
Scalable Manipulation of Archival Web Graphs

Yasemin Avcular
CSE Department

Polytechnic Institute of NYU
Brooklyn, NY, 11201

yavcular@cis.poly.edu

Torsten Suel
CSE Department

Polytechnic Institute of NYU
Brooklyn, NY, 11201
suel@poly.edu

ABSTRACT
In this paper, we study efficient ways to construct, represent and an-
alyze large-scale archival web graphs. We first discuss details of the
distributed graph construction algorithm implemented in MapRe-
duce and the design of a space-efficient layered graph represen-
tation. While designing this representation, we consider both of-
fline and online algorithms for the graph analysis. The offline algo-
rithms, such as PageRank, can use MapReduce and similar large-
scale, distributed frameworks for computation. On the other side,
online algorithms can be implemented by tapping into a scalable
repository (similar to DEC’s Connectivity Server or Scalable Hy-
perlink Store by Najork), in order to perform the computations.
Moreover, we also consider updating the graph representation with
the most recent information available and propose an efficient way
to perform updates using MapReduce. We survey various storage
options and outline essential API calls for the archival web graph
specific real-time access repository. Finally, we conclude with a
discussion of ideas for interesting archival web graph analysis that
can lead us to discover novel patterns for designing state-of-art
compression techniques.

Categories and Subject Descriptors
H.3.2 [Information Storage and Retrieval]: Information Storage

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
The web graph is a directed graph structure where vertices repre-
sent the documents and edges represent the hyperlinks. This struc-
ture is commonly used for the analysis of the web. For example,
web search engines crawl the web and construct a web graph for
the collected information. By analyzing this graph, an importance
score is estimated for each document to provide the best search re-
sults. Some of the well known examples of rank based algorithms
are PageRank [29] and HITS [21]. Other than document importance
score estimation, the web graph analysis also plays a very impor-
tant role to solve problems such as spam detection [1] and related
page identification [13].

Many frameworks are designed for manipulation of the web graphs.
In general, they fall into two groups, the ones designed for online
computations with providing real-time fast access, and the ones

LSDS-IR’11, October 28, 2011, Glasgow, Scotland, UK.

designed for offline analysis of large-scale graphs. The Connec-
tivity Server [3] and several others [34, 32, 31, 4, 6] are exam-
ples of online frameworks providing efficient real-time access to
the graph via simple interfaces. The common ground among these
frameworks is first preprocessing the initial web graph and then
compressing the resulting structure. This way, larger portions of
the graph fit into main memory and can be accessed quickly. In
the preprocessing step, every page is labeled with a unique nu-
meric identifier (id). The unique ids should be assigned in a way
so similar pages have consecutive numbers to archive better com-
pression. One way to assign ids is simply sorting the documents
in lexicographical order and another way is clustering the docu-
ments according to their similarity and then mapping these clusters
onto linear space. On the other hand, several examples of the offline
computation frameworks are MapReduce [12], Dryad [19], Pregel
[26], and Pegasus [20]. MapReduce and Dryad are highly scalable,
generic computation models commonly used for graph analysis,
such as PageRank computation. Recently specialized graph ori-
ented frameworks have been proposed, which provide simple in-
terfaces for performing large-scale (offline) computations on web
graphs.

While a lot of work is focused on current snapshot of the web,
there is an increasing interest in archival web graphs. Archival web
graphs include detailed historical information about the web and
can improve performance of several tasks, such as document rank-
ing [2], spam detection, broken link identification [33]. Also, anal-
ysis of the evolving link structure sheds light on design of other
applications, for example web search engines detect importance of
a newly crawled page and model smart incremental crawl policies
accordingly [11, 10]. Moreover, [7, 28, 22, 16] reported interest-
ing characteristics of the archival web graphs, such as the birth and
death rate and the life length distribution of web pages, factors in-
fluencing persistence of a web page over time. Compared to the
regular web graph, the archival web graph with multiple snapshots
of the web is much larger in terms of size. Therefore, the archival
web graph representation requires additional interfaces for access-
ing and use of special techniques for compressing the version in-
formation.

