A Super-Logarithmic Lower Bound
for Shuffle-Unshuffle Sorting Networks!

C. Greg Plaxtoi Torsten Suel

Abstract

Shuffle-unshuffle sorting networks are a class of comparatworks whose structure maps ef-
ficiently to the hypercube and any of its bounded degree newiaRecentlyy-input shuffle-

unshuffle sorting networks with depzf (V'8187) 1 have been discovered. These networks are
the only known sorting networks of deptfig? ») that are not based on expanders, and their ex-
istence raises the question of whether a depth(td ») can be achieved by any shuffle-unshuffle

sorting network. In this paper, we resolve this questiondtgiglishing ar? (%ﬁfnﬁ) lower

bound on the depth of anyinput shuffle-unshuffle sorting network. Our lower bounnd ba ex-
tended to certain restricted classes of non-obliviousrepalgorithms on hypercubic machines.

L A preliminary version of this paper was presented at the Btstnational Colloquium on Automata, Languages,
and Programming (ICALP), 1994.

? Department of Computer Science, University of Texas, AydtX 78712. Emailpl axt on@s. ut exas. edu.
Supported by NSF Research Initiation Award CCR—-911159 thaa Texas Advanced Research Program under Grant
Nos. 003658-480 and 003658—461.

3 CIS Department, Polytechnic University, Brooklyn, NY 112@mail: suel @hot on. pol y. edu. Part of this
work was performed while the author was a graduate studeieat/niversity of Texas, and was supported by the
Texas Advanced Research Program under Grant Nos. 003668nd8003658—461, and by a Schlumberger Graduate
Fellowship.

1 Introduction

A variety of different classes of sorting networks have been described irighatlire. Of particular
interest here are the so-called AKS network [1] discovered by Ajtai, Ksnand Szemerédi, and the
sorting networks proposed by Batcher [3]. While the AKS network is the only knowmgantt-
work with O(lg) depth, it also suffers from two significant shortcomings. First, the multipiie
constant hidden by th@-notation is impractically large. Through a series ofimprovements[2, 4, 15],
this constant has been reduced to bed®a0, but remains impractical. Second, the structure of the
network is highly irregular, and does not seem to map efficiently to any of the cormterconnec-
tion schemes. For example, Cypher [7] has shown that any emulation of the AKS kemvtre
cube-connected cycles requitedg”) time. (A sorting algorithm emulates the AKS network if it
performs the same sequence of comparisons on any input.)

In contrast, the networks proposed by Batcher have a relatively simple strantisesmall as-
sociated constant, and can be efficiently implemented on many common intestonrsehemes,
including meshes and hypercubic networks. Partly because of these propertiasy Batetworks
have been used in many practical applications, even though they havediégth) and are thus
asymptotically inferiorto AKS. This situation has motivated a number offrgite to construad (1g n)-
depth sorting networks with simpler, more regular topologies, and/or a considaradlgisconstant.
Three classes of networks that have received particular attention aredstedtworks, periodic sort-
ing networks, and shuffle-unshuffle (also called hypercubic [14]) sorting networks.

Shellsortnetworks have a very simple structure that is based on the sequgimsiddortsorting
algorithm. A class of Shellsort networks with degiilg” ») was given by Pratt [19]. For Shell-
sort networks based on monotonically decreasing increment sequences, Cypher fihbkshed
a lower bound of)(1g* n/ g lg n). Recently, more general lower bounds were shown [16, 18] that
hold for arbitrary Shellsort networks and even sequential Shellsort algorithnssanswering in the
negative the longstanding open problem of whether a running timéofg n) can be achieved by
any Shellsort algorithm.

A comparator network is called @eriodic sorting network if every input permutation can be
sorted by repeatedly passing it through the network. The primary motivation foipsuiddic net-
works is the reduction in hardware cost achieved by applying the same networledipdatthe
input. A periodic sorting network of depth(lg ») and running timeO(1g” ») was given by Dowd,
Perl, Rudolph, and Saks [9]. Very recently, Kutytowski, Lorys, Oesterdidkaoé Wanka [12] have
shown the existence of periodic networks of deptind running time)(1g® ») based on expanders.
No non-trivial lower bounds for periodic sorting networks are currently known.

In this paper, we focus on the classsbiuffle-unshufflsorting networks, a notion that is formal-
ized below. We establish a lower bound@(%) for the depth of any sorting network in this
class. Infact, our lower bound argument can be extended to certain rekttatees of non-oblivious

1

sorting algorithms on hypercubic networks and multi-dimensional meshes. Befbozatlag any
further on these results, we will briefly describe the comparator network pasttetlefine the classes
of sorting networks that we consider.

1.1 Shuffle-Unshuffle Sorting Networks

A comparator network is most commonly defined as an acyclic circuit of compa&iataents, each
having two input wires and two output wires. One of the output wires is labeled asak@utput
which receives the larger of the two input values; the other output is calledithreutput and re-
ceives the smaller value. We will use this model of a comparator network throughotubhtbe
paper, but will also briefly consider the following alternative model.

In this model, a comparator network amegisters is determined by a sequence of galsz,;),
0 < ¢ < (¢, wherell, is a permutation of0,...,n — 1} andZ, is a vector of lengthin/2| over
{+,—,0,1}. The network receives as input a permutatiod@f. .., » — 1} that is initially stored
in the registers, and then operates on the inputéonsecutive steps. In stép0 < : < /, the
register contents are permuted accordingifpand then the operation stored in #t& component
of #; is applied to registerd: and2k + 1. In a “+” operation, the values stored in the two registers
are compared, and the smaller of the values is stored in registdre larger one iRk + 1. Ina “—"
operation, the values are stored in the opposite order. A “0” means that no operktisplace on
the corresponding pair of registers. A “1” operation simply exchanges the valueswhbthegisters.
A comparator network is called a sorting network if it maps every possible inpotygation to the
same output permutation.

It is well known that the two models of comparator networks described above are eqaival
(That is, given any network in one model, there exists a network in the other matieheisame
size and depth that implements the same mapping from inputs to outputs.) Whilesthmddel
often appears more intuitive, we can use the second one to define some intepestiabctasses of
networks by restricting the possible choices for the permutafigns

The shuffle permutatior,, onn» = 2¢ inputs may be defined as follows. #f_; - -- jo de-
notes the binary representation of some intggér< j < n, thenr,(7) has binary representation
Ja—2 - joja—1. Asorting network s called shuffle-unshuffleetwork ifII; = =, orIl; = 7 ;! holds
for all ;. A natural subclass of the shuffle-unshuffle networks can be obtained by redqujriagr .y,
for all ; we say that a network satisfying this conditiorsiauffle-basedSimilarly, if IT; = =, for
all 7, then the network isinshuffle-based

The primary motivation for the definition of these two classes of networks is dpyehe fact
that they can be efficiently implemented on any of the hypercubic interconnectisarkst(i.e., the
hypercube, butterfly, cube-connected cycles, or shuffle-exchange). More prabiseiiructure of
shuffle-unshuffle sorting networks corresponds exactly to the classrofalalgorithms on the hy-

percube, while the structures of the shuffle-based and unshuffle-based networkparmire the
classes oflescendandascendalgorithms, respectively (see [13] for a definition of these classes).
Most of the important algorithms that have been proposed for the hypercube are norm&a&.g.,
Fourier Transform, parallel prefix, bitonic merging and sorting). In facgritloe argued that the pri-
mary motivation for the definition of the bounded-degree variants of the hypercube (ieutirly,
cube-connected cycles, and shuffle-exchange) has been the capability of thesksteteiiciently
implement the class of normal algorithms.

