
Server-Friendly Delta Compression for Efficient Web Access

Anubhav Savant Torsten Suel
�

Polytechnic University
Brooklyn, NY 11201

Abstract

A number of researchers have studied delta compres-
sion techniques for improving the efficiency of web page
accesses over slow communication links. Most of these
schemes exploit the fact that updated web pages often
change only very slightly, thus resulting in very small
sizes for the transmitted deltas. However, these schemes
are only applicable to a minority of page accesses, and
require web or proxy servers to retain potentially many
different outdated versions of pages for use as refer-
ence files in the encoding. Another approach, studied
by Chan and Woo [4], encodes a page with respect to
similar files located on the same web server that are al-
ready in the client’s browser cache.

Based on the latter approach, we study different delta
compression policies for web access. Our emphasis is
on web and proxy server-friendly policies that do not
require the maintenance of multiple older versions of a
page, but only use reference files accessed by the client
within the last few minutes. We compare several policies
for identifying appropriate reference files and evaluate
their performance on a set of traces. We show that there
are very simple policies that achieve significant benefits
over gzip compression on most web accesses, and that
can be efficiently implemented at web or proxy servers.
We also investigate the potential of file synchronization
techniques such as rsync [28] for efficient web access.

1 Introduction

Delta compression (delta encoding) is the process of
encoding a target file with respect to one or several,
usually similar, reference files. This encoding, called
a delta, describes the target file in terms of the refer-
ence files, and a recipient that receives the encoding and
already knows the reference files can thus efficiently re-
construct the target. Delta compression has numerous
applications in scenarios where there are several ver-
sions of a file or many similar files, such as software re-
vision control systems, distribution of software updates,
content distribution networks, or efficient storage of re-

�

Contact author. Email: suel@poly.edu

lated files. Several tools for delta compression, such as
bdiff, vcdiff [10, 13], Xdelta [14], and zdelta [25], are
freely available. We refer to [23] for an overview of
delta compression techniques and applications.

1.1 Delta Compression for Web Access

A number of authors have proposed the use of delta
compression techniques to improve the efficiency of
web access [1, 4, 7, 9, 16, 17, 21, 27, 29]. In particu-
lar, when web pages are updated, they typically do not
change by much, and thus delta compression can be
used to very succinctly encode the difference between
a new version of a web page and an outdated version
already in the client’s browser cache. Most proposals
focus on encodings between different versions located
at the same URL, which results in small sizes for the
deltas but is restricted to pages that have been previ-
ously visited by the client. One exception is the work by
Chan and Woo [4], which proposes to use as reference
files other pages on the same site recently visited by the
client, which tend to have a significant degree of similar-
ity due to common layout features and HTML structure.
In general, delta compression schemes for web access
can be distinguished along the following axes:

� End-to-end vs. proxy-based: A recent proposal
[16] discusses how to integrate delta compression
into the HTTP/1.1 standard. This enables end-to-
end use of delta compression techniques between
web servers and end clients, potentially leading
to significant savings in bandwidth over the in-
ternet backbone. On the other hand, proxy-based
schemes allow savings over a bottleneck link, say a
dialup connection of an end user, without requiring
changes in the HTTP/1.1 protocol to be adopted by
millions of servers. A common architecture is the
dual proxy architecture, where a pair of proxies,
one located on each side of the bottleneck link, use
a usually proprietary protocol incorporating com-
pression, image transcoding, and various other op-
timizations to increase performance over this link.
A number of such systems have for example been
deployed by the major cellular network providers,

supplied by companies such as Bytemobile, Ven-
turi Wireless, Slipstream Data, and others. In this
paper, we focus on such dual-proxy architectures,
and we do not discuss in detail how to integrate our
approach with existing HTTP standards.

� Standard vs. optimistic delta: In the standard ap-
proach, both client and proxy have the same old
version of a page. A proxy first waits for the up-
dated version of the page to arrive from the server,
and then transmits the delta between this and the
old version to the client. In the optimistic delta
approach in [1] only the proxy needs to hold the
old version. Upon receiving a request, the proxy
immediately starts sending the old version to the
client, while waiting for the new version to arrive
from the server; later, a delta between the versions
is sent to the client. In a proxy-based environ-
ment, neither approach decreases the amount of
traffic between server and proxy. The standard ap-
proach reduces the amount of data sent from proxy
to client, thus reducing delay for low-bandwidth
links. The optimistic delta approach does not re-
duce the amount of data sent to the client, but may
decrease total delay in cases where server response
delays are also significant compared with the trans-
mission time over the bottleneck link. We focus on
the standard approach.

� Same URL vs. different URLs: As described, we
can limit delta compression to different versions
of the same URL, or allow compression between
pages corresponding to different URLs. In the lat-
ter case, clients and proxies need to choose appro-
priate reference pages, and this is our main focus.

� Delta compression vs. file synchronization: In
the standard delta compression scenario, the proxy
needs a copy of the old and the new version to com-
pute a delta. File synchronization techniques such
as rsync [28], on the other hand, allow the proxy to
send a delta without knowing the old version in the
client cache, based on only a set of hash values sent
by the client as part of the request. File synchro-
nization can be seen as a special, more restricted,
case of delta compression, and usually achieves
compression ratios that are significantly worse than
those of the best delta compression tools [23], par-
ticularly on files that share only short common sub-
strings. (Formally, any file synchronization proto-
col can be used to produce a delta by storing all
messages sent from target file to reference file.) We
consider both techniques.

