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Abstract—There has recently been significant interest in appli-
cations that require computations on massive graph structures,
including scenarios where the graph is too large to be processed
on a single machine. In this case, the graph needs to be
partitioned into subgraphs that can be assigned to individual
machines, in a process called graph or social network sharding.
Given the sizes of the graphs involved, it is necessary or
at least highly desirable that the partitioning itself can also
be performed in a distributed manner, instead of running a
sequential partitioning algorithm on a single node.

We study such distributed algorithms for graph sharding,
where the goal is to create subgraphs of roughly equal size that
minimize the number of edges crossing subgraph boundaries. In
particular, we focus on two well-known approaches that can be
efficiently implemented in MapReduce and related distributed
computing paradigms: the Balanced Label Propagation algo-
rithm of Ugander and Backstrom, and the method of Duong et
al. based on the Bayesian Stochastic Block Modeling approach
of Hofman and Wiggins. Our contributions are as follows: (1)
We perform the first direct experimental comparison of the two
approaches, which were independently proposed and published.
(2) We propose and evaluate several enhancements of Balanced
Label Propagation that result in improved graph shardings. (3)
We propose and evaluate hybrid methods that perform label
propagation both on individual nodes, as suggested by Ugander
and Backstrom, and on stochastic blocks inferred using the
approach of Duong et al.

Index Terms—social networks, community detection, network
sharding, label propagation, graph partitioning

I. INTRODUCTION

Over the last few years, social networks have seen rapid
growth in data sizes and system loads. For example, Facebook
reported 1.45 billion daily active users in March 2018. The
resulting graph structures, with billions of nodes and hun-
dreds of billions of edges, are too large to be stored on a
single machine, and thus need to be partitioned across many
machines. The problem of finding a good partitioning of the
graph, called graph sharding, is the focus of this paper. In
particular, the problem is to find a partitioning of the graph
into shards satisfying constraints on shard sizes, such that
the number of non-local edges, i.e., edges connecting nodes
located in different shards, is minimized.
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Graph partitioning has of course been studied for a number
of decades, and many basic problems are known to be NP-
hard. This includes the Minimum Bisection problem of finding
a partition of a graph into two shards of equal size such
that the number of crossing edges is minimized [8], and the
Balanced Graph Partitioning problem of partitioning a graph
into k roughly equal size components while minimizing the
number of crossing edges [1]. For the latter problem, there
is no constant-factor approximation unless P = N P, and the
best upper bound achieves an approximation factor of O(lg2 n)
[1]. Despite these theoretical limits, a number of heuristic
algorithms have been proposed that achieve impressive results
on many real-world graphs. An example is the widely used
METIS software package based on multi-level graph parti-
tioning schemes in [12].

1.1 Social Network Sharding.

However, many of these approaches are not suitable for
the extremely large graphs encountered in social networking
applications. These new scenarios, often called graph or social
network sharding, pose several additional challenges. First,
algorithms need to scale to very large graphs. Second, they
need to allow for a distributed implementation, preferably
in popular frameworks such as MapReduce [6] or Pregel
[15]. Third, they should allow efficient updates or iterative
refinements to the current solution. Finally, they need to
perform well on the types of graphs commonly encountered
in social networks.

In this paper, we study social network sharding, where
we partition a graph into m shards such that each shard i
contains approximately c; nodes while minimizing crossing
edges. Thus, different shards can have different target sizes,
and we allow some bounded deviation from these sizes. We
focus on two well-known approaches to this problem, the
Balanced Label Propagation (BLP) method of Ugander and
Backstrom [18], and the method of Duong et al. [7] based
on the Bayesian Stochastic Block Modeling approach (SBM)
of Hofman and Wiggins in [9]. These methods were indepen-
dently and concurrently proposed in 2013, and both allow for
highly efficient distributed implementations in MapReduce and
related frameworks. However, they are also technically quite
different.