The study of shuffle-based sorting networks was proposed by Knuth [11, Exercise 5.3T4&l7].
best upper bound for this class is given by Batcher’s bitonic sort [3], with a depttigfr). Alower
bound ofQ)(1g” / g 1g n) was established by Plaxton and Suel [17]. However, this lower bound does
not extend to arbitrary shuffle-unshuffle networks.

The class of shuffle-unshuffle (also called hypercubic) sorting networks was defihedyhton
and Plaxton [14], who show the existence of a family of shuffle-unshuffle sorting retwith depth
20(\/1glgn) lgn. The construction of these networks is based on a “probabilistic” sorting network
described in [14], which sorts all but a super-polynomially small fractiomefdgossible input per-
mutations. We point out that the depth of the above shuffle-unshuffle netwaritg'is"), for all
¢ > 0, and that they represent the only known sorting networks of dgpthr) that are not based
on expanders. Naturally, this raises the question of whether a deptfigf) can be achieved by
any shuffle-unshuffle sorting network.

1.2 Overview of this Paper

In this paper, we resolve this question by showing a lower boum(éifgﬁ;gﬁ) on the depth of any
shuffle-unshuffle sorting network. Our lower bound also extends to certain regtciesses of non-
oblivious sorting algorithms on hypercubic machines and multi-dimensional meshesvétoauar

lower bound argument does not allow the copying of elements by the algorithm, and does not extend
to randomized algorithms. Thus, neither the determing&tiaresorsorting algorithm of Cypher and
Plaxton [8], which achieves a running time@®flg » lglg n) (with preprocessing) on any of the hy-
percubic machines, nor the randomized approach by Reif and Valiant and subseqteshsoblames

[13, 20] are covered by our lower bound. Nonetheless, we believe that our present resaltsaaly
interesting in their own right, and that they may constitute an importanttstegrds more general

lower bounds for sorting on hypercubic machines.

The remainder of the paper is organized as follows. Section 2 describes soméaditheleas
underlying our lower bound argument. Section 3 establishes a lower bound for a rdstiaste of
shuffle-unshuffle networks. Section 4 then shows our general lower bound. Some possiblerextens
and implications of our results are discussed in Section 5. Finally, Sédigis some open questions
for future research.

2 Overview of the Proof

In this section, we give a very informal description of the most important ideteeiproof of our
lower bound. To do so, we will first review the lower bound argument for shuffle-basedhkstw
given in [17], and explain why this relatively simple argument does not extend todhe general
class of shuffle-unshuffle sorting networks. We will then describe the new prootitease needed
in order to get a lower bound for arbitrary shuffle-unshuffle sorting networks.

2.1 A Naive Proof Idea

A simple observation concerning comparator networks is that a sorting network miostypa com-
parison on every pair of adjacent values in every input, that is, every pair of alues + 1} must
appear on the input wires of some comparator element. (We assume the inputs to bpens
of {0,...,n — 1}.) Thus, one might attempt to prove a lower bound &r the depth of a class of
comparator networks by showing, for all networks in the class, the existence of aparpuitation
7, and of a set of adjacent valugs:, ..., m + ¢} in 7, for some: > 0, such that no two elements of
the set are compared up to levelf the network. In the following, we will call such a set emcom-
parable set If we apply this proof idea to a shuffle-unshuffle network, starting out with the sgt of
values as our incomparable set, and, whenever two elements of the set get congpaogthg one
of them from the set, then we might lose up to half of the elements in any given &weising this
simple approach, we could only show the trivial lower bound@g ») for the depth of a sorting
network.

2.2 The Proof for Shuffle-Based Sorting Networks

The key idea to overcome this problem is to modify the proof technique in a way thasal®to
exploit the structural properties of the particular class of networks that wetalging. To explain
thisidea, we first consider the proof of the lower bound for shuffle-based sorting netw{itkK§ the

case of the unshuffle-based networks is symmetric. Note that a shuffle-based«istaquivalent

to a concatenation of a number of butterfly networks of déptheach. Thus, if we can show that
the size of our incomparable set decreases by at most a polylogarithmic facichibwéterfly, then

at least(lg n/1g lg n) consecutive butterflies are needed in order to bring the size of the incompa-
rable set down ta; this directly implies the(1g” n/1g 1g n) lower bound for shuffle-based sorting
networks of [17].

The following recursive definition of a butterfly is crucial for understanding our prabfigue:
A butterfly with 2¢ inputs and deptld consists of two parallel’—-input butterflies of deptd — 1,
followed by afinal level of up ta?~! comparators. Every comparator in the final level takes one input
from the outputs of each of the tv2d~" -input subnetworks. Finally, &input butterfly is just a wire.
This “tournament-like” structure leads to the following important property of &bilyt An observer

4

of a2¢-input butterfly tournament who sees the outcomes of all comparisons in th¢thvnput
subnetworks, but not the outcomes of the final level of comparisons, will not be able to shygnyt
about the relative ordering of any two items taken from different subnetworkshém atords, the
observer will not be able to say anything about the relative strength of the two “subtoemts
before the final stage. This “disjointness property” of the subnetworks plays a crolgahrthe
lower bound argument of [17].

Instead of maintaining only a single incomparable set, we now maintain a eati@tincompa-
rable sets in each recursive subnetwork. More precisely, after entemieng butterfly of depthyg r,
we partition our current incomparable set intty® » disjoint incomparable sets, most of which are
empty, withlg® n sets entering on each wire (recall that a single wirelisrgput butterfly). Thus, ev-
ery 2-input butterfly has two different collections pf » incomparable sets arriving on its two input
wires. Itis now possible to recombine these sets to get a new collection of rdgghliypncomparable
sets, containing all of the elements of the two collections.

More generally, due to the recursive structure of a butterfly, in every levetwesively have
two different collections 08 (1g® ») incomparable sets coming from two disjoint subnetworks. In[17],
it is shown that there exists a partial matching between these two eofiedf sets such that, if we
combine the sets according to the matching and remove one element from every pamerts
from the same set that gets compared, we obtain a new collection of incompatahidde losing
only a very small fraction of our elements. The number of sets in this new doltastonly slightly
larger than the number of sets in either of the two previous collections. The afotemed “dis-
jointness property” of the two subnetworks is needed at this point to make sure that tletsamw
the collection each contain adjacent elements.

If we repeat this process over Biln levels of the butterfly, then we end up with a single collection
of ©(lg’ n) incomparable sets. The total number of elements in the sets is only a constant fac
smaller than it was when we entered the butterfly. If we pick the largetsiedd(1g® ») sets as our
new incomparable set, then we only lose a polylogarithmic factor in the size ofthe s

To formalize this proof idea, the notion of arput patternrepresenting a class of similar inputs
was introduced in [17]. A class of inputs with the desired property (existendaaf@incomparable
set) was then constructed by stepwisinemenof a given input pattern in every level of the network.