1.2 Discussion of Known Approaches

Delta compression between different versions of the
same page typically achieves a high compression ratio,
but suffers from two major shortcomings. First, it only
gives benefits for pages that have been previously vis-
ited and that have since been updated. A 1996 study
[17] found that this only applies to about

�����
of page

accesses. Second, it imposes significant costs on the
proxy, or the server in an end-to-end approach, which
needs to retain older versions of each web page for po-
tential use as reference files in future accesses, possibly
for a significant amount of time. Also, additional disk
accesses may be required to fetch the reference files.

Delta compression between different pages typically
achieves a more moderate compression ratio. One prob-
lem is how to identify appropriate reference files for a
requested page. A simple scheme for doing this is pro-
posed in [4], based on the directory paths of the URLs.
However, the scheme requires several reference files for
best compression, which could seriously slow down the
throughput of the proxy due to the costs of fetching and
processing the reference files for each requested file.

A preliminary evaluation of rsync for web access
was performed in [27] as part of the rproxy project.
However, results are limited to different versions of the
same URL, and only a few numbers are provided. As
mentioned, file synchronization achieves a more limited
compression ratio than delta compression. For the case
of related files, the result might not be better at all than
using gzip, due to the more limited similarity between
the files. File synchronization techniques typically re-
quire the client to send a set of hash values or other
information about the reference file to the server, and
there is a trade-off between the amount of this data and
the achieved compression in the other direction. The
primary advantage of file synchronization is that no old
versions of pages have to be stored and then fetched
from disk by the proxy.

An interesting alternative called value-based web
caching was very recently proposed in [21]. As in file
synchronization techniques, bandwidth savings are ob-
tained by using hash values to refer to blocks of data al-
ready known to the client. However, the technique does
not require the client or proxy to choose a particular set
of reference files, but exploits similarity between the re-
quested page and previously transmitted content inde-
pendent of file boundaries. This is achieved by using
Karp-Rabin fingerprints [11] to identify block bound-
aries in a consistent manner independent of position as
proposed in [15], and keeping a limited amount of state

for each client. Similar techniques have also recently
been used in the Low Bandwidth File System [18] and
the Pastiche distributed backup system [6].

Comparing value-based web caching to rsync, we
would expect similar performance in cases where we
can reliably select the best reference file, but better per-
formance in cases where it is not clear which previously
accessed file contains the similar content. In particu-
lar, value-based web caching resolves problems due to
aliasing, i.e., different URLs returning the same con-
tent. Another advantage comes from caching hashes at
the proxy, although one could also use an rsync-based
approach to do the same (see Subsection 3.3).

1.3 Our Approach and Contributions

Our main focus is on studying web and proxy server-
friendly schemes for delta compression between differ-
ent pages that achieve good compression without ad-
versely affecting throughput. In fact, we believe that
delta compression between different pages has more
practical potential than the more commonly studied case
of delta compression between different versions of the
same page. On the other hand, we conjecture that file
synchronization techniques may be the most appropri-
ate approach for delta compression between different
versions of the same page, at least in a proxy environ-
ment. In this paper, we discuss techniques and provide
experimental results for web access based on delta com-
pression and file synchronization. In particular:

� We compare several policies for selecting appro-
priate reference files for delta compression, and
evaluate the achieved compression ratio. Using a
large set of plausible site visits by clients distilled
from NLANR proxy traces, we show that signifi-
cant average improvements over gzip are achieved
by the best policy. Moreover, we show that very
simple policies achieve close to optimal compres-
sion using only one or two reference files vis-
ited within the last few minutes, thus allowing for
an extremely efficient main-memory based imple-
mentation in a web or proxy server.

� We discuss and evaluate the use of file synchro-
nization techniques for efficient web access. We
show that they are of limited use for delta compres-
sion between different pages, and currently studied
improvements in file synchronization techniques
are unlikely to change this. On the other hand,
we show that file synchronization techniques have
potential for delta compression between different
versions of the same page, and we discuss how

file synchronization tools could be reengineered
for additional improvements.

While the chance for a broad adoption of the proposed
delta compression schemes at clients and servers is very
small, we believe that there is a significant potential
for using such techniques in the context of proprietary
proxy systems such as those deployed by wireless or di-
alup service providers. We note that the benefits of the
techniques are limited to text/html files and do not
apply to images and other multimedia objects, though
there are other specialized techniques for such objects.
According to the traces, text/html files made up

� �

to � ��� of the data going through the proxy, and about
the same amount was due to image files. (Common
statistics indicate that embedded images make up al-
most � ��� of all data in a displayed page; however, im-
ages have better caching behavior and thus make up a
relatively smaller part of the traffic over the internet.)
The benefits are in addition to any benefits due to client-
side caching, which do not appear in our traces. The
schemes we propose are applicable to about ��� � of all
accesses to text/html files going through the proxy,
and for those eligible pages we get up to a factor of ���
	
average improvement over gzip. For all pages, the av-
erage improvement over gzip is up to ���
� . Benefits are
lower if duplicate URLs are removed from site visits;
these duplicates in the proxy traces may be due to a
changed page or a server that does not support the IF-
MODIFIED-SINCE header.

In the next section, we study reference file selection
policies for delta compression of different pages. In
Section 3 we investigate the utility of file synchroniza-
tion techniques for web access. Finally, Section 4 pro-
vides some concluding remarks.

2 Delta Compression Schemes for Site Visits

This section contains the main results of this paper. We
are interested in delta compression schemes that encode
a requested page in terms of other pages that the client
already has in its cache. We restrict ourselves to ref-
erence files from the same site that have been very re-
cently accessed by the client as part of the current site
visit. We define a site visit of a client as a set of consec-
utive accesses to pages on the same site. We show that
even with this limitation on the choice of reference files,
we can obtain significant average compression benefits
over gzip, by a factor of ���
� for all pages and ���
	 for “eli-
gible” pages. One challenge in the experimental evalua-
tion is that it is not easy to obtain client traces that can be
used to evaluate our schemes, due to privacy concerns.