In this paper, we study scalable ways for building, updating and an-
alyzing archival web graphs using MapReduce framework. We also
propose a simple representation format that is compatible with effi-
cient storage schemes. Our discussion follows the outline shown in
Figure 1. We first discuss how we extract the initial version of web
graph format (b) using the raw web graph data (a). Next, the initial
web graph format is further processed to generate a layered graph
representation (c) which serves as an efficient structure for both on-
line and offline computations. This representation is also used for
applying incremental updates. Finally, considering a set of analysis
algorithms (f), we discuss the large-scale storage systems (d) for
online computations and the distributed computing frameworks (e)
for offline computations as the future directions.



Figure 1: Outline of Execution Flow

The paper is arranged as follows: Section 2 introduces previous
work in more detail; Section 3 describes how the web graph is built
using MapReduce; Section 4 discusses the layered representation;
and, in Section 5 shows how updates can be applied using MapRe-
duce framework. Experimental results are presented in Section 6;
Section 7 introduces several options for storage and access schemes
with useful API calls and Section 8 presents our conclusions and
identification of future work.

2. RELATED WORK
Repositories specifically designed for the web graphs provide real-
time access for online computations. To the best of our knowledge,
Connectivity Server [3] developed at DEC SRC is the first study
that describes a representation of web graph for fast random ac-
cess. The idea of preprocessing the web graph and representing
documents with a unique numeric id is first introduced with the
Connectivity Server. For the id assignment step, first all unique
documents are sorted lexicographically within a single machine
and then the ids are assigned in increasing order. The document-id
mapping is later compressed using delta encoding. After to Con-
nectivity Server, more work focused on efficiently compressing the
web graph, so large portions can fit in main memory for fast access.

LinkDB [32], a follow-up study from DEC SRC partitions the doc-
uments into three groups according to their degree, and then sorts
each group lexicographically to assign ids. The ids assigned first
by the group’s id and then by the document’s position in the group.
This way documents with high degree are assigned lower ids and
overall structure can be compressed efficiently using starts array
compression. Three versions of LinkDB developed using several
compressing techniques such as delta codes, inter-list compression
(similar to dictionary codes), variable-length nybble codes and Huff-
man codes. The WebGraph Framework [4, 6], a state-of-art com-
pression technique for the web graph, uses gap encoding for the
graph representation and then applies inter-list compression bene-
fiting the similarity between adjacency lists of lexicographically or-
dered urls. Later arithmetic encoding is used to compress numeric
ids.

Raghavan and Garcia-Molina introduced a new format for the web
graph representation, called S-Node [31]. With this technique, doc-
uments are partitioned into chunks called Supernodes using two
methods; URL split and clustered split. First URL split method ap-
plied to partition the documents according to url prefixes, and then
clustered split method used to partition further into fine grain pieces
using k-means clustering algorithm. Adjacency lists are used as the
similarity measure for k-means algorithm. After partitioning step is
completed, Huffman-based compression, reference encoding and
other bit level compression techniques such as gap encoding and
run length encoding (RLE) are applied to compress the resulting
S-Node representation. More recently, Najork designed a scalable,
fault tolerant storage system for the web graphs, called Scalable
Hyperlink Store (SHS) [27]. SHS is composed of cells in which set
of documents are stored along with their mapping and adjacency
list. The id mapping and adjacency list are compressed using front
encoding and gap encoding respectively. Additionally, the id map-
ping is further compressed using variable-nybble and variable-byte
codes.

According to the representation techniques used in a web repos-

itory, various access schemes are designed to provide useful in-
terfaces. For example, based on the S-Node representation model,
Raghavan and Garcia-Molina developed a cost based optimizer and
execution engine to efficiently execute web queries over large repos-
itories [30]. They modeled a specific algebra for expressing com-
plex web queries. On the other side, the SHS store defines the set
of user interfaces for random access and real-time updates. In the
SHS model, the graph is distributed among nodes to balance the
workload and provide quick access.

To perform offline computations on the web graph, general purpose
large-scale distributed computing frameworks such as MapReduce
[12] and Dryad [19] are used. MapReduce [12] is a fault toler-
ant, highly scalable framework inspired by functional programming
where map and reduce functions are commonly used. MapReduce
provides a simple framework for designing embarrassingly paral-
lel computations running on large data sets. This model is found
to be efficient in implementing the offline web graph algorithms,
such as PageRank. More recently, frameworks specific to the web
graphs, Pregel [26] and Pegasus [20] are proposed. Pregel is an ef-
ficient, scalable, fault tolerant computation model for analysis of
large-scale graphs. Within this model, a computation is consist of
multiple iterations in each of which, every node can pass a mes-
sage to its neighbors and these messages are used in the next itera-
tion. Pegasus, an open-source library, developed at CMU, is imple-
mented on top of Hadoop. This library provides implementation of
large scale graph mining algorithms, such as PageRank.