In particular, BLP [18] starts from an initial assignment
of nodes to shards, and redistributes nodes in a series of
iterations. In each iteration, nodes are moved if this decreases
the number of adjacent non-local edges, subject to the so-
lution of a Linear Program that guarantees size constraints
on the shards. In contrast, SBM [7] assumes a Stochastic
Block Model for graph generation and then uses an iterative
algorithm of Hofman and Wiggins [9] to infer a much larger
number of densely connected subgraphs (or blocks). In the
second phase, these blocks are greedily assigned to shards. For
both approaches, the running time is dominated by an iterative
computation where nodes are relabeled based on a form of
neighborhood voting, and both map naturally to distributed
computing paradigms such as MapReduce [6] or Pregel [15].

1.2 Our Contribution.

Our goal in this paper is to experimentally compare the BLP
and SBM approaches, to analyze their limitations, and to study
optimizations of the BLP and SBM and combinations of the
two approaches. To do so, we re-implemented both algorithms
from scratch, and compared the partition quality of SBM to
those of the METIS package and the BLP approach with
several initial assignments, including initial assignments based
on METIS and SBM. We then implemented several extensions
of BLP that periodically disrupt the BLP relabeling process,
including one that iteratively moves blocks of nodes rather
than individual nodes between shards, and one that applies a
version of the Kernighan-Lin (KL) algorithm [13]. Our results
suggest that initializing BLP with SBM and periodically
running KL swaps achieves good partition quality on large
social networks.

The remainder of this paper is organized as follows. Next,
we give more detailed descriptions of the BLP and SBM
approaches, and discuss related work. Section 3 describes our
optimizations to the BLP approach, and Section 4 contains our
experimental evaluation. Finally, Section 5 provides conclud-
ing remarks.

II. BACKGROUND AND RELATED WORK

We now describe the BLP and SBM approaches in more
detail, and discuss other related work. But first, we formally
define the social network sharding problem, using the formu-
lation in [18].

Problem Definition: Given an undirected graph G =
(V,E), an integer m, and lower and upper size constraints
S1,...8, and Tl,... T,., the goal is to partition V' into
m shards Vi,...,V,, such that S; < |V;| < T;, and the
number of non-local edges (with endpoints in different shards)
is minimized [18].

Unless stated otherwise, we choose S; and T; a few per-
centages below and above |V'|/m, respectively, aiming for
shards of roughly equal size. However, all approaches also
apply when shards vary in size.

2.1 The BLP Approach

We now describe Ugander and Backstroms’ Balanced Label
Propagation (BLP) algorithm [18] in more detail. We define

the local degree of a node as the number of adjacent edges
that connect to nodes in the same shard. Thus, the goal is to
maximize the sum of the local degrees of all nodes.

Suppose we have a current assignment of nodes to shards.
If by moving a node v from its current shard to another shard,
we can increase its local degree from d to some d' > d —
assuming all other nodes stay put — then we say that the move
has a benefit of d’ — d. The idea is that in each iteration, we
determine for each node its most profitable move, assuming
one exists, and breaking any ties (say, at random). We call
this a node’s preferred move. A natural approach would try to

move each node according to its preferred move.

However, the result might violate the shard size constraints
given by the S; and T;. Instead, we aim to select a subset
of preferred moves with maximum total benefit (sum of
benefits of the moves) such that size constraints are satisfied
afterwards. This selection problem can be stated as follows
[18]:
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Here, the value x;; of the solution is the number of nodes that
are selected to move from V; to Vj, f;;(x;;) is the total benefit
from executing the x;; preferred moves from V; to V; with
the highest benefits, and P;; is the total number of preferred
moves from V; to V Note that in the above formulation, the
Tij are integers. However as shown in [18], Z fij(2i5)

is a piecewise-linear concave function, allowing tﬂe above
constraints to be rewritten into a Linear Program as follows:
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where the a;;, and b;;;, are derived from the utility functions

fi; as the gradients and y-intercepts of the linear pieces of

fij. This LP can be solved using a standard LP solver such as

Ipsolve [3]. Thus, each iteration of BLP involves the following

steps:

(1) Determine the preferred moves of all nodes, compute the
functions f;;(x;;) by a prefix sum over the sorted list of
preferred moves from V; to V;;, and compute the resulting
Qijk and bijk~

(2) Solve the resulting LP using an LP solver.

(3) Move nodes according to the x;; of the LP solution, and
update any data structures.