In our case, we need a large number of site visits that are
very recent, so that we are still able to obtain the pages
from the origin servers. Since we were unable to get a
representative set of end client traces, we decided to try
to “distill” a plausible set of client visits from the pub-
licly available NLANR proxy traces, as described later.
We then fetched and stored all pages in those visits, and
ran simulations based on the stored pages.

We used version 2.0 of the zdelta tool [25] to per-
form delta compression between pages.1 The zdelta
tool is carefully optimized for both compression and
speed, and supports the use of up to four reference files.
We note that in principle a similar compression ratio
could probably also be obtained with the vcdiff com-
pressor [13] provided that separate Huffman coders are
applied to the different fields of the generated instruc-
tion stream; however, vcdiff currently only supports a
single reference file. Both tools achieve throughputs of
several MB per second for encoding and up to tens of
MB for decoding, similar to the speed of gzip.

2.1 Reference File Selection Policies

We now define a few simple policies for choosing ref-
erence files that we investigate. The policies are very
simple and we make no claims of algorithmic original-
ity. Our primary goal is to evaluate their behavior on a
large set of traces. Suppose that the client is performing
the

�
th page access in the current site visit. The policies

for choosing reference files from among the pages pre-
viously visited during the same site visit are as follows:

� last-k: choose the � pages most recently visited.
� longest match-k: choose the � pages whose URL

has the longest directory path match with the re-
quested URL; ties are broken by taking the more
recently visited page.

� best-k: choose the � pages that each individu-
ally achieve the best compression when used as the
only reference file for the requested page.

� best set-of-k: choose the set of � pages that pro-
vides the best compression.

We also consider two simple improvements over last-k
and longest match-k, called last-k � and longest match-
k � , that add the following two rules: (1) if the requested
page was previously accessed, then that page is always
selected as a reference file, (2) we make sure that all se-
lected reference files are distinct, since there is no ben-
efit in using two identical reference files. Note that if

1Available at http://cis.poly.edu/zdelta/.

we eliminate duplicates in the traces, then these policies
will be identical to the basic ones.

Of course, we can choose from at most
��� � reference

files for the
�
th page; thus for

��� � all policies are the
same. The last-k and last-k � policies were chosen as
the simplest heuristics we could come up with, and they
also tend to minimizes the time a server or proxy has to
retain pages for later use as reference files. The longest
match-k and longest match-k � policies are almost iden-
tical to the policy proposed by Chan and Woo [4], and
should achieve very similar performance. The best set-
of-k policy is clearly optimal, but inefficient since there
are �	��

���� possible choices of sets. (Finding the best set
is NP Complete due to a reduction from Set Cover, un-
der reasonable assumptions about the delta compressor.)
The third policy, best-k, is not guaranteed to be optimal,
but more efficient to implement.

2.2 Experimental Setup

To evaluate the policies, we downloaded traces from the
NLANR proxy servers and partitioned the traces into
“plausible” site visits as follows. In the traces, clients
are identified by IDs that are unique during a given day
and for a particular proxy. However, these clients are
typically not end clients (browsers) but populations of
users in a particular organization, and for our purposes
we need access patterns for end clients. We defined a
site visit with timeout � as a sequence of accesses to the
same site by users with a common ID, with at most �
minutes between any two consecutive accesses. If � is
large, then a site visit to a popular web site is likely to
consist of accesses by different end clients with a com-
mon ID. However, if we assume some degree of inde-
pendence between the access times of the different users
throughout the day, then by decreasing � we expect to
eventually split up most of these visits into shorter vis-
its by different users. We found that after decreasing �
to less than an hour, subsequent decreases of � to a few
minutes do not result in many additional splits, indicat-
ing that most of the site visits at this point are probably
due to a single end user. Of course, we cannot claim that
the site visits thus obtained are all due to single individ-
uals, but we believe that our heuristic is close enough
to allow an evaluation. We note that such sessionizing
problems have been extensively studied, see, e.g., [22].

We downloaded all NLANR proxy traces for April
22, 2003, and extracted site visits with timeout � � min-
utes. We then took a sample of site visits with a total
of � ��� � � pages, which we downloaded and stored on
April 24. We excluded any dynamic pages (with pa-
rameters in the URL), as those parameters are removed

by NLANR for privacy reasons. We see no reason to
believe that the approach would not work on dynamic
pages; in fact, such pages may be particularly suitable
for delta compression as they frequently change in mi-
nor ways and share a lot of content with other pages
on the site. However, we have not yet obtained good
traces to evaluate this. We made sure that our sample
has the same distribution of site visit lengths (number
of page accesses) as the entire set. Note that the proxy
traces did not contain entries for accesses that were al-
ready satisfied by client-side caches; this is fine for our
purpose since we are interested in benefits beyond those
already obtained by client side caching.

The generated site visits did contain a significant
number of duplicates, i.e., repeat accesses to the same
URL in a single visit with return code 200. These ac-
cesses may be due to changed pages or due to servers
that are not set up to support the IF-MODIFIED-SINCE
feature in HTTP. While some of the duplicates may be-
long to different end clients, we believe most are due to
the same client. In the following, we report results with
duplicates included, and later discuss how the results are
impacted if they are excluded.

We compare our results to gzip as a baseline com-
pressor. Note that gzip is not optimized for HTML,
and recent grammar-based approaches based on [12]
can achieve significantly better results. (In fact, pro-
prietary versions of these algorithms are the basis of the
web acceleration system designed by Slipstream Data
and deployed by NetZero.) These approaches can also
be adapted to exploit similarity between different pages.

