0,� jB0j � jA0j � (s�r�1)�jA0jk2 , and� no two elements of any [Mi]-set of�0(q0) are located in the same output group of�0,
whereB0 def= S0�i<t(s�1)M0;i.
Correspondingly, for�1, p1, andA1, we get an input patternq1, disjoint setsM1;i, 0 � i <t(s� 1), and a setB1, with the same properties.

We will now construct the setsMi, 0 � i < t(s), by combining the setsM0;i of �0 with the

setsM1;j of �1, according to some partial matching to be determined in the following.

14

Because no [Mi]-set of�0(q0) (resp.,�1(q1)) contains any two elements that are located in

the same output group of�0 (resp.,�1), no element of any setM0;i (resp.,M1;i) can collide

with any other element of the same set in�.

Also, due to the topology of a(d; s; r)-hypercubic network, no element of a setM0;i can collide

in �0 ��1 with any element of a setM1;j. By Lemma 3.2, we can determine for eachw in a

setM0;i (resp.,M1;j) the output wirew0 of �0 (resp.,�1) that receives the value�(w) under

all � in q0[V] (resp.,q1[V]). Thus, for any suchw we can determine the subnetwork�� (where� is some functionf of w) of � that will receive�(w) as an input value under all� in q0[V]
(resp.,q1[V]).
For0 � i; j < t(s�1), we defineCi;j as the set of all wiresw0 inM0;i such thatf(w0) = f(w1)
holds for somew1 in M1;j. Note that theCi;j ’s are not pairwise disjoint. However, since each

subnetwork�� receives only2r input values from�1, every elementw0 in M0;i is contained

in at most2r setsCi;j. Also, eachCi;j contains all wires inM0;i that can collide in� with some

wire inM1;j.
For0 � i < 2r � k2 and0 � j < t(s), we defineM(i; j) def= 8>>>>><>>>>>: M0;j 0 � j < i,(M0;j n Cj;j�i) [M1;j�i i � j < t(s� 1),M1;j�i t(s� 1) � j < t(s� 1) + i, and; t(s� 1) + i � j < t(s).
By their construction, the setsM(i; j) are non-colliding in� underq0 � q1. If we letLi def=Si�j<t(s�1) Cj;j�i for 0 � i < 2r � k2, then[0�j<t(s)M(i; j) = (B0 n Li) [B1:
Since every element ofB0 can occur at most2r times in the setsCi;j, every element ofB0 can

occur at most2r times in the setsLi. Hence, by averaging there exists ani0, 0 � i0 < k2 � 2r,
such thatjLi0j � jB0jk2 . We use thisi0 to determine the partial matching between theM0;i’s and

theM1;j ’s.

More precisely, for allj such that0 � j < t(s), we match the setM0;j with the setM1;j�i0 to

obtain a new setMj def= M(i0; j). (Here we assumeM0;i andM1;i to be the empty set fori < 0
andi � t(s � 1).) Thus, the new setMj is obtained by removing the wires inCj;j�i0 fromM0;j, and merging the resulting set withM1;j�i0. We now show that this choice ofMj satisfies

Properties (3) and (4). We haveB def= [0�j<t(s)Mj
15

= (B0 n Li0) [B1� B0 [B1� A0 [A1= A:
This establishes Property (3). Verifying Property (4) is also straightforward:jBj = jB0j+ jB1j � jLi0 j� jA0j � (s� r � 1) � jA0jk2 + jA1j � (s� r � 1) � jA1jk2 � jLi0j= (jA0j+ jA1j) 1� (s� r � 1)k2 !� jLi0j� jAj � (s� r � 1) � jAjk2 � jB0jk2� jAj � (s� r) � jAjk2
To complete our proof, we construct a refinementq of p such that Properties (1), (2), and (5)

hold forq and the setsMj. We do this byA0-refiningq0 to someq00 andA1-refiningq1 to someq01. Thenp0 �A0 q00 andp1 �A1 q01, and by Lemma 3.1 the patternq def= q00�q01 is anA-refinement

of p.
We refineq0 to q00 in the following steps:1. First change all pattern symbolsMi andXi;j with i � t(s�1) toMi+2r�k2 andXi+2r �k2;j ,

respectively.2. Then change the pattern symbols of all wires inCi;i�i0 with i0 � i < t(s � 1) to Xi;j0,
wherej0 is chosen such that before this step only symbolsXi;j with j < j0 appear in the

pattern.