Steps (1) and (3) map naturally to a distributed computing

paradigm such as MapReduce, but Step (2) requires an LP

solver, and most available solvers are sequential. Thus, it is
important that this does not become a performance bottleneck.

The number of variables in the above LP is at most 2m(m —



1), while the number of constraints is bounded by 2m? +
Km(m — 1), where m is the number of shards and K is the
maximum number of linear pieces of any of the f;;. State-of-
the-art LP solvers can deal efficiently with LPs of hundreds
of thousands to a few million constraints, and as argued in
[18] they can easily handle most interesting cases. For even
larger numbers of shards and linear pieces, [18] also proposed
an approximation of the utility gain f;; that performs well in
practice.

2.2 The SBM Approach.

We now describe the SBM algorithm of Duong et al. [7]
based on the Stochastic Block Model. Recall that in BLP,
nodes were directly assigned to shards in a series of iterations
that maximize the number of internal edges. In SBM, by
contrast, we first identify smaller clusters of nodes where each
cluster has a lot of internal edges. Then clusters are assigned
to shards with a simple greedy method.

The main challenge in SBM is to infer the clusters. This
is done using a random graph model called Stochastic Block
Model [10], which assumes an underlying block or community
structure in the graph where edges between nodes in the same
block are more likely to exist than edges between different
blocks. This model is a good match for social networks, where
connections are more likely to exist between people who share
underlying traits such as interests, background, location, or
offline social connections. An algorithm by Hofman and Wig-
gins [9] proposed an iterative algorithm that, given an observed
graph, infers the most likely underlying block structure under
a Bayesian approach.

Block Inference.

This algorithm is at the heart of the SBM method, and
thus we briefly outline it; for full details, see [7], [9]. The
input is a graph G = (V,E) and the intended number of
communities (blocks) K. The output is a community mapping
Z with biases for cluster sizes 7 and edge existence bias 9.
Hence, p(7, 0, Z| |G) is the probability of a certain output given
observed network GG. Moreover,

K
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where m and m_ are the total number of edges and
non-edges within communities, respectively, while m_, and
m__ are the total numbers of edges and non-edges across
communities, respectively. Using Bayes’ Theorem, we get:
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where p(G,Z|67, 7) can be estimated from G using (2.3),
p(7,0) is the prior belief on the parameter values, and p(G)
is a constant representing the marginal likelihood of observing
G under the given prior belief.

The algorithm initially assigns each node to a random
community, and then repeatedly takes a discounted vote over
a node’s neighbors’ assignments using weights J and J’,
where J weighs the local term related to edges within clusters,
and J' and h balance this with global discounts based on
the number of possible edges within clusters, and cluster
sizes, respectively. J and J’' are defined based on a set
of hyperparameters that is adjusted between iterations. By
adding observed counts (m4 ., my_), (m_4, m__) to pseudo
counts (a0, 540), (a_0, 5_0), the posterior calculations are
reduced in [7] to simple algebraic updates on hyperparameters
(a4, B+), and (a—_, 5_). Edge probabilities 6 and 6_ within
and between communities are modeled as Beta distributions,
while cluster size is a Dirichlet distribution over 7.

Each iteration can be implemented in time O(V + E), and
maps naturally to a MapReduce paradigm. Thus, very large
graphs can be processed efficiently.

Mapping Clusters to Shards

After running the discounted voting algorithm to conver-
gence, we get a number H of clusters of various sizes.
Usually, we have H << K as many of the K randomly
initialized clusters become empty, while others increase in
size. Recall that the goal of graph partitioning is to take a
graph G = (V, E) and partition it into a configuration with m
partitions V; such that S; < |V;| < T;. Duong et al [7] describe
a greedy algorithm BlockShard that maps the H clusters
to k shards. The algorithm completely fills each shard with
clusters before moving to the next shard. If the current shard is
empty, the largest unassigned cluster is picked; otherwise, the
unassigned cluster that is most tightly connected with nodes
already in the shard is selected. If a selected cluster does not
completely fit into the current shard, it spills over into adjacent
shards that then become the current shard. While the algorithm
is sequential, it is very fast when using a suitable heap-based
data structure for selecting the next cluster.

