
Compressing File Collections with a TSP-Based
Approach

Dimitre Trendafilov Nasir Memon Torsten Suel

CIS Department
Polytechnic University
Brooklyn, NY 11201

Abstract

Delta compression techniques solve the problem of encoding a given target file with respect
to one or more reference files. Recent work in [15, 12, 7] has demonstrated the benefits of
using such techniques in the context of file collection compression. In these scenarios, files are
often better compressed by computing deltas with respect to other similar files from the same
collection, as opposed to compressing each file by itself. It is known that the optimal set of
such delta encodings, assuming that only a single reference file is used for each target file, can
be found by computing an optimal branching on a directed graph.

In this paper we propose two techniques for improving the compression of file collections.
The first one utilizes deltas computed with respect to more than one file, while the second one
improves the compressibility of batched file collections, such as tar archives, using standard
compression tools. Both techniques are based on a reduction to the Traveling Sales Person
problem on directed weighted graphs. We present experiments demonstrating the benefits of
our methods.

1



1 Introduction

Collections of files are often compressed by batching files together and then applying a standard
compression tool. For example, in the UNIX environment this is most commonly done using tar
followed by gzip or bzip2. This approach results in a slightly better compression than if the files
are compressed individually by taking advantage of interfile similarities, though only to a limited
extend. Delta compression algorithms are concerned with encoding a target file in relation to one
or more reference files; intuitively this can be viewed as compressing only the difference between
the files. Recent work [15, 12, 7] has shown that delta compression techniques can improve the
compression of file collections by more fully exploiting similarities between different files.

In most of the proposed scenarios, the files in the collection are compressed by performing a
number of pairwise delta encodings. There are two fundamental restrictions imposed on the set of
these pairwise encodings. First, a file should not be compressed more than once, i.e., a file should
exist in only one pair as a target. Second, no cycles should exist in between the pairs - if there
are cycles we will not be able to decompress the files. Following these restrictions an optimal set
of pairwise encodings can be found by computing a maximum branching on a complete directed
weighted graph where for each file there is a corresponding vertex, and the edge weights are given
by the benefit obtained from compressing the target vertex with respect to the source vertex rather
than on its own (or an estimation of this benefit). Thus, an optimal encoding can be computed in
polynomial time using the algorithm for maximum branching in [5, 17].

In this paper, we attempt to find a near-optimal set of delta encodings by a reduction to the prob-
lem of finding an optimum tour of a directed weighted graph, commonly known as the Traveling
Sales Person (TSP) problem. While this problem is NP Complete and thus an optimal algorithm
unlikely to be found, there are a number of heuristics that work well in practice. The main advan-
tage of this approach is that it can be easily extended to the case where we compute deltas with
respect to more than one reference file, and thus it can lead to better compression than maximum
branching-based approaches that are restricted to deltas with respect to a single reference file.

Moreover, the computed tour can be used to improve the compressibility of batched file collec-
tions without the use of delta compression. In particular, the popular UNIX tool tar is often used
to concatenate collection of files into one large file. The resulting tar file contains the necessary
meta information needed to extract individual files. While the file order in the tar file is not im-
portant for the correct functioning of tar, it can affect the compressibility of the batched file. We
present experiments demonstrating that the compressiblity of tar files under standard compression
tools such as gzip and bzip2 can be improved if the files are placed into the tar file in the order
computed by our heuristic. Thus, a slight enhancement of the tar utility at the sender can result
in improved compression while allowing a receiver to decode the file collection using standard tar
and decompression tools.

1.1 Contributions of this Paper

We study the problem of compressing collections of files by computing a linear file ordering
that maximizes the interfile similarities between consecutive files. We propose and evaluate two
schemes that can benefit from such file ordering. The first one starts out by delta compressing each
file with respect to its immediate predecessor in the ordering. We show that this already results in
performance close to that provided by a maximum branching, and that it can be further improved
by adding a second reference file. The second scheme batches the files in the order specified by
the file ordering, resulting in a file that is better compressible by conventional compressors. Our

2



main contributions are:

� We propose a heuristic for compressing collection of files by using deltas with respect to
multiple reference files. The heuristic first orders files based on a TSP heuristic, and then
compresses each file with respect to its immediate predecessor and the best of its other
predecessors.

� We observe that by concatenating files in a TSP order, we can improve the compressibility
of the resulting tar file while preserving the logical structure of the collection. The impor-
tance of the latter fact is that the batched file will be compatible with the unmodified batch
program.

� We implement both heuristics and present experimental results on their performance.