The steps for the refinement ofq1 to q01 are:10. First change all pattern symbolsMi andXi;j with i � t(s�1) toMi+2r �k2 andXi+2r �k2;j ,
respectively.20. Then change all pattern symbolsMi andXi;j with 0 � i < t(s�1) toMi+i0 andXi+i0;j ,
respectively.

All refinement steps described above are order-preserving renamings and, thus, valid refine-

ment steps. Steps1 and10 remove all symbolsMi andXi;j with t(s� 1) � i < t(s) from the

patterns. Then Steps2 and20 can be executed to perform the matching between the setsM0;i
andM1;j. Note that Steps1 and10 are not really necessary since we can assume that the patterns

16

q0 andq1 themselves have been constructed using the above refinement steps, and hence that

no symbolsMi andXi;j with i � t(s� 1) exist in the pattern. However, in order to simplify

our induction hypothesis, we have chosen not to make this assumption.

The patternq = q00 � q01 has been constructed such that the setsMi are the [Mi]-sets ofq, so

Property (1) is satisfied.

To see that Property (2) holds, note that the setCi;j, which contains all input wires ofM0;i
that can collide with an input wire ofM1;j in � underq0� q1, also contains the same colliding

wires with respect toq = q00�q01. The setsM0;i are non-colliding in�0 underq00 and, thus, also

non-colliding in� underq. Similarly, the setsM1;j are non-colliding in� underq. Hence,Mj = (M0;j n Cj;j�i0) [M1;j�i0
is non-colliding in� underq.
Finally, due to the definition of the setsCi;j that were removed from the matched sets, no two

elements of any [Mi]-set of�(q) are in the same output group of�. This establishes Prop-

erty (5).2
Lemma 3.6 Let� be a2d-input shuffle-unshuffle network with spans � d and overlapr, and let�
be an arbitrary comparator network with an incomparable set of size�. Then any network in�
�
has an incomparable set of size� 0 � �=(s4 � 2r).
Proof: According to Definition 3.9, there exists an input patternp0 such that some [Mi0]-setC ofp0 is of size� and is non-colliding in� underp0. By Lemma 3.4, we can assume thati0 = 0, and

thatp0 contains only the symbolsS0,M0, andL0.
Every2d-input shuffle-unshufflenetwork with spans � d and overlapr is equivalent to a(d; s; r)-

hypercubic network. Hence, we can apply Lemma 3.5 to�. Let k = s, p = �(p0), andA be the

[M0]-set ofp. Then by Lemma 3.5, there exists an input patternq with p �A q andt(s) � 2s3 � 2r
disjoint setsMi, 0 � i < t(s) of input wires of� such that� everyMi is the [Mi]-set ofq,� everyMi is non-colliding in� underq,� B � A, and� jBj � � � (1� 1=s),

17

whereB def= S0�i<t(s)Mi. By averaging, there exists a setMj0 , 0 � j0 < t(s), of size at leastjBj2s3 � 2r � �s4 � 2r ;
where the inequality follows from the fact that12(1 � 1=s) � 1=s for s � 3. (Fors < 3, the claim

follows from� 0 � �=2s.) By Lemma 3.3, there exists an input patternq0 with p0 �C q0 such thatq = �(q0) and the [Mj0]-set ofq0 is non-colliding in�
�underq0. Sinceq = �(q0), the [Mj0]-set

of q0 also contains at least�=(s4 � 2r) elements.2
The following lemma can be established by partitioning a shuffle-unshuffle network ofoverlapr

and depth̀ into d`=de consecutive shuffle-unshuffle networks of overlapr and depth at mostd, and

applying Lemma 3.6 to each of the networks.

Lemma 3.7 Let� be ann-input shuffle-unshuffle network with depth` and overlapr � d = lg n.

Then� has an incomparable set of size at leastn(d4 � 2r)d`=de :
Lemma 3.7 immediately implies the following lower bound for shuffle-unshuffle networks with

bounded overlap. Note that for the special caser = 0, we obtain the result in [17]. However, if the

overlap is�(d), we only get the trivial
(lg n) lower bound.

Theorem 3.1 Anyn-input shuffle-unshuffle sorting network with overlapr has depth
 � lg2 nr+lg lgn�.
4 A Lower Bound for Shuffle-Unshuffle Sorting Networks

In this section we establish our main result, a lower bound on the depth of arbitrary shuffle-unshuffle

sorting networks. In order to prove the result, we need one more lemma. Informally, Lemma 4.1 be-

low states that we can maintain a fairly large incomparable set over the levels of any shuffle-unshuffle

network of span at mostd. The proof of the lemma is based on the idea that any shuffle-unshuffle

network with depth̀ either has a small overlap relative to`, or can be (recursively) partitioned into

several consecutive networks satisfying this property. In the first case, we can use Lemma 3.6 to

bound the size of the incomparable set. The second case is handled by induction.