2.3 Implementation and Preliminary Results.

We re-implemented BLP [18] and SBM [7] in C*T*. More
complete details and results are provided in subsequent chap-
ters, and the link to the source code is also provided. For
now, we present some preliminary results to illustrate the
two algorithms and their limitations. For these runs, we use
a LiveJournal social graph of almost 4M nodes and 34.68M
edges, and partition into 50 equal-sized partitions with +3%
leniency (i.e., S; = 0.97 - [V|/m and T; = 1.03 - [V'|/m).

We see that BLP almost converges in about 20 iterations,
starting from a random assignment. After a few iterations, only
few nodes move between shards, and in the end we achieve
about 60% local edges.

Next, we compare both methods on LiveJournal, for 10,
30, 50, 70, and 90 shards. Results are shown in Figure 2.
We see that SBM significantly outperforms BLP with random
initialization for all data points, and in particular for larger
numbers of partitions. As expected, locality decreases with



Number of node movement across iteration Locality of edges across iteration

>
L

4.000e+6

@
L

3.000e+6

IS
L

2.000e+6

Number of node movements
©

Local edge ratio (Locallty)
8

1.000e+6

0.000e+0

‘l‘ll ]
IIIIIIII- -----
o]
1 1 1
5 10 15

t t t T t t
20 0 5 10 15 20
Number of iterations

t
0
Number of iterations

(a) Node moves / Iterations

Fig. 1: BLP on LiveJournal, for 50 shards.
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more shards. Similar relative behavior was observed on other
graphs, as will be seen later.

Final locality at convergence against No. partitions

0.75 — Constrained Relocation
1 — Community Sharding

>
T 0.7
Q
o
2
)
“é’ i
o 0.65 -
o) ]
e
Q
©
o
o
= 061
£
[T

0.55 -

20 40 60 80
Number of partitions

Fig. 2: Performance comparison of BLP and SBM on Live-
Journal, for varying numbers of shards.

2.4 Limitations of BLP and SBM.

We now discuss some limitations of the two approaches that
we plan to address. First, as also observed in [18], the perfor-
mance of BLP depends significantly on the initial assignment.
In [18], an initial assignment based on geography is shown
to significantly outperform random assignment; however, this
data is not available to us. Given that SBM outperforms BLP
in Figure 2, it would be natural to use SBM to get an initial
assignment for BLP.

Second, BLP may converge while there are still many
potentially profitable moves, since it only considers the most
profitable move for each node. Consider a case where node A
wants to move from shard V; to V;, while node B would prefer

to move from shard V; to V4, although it would also get some
more limited benefit from moving to V;. If these are the only
available moves, then BLP is stuck in the current configuration
if capacity constraints do not allow V; and V}; to grow in size,
while it would actually make sense to swap A and B. Note
that this decision to only consider the most profitable move is
inherent to the reduction to an LP in the approach. A similar
case involves a benefit of, say, 4 for moving A from V; to V,
and a benefit of —2 for moving B in the other direction — this
would lead to a better assignment but is not considered under
BLP.

Third, BLP only considers the impact of moving individual
nodes. Imagine a clique of, say, ten nodes currently at V; where
each node is also connected to two nodes (not necessarily the
same two nodes) at V;, Under BLP, we would not move any
of these nodes to V;, even though moving all of them together
would in fact be profitable. Thus, it would be desirable to have
a way to move clusters of nodes, say as identified by SBM.

In summary, BLP often gets stuck in local optima that are
far away from the best solution. SBM uses a very smart
algorithm for finding clusters, but the subsequent greedy
assignment to shards seems simplistic. Also, while BLP can
use additional iterations to refine the assignment under graph
updates, it is unclear how to support updates in SBM.

2.5 Other Related Work.

As discussed, our focus here is on optimizing the ap-
proaches in [7], [18]. There are many related and interesting
avenues of research that we do not try to compare to. For
example, work in [11] considers partitioning schemes that
support very fast updates to the graph structure. There is a
growing body of research on streaming approaches to graph
partitioning that only scan the graph structure a single or a
small number of times; see, e.g., [2], [17]. We are also not
trying to optimize the wall-clock time of our methods, but
focus on the quality of the resulting partitioning — we refer to
[16] for highly efficient implementations of the BLP approach.
Finally, [4] considers the related problem of minimizing the
number of cut vertices in a graph.