2.3 Shuffle-Unshuffle Sorting Networks

The above argument does not work for arbitrary shuffle-unshuffle networks, as they dosfgptisati
“disjointness property” of the two subnetworks used in the argument. In this paper, veeoethis

obstacle, and derive a super-logarithmiclower bound for arbitrary shuffle-unslouftffgmnetworks.

To do so, we introduce the class of shuffle-unshuffle networks with “bounded overlap”.

Assume we are given an arbitrary shuffle-unshuffle netwowkth ¢ levels(II,, 7;),0 <: < ¢,
as described in the register model of a comparator network. In order to defing@#m &d “over-
lap” of A, it is convenient to introduce a number of auxiliary variables. d;et 1 if II; = =, and
a; = —1If II; = 7T5_hl, 0 < < £. (We remark that the value af, has no impact on the definitions
that follow.) Letd; = 3= ,<; a;, 0 < i < (. Thespanof A may now be defined a$b; : 0 <1 < (}|.
Theoverlapof A is the minimum integer > 0 such that either: (i); < b;+rforall0 <: < 5 </,
or (i) b > b; —rforall0 <: < 5 < (. Note that a network has overlap 0 If, = II; for all
1 <1 < 3 < (. Furthermore, the span of a network is always at least as large as itspyweitla
equality occurring only in the cage= 0, where the span and overlap are both O.

The proof of the lower bound in this paper is based on two main new ideas. First, we show
in Section 3 how the lower bound argument for shuffle-based networks can be modified t® handl
shuffle-unshuffle networks with small overlap. The overall structure of this proofyssimailar to
that in [17]. However, a number of subtle changes are required in order to extendjtineeai to
networks with non-zero overlap. The modified proof is based on the observation thatatifor
speaking, a shuffle-based network with small overlap still satisfies selareed version of the “dis-
jointness property”. More precisely, we will exhibit a trade-off between thelapef the network
and the lower bound that can be shown.

Second, we show in Section 4 that any shuffle-unshuffle network can be partitionadurter
of consecutive shuffle-unshuffle networks such that the overlap of each network in tiierpa
sufficiently smaller than its depth.

3 Shuffle-Unshuffle Networks with Small Overlap

In this section, we show that a large incomparable set can be effectivelyaimad over the levels
of any shuffle-unshuffle network with sufficiently small overlap. The main reduhis section is
Lemma 3.6, which bounds the decrease in the size of the incomparable set thaturéin ang29-
input shuffle-unshuffle network with span< d and overlap-. This lemma is used in Section 4 to
establish our lower bound for arbitrary shuffle-unshuffle sorting networks.

The actual argument addressing the size of the incomparable set is containeghiaahef
Lemma 3.5, and is described with respect to a more general class of netvadiedi,d, s, r)-hypercubic
networks, which properly contains the clas®fiinput shuffle-unshuffle networks with sparand
overlapr. The proof of Lemma 3.5 has a very similar structure to that of Lemma 4.1 in gbd],
uses many of the techniques introduced in that paper. However, in addition to ttiesetes, we
need some new ideas to establish the result.

Most of the notations used in this section are taken from [17]. For the sake of demgss, we
define these notations again in the following subsections.

The remainder of this section is organized as follows. In the first subsecteomtmduce the
concepts ofnput patternsandinput pattern refinemenSubsection 3.2 defines our notion of a com-
parator network and its action on an input pattern, and introduces the class: of)-hypercubic
networks. Subsection 3.3 lists a few basic lemmas. Finally, SubsectiaoBtdins the proof of
the main lemma, and a lower bound on the depth of shuffle-unshuffle sorting networksnaith s
overlap.

Inthe following, unless explicitly stated otherwise, the sehpfit wiresof a comparator network
is denotedV. An inputto a comparator network is a total mapping fré¥hto a setl” of possible
input values We will restrict our attention to inputs that are permutations df),....n — 1}, i.e.,
where|W| =n, V ={0,...,n — 1}, andr is one-to-one. The set of all one-to-one functions from
a setA to a setB will be denoted by A — B), and so the set of all inputs of a given comparator
network may be written ag¥ — V). Furthermore, for a functiofi on a set4d and a subseB of
A, let f,, denote the functional restriction ¢fto B. For two functionsf, and f; on disjoint setsi,
andA,, we write fy @ f; for theunionof f, and f;:

fo(z) forallzin Ay, and

(fo @ fi)(z) « { fi(z) forallzin A,;.

3.1 Input Patterns and Refinement

In the following definitions, we introduce the notionsioput patternandinput pattern refinement
which are fundamental to our proof technique. Informally, an input pattern desergetof inputs
with certain common properties. Input pattern refinementis the process ofing@aklitional con-
straints on such a set of inputs.

Definition 3.1 Let P be a set and<p be a total ordering orP.

(a) Aninput patterns a total mapping fron¥V to P.

(b) Letpg, p; be two input patterns. We say that can be refined te, (written pg Dw py) if
(po(w) <p po(w')) = (p1(w) <p p1(w’)) holds for allw andw’ in .

(c) Letp be aninput pattern and be an input. We say thatcan be refined ta (writtenp Dy)
if (p(w) <p p(w')) = (7(w) < m(w")) holds for allw andw’ in .

The setP will be referred to as thpattern alphabetand the elements a? are callecpbattern
symbols Throughout this paper, pattern symbols are denoted by script letters.

Example 3.1 LetW = {wy, ..., w,_1}, P £ {S, M, £}, and let the ordering: » on P be given by
S <p M <p L. (Informally, the symbols, M, andL may be interpreted as “Small”, “Medium”,

7

and “Large”, respectively.) Then the input patteprassigningl to w, andw; and M to all other
wires can be refined to all inputs that assign the two largest values, tand w,. We could also
refinep to other input patterns, for example to a pattefrsuch that(is assigned tav, andw,, S
is assigned tav,, and M is assigned to all other wires. The new pattefrcan itself be refined to
all inputs that assign the largest valuesig andw;, and the smallest value to,.

The relationDy defined above is a partial ordering on the set of input patterns. Note that the
setV of input values can be regarded as a special case of a pattern alphabet with thng@idhe
natural numbers. Every pattern can be refined to some input, and we could asstine fladtern
alphabet? is always a subset df. The pattern-to-pattern refinement in Part (b) of Definition 3.1
would then become a special case of the pattern-to-input refinement in Paktq@apver, in the
following we will not restrict our choice of to subsets oi”. We will see that this gives us more
power of expression and, thus, simplifies the presentation of the proof.

We usually think of an input pattermas a description of the set of inputs to whigltan be
refined. This set is denotedl’] £ {r : « is an input such that Sy 7}. When we refine a pattern
po to py1, then we are imposing additional constraints on this set of inputs. Formally,wee faD
p) < (polV] 2 p1[V]). Alternatively, the reader may also view an input patte&as a shorthand
for a logical predicate that holds for exactly the inputs[ivi].

Definition 3.2 Letp andg be input patterns ofl’, and letU be a subset dil’.