Several techniques are proposed for the archival web graph repre-
sentation. With the TimeLink [23] representation, each link is at-
tached a start and an end date. The end date is defined as the date
of the latest crawl where the link existed. Using this representa-
tion, evolving link structure of 7.2 billion link graph from 1995 to
2001 is analyzed. Bordino et al. [7] analyzes evolution of the UK
web using monthly snapshots from May 2006 to 2007. This data
set is collected for the DELIS project and its building details are
described in [5]. The WebGraph compression framework [4, 6] is
used for the representation of this collection. The WebGraph frame-
work was originally designed for regular web graphs. For including
the time information, a single bit vector of length 12 is attached to
each link to identify existence of the link at a given month. These
bitvectors are separately compressed with Huffman codes. More-
over, hyperlink birth and death rates are studied in [16], and the life
cycle of web objects including hyperlinks is studied in [22].

3. GRAPH CONSTRUCTION
The raw web graph data (a) consists of many captures. A capture is
a one time retrieval of a specific document holding all information
about the specific retrieval, including the time stamp, and a list of
documents linked1. In the initial graph format (b), each document
is identified with two attributes; a url, the string representation, and
a uid, the unique numeric identifier. Initially, the documents in the
raw web graph (a) are identified only by their urls and in this sec-
tion, we explain how to construct an equivalent web graph where
documents are identified by their uids which is called the initial
graph format (b).

The graph construction consists of two main steps, a uid assignment
step, where a unique uid is assigned for each distinct url, and a re-
placement step, where each url in the web graph is replaced with
its corresponding uid. A sequential solution to this problem would
be to construct a url-uid mapping in a single machine by first sort-
ing and identifying all the unique urls, and then assigning uids for
each url starting from zero in increasing order. Later, this mapping
can be loaded into memory and each url in the raw web graph (a)
can be replaced with its corresponding uid via traversing the whole

1destination document list



web graph and using the url-uid mapping in the memory. However,
with large data sets this solution is not acceptable since the size of
the url-uid mapping overgrows the memory size. We implemented
a parallel graph construction algorithm within MapReduce to ad-
dress this problem. Being in a distributed environment adds one
new preparation step to overall computation; partitioning. Before
graph construction starts, the data should be partitioned in a smart
way so required communication among all nodes is minimized and
also the work load across all nodes is balanced.

Partitioning: If web graph could be partitioned in a way so each
document appears only in a single node, then there would be no
network traffic required and each node could independently run the
sequential graph construction algorithm (explained above) without
any conflicts. Due to the nature of web graphs, partitioning them
into perfectly disjoint sets is not possible. Using the fact that very
high percentage of all the linked documents are local; meaning
they are in the same domain with the source document, we par-
titioned the web graph according to the domain of source docu-
ment. Even though this approach minimizes the required commu-
nication among nodes, we observed unbalanced workload [25] due
to zipf distribution on the number of pages each domain has. As
a solution, we identify a number of boundary urls for partitioning
according to the total order. First a super-sample is generated with
random sampling of the raw input graph (a). Then the super-sample
is sorted and systematic sampling is applied to generate the range
boundaries. According to these range boundaries and the prede-
fined number of reduce tasks, any MapReduce job can easily setup
its partitioning function for balanced data distribution. Once the
partitioning function is defined, the subsequent MapReduce jobs of
the graph construction algorithm use the same function to minimize
the shuffling cost. Since the partitioner function is defined using
the total order, output of the MapReduce jobs using this partitioner
function is also sorted in total order.

Uid Assignment: First, the unique urls are extracted with a single
MapReduce job that scans through the raw web graph data (a). The
urls produced as the result of this MapReduce job are in total order
due to the partitioner that was designed in the previous step. As the
next step, prefix sum of each range defined in the range boundary
file is computed to calculate an offset for each range. Once the off-
set values are calculated, another MapReduce job loads them into
memory and reads the unique urls file as the input to compute the
uid of each url. As the output of this MapReduce job, the url-uid
mapping is generated.