Lemma 4.1 Let�be a shuffle-unshuffle network with depth` and spans � d, let�(`; s) def= `�s=2lg s= lg lg s ,
and let� be an arbitrary comparator network with an incomparable set of size�. Then any network

in �
� has an incomparable set of size� 0, where�� 0 � s4 � 29��(`;s):
18

Proof: The proof is by induction on the depth` of the network.

Base Case:̀ � 216
Usings � ` � 216, we obtainlg s= lg lg s � 4 and9 � �(`; s) � 9 � `=24 � ` � r:
Then the claim follows by a simple application of Lemma 3.6.

Induction Step:̀ > 216
For the induction step, we assume a shuffle-unshuffle network� with depth`, overlapr, and

spans � d. Now suppose thatr � 9 � �(`; s). In this case, the claim follows by a simple

application of Lemma 3.6.

Hence, in the following we assume thatr > 9 � �(`; s) � 9s2 lg s= lg lg s: (1)

Note thats � r > 9 � �(`; s) and` > 216 imply s > 216 andlg lg s= lg s < 1=4.

Due to the definition of overlap, there exist shuffle-unshuffle networks�i, 0 � i < 2, with

depth`i and spansi, such that� belongs to�0
�1, `0 + `1 = `, ands0 + s1 = s+ r. By

applying the induction hypothesis first to� and�0 , and then to�
�0 and�1, we obtain�� 0 � s40 � 29��(`0;s0) � s41 � 29��(`1;s1)= s40 � s41 � 29x;
wherex def= �(`0; s0) + �(`1; s1). Usingminfs0; s1g � r, maxfs0; s1g � s, and Equation (1)

we obtain min(lg s0lg lg s0 ; lg s1lg lg s1) � lg rlg lg s� 1lg lg s � lg 9s2 lg s= lg lg s!� 1lg lg s � lg slg s!= lg slg lg s � 1 � lg lg slg s ! :
Using this bound, and the fact that1=(1 � �) � 1 + 2� holds for� = lg lg s= lg s < 1=2, we

obtain x � `0 � s0=2lg s= lg lg s + `1 � s1=2lg s= lg lg s! 11� lg lg s= lg s!
19

� `0 � s0=2lg s= lg lg s + `1 � s1=2lg s= lg lg s! (1 + 2 lg lg s= lg s)= `0 � s0=2lg s= lg lg s + `1 � s1=2lg s= lg lg s + (`0 � s0=2 + `1 � s1=2) � 2 lg lg slg s !2= ` � s=2 � r=2lg s= lg lg s + (` � s=2� r=2) � 2 lg lg slg s !2� �(`; s) � r2 lg s= lg lg s + (`� s=2) � 2 lg lg slg s !2 :
Note that Equation (1) implies ` � s=2 < r lg s9 lg lg s;
and hence x � �(`; s) � r2 lg s= lg lg s + 2r9 lg s= lg lg s= �(`; s) � 5r18 lg s= lg lg s� �(`; s) � 5s4(lg s= lg lg s)2� �(`; s) � 4 lg s9 ;
where the last two inequalities follow from Equation (1) ands > 216, respectively. By usingmaxfs0; s1g � s we obtain �� 0 � s40 � s41 � 29x� s40 � s41 � 29��(`;s)�4 lg s� s4 � 24 lg s � 29��(`;s)�4 lg s= s4 � 29��(`;s):2

Theorem 4.1 Anyn-input shuffle-unshuffle sorting network has depth
 � lgn lg lgnlg lg lgn �.
Proof: Let � be ann-input shuffle-unshuffle network of depth̀, n = 2d. We partition� intok � d`=de consecutive shuffle-unshuffle networks�i, 0 � i < k, with depth̀ i and spand. This can

be done by defining�0 as the shortest prefix of the levels of the network� with spand, �1 as the

shortest prefix of���0 with spand, and so on. (At the end, we may have to add some additional

levels to the network in order to get a span of exactlyd for �k�1. Adding such additional levels to

the network can certainly not increase the size of the largest incomparable set.)

20

Let� be a network containing no comparator elements at all. Clearly,� belongs to�
�, and� has an incomparable set of sizen. We now apply Lemma 4.1 once for each network�i, 0 � i < k.