(@) The input patterp,, onU is therestrictionof p to U.

(b) We say thap can bel-refined tog (writtenp Dy ¢) if p Dw ¢ andp(w) = ¢(w) holds for all
win W\ U.

Definition 3.3 Let U, and U, be disjoint subsets d¥’, p, be an input pattern of’y, andp, be an
input pattern onl/;. Theng = po & p1 is the input pattern o/, U Uy such thatg,, = po and

Ay, = P1-

If for two patternspy andp; bothpy Dw p; andp; Dw po hold, then we say that, andp, are
equivalent In this case, we havg,[V] = p;[V], and the refinement steps frgm to p; and vice
versa can be achieved by simply renaming the pattern symbols in a way thatvpsebe ordering
<p. Hence, we call this special case of a refinement stegder-preserving renaming

Example 3.2 LetV £ {wo, ..., w,_1} and P « {P; 11> 0} with P, <p P,y forall ¢« > 0. Then
any input patterrp is equivalent to the input patteg,, £ > 0 obtained fronp by substituting every
pattern symboP; in p by P;., for all 7.

3.2 Comparator Networks

We now further formalize our notion of a comparator network, and explain how its domainef ope
ation can be extended from the set of inputs to the set of input patterns.

In the following, a comparator network is interpreted as a mapping from a set adbleasputs
to a set of possible outputs. More precisely, a comparator netwank input wiresi? and output
wiresV’ defines a mapping (which we also denoteyyfrom (W — V') to (W’ — V') such that
every inputr : W — V' is mapped to an output : W' — V thatis a “permutation” ofr. By this
we mean that there exists a bijection " — W’ such thatr(w) = 7’(p(w)) holds for allw in .

Let Ag, A7 be two sets ofi-input comparator networks. They, @ A}, theserial composition
of A{ andA7j, denotes the set of all networksthat can be obtained by connecting the output wires
of a network fromA; to the input wires of a network from;. In some cases, we may want to im-
pose certain special conditions on this connection between the output wires oftthetfirark and
the input wires of the second network. If no conditions are stated, then the connectidesroade
according to an arbitrary one-to-one mapping. As it happens, we often make use ofaheosepo-
sition operator in the context of singleton satsandA7. In such a case, we may write, for example,
Ao @ Ay (WhereAy, A; are networks) rather thgm\o} @ {A1}.

Given two comparator networks, andA; on disjoint sets of input and output wires, we obtain
theparallel compositiorof A, andA; as the union of the two networks, writtég ¢ A;. The set of
input (output) wires of\, & A; is the union of the sets of input (output) wires/of andA;.

Below we give an inductive definition of a class of comparator networks, calledr)-hypercubic
networks, which properly contains the clasg®finput shuffle-unshuffle networks with spar< d
and overlap . Note that thex? output wires of &d, s, r)-hypercubic network are partitioned into
24=7 output groupsf size2".

Definition 3.4 For r < s < d, a2?-input comparator network\ is called a(d, s, r)-hypercubic
network if:

(@) s —r = 0, andA is a network containing no comparators at all (i.e., ttfeinput wires are
directly connected to thz# output wires), and the output wires Afhave been partitioned into
24" output groups of siz&’, or

(b) s —r > 0andA is an element ofA, & Ay) @ A, where

e AgandA, are(d — 1,s — 1, r)-hypercubic networks, and

e A is the parallel composition af*="~! disjoint2"*!-input comparator networks,, 0 <
i < 24— of arbitrary size and depth, such that: (i) the"! input wires of each network
A; are connected to one output group of stzef A, and one output group of si2é of

9

Ay, and (ii) the2"*! output wires of each network; are partitioned to form two of the
24=7 output groups of network.

We remark that the class o, s, r)-hypercubic networks may not appear to be a very natural or
interesting class of networks, and that we only introduce it to simplify theddwwaend argument in
this paper.

A comparator network was identified with a mapping from the set of inputs to the set of outputs.
The following definition extend4 to a function from the set of input patterns to the set of output
patterns. (An output pattern is a mapping from the set of output wires to the setexhypgtmbols.)

Definition 3.5 Given a comparator network, an input patterrpy, and an output patterp, such
thatp, (W) = po(W), we define

Alpo) = p1 & Apo[V]) = pu[V].

Note that this definition characterizes the behavior of a comparator network opLampattern in
the way we would expect: If two pattern symb@lsandP; arrive on the input wires of a comparator
gate, then the symbol that is larger according to the ordetingvill appear on the max-output of
the gate, and the smaller one will appear on the min-output. This implies thattaofyirgeuts that
can be expressed by an input pattern will produce a set of outputs that can be exipyessedtput
pattern.

Definition 3.6 We say that two input wires, andw, collide in a networkA under an inputr if the
input valuesr(wy) andr(w,) are compared in\ whenr is given as input.

According to the above definition, two wires whose respective values meet in a norretonpa
element, that is, a “0” (do nothing) or “1” (exchange) switch, are not regarded adirgll In the
rest of the paper, we do not have to distinguish between the different circugeleamny more, since
the entire lower bound argument is based on the notion of collision introduced above and @xtende
to input patterns in the following.

Given a network\ and an inputr, we can always determine whether two input values are com-
pared or not. (Recall that we only consider inputs that are permutations.) Thistisencdse for
input patterns, since an input pattern can contain several occurrences of gn@adenn symbol.
This motivates the following definition of collision for input patterns:

Definition 3.7 LetA be a comparator network, lgtbe an input pattern foA, and letw, andw, be
two input wires of\.

10

(a) We say thatv, andw, collidein A underp if they collide inA under every input ip[V].

(b) We say thatv, andw, can collidein A underp if there exists an input ip[V'] such thatv, and
wy collide inA.

(c) We say thatv, andw; cannot colliden A underyp if there is no input irp[V'] such thato, and
wy collide inA.

(d) AsetU C W is callednon-collidingin A underp if any two wires inl/ cannot collide inA
underp.

Example 3.3 LetW £ {wy, wy, wy, w3}, P £ {S, M, L}, and let the ordering<» on P be given
byS <p M <p L. Let the network\ consist of a comparator between andw,, followed by
a comparator between, andws, followed by a comparator betweef, and w3, where all com-
parators are directed such that the larger value is output on the wire with the larger.ifden the
following holds under the input pattegnthat mapso, to S, w; andw, to M, andws to L:

(1) Wiresw; andw, collide in A underp since the very first comparator is between these two wires.

(2) Wiresw; andws can collide inA underp, since we can refing to an inputr that assigns a
larger value tow, than tow,. In that case, the input value assigneddtpwill be compared to
that ofws in the second comparator. Similarly, can collide withws in A underp.

(3) Wireswy andws collide in A underp, since no exchange can occur in the second comparator
of the network under any inpatwith p Dy 7. Also,w, andw; (resp.w;) cannot collide in
A underp.

Note that, if two wires collide (cannot collide) in some netwarkinder an input patterm then
they also collide (cannot collide) in under any refinement of p. Similarly, if a setU is non-
colliding in A underp, then it is also non-colliding it underp’. The propertycan collideis not
preserved under arbitrary refinement.