Replacement: With the raw web graph data (a) consist of captures
and the url-uid mapping in hand, each url in the web graph is re-
placed with its corresponding uid within two MapReduce jobs, as
shown in Figure 2 with an example. The first MapReduce job takes

Figure 2: Graph Construction with MapReduce

Figure 3: Layered Graph Representation

these two files as input, and generates <url, payload> tuples as the
intermediate pairs. For each document in the url-uid mapping, one
tuple is generated with the url as the key; and for each capture in
the raw web graph, at least two tuples are generated, one for the
source url, one for the time-stamp2, and one for each destination
url if there is any. Since keys are the urls, all the payload informa-
tion belongs to the same url is processed within a single reducer.
If a given <key, payload> tuple is generated from the graph file,
then the payload includes the capture id3; if the tuple is generated
from the mapping file, then the payload includes the uid of the key.
Each payload is also attached a type identifier4 to specify the cap-
ture and mapping attributes. According to the type identifiers, each
each reducer replaces its key, a url value, with corresponding uid
and outputs <uid, payload> tuples. This time, the payload of each
tuple includes a type identifier along with a capture id. The second
MapReduce job receives these tuples and outputs <capture-id, pay-
load> tuples as the intermediate pairs. With selecting the capture id
as the key, all information belongs to a single capture is collected
within one reducer to build the initial web graph format (b).

4. GRAPH REPRESENTATION
We further structure the uid based initial web graph format (b) and
construct the layered web graph representation (c) by separating
the time stamp and the destination document list attributes attached
with each capture to achieve a good compression and provide a
generic format for the use of both online and offline computations.
This representation organizes information in three layers, Out Link
(OL), Time Stamp (TS) and Bit Vector (BV).

Every layer holds a layer specific information about each unique url
crawled. For every crawled document, OL layer holds the union of
all destinations document seen at any of its captures. The set of des-
tination documents in the union are stored in sorted order according
to uid values. Similarly, TS layer holds a set of time stamp values
for each document. The time stamp set is also stored in sorted order.
Finally, the BV layer glues the information in the OL and the TS
layers. Each bit vector in BV layer has a corresponding time stamp
in TS layer and identifies which destination documents appeared at
that specific time stamp. Figure 3 shows relationship among layers
with a sample graph. Once the layered representation is generated,
each layer is compressed to achieve space-efficient storage. The
compression phase also handles increasing bitvector length due to
new versions being appended over time.

2Since the time-stamp tuples do not require any replacement, they
can be written directly to the disk without sending to the reducer.
They will still be used by the second MapReduce job.
3The capture ids are generated by concatenating the source docu-
ment url and time stamp and hashing this value with MD5
4The payload identifiers separated by a _: s, d , t, m, and c# stand
for source url, destination url, time-stamp, mapping, and capture id
respectively.



Unique Nodes

Data Sets Captures Links Overall Crawled

Jun’06-May’07 109.6M 4.0B 43.0M 9M
Jun’06-Jan’07 36.5M 1.2B 41.2M 9M
Feb’07-May’07 73.0M 2.7B 42.5M 9M
archive.org 223M 7.4B 928M 170M

Table 1: Summary of data sets in numbers5

These three layers are constructed with a single MapReduce job
that reads the web graph of uids as the input. As mentioned be-
fore, all three layers hold the information about the same set of
documents, and the information in each layer are aligned using
the exact same ordering. The layered representation (c) is ideal for
processing and analysis in MapReduce and related frameworks (e)
for offline computations due to this design decision. Also, the lay-
ered representation can be loaded easily into a large-scale storage
system (d) providing access for online computations. Moreover,
each layer is nicely compressible because the layered representa-
tion bundles the similar information into separate layers. Finally,
as we show in the next section, quick updates can be implemented
using these layers.