2.3 Experimental Evaluation of Policies

In Figures 1 and 2 we see the size reductions obtained
by the last-k and longest match-k policies, respectively,
for different values of � . For the first page access in a
site visit, all policies and also gzip achieve the same re-
duction, to about 22% of the original size on average.2

For the second access, pages are on average reduced to
10% of their uncompressed size. As there is only one
available reference file, all policies except gzip achieve
the same performance. On the third access, policies
with � � � start outperforming those with ��� � , and on
the fourth access policies with ��� �

start outperform-
ing those with ��� � . Compression improves to about
5% of the uncompressed size after a few pages. (How-
ever, since most site visits are fairly short, the impact on
the average benefit over all pages decreases as we move
to the right, as shown later.) We also see that the poli-

2If no reference file is given, zdelta becomes identical to zlib,
which itself has a similar performance as the closely related gzip.

cies last-1 � and longest match-1 � perform significantly
better than the base policies. (Note that the base policy
longest match-k only tries to match the directory part
of the URL and does not distinguish between different
pages in the same directory; otherwise, longest match-1
and longest match-1 � would be identical.)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
last 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
last 1
last 1+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
last 1
last 1+
last 2+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
last 1
last 1+
last 2+
last 4+

Figure 1. Average compressed size for last-k policies.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
match 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
match 1
match 1+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
match 1
match 1+
match 2+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
match 1
match 1+
match 2+
match 4+

Figure 2. Average compressed size for longest match-
k policies.

In summary, there is significant benefit in using delta
compression versus gzip, and the benefit increases with
the number of reference files and the length of the site
visit. One curious detail is that gzip compression ap-
pears to get slightly worse as more pages on a site are
visited; this is primarily due to a decrease in average
page size as discussed further below.

In Figure 3 we show the performance of the best-k
and best set-of-k policies, and in Figure 4 we show the
performance of a selection of all policies. All of the
best-k and best set-of-k policies have almost the same
performance, independent of � . Note that while results
are only plotted for ��� � and ��� � , the benefit from
adding a third file would clearly be less than that for
adding the second file (which itself is close to zero),

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
best 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
best 1
best 2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
best 1
best 2
bestset 2

Figure 3. Average compressed size for best-1, best-2,
and best set-of-2 policies. The three policies result in
almost identical graphs.

due to the way current delta compressors works. The
interpretation of these results is important. In general,
using more than one reference file can improve delta
compression for two reasons: it could be that each ref-
erence file contributes to the compression of the target
file (e.g., a target file could be similar to one reference
file in the first half, and to another reference file in the
second half), or it could be that by using several files we
simply have a better chance of including the one refer-
ence file that contributes most of the benefit.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
last 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
last 1
match 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
last 1
match 1
last 1+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
last 1
match 1
last 1+
match 1+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
last 1
match 1
last 1+
match 1+
last 4+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
last 1
match 1
last 1+
match 1+
last 4+
match 4+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
last 1
match 1
last 1+
match 1+
last 4+
match 4+
best 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
last 1
match 1
last 1+
match 1+
last 4+
match 4+
best 1
bestset 2

Figure 4. Average compressed size for various poli-
cies. The order of the graphs is (from the top) gzip, last-
1, longest match-1, last-1

�

, longest match-1
�

, last-4
�

and longest match-4
�

, and best-1 and best set-of-2.

The above results implies that for our application it is
primarily the second reason, since by choosing the best
reference file we are getting essentially all of the pos-
sible benefit. A similar observation was also recently
made in [8] in the context of file system compression.
The last-k policy, and also the longest match-k policy
proposed in [4], are not really good at identifying the

best reference file, but by increasing � we improve our
chances of including the best reference file in the list of
selected pages. For efficiency it would be preferable if
we could directly identify the best reference file, rather
than use up to

�
reference files or try all different files

as in the best-1 policy; we address this issue later.
Comparing last-k and longest match-k, we see that

longest match-1 is better than last-1 at identifying good
candidates; however, this advantage largely disappears
if we use the improved policies last-k � and longest
match-k � instead. Thus, it seems that in practice the
directory-based heuristic proposed in [4] really does not
do much better than a trivial heuristic such as last-k � .

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 2 3 4 5 6 7 8 9 10 11+

%
 o

f t
ot

al
pa

ge
 ac

ce
ss

Page number

Figure 5. Distributions of page accesses in our traces.

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1 2 3 4 5 6 7 8 9 10 11+

Av
er

ag
e p

ag
e s

ize

Page number

Figure 6. Distributions of page sizes in our traces.

Figures 5, 6, and 7 show the distribution of page ac-
cesses, page sizes, and transmitted bytes over the dif-
ferent classes plotted in the earlier charts. From the left
chart, we see that 32% of all page accesses are first ac-
cesses in a site visit, 18% are second accesses, and fi-
nally about � � � are ��� th and higher accesses in a visit.
Thus, most site visits are fairly short. Since delta com-

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5 6 7 8 9 10 11+

%
 o

f t
ot

al
by

te
ac

ce
ss

Page number

Figure 7. Distributions of total bytes in our traces.

pression is not possible for the first page access under
our schemes, this means that about 68% of all page ac-
cesses are eligible for delta compression. From the mid-
dle chart, we see that page size significantly decreases
for subsequent page accesses in a visit; this is the rea-
son why the compression achieved by gzip shown in
Figures 1 to 4 deteriorates slightly on longer site visits.
(We are somewhat surprised by this phenomenon and
do not have a good explanation yet.) In the right chart,
we see the distribution of total bytes over the page ac-
cesses; due to the skew in page size the first pages in the
site visits together account for about

� ���
of all bytes

transmitted. Thus, about � ��� of all transmitted bytes
are eligible for delta compression.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

G L1 L1+ L2+ L4+ M1 M1+ M2+ M4+ B1 B2 B3 B4 BS2

C
om

pr
es

si
on

 f
ac

to
r

Figure 8. Average compression for policies on eligible
pages. The policies are gzip, last-1, last-k

�

, longest
match-1, longest match-k

�

, best-k, and best set-of-2.