In the following we restrict our attention to a fixed pattern alphabethich is used throughout
the lower bound argument:
PE{S;, Xy, M, L 20, § > 0}

The ordering< p on P is defined by

S; <p Siq1,
Si <p Koo,
Xij <p Xijn,

11

Xy <p M,
M, <p Xijio,
M, <p L;, and
Liv1 <p L,

for all nonnegative integers ;.

Note that these inequalities imply th&}; <p X;y1,;, M; <p M1, andS; <p M, <p Ly
for all nonnegative, j, k. (Thus, the letters, M, and£ are chosen to denote various classes of
“small”, “medium”, and “large” input values.)

Definition 3.8 For a patternp and a pattern symbadP we define thep]-set of p as the sefw €
W p(w) =P}.

Definition 3.9 We say that a comparator netwatkhas anincomparable seif sizem if there exists
an input patterrp and an integei such that the M;]-set ofp is of sizem and is non-colliding in\
underp.

We can now formally describe our proof strategy: To prove that a netwasknot a sorting
network, we will show that the network has an incomparable set of size aRlelse input pattern
p associated with the incomparable set can then be refined to an input sutie thatss in the M, -
set contain adjacent input values; this implies thdbes not sort all inputs in(V']. The input pattern
p will be constructed using stepwise refinement, starting out with a pattetaiaing only the symbol
M.

3.3 Basic Lemmas

The following lemmas will be used in our lower bound argument. Their proofs arg &idightfor-
ward and we will only sketch some of the proof ideas.

Lemma 3.1 Let p be an input pattern o such that only the pattern symbds, M, and £,
appear inp. LetW, andW; be disjoint subsets ¢ with W = W, U W; and letA be the [M,]-set
of p. Letg, andg; be input patterns o, and W7, respectively, witlsy, <p go(w), ¢1(w) <p Lo
for all win A. Then fromp,,, Danw, g0 andpy,, Danw, ¢, We caninfenp D4 g & ¢

This lemma ensures that, given an input patiefor a networkA = Aq & A;, we obtain a

refinement op if we separately refine the input pattegns for A, andp,, for A, according to the
above rules, wher8’;, andW; are the sets of input wires af, andA, respectively.

12

Lemma 3.2 Let A be a comparator networlg, be an input pattern fo\, and A be the [M;]-set of
p, for some > 0. If A is non-colliding inA underp, then for every input wirew in A there exists a
unique output wireo’ such thatr(w) = A(7)(w’) holds for all7 in p[V].

Informally, the above lemma states that an input value on awvirea non-colliding [M,]-set
follows the same “path” through the network under all inputg[ii]. The proof of the lemma is by
a simple induction on the depth of the network. This one-to-one correspondence between the input
and output wires of a non-collidingWt;]-set is also the underlying idea in the next lemma.

Lemma 3.3 Let A be a comparator network iny, @ A;, : be a nonnegative integer, andbe an
input pattern forA, such that its J\,]-set A4 is non-colliding inA, underp. Letq £ Ao(p) be an
input pattern forA; and B be the [M,]-set of¢. Then for every/ with ¢ D ¢’ there exists @’ with
p Da p suchthaty = Ay(p’). Furthermore, if the M,]-set of¢’ is non-colliding inA; under¢/,
then the [M,]-set ofp’ is non-colliding inA underyp’.

To verify the validity of the final lemma, note that the paths taken by\thesymbols through a
network are not changed if we rename the rest of the symbols in the way descrthedemma.

Lemma 3.4 Let A be a comparator networlg, be an input pattern fo, and A be the [M;]-set of
p, for some > 0. Letp;(p) be the input pattern obtained fropby changing all pattern symbol?
with P <p M, to Sy, all pattern symbols” with M; <p P to Ly, and all pattern symbold1; to
M. If Ais non-colliding inA underp, thenA is also non-colliding in\ underp;(p).

3.4 The Main Lemma

In this subsection, we establish our main lemma (Lemma 3.6) on the size ofcbmparable set
in a shuffle-unshuffle network with small overlap. The main technical diffiaslin the proof of
Lemma 3.5, which establishes the existence of a paiterth a “large” [M]-set that is non-colliding
inasingle(d, s, r)-hypercubic network under By a direct application, we also obtain a strong lower
bound for shuffle-unshuffle sorting networks with bounded overlap that generalizes thergsql

Lemma 3.5 Let A be a(d, s, r)-hypercubic network with < s < d, andp be an input pattern for
A such that only the pattern symbdls, £y, and M, occur inp. Let A be the [M,]-set ofp, and

k be any positive integer. Then there exists an input paijesith p S 4 ¢ andt(s) = 27 - k> +

(s —r)- 2" k* setsM,, 0 < i < #(s), of input wires such that the following properties hold, where
B= Uo<i<t(s) M;:

(1) Everyd; is the [M;]-set of g.

13

(2) EveryM,; is non-colliding inA underg.
(3) B C A.

s—r)-|A
(4) |B| > |A] - kAl

(5) No two elements of anyMt;]-set of A(¢) are located in the same output groupf

Proof: The proof is by induction orm — r-.

Base Cases —r =0

In this case the network does not contain any comparator elements. We define thésets

0 < i < t(0), by partitioningd into 2" - k* sets such that no two elements in any set are located
in the same output group. (Each output group hasXize 2" - k3, so this is clearly possible.)

If we defineq as the pattern obtained fropby relabeling each wire in sét/; with M, for

0 <1 < t(0), then Properties (1) to (5) are satisfied.

Induction Steps —r > 0

A (d, s, r)-hypercubic network consists of twd — 1, s — 1, r)-hypercubic networks\, and
A1, and a networl\ satisfying the conditions of Definition 3.4. The input wif@sof A can
be partitioned into the set&, andi¥; of input wires ofA, andA,, respectively. Lep, £ Plw,
andp; = py,,, . ThenA, = AN W, is the [M,]-set ofp, and A, = AN W, is the [M,]-set of
P1.

Applying the induction hypothesis tdq, po, and Ay, we can infer the existence of an input
patterng, with py D4, ¢o, and oft(s — 1) disjoint setsM, ;, 0 < i < ¢(s — 1), such that

e everylM,; is the [M;]-set of g,
e everylM,; is non-colliding inA, undergy,
o By C Ay,

| Bo| > |Ag| — L=r el "and

no two elements of anyW;]-set of A¢(¢o) are located in the same output groupaf,

def
whereB, = Uo§i<t(s—1) Mo,;.

Correspondingly, for\,, p;, andA,, we get an input pattersq, disjoint setsM; ;,, 0 < ¢ <
t(s — 1), and a seB;, with the same properties.

We will now construct the setd/;, 0 < ¢ < t(s), by combining the set8/, ; of A, with the
setsiM, ; of Ay, according to some partial matching to be determined in the following.

14

Because nof1;]-set of Ag(qo) (resp.,A:1(¢1)) contains any two elements that are located in
the same output group &, (resp.,A,), no element of any set/, ; (resp.,}, ;) can collide
with any other element of the same sefAn

Also, due to the topology of @, s, r)-hypercubic network, no element of a 8¢¢ ; can collide
in Ay @& Ay with any element of a set/; ;. By Lemma 3.2, we can determine for eaclin a
setiMy,; (resp.,M; ;) the output wirew’ of A, (resp.,A,) that receives the value(w) under
all w in ¢o[V] (resp..q:1[V]). Thus, for any suchy we can determine the subnetwotk (where
v is some functiory of w) of A that will receiver(w) as an input value under ailin ¢,[V]
(resp..1[V]).