III. OPTIMIZATIONS OF GRAPH SHARDING TECHNIQUES

We focus on optimizing the above two graph sharding
algorithms, by addressing some of the above-mentioned limi-
tations. We note that BLP has an ”initialization + refinement”
framework that provides great flexibility to combine multiple
initialization and refinement techniques to produce the best
result. Furthermore, its iterative process enables a quick one-
pass refinement as the graph changes. Within this “initial-
ization + refinement” framework, we explore three different
initialization techniques - random, SBM, and METIS, as well
as three modifications to the refinement process - probability-
based disruption, community relocation, and pairwise swaps
based on Kernighan-Lin.

Definition of Convergence.

To introduce these modifications, we need to define con-
vergence of the iterative refinement. We define Y'(i) as the



fraction of local edges ((locg(;))/E) in graph G = (V, E)
after ¢ iterations of iterative refinement. We say that an iterative
process has converged if the increase in locality over the
previous d iterations falls below a threshold, or formally:

Y (i) - Y (i — d)

Y(i—d) o ©)

We usually use d = 1. The purpose of the three new
types of refinements is to act as disruptors that are invoked
whenever the standard BLP relocation process converges, as
determined by ;. At this point, we call one iteration of the
disruptor, and then return to the standard BLP process until it
converges again. We also need to define a condition for the
convergence of the overall algorithm, as follows: whenever the
standard BLP process converges again after a disruption, we
compare the current state to that just before the disruption,
and terminate the overall algorithm when that improvement
in locality is below a certain value 2. Thus, convergence is
controlled by £; and &s.

3.1 Probability-Based Disruption.

The purpose of this disruptor is to randomly shake up the
current shard assignment, by throwing nodes out of shards
to make space so that other, more suitable, nodes can move
in. This is achieved by selecting nodes from each shard
and placing them into a common pool, and then randomly
assigning nodes in the common pool back to the shards.

We considered several methods to select nodes into the
random pool. Our first approach simply selects a certain
percentage of nodes from each shard at random. However, this
did not perform well overall, in that after we converge again,
we end up roughly in the same place as before the disruption.
Thus, we need to be smarter about identifying nodes to place
into the pool. For example, we might want to select nodes
with low local locality, that is, nodes with a small value of
Ir(n) = d!;fié:()n). Thus, an alternative approach could simply
select nodes based on Ir(n), by picking in each shard the nodes
with the lowest value of Ir(n).

We found that an approach that combines picking at random
with selection by [r(n) does even better. In this approach, we
select each node n with probability prob(n) = a(1 — Ir(n)),
where a determines the magnitude of the disruption. Thus,
nodes with low locality are more likely to be picked for the
pool. We show pseudocode for the method in Algorithm 1:

We implemented all three approaches, but focus here on
the last one as it dominates the other two methods. We start
out with a fairly large « that is decreased by a decay factor
with each disruption. In Figure 3, we show the resulting
performance on the LifeJournal graph.

This method reaches global convergence after 61 iterations,
and the final locality of 0.607 improves modestly over BLP’s
value of 0.584, but is still far away from the result of 0.675
obtained by SBM. We will later evaluate this approach in
more detail, including when applied to SBM as an initial shard
assignment.

Algorithm 1 ProbDisrupt

for Shard V; € V7. ;. do
moveCount_V; < 0
for node V;[n] € V; do
prob(Vi[n]) + a(1 —Ir(n))
if rand(0,1) < prob(V;[n]) then
put node V;[n] into the common pool
moveCount_V; < moveCount_V; + 1
end if
end for
end for
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Fig. 3: ProbDisrupt performance on LiveJournal

3.2 Clustered Constrained Relocation.

Our next idea for disruption attempts to address the third
limitation of BLP, which is only moving individual nodes,
which can leave clusters of nodes stranded in the wrong shard.
The basic idea is to extend the Constraint Relocation in BLP
to clusters, as follows: First, we use SBM to compute clusters.
Then, once BLP has converged as determined by ¢;, we run
one round of cluster movement, where each cluster is treated
as an individual node in BLP. That is, we basically collapse
each cluster into a single node, with suitable local and non-
local degrees and a size corresponding to the number of nodes
in the cluster. We then determine for each such cluster node
which other shard it would like to move to, if any, and then set
up a slightly modified LP to pick a set of moves that satisfies
capacity constraints.