The rest of this paper is organized as follows. The next subsection discusses related work.
Section 2 describes the simple TSP heuristic that we used to compute a linear ordering for the
files in the collection. Section 3 describes our method for compressing collections of files using
deltas computed with respect to two files, while Section 4 describes the approach for improving
the compressibility of batched files. Section 5 provides experimental results. Finally, Section 6
provides some open questions and concluding remarks.

1.2 Related Work

For an overview of delta compression techniques and applications, see [16]. Among the main
delta compression algorithms in use today are diff, xdelta [13], and vdelta [10] and its newer
version vcdiff [11]. We use the zdelta compressor, which was described and evaluated in [19] and
previously used for compressing file collections in [15].

The issue of appropriate distance (or similarity) measures between files and strings has been
studied extensively, and many different measures have been proposed. We note that the diff tool is
based on a symmetric edit distance measure, while vdelta and other recent Lempel-Ziv type delta
compressors such as xdelta [13], vcdiff [11], and zdelta [19] are more related to the copy distance
between two files. Recent work in [6] also studies another measure called LZ distance that models
the behavior of Lempel-Ziv type compression schemes. Of course, the most accurate, but also
fairly expensive, way to determine the compression benefit of a delta compressor is to run it on the
files in question.

However, in many practical scenarios, we would like to quickly estimate the degree of similar-
ity between pairs of files, and in particular to cluster files into groups of fairly similar files, without
performing expensive pairwise distance computations between all pairs. A number of efficient
sampling-based approaches have been studied for this case [2, 6, 9, 14], often based on similarity
measures that are much simpler than edit distance and its variants. In particular, the clustering
techniques in [2, 14, 9] that we use later are based on two very simple similarity measures, which
we refer to as shingle intersection and shingle containment. For a file

�
and an integer � , we define

the shingle set (or � -gram set) ��� ���
of

�
as the multiset of substrings of length � (called shingles)

that occur in
�

. We define the shingle intersection of files
�

and
�	�

as 
�� ���
��������� ������������������� �� ��������!������ � � � , and

the shingle containment of
�

with respect to
�	�

as "#� �$�%�����&� � ��������������� � � �� ���'�(� � . (Note that shingle con-
tainment is not symmetric.) Our methods can be used with exact values for the graph edges or with
rough estimates based on shingle containment or intersection. For a discussion of these measures
we refer the reader to [2, 8, 15].

3



Fast algorithms for the optimum branching problem are described in [5, 17]. Adler and Mitzen-
macher [1] have shown that a natural extension of the branching problem to hypergraphs that can
be used to model delta compression of collections with two or more reference files is NP Com-
plete. If we restrict delta chains to a maximum length in order to allow for efficient extraction
of individual files, as proposed in [7], the resulting optimization problem is also known to be NP
Complete [18]. (Such restrictions may also result in reduced compression performance.)

The idea of compressing file collections using pairwise deltas is studied in [15] and [7]. Most
closely related is the approach in [15], which performs maximum branching computations on a
directed weighted graph that is constructed from the file collection using a variety of clustering and
file similarity estimation techniques. We also point out that Manber [14] has previously suggested
that similar files could be grouped together in order to improve the compressibility of batched
files, but no details and experiments were provided. Finally, graph optimization techniques have
also been used to optimize the compression of data sets stored in large tables [3, 4, 20].

2 TSP Greedy Heuristic

The Traveling Sales Person problem is one of the most widely known NP Complete problems.
We now present the simple greedy heuristic that we use to solve the problem; of course, other
known approaches would also work. We observe that in our scenario we have no requirements for
particular starting and ending vertices, and that the computed path could be interrupted at some
vertices. The basic idea in the heuristic is to always chose greedily the best available edge in the
graph. If the selected edge creates a branching or a cycle within the set of edges generated thus
far, than it is thrown away, and the next best edge is processed. The algorithm terminates when no
more edges can be added to the generated graph tour.

TSP-Heuristic(G)

���������	��
 �
� �
Max-priority queue� � ������� ��� �	������������
 �
� �


�� ��� Vertices with incoming edges. � ��� Vertices with outgoing edges.! �#"
Computed graph tour.

FOR EACH
�%$&�'���(���)�*��
 �
� �


�� � � � ��+	,-
.�
 � � � � ��+',-
.�
Make Disjoint Set / �10 Disjoint sets used for cycle prevention.

WHILE

���23�.4 � � ! �65 �87:9 AND

�<;�="
:� � � �?> � �A@�4B@ � � �

IF NOT � 
�� > � OR
 � � � OR / �1C � / �ED � :

add
� � � �?> � to

!