For0 <i,j < t(s—1),wedefing’; ; as the set of all wires, in M, ,; such thaff (wy) = f(w)
holds for somev, in M, ;. Note that the”; ;’s are not pairwise disjoint. However, since each
subnetwork\,, receives only®” input values from\,, every elementy, in 3, ; is contained
in at most2” setsC; ;. Also, eachC; ; contains all wires inl/, ; that can collide in\ with some
wire in M ;.

For0 <i < 2"-k?and0 < j < #(s), we define

My, 0<j<i,
M(i,) (Mo \ Cjj-i) UMy i <j<t(s—1),
’ M, j_; t(s—1)<j<t(s—1)+14,and
0 ts—1)+1 < j<t(s).

By their construction, the sefdl(:, ;) are non-colliding inA underg, @ ¢;. If we let L; £
Ui§j<t(s—1) C]‘J‘_,' for 0 < 1< 2" kz, then

U M(.j)=(Bo\ L) U By.
0<j<t(s)
Since every element d#, can occur at most” times in the set§; ;, every element o, can
occur at mos2” times in the setd,;. Hence, by averaging there existsign) < 7o < k- 2",
such thatZ; | < 'f—;”. We use thig, to determine the partial matching between ifg;'s and
the M ;’s.

More precisely, for allj such that < j < t(s), we match the set/, ; with the setd/; ;_;, to
obtain a new set/; £ M (i, j). (Here we assuma/, ; and M, ; to be the empty set far< 0
and: > t(s — 1).) Thus, the new set/; is obtained by removing the wires @, ;_;, from
M, ;, and merging the resulting set willd; ;_;,. We now show that this choice 68f; satisfies
Properties (3) and (4). We have

B = U M
)

0<5<t(s

15

(Bo\ Li,) U B,
By U B,

Ao U A,

A,

This establishes Property (3). Verifying Property (4) is also straighticatw

Bl = 1Bl + |Bil — |L,
> |AO|_(3—T;€21)-|A0| A - (3—r;21)-|A1| L)
= (a1 (1= C5) -
> |A|_(5—T;21)'|A|_|f§|
> 4y A

To complete our proof, we construct a refinemgnf p such that Properties (1), (2), and (5)
hold forg and the setd/;. We do this byA,-refiningg, to somey, andA4,-refiningg, to some
¢,. Thenpy D4, ¢, andp, D4, ¢,, and by Lemma 3.1 the pattefrE ¢3¢, is anA-refinement
of p.

We refineg, to ¢; in the following steps:

1. Firstchange all pattern symbold; and; ; with: > (s —1) to M, - 42 @NAX; 1272,
respectively.
2. Then change the pattern symbols of all wire€’in_;, withip < ¢ < t(s — 1) to & ;,,

wherej, is chosen such that before this step only symbglswith ; < j, appear in the
pattern.

The steps for the refinement @fto ¢; are:
1’. Firstchange all pattern symbold; and.; ; with ¢ > ¢(s—1)to M, o 42 @ndX; 1 or 42,
respectively.
2'. Then change all pattern symbolg; and.Y; ; with0 <: < ¢t(s—1)to M,;,, and Xy, ;,

respectively.

All refinement steps described above are order-preserving renamings and, thiisefuadi-
ment steps. Stedsandl’ remove all symbols\1; andX; ; with ¢(s — 1) <1 < ¢(s) from the
patterns. Then Stegsand2’ can be executed to perform the matching between thelégts
and}/, ;. Note that Stepsandl’ are not really necessary since we can assume that the patterns

16

¢o andq, themselves have been constructed using the above refinement steps, and hence that
no symbolsM; and; ; with ¢ > ¢(s — 1) exist in the pattern. However, in order to simplify
our induction hypothesis, we have chosen not to make this assumption.

The patterny = ¢} & ¢; has been constructed such that the 3étsire the [M,]-sets ofg, so
Property (1) is satisfied.

To see that Property (2) holds, note that thegt, which contains all input wires o/ ;
that can collide with an input wire aff; ; in A underg, & ¢;, also contains the same colliding
wires with respect tg = ¢, & ¢;. The sets\/,; are non-colliding im\, underg, and, thus, also
non-colliding inA underq. Similarly, the setsl/; ; are non-colliding inA underq. Hence,

M= (Mo; \ Cjjiy) UM

is non-colliding inA undery.

Finally, due to the definition of the sef§ ; that were removed from the matched sets, no two
elements of any.}1;]-set of A(¢) are in the same output group Af This establishes Prop-
erty (5).

a

Lemma 3.6 Let A be a2¢-input shuffle-unshuffle network with spart ¢ and overlap-, and letA
be an arbitrary comparator network with an incomparable set of giZEhen any network in @ A
has an incomparable set of size> v//(s* - 2").

Proof: According to Definition 3.9, there exists an input pattggrsuch that some¥/1;]-setC of
po 1S Of sizer and is non-colliding in\ underp,. By Lemma 3.4, we can assume that= 0, and
thatp, contains only the symbolS,, Mg, andL,.

Every24-input shuffle-unshuffle network with spar< and overlap is equivalentto &, s, r)-
hypercubic network. Hence, we can apply Lemma 3.Btd.etk = s, p = A(po), and A be the
[M]-set ofp. Then by Lemma 3.5, there exists an input pattewith p D4 ¢ andt(s) < 2s* - 2"
disjoint setsM;, 0 < ¢ < ¢(s) of input wires ofA such that

e everyM,; is the [M,]-set of¢q,
e everyM; is non-colliding inA underg,
e BC A, and

e |[B|>v-(1-1/s),

17

def

whereB = Uy<;«y(s) Mi. By averaging, there exists a seft;,, 0 < jo < (s), of size at least

| B| v

2g3.9r = g4.9r’

where the inequality follows from the fact thatl — 1/s) > 1/s for s > 3. (Fors < 3, the claim
follows from+’ > v/2°.) By Lemma 3.3, there exists an input pattesrwith p, D¢ ¢o such that
q = A(q) and the M,]-set of g, is non-colliding inA @ A underg,. Sinceg = A(q), the [M]-set
of ¢o also contains at least/(s* - 2") elementsO

The following lemma can be established by partitioning a shuffle-unshuffle netwoviedbpr
and deptlf into [¢/d]| consecutive shuffle-unshuffle networks of overtaand depth at most, and
applying Lemma 3.6 to each of the networks.

Lemma 3.7 Let A be ann-input shuffle-unshuffle network with degtand overlapr < d = 1gn.
ThenA has an incomparable set of size at least

n

(d4] QT)V/‘ﬂ)

Lemma 3.7 immediately implies the following lower bound for shuffle-unshuffle ndtsweith
bounded overlap. Note that for the special case 0, we obtain the result in [17]. However, if the
overlap isO©(d), we only get the triviaf2(1g ») lower bound.