In Figures 8 and 9, we show the average compression
factor, in terms of total transmitted bytes, over all eligi-
ble page accesses and all page accesses achieved by the
various policies. Compression ranges from a factor of� �
� for gzip to more than � � for the best policy for eligi-
ble pages. We note that the various policies are actually

much closer in terms of average benefit than suggested
by Figures 1 to 4, since most transmitted bytes fall into
the left half of those figures. In particular, even last-1 �
and longest match-1 � perform quite well.

 0

 1

 2

 3

 4

 5

 6

 7

 8

G L1 L1+ L2+ L4+ M1 M1+ M2+ M4+ B1 B2 B3 B4 BS2

C
om

pr
es

si
on

 f
ac

to
r

Figure 9. Average compression for policies on all
pages.

2.4 An Efficient and Nearly Optimal Protocol

We now address the problem of how to efficiently iden-
tify the reference file that provides the best compres-
sion ratio. Our proposed solution is very simple, and
uses random hash functions to create fingerprints for
files according to a technique proposed by Broder in
[2]. This technique has been previously used to cluster
documents in [3], and was shown in [8, 20] to provide
reasonable estimates for the size of a delta between two
files. In particular, we hash all substrings of length

�

in a file to integer values, and then retain the � smallest
hash values. (The method does not seem to be very sen-
sitive to the length of this substring.) We then estimate
the similarity of two files by intersecting their samples.
Given a page request, we select the reference file that is
most similar to the requested page under this measure.

In the first experiment, we used this sampling tech-
nique to approximate the best-1 policy, which as we saw
earlier is essentially as good as the best policy, best set-
of-k, in practice. In Figure 10 we see the results for the
standard best-1 policy and for the sampling based ap-
proach with sample sizes of � � ,

���
, and � � � . We find

that even with sample size � � , the compression perfor-
mance is almost as good as that of the standard best-1
policy. This this technique can also be combined with
the other policies to give the following simple protocol:

� The proxy stores each page that it sends to the
client for a limited period of time, together with
a fingerprint of each page. Pages are kept in

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
ms 1,10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
ms 1,10
ms 1,30

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
ms 1,10
ms 1,30
ms 1,100

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
ms 1,10
ms 1,30
ms 1,100
best 1

Figure 10. Performance of a sampling based approach
for determining the most similar file, for sample sizes���

, � � , and
�����

.

main memory indexed by MD5 hash, and may be
deleted by the proxy at any point in time.

� A client sends each page request to the proxy ac-
companied by several MD5 values of previously
visited pages, called candidate pages. These can-
didate pages can be selected by the client based on
last-k � , longest match-k � , or any other policy.

� The proxy checks which of the candidate pages it
still holds in main memory, and uses the most sim-
ilar of those as reference file.

Thus, if the client uses the last-4 policy to identify
candidates, then the resulting compression performance
will closely track that of the standard last-4 policy, us-
ing only a single reference file. Note from Figures 8
and 9 that both last-4 and longest match-4 achieve av-
erage compression quite close to the optimal, making
them viable approaches. For the proxy (or server in an
end-to-end approach), this scheme is highly efficient as
only a single reference file is used, and as pages only
need to be retained for a few minutes.

In Figure 11 we show the performance for the case
where only pages accessed in the preceding few min-
utes are used as candidate files; the achieved compres-
sion ratio is very close to optimal even for windows of
� and � � minutes. (While site visits were defined by us
as having at most � � minutes between consecutive ac-
cesses, most are actually much closer in time. This also
supports our contention that our distilled site visits are
mostly due to a single end client.)

We note two drawbacks of this scheme. First, the
computation of the samples could become a bottleneck,
though we believe this can be handled through careful
optimization. Second, the most similar reference file

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
5 min

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
5 min
10 min

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11+

C
om

pr
es

si
on

 r
at

io

Page number

gzip
5 min
10 min
20 min

Figure 11. Performance of a sampling based approach
for determining the most similar file, for histories of
length � ,

���
, and � � minutes. The latter two cases are

almost identical.

can only be selected once the entire requested page has
arrived at the proxy. In contrast, in policies such as last-
k and longest match-k the proxy can select the reference
files as soon as it receives the request. These can then
be immediately inserted into the hash table of the delta
compressor, and the requested page can be streamed
through the compressor and forwarded as it arrives from
the server.3 This second drawback might make schemes
such as last-k � or longest match-k � for � � � or � � �
more attractive in many scenarios.

2.5 Impact of Duplicates

We now look at how results change if we remove any
page accesses with return code 200 that go to a page
previously accessed in the same site visit. Recall that
such accesses may be due to changed pages or due to
servers not supporting IMS. Table 1 shows the compres-
sion ratios achieved in this case. As we see, benefits of
delta compression are reduced, but still significant. In
particular, the average benefit over gzip is now a factor
of about ��� � instead of ���
� for all pages, and ���
	 instead
of ���
	 for eligible pages under the best policy.

2.6 Summary of Observations

The main observations from the experiments in this sec-
tion are as follows: (1) even very simple schemes for se-
lecting reference files achieve significant compression
over gzip and come close to the optimum, (2) there
seems to be only very limited benefit for the direc-
tory matching technique in [4] over other simple heuris-
tics, (3) essentially all of the potential benefit can be
achieved with a single reference file and there are sim-

3Under realistic assumptions about reference file size and with
slight modifications to the interface of the zdelta delta compressor.