�� > � ����� � � � � � �F��� � �
join �-/ ��C � / �ED �

4



The initialization part of the algorithm instantiates a priority queue containing the input graph
edges and initializes a disjoint set data structure for each vertex. This part takes time

 � � � � �
,

where � is the number of edges and � the number of vertices. The main loop is executed at most �
times, and for each iteration the algorithm removes an edge from the priority queue, compares two
disjoint sets, and performs several other constant time operations. The time needed for a single
iteration will be at most

, 4.� � � � � , 4�� � � �
, and thus the overall running time for the algorithm will

be
 � � � � � ��� � , 4�� � � � � , 4�� � � � � �

. Assuming that � is larger than � , the running time will
be
 � � � ��� , 4�� � � � �

. Note also that this method will produce a result even for a disconnected
graph, in which case the generated tour will be interrupted at some vertices.

3 Delta Compression Approach

This section presents our algorithms for compressing collections of files using the TSP heuristic
in combination with delta compression. We start by building a graph whose edges correspond to
the benefit obtained from compressing the target with respect to the reference, or some reasonable
approximation of the benefit. The output of the TSP heuristic on such a graph is an ordered set
of files. Now we can compress the file collection by doing pairwise delta compression along the
generated edges. Assuming that we use exact rather than estimated edge weights, this approach
cannot be better than the optimum branching scheme, since a linear ordering is a special case of
a branching. Results from our experiments, however, will show that this scheme performs only
marginally worse.

A better approach is to compress the collection by using deltas with respect to two or more
reference files. We observe that having ordered the files, each file can be safely (i.e., without
introducing cycles) compressed with respect to any subset of its predecessors. The obvious choice
for the first reference file is the immediate predecessor. A second file can be selected by brute force,
by trying all predecessors in the ordering. Based on the analysis in the previous section the time
complexity for this algorithm would be

 � ��� , 4.� � � � � ����� / �
, where / is the average time (for

the particular file collection) to compute a delta with respect to two files. However, this bound can
be improved if we select the second reference file based on approximations of the benefit such as
those discussed in Section 1.2. Experiments will show that in all cases this heuristic improves upon
the performance of the “optimal” branching approach. For the cost of additional computation, we
could compute deltas with respect to more than two reference files. Our experiments showed that
this results in only negligible improvements.

To finish the discussion, we need to look at how to handle any jumps existing in our graph
tour. We could compress the file we jumped to with respect to the file we had jumped from, but
a better approach is to simply concatenate all these files and compress them with a conventional
compression tool.

4 Standard Compression Approach

This section presents our method for improving the compression of collections of files without the
use of delta compression techniques. As mentioned in the introduction, the most common method
for compressing collection of files is to batch the files in the collection and then compress the
resulting larger file with a standard compressor. The most popular tool for this in a UNIX/Linux
environment is the tar utility in conjunction with the gzip or bzip2 compressors. The tar program
itself does not perform any compression, but simply concatenates the files from the collection into
a single file, referred to as an archive. In addition it stores some meta information at the beginning

5



of the archive file and in between the concatenated files that allows it to extract files from the
archive.

Note that the order in which files are batched is not essential for the tar program, and in fact
most implementations allow the user to specify an ordering. Theoretically, a good batch compres-
sor should be able to utilize redundancies not only in single files, but across the complete archive.
In reality, however, the most commonly used compressors work only with a fixed size window into
the input file. For example, gzip has a 32KB sliding window, while bzip2 works with blocks of at
most 900KB. Thus, when compressing a particular file inside the archive, a compressor can take
advantage of redundancies with other files that are close-by, but not with files that are further away.
By placing similar files next to each other in the archive we can improve its overall compressibility.
In our implementation we use the linear ordering computed with our TSP heuristic as our file order.

As discussed, the main advantage of this approach is that it does not modify the format of
the batch file, and thus the optimized batch file can be uncompressed using standard tar and gzip
or bzip2. In fact, our method is implemented with a simple script that first calls a program for
computing a good file order, and then supplies the files in the collection to the standard tar utility
in this order. Thus, we basically augment tar with an initial analysis phase that scans the collection
to compute the weighted graph, using either precise edge weights or estimates based on sampling
as discussed in Section 1.2 for improved efficiency, and then performs the TSP computation. Our
experiments will show that in many cases this results in a measurable improvement in compression,
and it is thus an attractive option for the efficient distribution of file collections in cases where we
do not want to require users to deal with new compressed file formats.