Theorem 3.1 Anyn-input shuffle-unshuffle sorting network with overtapas deptH? (Tﬁ;l’;n) :

4 A Lower Bound for Shuffle-Unshuffle Sorting Networks

In this section we establish our main result, a lower bound on the depth of ayisitwaffle-unshuffle
sorting networks. In order to prove the result, we need one more lemma. Inforbeatiyna 4.1 be-

low states that we can maintain a fairly large incomparable set oventis & any shuffle-unshuffle
network of span at most The proof of the lemma is based on the idea that any shuffle-unshuffle
network with depth either has a small overlap relativeitoor can be (recursively) partitioned into
several consecutive networks satisfying this property. In the first caseanvase Lemma 3.6 to
bound the size of the incomparable set. The second case is handled by induction.

Lemma 4.1 LetA be a shuffle-unshuffle network with dep#nd spans < d, leta(/,s) = 1gi715g/12gs’

and letA be an arbitrary comparator network with an incomparable set of giZ€hen any network
in A ® A has an incomparable set of siz& where

Z > S4 . 29~oz((,s)‘
v T

18

Proof: The proof is by induction on the depthof the network.

Base Casef < 21¢
Usings < ¢ < 2'¢, we obtainlg s/1glg s < 4 and

9'f/2 > (>

Then the claim follows by a simple application of Lemma 3.6.

9-a(l,s) >

Induction Step? > 2'¢

For the induction step, we assume a shuffle-unshuffle netwoskth depth/, overlapr, and
spans < d. Now suppose that < 9 - «(/,s). In this case, the claim follows by a simple
application of Lemma 3.6.

Hence, in the following we assume that

9s
9-a(l >
1> 9-alls) 2 2lgs/lglg s

Note thats > r > 9- «((,s) and/ > 2'5 imply s > 2'¢ andlglgs/lg s < 1/4.

(1)

Due to the definition of overlap, there exist shuffle-unshuffle netwdrk® < ¢ < 2, with

depth/; and span;, such thatA belongs taA, @ Ay, o + /1 = ¢, andsy + s, = s+ r. By

applying the induction hypothesis firstdoandA, , and then ta\ @ Ay andA, we obtain
1%

- =

. 9~O((f0,50) . 4 . 9~O((f1,51)
> 2 572

4
S0
a4

. 5‘11 2%
wherez £ a(ly, so) + a(ly,s1). Usingmin{sg, s} > r, max{sy,s;} < s, and Equation (1)

we obtain
. lg so lg sq lgr
min , >
lglgso lglg sy lglg s

Y

1 | 9s
lglg s & 2lg s/lglg s

1 g (S)
lglg s & lg—s
o lgs ‘(1_1g1g3)
lglg s lgs |

Using this bound, and the fact thBt(1 — ¢) < 1 + 2¢ holds fore = lglgs/lgs < 1/2, we
obtain

Y

. S 60—80/2 n 61—81/2 1
lgs/lglgs lgs/lglgs) \1—1glgs/lgs

19

lo —50/2 Uy —sy/2
1+2lglgs/]
(1g5/1g1g5+1g8/1g1g5 (1+2lglgs/lgs)

50—80/2 £1_31/2
) lo—s0/2+ 01— 1/2) -2
1g8/1g1g5+1g5/1g1g3+(0 50/2 4 {1 — 51/2)

fospp—r2 +({—s/2—1r[2)-2 (1g1g3)2

lglg s :
lg s

lgs/lglgs lg s
r lglg s :
< l,8) — ———— + (1 —3/2)-2 :
< albs) 21g5/1g1g3+(5/2) (lg s)
Note that Equation (1) implies
(—s)2 < rlgs
i 9lglg s’
and hence
r 2r
< ls) —
T 5 albs) 21g3/1g1g3+91g5/1g1g3
or
— alls)— — "
a(f;s) 181lg s/lglg s
5s
< 14
a(tys) 4(lg s/ 1glg s)?
41
< alls) ==,

where the last two inequalities follow from Equation (1) ang 2!6, respectively. By using
max{sg, s1} < s we obtain

1. g1 00

T\| N
VAN
)
(o)

. 8411 . 29~oz((,s)—4lgs

VAN
»
(sl

. 24lgs . 29~oz((,s)—4lgs

VAN
VA
IS

4 29~oz((,s))

I
VA

O
Theorem 4.1 Anyn-input shuffle-unshuffle sorting network has defptﬁ%).

Proof: Let A be ann-input shuffle-unshuffle network of depthn = 2?. We partitionA into

k < [{/d] consecutive shuffle-unshuffle netwotks, 0 < : < k, with depth?; and sparnl. This can

be done by defining\, as the shortest prefix of the levels of the netwadrkvith spand, A, as the
shortest prefix of\ — A, with spand, and so on. (At the end, we may have to add some additional
levels to the network in order to get a span of exaétipr A,_;. Adding such additional levels to
the network can certainly not increase the size of the largest incomparaple se

20

Let A be a network containing no comparator elements at all. Clearbglongs to\ @ A, and
A has anincomparable set of sizeWe now apply Lemma 4.1 once for each netwark < : < k.
It follows that there exists an incomparable set of sizi A, such that

(¢i=d/2)
I 2(19gd/1g1g2d) < olwariwa),
n' 0<i<k

for d sufficiently large. Hence, f < 9 - dlgd/lglgd, thenn’ > 1, and it follows thatA cannot be
a sorting network™

5 Extensions and Limitations

This section discusses a few extensions and limitations of our proof technique.

First, we point out that the proof of our lower bound also holds for certain restritdedes of
non-oblivious sorting algorithms on hypercubic machines. More precisely, we canallosorting
networks to be adaptive in the following sense: If we write the network as a sesjofgpairg I1;, 7;),
then the labeling’; of the:th level with elements fronf+, —, 0, 1} can depend on the outcome of all
the comparisons made in all previous levels. Recall that in our lower bound arguiheratsnever
assumed that the labeling is fixed beforehand; instead, in every level, weedllbwe “adversary”
to choose the labeling in an arbitrary way. Hence, the validity of the argumerttiaffected by
allowing the construction of the network to be adaptive.

Note that this model of a non-oblivious comparator network is quite powerful, and that it al
lows, for instance, the on-line routing of permutations in logarithmic time (Wher@ermutation to
be routed can be an arbitrary function of the outcomes of all previous comparisonigtwork).
Similarly, we can also show that our lower bounds still hold in the case where aandwld more
than one element, provided that elements cannot be copied. It is unclear whethehoigues can
be extended to a model where copying of elements is allowed, or to a model where thecsenfue
shuffle and unshuffle permutations can be chosen adaptively depending on the outcome of previous
comparisons.

We can also extend our lower bounds to some restricted classes of sortinghahgasn multi-
dimensional meshes. In [23], Wanka describes the following natural extensionabdéisiseof ascend
algorithms to multi-dimensional meshes. In an ascend algorithmddimensional mesh of side
lengthm, the dimensions are visited in strictly ascending order. Whenever we visitendion, we
performm steps of communication across this dimension. Thus, in a single visit to a dimension,
can completely sort the elements in each linear array along that dimeméb@a.that this class of
algorithms corresponds to the class of sorting networks built ffremput comparator gates, where
consecutive levels of the network are connected by:anay unshuffle permutation (as defined in
the register model of a comparator network).