With duplicates Duplicates removed
Policy Eligible All pages Eligible All pages
GZIP

���
�
� ��� �

�
��� ��� �����

�
L1 � � � � �	� ��� �
� � � ���

� �

L1+
��� � � � �	�

� �
�
� � � ���

� �

L4+
� �

� � � �	����� �����
� ��� �
�

M1
��� � � � �	�

���
��� � � ���

���
M1+

� �
� � � �	�

�
� ��� � � ���

���
M4+

� �
� ��� �	��� � ��� ��� ��� ���

MS 1,10
� �

� � � �
� �
�

�����
�

��� � �
B1

� �
� �
�

�	� ��� � � � � ����� �

Table 1. A comparison of compression factors
achieved with and without duplicates, for policies last-
1, last-k

�

, longest match-1, longest match-k
�

, most
similar-1 with sample size

���
, and best-1.

ple sampling based methods for identifying this file, (4)
however policies such as last-1 � and longest match-1 �
perform quite well and might be preferable in practice
for other technical reasons, and (5) benefits are some-
what lower if page size distribution is taken into account
and duplicates are removed.

3 Utility of rsync for Web Access

In this section, we study the potential for using rsync
and other file synchronization techniques for web ac-
cess. By file synchronization, we refer to techniques
where the server has the requested pages, but not the ref-
erence file held by the client. The most widely used tool
for file synchronization is rsync [28], which uses a sin-
gle round-trip between client and server as follows: the
client partitions the reference file into blocks of a few
hundred bytes, and sends a hash value for each block to
the server. (The hash value has a strength of � bytes for
common file sizes.) The server then sends the requested
file to the client, but replaces any block that hashes to
one of the received hash values by a reference to the
hash. This method is then combined with standard gzip
compression. The cost is given by the size of the hashes
and the size of the encoded page, with a trade-off be-
tween the two. The size of the encoded page sent to the
client is clearly lower-bounded by the size of a delta.

In fact, measurements in [23] show that the size of
the data sent from server to client in rsync is usually
significantly larger than a delta. This raises the question
of whether file synchronization techniques are efficient
enough for web access. In the following, we present
results for related pages and versions of the same page.

3.1 Experiments for Related Pages

Figure 12 shows results for related pages, using the last-
1 and longest match-1 policies and several block sizes in

rsync. We also show results for the most similar-1 pol-
icy, with and without duplicates, to get an upper bound
on the possible benefit, even though this policy is not re-
alistic as the selection of reference files for rsync is per-
formed at the client. (We used most similar-1 instead of
best-1 for efficiency but the result should be very sim-
ilar. One caveat is that we did not adapt the substring
size in the sampling step to the block size of rsync; we
plan to correct this in the final version.)

 0

 5

 10

 15

 20

 25

100 300 700 2000 gzip zdelta

%
 o

f
un

co
m

pr
es

se
d

si
ze

Block size

last-1
match-1
most-similar-1
most-similar-1-no-duplicates

Figure 12. Performance of rsync under the last-1,
longest match-1, and most similar-1 policies for differ-
ent block sizes.

We see from Figure 12 that rsync performs only
slightly better than gzip if we consider the total data
sent in both directions. Even for the most similar-1 pol-
icy with block size � � � , files only reduce on average to
about � � � of their original size, compared with ��� � for
gzip. If we exclude duplicate URLs, then there is hardly
any benefit over gzip at all even for the most-similar-1
policy (about � 	 � vs. ��� � for gzip). Performance is
best for block sizes between

��� �
and � � � bytes.

 0

 5

 10

 15

 20

 25

100 300 700 2000

%
 o

f
un

co
m

pr
es

se
d

si
ze

Block size

last-1
last-2
match-1
match-2

Figure 13. Performance of rsync for one and two ref-
erence files with different block sizes.

In Figure 13 we investigate the use of more than one

reference file in connection with rsync. To use rsync on
two reference files, we concatenated the two files into
one longer file. We do not show results for more than
two reference files as there clearly would be no benefit
in this. We note that the amount of data sent from client
to proxy is proportional to the number of blocks, and
thus increases with the inverse of the block size. We
see that for block sizes of � � � and � � � � bytes, adding
a second reference file gives some negligible benefits
under the last-k and longest match-k policies. Benefits
are small because the increase in read size cancels out
most of the decrease in write size.

In general, the reason for the disappointing perfor-
mance of rsync on related pages on the same site is that
these pages, while overall similar, differ in a number
of places. While there is some benefit for aliased and
very similar pages, in general the fine granularity of
differences does not allow rsync to find large matches
at the level of blocks of several hundred bytes, while
block sizes of � � � bytes or less would greatly increase
the number of hashes sent by the client. We note that
Tridgell, in Section 4.4.3 of [26], proposes to use the
Burrows-Wheeler transform to increase the locality of
changes in updated files. This approach works well
when files are updated by replacing all occurrences of
a string by another string (e.g., renaming of a variable
or a consistent change in format such as line breaks), but
it does not appear to work well at all in our scenario. In
fact, we observed a significant decrease in performance
under this approach, as it also has the reverse effect of
spreading out blocks of changed bytes all over the trans-
formed files. We conclude that simple rsync is not a
good approach for compression between related files.