It follows that there exists an incomparable set of sizen0 in �, such thatnn0 = Y0�i<k d4 � 2� 9(`i�d=2)lg d= lg lg d� � 2(9`lg d= lg lg d);
for d sufficiently large. Hence, if̀ < 9 � d lg d= lg lg d, thenn0 > 1, and it follows that� cannot be

a sorting network.2
5 Extensions and Limitations

This section discusses a few extensions and limitations of our proof technique.

First, we point out that the proof of our lower bound also holds for certain restricted classes of

non-oblivious sorting algorithms on hypercubic machines. More precisely, we can allowour sorting

networks to be adaptive in the following sense: If we write the network as a sequence of pairs(�i; ~xi),
then the labeling~xi of theith level with elements fromf+;�; 0; 1g can depend on the outcome of all

the comparisons made in all previous levels. Recall that in our lower bound arguments,it was never

assumed that the labeling is fixed beforehand; instead, in every level, we allowed the “adversary”

to choose the labeling in an arbitrary way. Hence, the validity of the argument is not affected by

allowing the construction of the network to be adaptive.

Note that this model of a non-oblivious comparator network is quite powerful, and that it al-

lows, for instance, the on-line routing of permutations in logarithmic time (wherethe permutation to

be routed can be an arbitrary function of the outcomes of all previous comparisons in thenetwork).

Similarly, we can also show that our lower bounds still hold in the case where a nodecan hold more

than one element, provided that elements cannot be copied. It is unclear whether our techniques can

be extended to a model where copying of elements is allowed, or to a model where the sequence of

shuffle and unshuffle permutations can be chosen adaptively depending on the outcome of previous

comparisons.

We can also extend our lower bounds to some restricted classes of sorting algorithms on multi-

dimensional meshes. In [23], Wanka describes the following natural extension of theclass of ascend

algorithms to multi-dimensional meshes. In an ascend algorithm on ad-dimensional mesh of side

lengthm, the dimensions are visited in strictly ascending order. Whenever we visit a dimension, we

performm steps of communication across this dimension. Thus, in a single visit to a dimension,we

can completely sort the elements in each linear array along that dimension.Note that this class of

algorithms corresponds to the class of sorting networks built fromm-input comparator gates, where

consecutive levels of the network are connected by anm-way unshuffle permutation (as defined in

the register model of a comparator network).

21

An example of an ascend algorithm on the two-dimensional mesh is theShearsortalgorithm [21,

22], which alternatingly sorts along the rows and along the columns. Recently, Corbett and Sch-

erson [5] and Wanka [23] have described two different generalizations of this algorithm to meshes

of arbitrary dimension. Both of the algorithms can be implemented as ascend algorithms, and they

achieve a running time ofO(d2m lgm) on thed-dimensional mesh of sidelengthm.

Using the techniques in this paper, we can show a lower bound ofO(d2m lgm= lg(dm)) for the

class of ascend sorting algorithms on multi-dimensional meshes (assuming, as before, that the algo-

rithms are comparison-based, and that no copying of elements is allowed). For meshes with noncon-

stant dimension, this implies that no ascend algorithm can achieve an asymptotically optimal running

time. Similarly, we can define natural extensions of the classes of normal algorithms, and normal al-

gorithms with overlap, to multi-dimensional meshes. Using our proof techniques, we can show lower

bounds for these classes that improve asymptotically on the distance bound, though we are not aware

of any algorithms of this type.

Finally, note that our lower bounds do not apply to probabilistic sorting networks, that is,net-

works that sort the vast majority of input permutations, but are not sorting networks in the strict sense.

In fact, Leighton and Plaxton [14] have designed a shuffle-unshuffle comparator network ofdepthO(lg n) that sorts all but a super-polynomially small fraction of the inputs. Similarly, we cannot hope

to extend our lower bounds to “randomized” sorting networks, which may contain additional“ran-

domizing” circuit elements that interchange the input values with probability1=2, and leave them un-

changed otherwise. In [14], Leighton and Plaxton also show how to construct a randomized shuffle-

unshuffle network of depthO(lg n) that sorts every input permutation with high probability.

6 Concluding Remarks

In this paper, we have established an
 � lgn lg lgnlg lg lgn � lower bound on the depth of shuffle-unshuffle sort-

ing networks. Our techniques also apply to certain restricted classes of non-oblivious sorting algo-

rithms on hypercubes and multi-dimensional meshes. A gap remains between our lowerbound and

the best upper bound known, and it would certainly be an interesting improvement to narrow orclose

this gap.

An important open question is whether we can extend our lower bounds to more general classes

of non-oblivious sorting algorithms on the hypercube. Of particular interest in this respect would be

the class of normal comparison-based sorting algorithms, or any other natural class of algorithms that

includes theSharesortalgorithm of Cypher and Plaxton [8].