Three main layers (OL, TS and BV) along with the url-uid map-
ping are enough to represent the initial web graph without losing
any information. However, for various applications, such as [21,
9, 13], constructing an in-link structure is necessary. Applying a
similar three layer approach for in-link representation results in a
very sparse bit vector matrix due to unshared time stamp values.
Indeed, if the data is coming from one single crawler, then there is
only one in-link exists per time stamp. Due to this characteristic,
we propose to use time ranges rather than exact time stamps for in-
link representation. The exact range can be specified according to
the application requirements. Overall, in-links are represented with
three layers, In-Link (IL), Time Range (TR), and In-Link Bit Vector
(IBV) layers. IL layer holds the union of all documents pointing
the specified document in any capture. This list is stored in sorted
order. Each time stamp in TR layer indicates the start time of the
prefixed time range value. The list of time stamps are also stored in
sorted order. Similar to BV layer, the IBV layer connects IL layer
with TR layer using a single bit vector for each time range in the
TR layer. Each bit vector identifies the set of documents pointing
the specified document in that specific time range. A single MapRe-
duce job can also be implemented to build the three layers of the
in-link representation.

5. UPDATES
The web crawlers continuously collect the most recent data from
the web and update the existing web graph using this up-to-date
information. The update process would be simple if every url had
a universally unique id without any specific requirement. However
inserting a new url into the layered web graph representation (c)
is more expensive operation due to the lexicographically assigned
uids. Inserting one url in the middle of the url-uid mapping would
require each following url to increase its value.

With relaxing the lexicographical id assignment requirement, new
urls could be sorted among themselves and assigned increasing uids
starting from the first uid value currently available in the graph rep-
resentation. This way the existing web graph can be updated safely.
However, this technique comes with a cost; a badly compressed
web graph representation. Sticking with ordered id assignment, we
implemented a chain of MapReduce jobs to allow efficient updates
on the layered web graph representation (c).

The update procedure starts with generating a layered web graph
representation (c) for the new raw web graph data (a) via running
the graph construction algorithm described in Section 3. With the

Mapping Layers

Data Sets URL-ID OL BV TS TS’

Jun’06-May’07 410M 242M 142M 27.7M 541M
Jun’06-Jan’07 406M 240M 104M 26.4M 363M
Feb’07-May’07 395M 243M 68M 26.0M 187M
archive.org 10.6G 6,1G 835M 1.2G -

Table 2: The Layer Size

existing and the newly constructed layered web graph representa-
tions in hand, the updated web graph representation is constructed
in three main steps; global id assignment, old uid replacement, and
the big merge.

In the first step, global id assignment, three mapping files are gen-
erated, the global url-uid mapping for the updated web graph rep-
resentation, and two old-uid to global-uid translation tables one for
the existing representation, and one for the new representation. At
first, the unique urls along with their current uids are extracted from
the existing and the new url-uid mappings within a single MapRe-
duce job. Then, the global uids are assigned for each unique url
using the same procedure described in Section 3. And finally, the
global url-uid mapping and the two translation tables are extracted
using a separate MapReduce job. In the second step, old uid re-
placement, the uids in the existing and in the new layered repre-
sentations are replaced with their corresponding global uids, using
the translation tables. For the replacement of OL layers, the im-
plementation from Section 3 is used. Replacement of TS and BV
layers is simpler and implemented within a single MapReduce job.
In the final step, the big merge, all three layers from both represen-
tations are merged using a single MapReduce job, and the layered
representation for the updated graph is generated.

6. EXPERIMENTS
Throughout this work, the data set provided by DELIS [5] project
and the data set we received from archive.org are used. The DELIS
data set consists a union of 12 month snapshots from UK domain
between June 2006 to May 2007 and archive.org data set has cap-
tures of UK domain from 2004 to 2007 without any prefixed snap-
shot interval. For the experiments, we used 9 million node subset
of the DELIS data set and its several partitions; the first 8 months
split, the last 4 months split. Table 1 summarizes details of both of
the data sets and splits.

Algorithms for the graph construction, extracting the layered rep-
resentation and updates are implemented within Hadoop [17], an
open source MapReduce framework. The experiments conducted
on a 6 nodes cluster, each having four 2.83GHz cores and 16G
memory.