3.2 Experiments for Versions of a Page

We now consider the case of several versions of the
same page. Our NLANR traces are not very useful for
this case since the client IP hashes change from day to
day. Since we did not have alternative traces, we in-
stead used data obtained from repeated web crawls of a
certain subset of pages. In particular, we chose pages
at random from two large page collections of more than
� � � million pages each, one from the Internet Archive
and one from our own crawls. The selected pages were
than crawled every night for several weeks in Fall 2001.
In the following, we use four versions of a subset of
� � � � � of these pages: one base set and three updated
versions crawled � , � � , and ��� days later. In the exper-
iments, we measure the benefit of using rsync to fetch
an updated page given that the client already has an out-
dated version from the base set. We give average results

for all pages and for only those that have changed.

 0

 5

 10

 15

 20

 25

100 300 700 2000 zdelta gzip

%
 o

f
un

co
m

pr
es

se
d

si
ze

Block size

2 days
20 days
72 days

Figure 14. Performance of rsync on all pages for �
different time intervals.

 0

 5

 10

 15

 20

 25

100 300 700 2000 zdelta gzip

%
 o

f
un

co
m

pr
es

se
d

si
ze

Block size

2 days
20 days
72 days

Figure 15. Performance of rsync on changed pages
for � different time intervals.

Figure 14 and 15 show the result for the different
block sizes. As we see, even for pages that are revisited
��� days later, we still get significant benefit over gzip,
by about a factor of � even if unchanged pages are ex-
cluded. On the other hand, delta compression does even
better then rsync, by another factor of about

�
. We note

that user surfing behavior is likely to be biased towards
sites that are frequently updated, and thus our results
for a random sample of pages may be overly optimistic.
Nonetheless, there seems to be significant potential for
using rsync between different versions of a page, as pre-
viously suggested by the rproxy project [27]. Note that
examination of the pages shows that page updates tend
to be highly clustered within a page; this explains the
good performance of rsync in such cases.

3.3 Discussion and a Generalized Approach

The results indicate that file synchronization using rsync
is efficient for different versions of the same page, but

performs only slightly better than gzip on related pages
from the same site. Of course, this could be due to short-
comings in the rsync algorithm, and there are several
proposals for improved file synchronization techniques
[5, 19, 24]. However, these proposals rely on additional
roundtrips and would not be appropriate for a web ac-
cess scenario since modem latencies are high and ob-
jects are not very large. It appears difficult to achieve
significant bandwidth savings over rsync without incur-
ring more than the single roundtrip used by rsync. This
suggests that an approach that uses delta compression
between related pages in a site visit, and file synchro-
nization between different versions of the same page,
might be a good combination. In such a scheme, the
server or proxy only needs to keep old files for a few
minutes, and still achieves good performance for differ-
ent versions of the same page using rsync. This leads us
to the following ideas and observations:

� Instead of sending block hashes to the proxy with
each request under the rsync protocol, we could al-
low the proxy to compute and store block hashes
for the references files as they pass through the
proxy. In this case, the approach becomes very
similar to value-based web caching [21], except
for the use of fixed rather than value-based block
boundaries. We can estimate the benefit by deduct-
ing the dark portion of the bars from the charts in
this section. Some additional benefits might arise
since there is no need anymore to choose a small
set of reference files for each access.

� In the case of the Low Bandwidth File System [18],
the use of value-based block boundaries is crucial
due to the fact that files have to be transmitted in
both directions. In our scenario, where files are
only sent from proxy to client, we can also use
fixed boundaries based on position and then try to
match these blocks with all positions in the file to
be encoded, as done in rsync.

� When caching hash values at the proxy, it might
be interesting to consider a “multi-resolution” ap-
proach for the block size: when sending a file to the
client, we initially compute and store hash values
for blocks of fairly small size, say

� � bytes. This
takes a lot of space at the proxy, but allows com-
pression of similar files that is much better than
that achieved with block sizes of several hundred
bytes as in rsync. To limit space consumption, in-
stead of evicting hashes we can combine two adja-
cent hashes into one hash for a larger block, pro-
vided that the hash function is composable (i.e.,

the hash of a block can be computed from the
hashes of the left and right half). Alternatively,
we could for each file generate hashes at differ-
ent levels of granularity, and first evict fairly old
hashes of small size. (This takes at most a factor
of � more space than a combining approach and
removes some other complications.)

Based on these ideas, we plan to investigate an approach
that combines delta compression, value-based caching,
and synchronization, as follows: Transmitted files are
cached for a short time to allow delta compression,
while block hashes for the files are cached for longer
periods based on the above multi-resolution approach.
Thus, hashes for small blocks are kept for a shorter pe-
riod of time, and hashes for large blocks for longer pe-
riods. In addition, we could also allow the client to send
hashes in some cases, such as when a page is revis-
ited after several days and the old hashes are likely to
have been evicted at the proxy. There are a number of
questions to explore in this context, such as the advan-
tages and disadvantages of fixed and value-based block
boundaries and the details of the multi-resolution ap-
proach, and we plan to address these in our future work.

4 Concluding Remarks

In this paper, we have studied the performance of simple
delta compression and file synchronization schemes for
efficient web access. Our focus was on web and proxy
server-friendly schemes that do not require the storage
and retrieval of old versions of web pages at the server.
Our main conclusion is that there is significant benefit
to using delta compression between pages on the same
site, and we gave several low-overhead schemes that im-
prove significantly over gzip. On the other hand, we
found that single-roundtrip file synchronization tech-
niques such as rsync obtain good compression between
different versions of a page at low overhead, but do not
significantly improve over gzip for related pages.

We are working on several extensions of this work.
We plan to study the approach combining delta com-
pression, value-based web caching, and file synchro-
nization described in Subsection 3.3, and to integrate it
into a dual proxy architecture called SPAWN4 that we
have implemented at Polytechnic University. We are
also working on improved software tools for file syn-
chronization and plan to evaluate these in the current
context and for content distribution networks and large
replicated document collections.

4See http://cis.poly.edu/spawn/ for more details.