Another possible direction for future research would be to consider other restricted classes of

sorting networks. As a natural extension of the shuffle-unshuffle networks, we could definethe class

of leveled hypercubic networks, whose structure corresponds to the class of algorithms on the hy-

percube where in each step communication only occurs across a single dimension, but the sequence

22

of dimensions can be arbitrary. (Note that this class of algorithms cannot be emulated with constant

slowdown on any of the bounded-degree variants of the hypercube.) Other classes of interestwould

be sorting networks based on a single permutation, or periodic sorting networks [9, 10, 12]. Finally,

it is an open problem whether our lower bound technique can also be applied to selectionnetworks.

Acknowledgement

We would like to thank Marcin Kik for helpful comments.

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. Sorting inc log n parallel steps.Combinatorica, 3:1–19,
1983.

[2] M. Ajtai, J. Komlós, and E. Szemerédi. Halvers and Expanders. InProceedings of the 33rd
Annual IEEE Symposium on Foundations of Computer Science, pages 686–692, 1992.

[3] K. E. Batcher. Sorting networks and their applications. InProceedings of the AFIPS Spring
Joint Computer Conference,vol. 32, pages 307–314, 1968.

[4] V. Chvátal. Lecture notes on the new AKS sorting network. Technical Report DCS–TR–294,
Department of Computer Science, Rutgers University, 1992.

[5] P. F. Corbett and I. D. Scherson. Sorting in mesh connected multiprocessors. IEEE Transactions
on Parallel and Distributed Systems, 3:626–632, 1992.

[6] R. E. Cypher. A lower bound on the size of Shellsort sorting networks.SIAM Journal on Com-
puting, 22:62–71, 1993.

[7] R. E. Cypher. Theoretical aspects of VLSI pin limitations.SIAM Journal on Computing, 22:58–
63, 1993.

[8] R. E. Cypher and C. G. Plaxton. Deterministic sorting in nearly logarithmic time on the hyper-
cube and related computers.Journal of Computer and Systems Sciences, 47:501–548, 1993.

[9] M. Dowd, Y. Perl, L. Rudolph, and M. Saks. The periodic balanced sorting network.Journal
of the ACM, 36:738–757, 1989.

[10] M. Kik, M. Kutyłowski, and G. Stachowiak. Periodic constant depth sorting networks. In
Proceedings of the 11th Symposium on Theoretical Aspects of Computer Science, pages 201–
212, 1994.

[11] D. E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, Reading, MA,
1973.

[12] M. Kutyłowski, K. Loryś, B. Oesterdiekhoff, and R. Wanka. Fast and Feasible Periodic Sorting
Networks of Constant Depth. InProceedings of the 35th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 369-380, 1994.

23

[13] F. T. Leighton.Introduction to Parallel Algorithms and Architectures: Arrays, Trees, and Hy-
percubes. Morgan-Kaufmann, San Mateo, CA, 1991.

[14] F. T. Leighton and C. G. Plaxton. Hypercubic sorting networks.SIAM Journal on Computing,
27(1):1–47, 1998.

[15] M. S. Paterson. Improved sorting networks withO(logN) depth.Algorithmica, 5:75–92, 1990.

[16] C. G. Plaxton and T. Suel. Lower bounds for Shellsort.Journal of Algorithms, 23:221–240,
1997.

[17] C. G. Plaxton and T. Suel. A lower bound for sorting networks based on the shuffle permutation.
Mathematical Systems Theory, 27:491–508, 1994.

[18] B. Poonen. The worst case in Shellsort and related algorithms.Journal of Algorithms, 15:101–
124, 1993.

[19] V. R. Pratt. Shellsort and Sorting Networks. PhD thesis, Stanford University, Department of
Computer Science, December 1971. Also published by Garland, New York, 1979.

[20] J. Reif and L. Valiant. A Logarithmic Time Sort for Linear Size Networks.Journal of the ACM,
34(1):60–76, 1987.

[21] K. Sado and Y. Igarashi. Some parallel sorts on a mesh-connected processor array. Journal of
Parallel and Distributed Computing, 3:389–410, 1986.

[22] I. D. Scherson and S. Sen. Parallel sorting in two-dimensional VLSI models of computation.
IEEE Transactions on Computers, 38:238–249, 1989.

[23] R. Wanka. Fast general sorting on meshes of arbitrary dimension without routing.Technical Re-
port TR–RI–91–087, Department of Computer Science, University of Paderborn, August 1991.

24