5 Experimental Evaluation

We now present an experimental evaluation of our methods on a set of file collections. In particular,
we use six collections of HTML files downloaded in BFS order from six news websites. Each
benchmark contains from 99 to 530 files. The average file size in the benchmarks varies from less
than 20KB for CBC to above 45KB for USAToday.

We first present results for compressing collections using delta compression techniques as de-
scribed in Section 3. In Table 1, we compare five different methods for compressing the collections:

� cat+gzip: concatenate the files from the collection and compress them with gzip

� cat+bzip2: concatenate the files from the collection and compress them with bzip2

� ob: compute an optimal branching and compress using zdelta with a single reference file

� tsp: compute a TSP ordering and compress using zdelta with a single reference file

� tsp2: compute TSP ordering and compress using zdelta with two reference files

Table 1 contains results based on using exact edge weights, i.e., the weight for edge � � � ��� was
computed as the benefit of delta compression over gzip:

�	2 � @ � ��� 7 2 �'�., ��+ � � � ��� . For the results
in Table 2 we used sampling to estimate file similarity, as described in [2] and used in [15]. An
exception is the column for tsp2, where the selection of the second reference file was done by brute
force using zdelta, although this could also be done based on faster estimation techniques. In all
cases, files with no reference files (i.e., jump destinations) were compressed by concatenating them
and using gzip.

6



data set pages average total cat+gzip cat+bzip2 ob tsp tsp2
size size ratio ratio ratio ratio ratio

CBC 530 19.5 KB 10.6 MB 5.83 9.02 10.16 9.93 10.45
CBSNews 218 37.0 KB 8.3 MB 5.06 14.47 15.79 14.98 16.42
USAToday 344 47.5 KB 16.7 MB 6.30 9.48 9.31 8.86 9.69
CSmonitor 388 41.7 KB 16.6 MB 5.06 15.17 17.84 15.85 19.45

Ebay 100 21.5 KB 2.2 MB 6.78 11.30 11.14 10.77 11.39
Thomas-dist 105 26.5 KB 2.8 MB 6.39 9.90 9.83 9.38 10.10

Table 1: Compression ratios for collections of files using exact edge weights.

data set pages average total cat+gzip cat+bzip2 ob tsp tsp2
size size ratio ratio ratio ratio ratio

CBC 530 19.5 KB 10.6 MB 5.83 9.02 9.55 9.77 10.39
CBSNews 218 37.0 KB 8.3 MB 5.06 14.47 15.42 14.74 16.38
USAToday 344 47.5 KB 16.7 MB 6.30 9.48 9.40 9.28 9.98
CSmonitor 388 41.7 KB 16.6 MB 5.06 15.17 16.62 15.37 19.50

Ebay 100 21.5 KB 2.2 MB 6.78 11.30 9.80 10.42 11.27
Thomas-dist 105 26.5 KB 2.8 MB 6.39 9.90 9.40 9.28 9.98

Table 2: Compression ratios for collections of files using estimated edge weights.

We can see that the best overall performing method is the one using two reference files. How-
ever, even with a single reference file, the TSP-based method performs almost as well as the op-
timum branching approach. Finally, we observe that bzip2 is also a very attractive option for
compressing collections of similar files as it is within 9 ��� of the compression ratio of the best
method on all data sets and even closer in some cases.

Next we present results for compressing file collections using standard compression tools. Each
collection was compressed with the following techniques:

� standard tar followed by gzip

� standard tar followed by bzip2

� optimal file ordering followed by tar and gzip

� optimal file ordering followed by tar and bzip2

The optimal file ordering was computed using estimated edge weights based on sampling, as de-
scribed in [2] and used in [15]. We observe that the compressibility of tar files is typically improved
by about 9�� � ; exceptions are two benchmarks (CBSNews and CSmonitor) with fairly large av-
erage file sizes. The reason is that the gzip compressor uses a window size of only 32KB, and is
therefore unable to fully exploit the similarity between consecutive files. (Similar files typically
exhibit the same global structure, i.e., the start of the second file is similar to the start of the first
file and so on, so that a 32KB window will not find a lot of redundancy even on files only slightly
larger than 32KB.)

7



data set pages average total tar+gzip tar+bzip2 tsp+tar+gzip tsp+tar+bzip2
size size ratio ratio ratio ratio

CBC 530 19.5 KB 10.6 MB 5.70 8.86 6.94 9.59
CBSNews 218 37.0 KB 8.3 MB 4.89 13.93 4.94 14.05
USAToday 344 47.5 KB 16.7 MB 6.14 9.30 6.93 9.63
CSmonitor 388 41.7 KB 16.6 MB 4.99 14.94 4.98 14.75

Ebay 100 21.5 KB 2.2 MB 6.46 11.11 7.28 11.34
Thomas-dist 105 26.5 KB 2.8 MB 6.39 9.76 6.78 9.96

Table 3: Compression ratios for batched collections of files.