For experimenting scalability of the construction algorithm, both
the four and eight month splits and the twelve months full data
set are used. Results show time taken to generate the representa-
tion is increasing linearly to the growing number of links in the
input data. Figure 4, plots time taken to generate the layered graph
representation (c). Each layer is compressed using gzip compres-
sion and Table 2 shows the layer sizes of each data split. Size of
the url-uid mapping increases proportional with the total number
of unique documents and similarly the size of BV layer increases
proportional to the number of links each data set has. Size of the
TS layer is also expected to increase proportional to the average
number of captures per document. This is not observed with the
DELIS dataset because of monthly basis time stamps are used; eg.
there are only 12 different time-stamp values existing. Therefore,
each document has the same set of time stamps in each data split
which is embarrassingly compressible. To show the results of fine

5M=Millions B=Billions



Figure 4: Scalability of Graph Construction Algorithm

grained time-stamps, we simulated second-based time stamp val-
ues with randomly assigned day and time values for each capture.
The results are listed in the TS’ column. Finally, the non-varying
OL layer size can be explained in two ways; the graph splits do not
have much of a link flux, the outlink lists compress well.

With the layer representation of each graph split, we also conducted
experiments for updates. The first 8 months split is updated with
the last four months split, and the results are shown in Figure 5.
We observed that the update algorithm is very efficient and the ac-
tual merging part is very quick compared to the graph construction
parts. Indeed, this experiment shows building the 12 months graph
via updating is even faster than building it from scratch. To be able
to better analyze the efficiency of updates, we also run another ex-
periment using four 3 months splits. Initially, the first two 3 months
splits are merged, and then the third and the fourth split are merged
one by one. The results are shown in Figure 6. This time, building
with updates is slightly slower than building from scratch. How-
ever the actual merging part is still very fast. We concluded that
partitioning the web graph into very small pieces results a slower
overall performance because of the overhead. If there are more than
two versions are exists, similar to the situation in the second exper-
iment, rather than merging them one by one, merging all of them
at once, as in external n-way merge technique of I/O efficient com-
puting, would result in better performance.

7. STORAGE AND USER INTERFACE
As discussed before, the layered web graph representation is very
suitable for processing and analysis using distributed computing
frameworks (e); such as Hadoop, a MapReduce based framework.
While offline computations can be performed within frameworks
similar to MapReduce, the layered representation can also be used
for online computations via loading into a large scale storage sys-
tem (d) and providing an API similar to the Scalable Hyperlink
Store (SHS) by Najork. Below, we listed the necessary API calls
for the archival web graph analysis:

iterator<int> getUids()
iterator<int> getUids(datetime start, datetime end)
int getUid(string url)
string getUrl(int uid)
int[] getLinks(int uid, bool isOutlinkList)
int[] getLinks(int uid, datetime start, datetime end, bool isOutlinkList)
int getLinkCount(int uid, bool isOutlinkList)

The getUids call returns an iterator for the set of all documents;
and if the time arguments are specified, it returns an iterator for the
documents crawled only in the given specific time range. For url to
uid and uid to url translations getUid and getUrl calls are provided.
To provide the two-way url-uid translation, only Uid-Url mapping
is stored. This was, uid to url translation is accessed in constant
time and for url to uid translation, a binary search wrapper can be

Figure 5: Updating first 8 months data with last 4 months

Figure 6: Updates with four 3 months data splits

implemented. Since uids are assigned to lexicographically sorted
urls, binary search wrapper simply runs on uids to find the right
url. Access to outlink and inlink lists is provided with getLink call.
The boolean parameter sets the link direction. Links seen within
a specific time range can also be retrieved via using datetime pa-
rameters. getLinkCount returns number of links from the specified
direction. Additional to API calls introduced with SHS, time-aware
queries are supported for archival analysis with getLinks and getU-
ids methods.

To support listed API calls for online applications, use of a dis-
tributed, highly scalable, fault tolerant repository is needed. To the
best of our knowledge, there is no large-scale repository specif-
ically designed for archival web graphs. The Scalable Hyperlink
Store by Najork is a distributed repository designed for single ver-
sion web graphs. On the other hand; there are large-scale, highly
scalable, distributed storage systems [8, 15, 14] proposed for general-
purpose data storage, known as non-relational storage services. The
design of the layered representation allows use of an open sourced
non-relational storage system for real-time access to the archival
graph.