21

An example of an ascend algorithm on the two-dimensional mesh &tbarsoralgorithm [21,
22], which alternatingly sorts along the rows and along the columns. Recently,tCamnbdeSch-
erson [5] and Wanka [23] have described two different generalizations of thistalgdio meshes
of arbitrary dimension. Both of the algorithms can be implemented as ascendratggrand they
achieve a running time a@(d*m lg m) on thed-dimensional mesh of sidelengtt.

Using the techniques in this paper, we can show a lower boutd@in 1g m/ 1g(dm)) for the
class of ascend sorting algorithms on multi-dimensional meshes (assuminipras tat the algo-
rithms are comparison-based, and that no copying of elements is allowed). Fosmgsheoncon-
stant dimension, this implies that no ascend algorithm can achieve an asyalptofitimal running
time. Similarly, we can define natural extensions of the classes of norgaaithims, and normal al-
gorithms with overlap, to multi-dimensional meshes. Using our proof techniquegsnvahow lower
bounds for these classes that improve asymptotically on the distance bound, though weaaganot a
of any algorithms of this type.

Finally, note that our lower bounds do not apply to probabilistic sorting networks, thattis,
works that sort the vast majority of input permutations, but are not sorting netwoHhesstrict sense.
In fact, Leighton and Plaxton [14] have designed a shuffle-unshuffle comparator netwaegtbf
O(lg n) that sorts all but a super-polynomially small fraction of the inputs. Similadycannot hope
to extend our lower bounds to “randomized” sorting networks, which may contain additranal
domizing” circuit elements that interchange the input values with probabjlityand leave them un-
changed otherwise. In [14], Leighton and Plaxton also show how to construct a raedshiffle-
unshuffle network of deptf(lg n) that sorts every input permutation with high probability.

6 Concluding Remarks

In this paper, we have established(afu%) lower bound on the depth of shuffle-unshuffle sort-
ing networks. Our techniques also apply to certain restricted classes ahtigious sorting algo-
rithms on hypercubes and multi-dimensional meshes. A gap remains between ouodawdrand
the best upper bound known, and it would certainly be an interesting improvement to naologeor

this gap.

An important open question is whether we can extend our lower bounds to more genses clas
of non-oblivious sorting algorithms on the hypercube. Of particular interest in tilgecewould be
the class of normal comparison-based sorting algorithms, or any other natusafcégorithms that
includes theSharesorialgorithm of Cypher and Plaxton [8].

Another possible direction for future research would be to consider other tedtdlasses of
sorting networks. As a natural extension of the shuffle-unshuffle networks, we couldthefsiass
of leveled hypercubic networke/hose structure corresponds to the class of algorithms on the hy-
percube where in each step communication only occurs across a single dimensiba,dagfitence

22

of dimensions can be arbitrary. (Note that this class of algorithms cannot betedwith constant
slowdown on any of the bounded-degree variants of the hypercube.) Other classes ofwaelest
be sorting networks based on a single permutation, or periodic sorting networks [9, 10ink#}, F
it is an open problem whether our lower bound technique can also be applied to setettvonks.

Acknowledgement

We would like to thank Marcin Kik for helpful comments.

References

[1] M. Ajtai, J. Komlbs, and E. Szemerédi. Sortingitvg n parallel stepsCombinatorica3:1-19,
1983.

[2] M. Ajtai, J. Komlbs, and E. Szemerédi. Halvers and Expander®rdceedings of the 33rd
Annual IEEE Symposium on Foundations of Computer Scjgages 686—692, 1992.

[3] K. E. Batcher. Sorting networks and their applications.Pmceedings of the AFIPS Spring
Joint Computer Conferenceol. 32, pages 307-314, 1968.

[4] V. Chvatal. Lecture notes on the new AKS sorting network. Technical Red8+HR-294,
Department of Computer Science, Rutgers University, 1992.

[5] P.F. CorbettandI. D. Scherson. Sorting in mesh connected multiprocd§deEsTransactions
on Parallel and Distributed Systen$.626-632, 1992.

[6] R. E. Cypher. A lower bound on the size of Shellsort sorting netwd@k&M Journal on Com-
puting 22:62—71, 1993.

[7] R. E. Cypher. Theoretical aspects of VLSI pin limitatioB$AM Journal on Computin@2:58—
63, 1993.

[8] R. E. Cypher and C. G. Plaxton. Deterministic sorting in nearly logarithimme on the hyper-
cube and related computet®urnal of Computer and Systems Sciend@s501-548, 1993.

[9] M. Dowd, Y. Perl, L. Rudolph, and M. Saks. The periodic balanced sorting netwaoiknal
of the ACM 36:738-757, 1989.

[10] M. Kik, M. Kutytowski, and G. Stachowiak. Periodic constant depth sorting nédsvorin
Proceedings of the 11th Symposium on Theoretical Aspects of Computer Spayee201—
212, 1994.

[11] D. E. Knuth. The Art of Computer Programmingolume 3. Addison-Wesley, Reading, MA,
1973.

[12] M. Kutytowski, K. Lorys, B. Oesterdiekhoff, and R. Wanka. Fast and Féasieriodic Sorting
Networks of Constant Depth. Proceedings of the 35th Annual IEEE Symposium on Founda-
tions of Computer Sciencpages 369-380, 1994.

23

[13] F. T. Leighton.Introduction to Parallel Algorithms and Architectures: Arrays, Trees, and Hy-
percubes Morgan-Kaufmann, San Mateo, CA, 1991.

[14] F. T. Leighton and C. G. Plaxton. Hypercubic sorting netwo&#&M Journal on Computing
27(1):1-47, 1998.

[15] M. S. Paterson. Improved sorting networks wittiog V') depth.Algorithmicg 5:75-92, 1990.

[16] C. G. Plaxton and T. Suel. Lower bounds for Shellsddurnal of Algorithms23:221-240,
1997.

[17] C. G. Plaxtonand T. Suel. A lower bound for sorting networks based on the shuffletagion.
Mathematical Systems ThepB7:491-508, 1994.

[18] B. Poonen. The worst case in Shellsort and related algorithowsnal of Algorithms15:101—
124, 1993.

[19] V. R. Pratt. Shellsort and Sorting Network$?hD thesis, Stanford University, Department of
Computer Science, December 1971. Also published by Garland, New York, 1979.

[20] J. Reif and L. Valiant. A Logarithmic Time Sort for Linear Size Netk®iJournal of the ACM
34(1):60-76, 1987.

[21] K. Sado and Y. Igarashi. Some parallel sorts on a mesh-connected procesgoiaurnal of
Parallel and Distributed Computing:389-410, 1986.

[22] I. D. Scherson and S. Sen. Parallel sorting in two-dimensional VLS| mafelomputation.
IEEE Transactions on Computef38:238-249, 1989.

[23] R. Wanka. Fast general sorting on meshes of arbitrary dimension without rotetimical Re-
port TR-RI1-91-087, Department of Computer Science, University of Paderborn, August 1991.

24