6 Concluding Remarks

We have proposed an approach for compressing collection of files using deltas computed with
respect to two or more reference files. This approach relies on a heuristic for solving the TSP
problem on a directed weighted graph and on distance estimation techniques described in [2] and
used in [15]. In addition, we have presented a method for improving the compressibility of batched
files. As a future improvement, we observe that the brute force mechanism for finding additional
reference files could be fairly easily substituted with a more efficient sampling-based algorithm,
maybe tuned to the characteristics of a specific compression tool. As noted, such a scheme can
be easily combined with a batching tool such as tar via a simple script that first performs a quick
analysis and ordering of the files in the collection. With appropriate tuning, we believe that this
analysis would result in fairly moderate CPU overhead compared to simply running tar and gzip.

References

[1] M. Adler and M. Mitzenmacher. Towards compressing web graphs. In Proc. of the IEEE
Data Compression Conference (DCC), March 2001.

[2] A. Broder. On the resemblance and containment of documents. In Compression and Com-
plexity of Sequences (SEQUENCES’97), pages 21–29. IEEE Computer Society, 1997.

[3] A. Buchsbaum, D. Caldwell, K. Church, G. Fowler, and S. Muthukrishnan. Engineering the
compression of massive tables. In Proc. of the 11th Annual ACM-SIAM Symp. on Discrete
Algorithms, pages 175–184, 2000.

[4] A. Buchsbaum, G. Fowler, and R. Giancarlo. Improving table compression with combina-
torial optimization. In Proc. of the 13th Annual ACM-SIAM Symp. on Discrete Algorithms,
pages 213–222, 2002.

[5] P. Camerini, L. Fratta, and F. Maffioli. A note on finding optimum branchings. Networks,
9:309–312, 1979.

[6] G. Cormode, M. Paterson, S. Sahinalp, and U. Vishkin. Communication complexity of doc-
ument exchange. In Proc. of the ACM–SIAM Symp. on Discrete Algorithms, January 2000.

[7] F. Douglis and A. Iyengar. Application-specific delta-encoding via resemblance detection. In
Proc. of the USENIX Annual Technical Conference, June 2003.

8



[8] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan, L. Pietarinen, and D. Sri-
vastava. Using q-grams in a DBMS for approximate string processing. IEEE Data Engineer-
ing Bulletin, 24(4):28–34, December 2001.

[9] T.H. Haveliwala, A. Gionis, and P. Indyk. Scalable techniques for clustering the web. In
Proc. of the WebDB Workshop, Dallas, TX, May 2000.

[10] J. Hunt, K.-P. Vo, and W. Tichy. Delta algorithms: An empirical analysis. ACM Transactions
on Software Engineering and Methodology, 7, 1998.

[11] D. Korn and K.-P. Vo. Engineering a differencing and compression data format. In Proceed-
ings of the Usenix Annual Technical Conference, pages 219–228, June 2002.

[12] P. Kulkarni, F. Douglis, J. LaVoie, and J. Tracey. Redundancy elimination within large collec-
tions of files. IBM Research Report RC23042, IBM T.J. Watson Research Center, December
2003.

[13] J. MacDonald. File system support for delta compression. MS Thesis, UC Berkeley, May
2000.

[14] U. Manber. Finding similar files in a large file system. In Proc. of the 1994 Winter USENIX
Conference, pages 1–10, January 1994.

[15] Z. Ouyang, N. Memon, T. Suel, and D. Trendafilov. Cluster-based delta compression of a
collection of files. In Third Int. Conf. on Web Information Systems Engineering, December
2002.

[16] T. Suel and N. Memon. Algorithms for delta compression and remote file synchronization.
In Khalid Sayood, editor, Lossless Compression Handbook. Academic Press, 2002.

[17] R. Tarjan. Finding optimum branchings. Networks, 7:25–35, 1977.

[18] S. Tate. Band ordering in lossless compression of multispectral images. IEEE Transactions
on Computers, 46(45):211–320, 1997.

[19] D. Trendafilov, N. Memon, and T. Suel. zdelta: a simple delta compression tool. Technical
Report TR-CIS-2002-02, Polytechnic University, CIS Department, June 2002.

[20] B.-D. Vo and K.-P. Vo. Using column dependency to compress tables. In Proc. of the IEEE
Data Compression Conference, pages 92–101, 2004.

9