The non-relational storage services are mainly inspired by two early
models, Google’s BigTable [8] and Amazon’s Dynamo [14]. BigTable
introduced a new data model, called column families, where the
data is stored with multiple columns in sorted order. Dynamo has
a simpler data model, called key-value storage, where each key is
associated with a value block. To use the advantages of nicely struc-
tured layered representation, the data should be loaded into the sys-
tem in sorted order using a user-specified partitioner function. Also,
information from all layers belonging to a specific document should
be written next to each other in disk level, since they will be fetched
together for most of the scenarios. Considering these requirements,
we survey the three open-sourced candidate systems; HBase [18] as
the candidate of column-family model, Project Voldemort [35] as
the candidate of key-value model, and Cassandra [24] as the hybrid
model.

Voldemort is a key-value store that does not support storing infor-
mation, the <key, value> tuples in sorted order. However infor-
mation from all layers belonging to a specific document can be
bundled together into the value of a <key, value> tuple. HBase,
is an open source implementation of BigTable on top of Hadoop.



Since we generate the layered representation within Hadoop, one
can use the advantage of staying in the same environment. Order-
preserving partitioner is supported with HBase and the set of val-
ues from each layer can be written into a column family for quick
access. Cassandra also allows user-specified partitioner functions,
and additionally supports range search on keys. Similar to BigTable,
Cassandra also supports sorted column families. However, it is im-
plemented out side of Hadoop.

One of these systems can be chosen according to application’s re-
quirements, and the layered representation of the data set can be
directly loaded into the storage system for computation of online
algorithms using real-time access. Also, as discussed in the next
section, we will be using a non-relational storage system as the
core of the scalable archival web graph repository.

8. CONCLUSION AND FUTURE WORK
Throughout this work, we showed an efficient way of building archival
web graphs, and proposed an efficient representation for online and
offline analysis. We also discussed a fast way to perform updates on
the archival web graph. Our experiments show graph construction
algorithm scales well with the increasing data size and the layered
graph representation is efficiently compressible.

We are currently setting up a 50 nodes cluster and will be using
this cluster for running the archival web graph construction frame-
work on the full version of DELIS data set and also on the data set
collected by 20th century project at Internet Archive. Next, we will
be analyzing these large datasets to discover interesting patterns of
archival web graphs. Our plan is to first run experiments for link
updates. For this experiments, only the BV layer alone provides
necessary information. Also, combination of OL and BV layers can
be used to discover interesting frequent patterns in adjacency lists,
such as local and global menu detection give us hints for design of
better compression techniques.

We will also be building a scalable, fault tolerant, efficient reposi-
tory specifically designed for the layered web graph representation.
Rather than building such a repository from scratch, one of the
state-of-art scalable repositories from our discussion in Section 7
will be used as the core component providing all fundamental spec-
ifications of a distributed system. To achieve better performance,
additional layers will be developed on top of the core system ac-
cording to characteristics of the layered graph representation; for
example, integrating web graph specific compression techniques,
designing specific index structure for two-way mapping queries.

Acknowledgements
We would like to thank Shuai Ding and Jinyang Li for helpful dis-
cussions. We also thank NYU NEWS Group for providing access
to their Hadoop cluster, the Internet Archive for providing access to
the Ireland data set, and LAW at University of Milano for providing
access to the DELIS data set [5]. This research was supported by
NSF Grant IIS-0803605, "Efficient and Effective Search Services
over Archival Webs".

9. REFERENCES
[1] Luca Becchetti, Carlos Castillo, Debora Donato, Ricardo Baeza-Yates, and

Stefano Leonardi. Link analysis for web spam detection. ACM Trans. Web,
2008.

[2] Klaus Berberich, Michalis Vazirgiannis, and Gerhard Weikum. T-rank:
Time-aware authority ranking. In In WAW, pages 131–142, 2004.

[3] Krishna Bharat, Andrei Broder, Monika Henzinger, Puneet Kumar, and Suresh
Venkatasubramanian. The connectivity server: fast access to linkage
information on the web. In Proc. of the Seventh Int. Conf. on World Wide Web 7.

[4] P. Boldi and S. Vigna. The webgraph framework i: compression techniques. In
Proc. of the 13th Int. Conf. on World Wide Web.

[5] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. A large time-aware
graph. SIGIR Forum, 2008.

[6] Paolo Boldi and Sebastiano Vigna. The webgraph framework ii: Codes for the
world-wide web. In Proc. of the Conf. on Data Compression, 2004.