Acknowledgements

We thank Dimitre Trendafilov for help with experi-
ments, and the anonymous referees for helpful com-
ments. This research was supported by NSF CAREER
Award NSF CCR-0093400, Intel Corporation, and New
York State through the Wireless Internet Center for Ad-
vanced Technology (WICAT) at Polytechnic University.
Proxy traces were provided by the IRCache Project,
which is supported by the National Science Foundation
(grants NCR-9616602 and NCR-9521745) and the Na-
tional Laboratory for Applied Network Research.

References
[1] G. Banga, F. Douglis, and M. Rabinovich. Opti-

mistic deltas for WWW latency reduction. In 1997
USENIX Annual Technical Conference, Anaheim, CA,
pages 289–303, January 1997.

[2] A. Broder. On the resemblance and containment of doc-
uments. In Compression and Complexity of Sequences,
pages 21–29. IEEE Computer Society, 1997.

[3] A. Broder, S. Glassman, M. Manasse, and G. Zweig.
Syntactic clustering of the web. In Sixth Int. World Wide
Web Conference, 1997.

[4] M. Chan and T. Woo. Cache-based compaction: A new
technique for optimizing web transfer. In Proc. of IN-
FOCOM’99, March 1999.

[5] G. Cormode, M. Paterson, S. Sahinalp, and U. Vishkin.
Communication complexity of document exchange. In
Proc. of the ACM–SIAM Symp. on Discrete Algorithms,
January 2000.

[6] L. Cox, C. Murray, and B. Noble. Pastiche: Making
backup cheap and easy. In Proc. of the 5th Symp. on
Operating System Design and Implementation, 2002.

[7] M. Delco and M. Ionescu. xProxy: A transparent
caching and delta transfer system for web objects. May
2000. unpublished manuscript.

[8] F. Douglis and A. Iyengar. Application-specific delta-
encoding via resemblance detection. In Proc. of the
USENIX Annual Technical Conference, June 2003.

[9] B. Housel and D. Lindquist. WebExpress: A system for
optimizing web browsing in a wireless environment. In
Proc. of the 2nd ACM Conf. on Mobile Computing and
Networking, pages 108–116, November 1996.

[10] J. Hunt, K.-P. Vo, and W. Tichy. Delta algorithms: An
empirical analysis. ACM Transactions on Software En-
gineering and Methodology, 7, 1998.

[11] R. Karp and M. Rabin. Efficient randomized pattern-
matching algorithms. IBM Journal of Research and De-
velopment, 31(2):249–260, 1987.

[12] J. Kieffer and E. Yang. Grammar based codes: A new
class of universal lossless source codes. IEEE Trans. on
Information Theory, 46(3):737–754, 2000.

[13] D. Korn and K.-P. Vo. Engineering a differencing and
compression data format. In Proc. of the Usenix Annual
Technical Conference, pages 219–228, 2002.

[14] J. MacDonald. File system support for delta compres-
sion. MS Thesis, UC Berkeley, May 2000.

[15] U. Manber and S. Wu. GLIMPSE: A tool to search
through entire file systems. In Proc. of the 1994 Winter
USENIX Conference, pages 23–32, January 1994.

[16] J. Mogul, B. Krishnamurthy, F. Douglis, A. Feldmann,
Y. Goland, A. van Hoff, and D. Hellerstein. Delta En-
coding in HTTP. 2002. IETF RFC 3229.

[17] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishna-
murthy. Potential benefits of delta-encoding and data
compression for HTTP. In Proc. of the ACM SIG-
COMM Conference, pages 181–196, 1997.

[18] A. Muthitacharoen, B. Chen, and D. Mazières. A low-
bandwidth network file system. In Proc. of the 18th
ACM Symp. on Operating Systems Principles, pages
174–187, October 2001.

[19] A. Orlitsky and K. Viswanathan. Practical algorithms
for interactive communication. In IEEE Int. Symp. on
Information Theory, June 2001.

[20] Z. Ouyang, N. Memon, T. Suel, and D. Trendafilov.
Cluster-based delta compression of a collection of files.
In Third Int. Conf. on Web Information Systems Engi-
neering, December 2002.

[21] S. Rhea, K. Liang, and E. Brewer. Value-based web
caching. In Proc. of the 12th Int. World Wide Web Con-
ference, May 2003.

[22] M. Spiliopoulou, B. Mobasher, B. Berendt, and
M. Nakagawa. A framework for the evaluation of ses-
sion reconstruction heuristics in web usage analysis.
INFORMS Journal on Computing, 15, 2003.

[23] T. Suel and N. Memon. Algorithms for delta compres-
sion and remote file synchronization. In Lossless Com-
pression Handbook. Academic Press, 2002.

[24] T. Suel, P. Noel, and D. Trendafilov. Improved file
synchronization techniques for maintaining large repli-
cated collections over slow networks. July 2003. un-
published manuscript.

[25] D. Trendafilov, N. Memon, and T. Suel. zdelta: a sim-
ple delta compression tool. Technical Report TR-CIS-
2002-02, Polytechnic University, June 2002.

[26] A. Tridgell. Efficient Algorithms for Sorting and Syn-
chronization. PhD thesis, Australian National Univer-
sity, April 2000.

[27] A. Tridgell, P. Barker, and P. MacKerras. rsync in http.
In Conference of Australian Linux Users, 1999.

[28] A. Tridgell and P. MacKerras. The rsync algorithm.
Technical Report TR-CS-96-05, Australian National
University, June 1996.

[29] S. Williams, M. Abrams, C. Standridge, G. Abdulla,
and E. Fox. Removal policies in network caches for
World-Wide Web documents. In Proc. of the ACM SIG-
COMM Conference, 1996.