[7] Ilaria Bordino, Paolo Boldi, Debora Donato, Massimo Santini, and Sebastiano
Vigna. Temporal evolution of the uk web. In IEEE Int. Conf. on Data Mining,
2008.

[8] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.
Bigtable: A distributed storage system for structured data. ACM Trans. Comput.
Syst., 2008.

[9] Yen-Yu Chen, Qingqing Gan, and Torsten Suel. Local methods for estimating
pagerank values. In Proc. of the thirteenth ACM Int. Conf. on Information and
Knowledge Management.

[10] Junghoo Cho and Hector Garcia-Molina. The evolution of the web and
implications for an incremental crawler. In Proc. of the 26th Int. Conf. on Very
Large Data Bases.

[11] Anirban Dasgupta, Arpita Ghosh, Ravi Kumar, Christopher Olston, Sandeep
Pandey, and Andrew Tomkins. The discoverability of the web. In In Proc. of the
2007 Int. Conf. on World Wide Web.

[12] Jeff Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on
large clusters. In Symposium on Operating System Design and Implementation,
2004.

[13] Jeffrey Dean and Monika R. Henzinger. Finding related pages in the world wide
web. In In Int. World Wide Web Conf., 1999.

[14] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian,
Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly available
key-value store. SIGOPS Oper. Syst. Rev., 2007.

[15] Roxana Geambasu, Amit A. Levy, Tadayoshi Kohno, Arvind Krishnamurthy,
and Henry M. Levy. Comet: an active distributed key-value store. In Proc. of the
9th USENIX Conf. on Operating Systems Design and Implementation, 2010.

[16] Daniel Gomes and Mário J. Silva. Modelling information persistence on the
web. In Proc. of the 6th Int. Conf. on Web Engineering.

[17] Hadoop. http://hadoop.apache.org/core/.
[18] HBase. http://hadoop.apache.org/hbase/.
[19] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.

Dryad: distributed data-parallel programs from sequential building blocks.
SIGOPS Oper. Syst. Rev., 2007.

[20] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. Pegasus: A
peta-scale graph mining system implementation and observations. In Proc. of
the 2009 Ninth IEEE Int. Conf. on Data Mining.

[21] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,
46, 1999.

[22] Wallace Koehler. Web page change and persistence—a four-year longitudinal
study. J. Am. Soc. Inf. Sci. Technol., 53, 2002.

[23] Reiner Kraft, Enes Hastor, and Raymie Stata. Timelinks: Exploring the link
structure of the evolving web. In In Second Workshop on Algorithms and
Models for the Web-Graph, 2003.

[24] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured
storage system. SIGOPS Oper. Syst. Rev., 44, 2010.

[25] Jimmy Lin. The curse of zipf and limits to parallelization: A look at the
stragglers problem in mapreduce. In Proc. of the 7th Workshop on Large-Scale
Distributed Systems for Information Retrieval (LSDS-IR’09) at SIGIR 2009,
Boston, Massachusetts.

[26] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In Proc. of the 2010 Int. Conf. on Management of Data.

[27] Marc Najork. The scalable hyperlink store. In Proc. of the 20th ACM Conf. on
Hypertext and Hypermedia, 2009.

[28] Alexandros Ntoulas, Junghoo Cho, and Christopher Olston. What’s new on the
web?: the evolution of the web from a search engine perspective. In Proc. of the
13th Int. Conf. on World Wide Web.

[29] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical report, Stanford
InfoLab, 1999.

[30] Sriram Raghavan and Hector Garcia-Molina. Complex queries over web
repositories. In Proc. of the 29th Int. Conf. on Very Large Databases - Volume
29.

[31] Sriram Raghavan and Hector Garcia-Molina. Representing web graphs. In Int.
Conf. on Data Engineering, 2003.

[32] Keith Randall Raymie, Keith H. Randall, Raymie Stata, Rajiv G.
Wickremesinghe, and Janet L. Wiener. The link database: Fast access to graphs
of the web. In Research Report 175, Compaq Systems Research, 2001.

[33] Ellen Spertus and Lynn Andrea Stein. Squeal: a structured query language for
the web. Comput. Netw., 2000.

[34] Torsten Suel and Jun Yuan. Compressing the graph structure of the web. In
Proc. of the Data Compression Conf., DCC ’01.

[35] Project Voldemort. http://project-voldemort.com/.