Here, the modification of the LP is to take the size of a
cluster into account in the capacity constraints. One challenge
that arises is that the solution returned by the LP solver may
tell us to move a fraction of a cluster to satisfy capacity
constraints; in this case we “randomly round” the solution
to full clusters by moving the full cluster with probability p
if the solution tells us to move a p-fraction of the cluster.
This results in a very slight temporary relaxation of the
capacity constraints. After clusters are moved, we continue
with standard BLP iteration on individual nodes, which will
remedy any violation of the capacity constraint in the next
iteration.



3.3 Round-Robin Kernighan—Lin Swaps.

Our third idea again addresses the second limitation of
BLP, by allowing moves that are not preferred moves, and
by allowing swaps of nodes where one node obtains negative
benefit. We achieve this by pairing up shards and applying
the classical algorithm of Kernighan and Lin [13] to swap
nodes between paired-up shards. Thus, nodes in each shard
are ordered in descending order of the benefit of moving to
the other shard in the pair, and we swap pairs in position
1,2,3, ... of their respective lists as long as the benefit from
swapping a pair is positive. We note that this removes the need
for an LP solver for this step, which was required in BLP to
meet capacity constraints under multi-way moves.

However, when pairing up two arbitrary shards, there are
often only a limited number of profitable swaps. To see
significant movements from this approach, we perform a
complete round-robin pairing of all shards. That is, every shard
is paired up with every other shard during the disruptive step,
for a total of m(m — 1)/2 KL swaps where m is the number
of shards. We note that this can be efficiently implemented
by performing an initial scan over all edges to determine the
local degree of each node, and the benefit of moving a node
to any other shard with which it shares at least one edge. The
benefits are then sorted, and the information is maintained as
swaps are performed, allowing each round of KL swaps to
be done without first scanning all edges or sorting by benefit
again.

3.4 Preliminary Results.

We now take a first look at the benefits of the last two
disruption methods on the performance of BLP, in Figure
4, using again the LiveJournal graph of 4M nodes with 50
partitions. We look at two initial assignments, SBM (in blue)
and an assignment obtained by the sequential METIS package
(in red), which we treat as a baseline that is not scalable
to larger networks and distributed environments. We omit
random initialization as it performed significantly worse than
the others, placing it outside the range of this chart, and we
also omit ProbDisrupt as the benefits are very limited as shown
before. Our naming conventions are that the refinement method
is first (BLP in this case), followed by the disruption method
if any, followed by the initial assignment in parentheses. Thus,
BLP-MC(SBM) means BLP with Moving Clusters (clustered
relocation) as the disruptor and an initial assignment based on
SBM.

As we see, METIS achieves a better initial assignment than
SBM (red versus blue horizontal line). When we perform BLP
steps on the initial assignment, SBM significantly narrows the
gap to METIS, and in fact does better than METIS without
BLP steps. Adding movement of clusters as disruptor (graphs
with circles) gives a noticeable boost when starting from
METIS (graphs with squares), but very little benefit when
starting from SBM — most likely because clusters are already
placed into the right shards by the initial greedy assignment
of SBM. Finally, using KL swaps as a disruptor (graphs with
triangles) gives a significant boost for both methods, and in
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Fig. 4: Performance of Cluster and KL Disruptions

particular for SBM as initial assignment. In the end, BLP-
KL(METIS) and BLP-KL(SBM) achieve basically the same
partitioning quality.

In Figure 5, we summarize the final locality achieved for
random, SBM, and METIS initialization, and the contribution
of the refinements due to BLP and disruption. We see that
while random initialization benefits a lot from the refinements,
it never catches up with SBM and METIS.

IV. FULL EXPERIMENTAL EVALUATION

We performed an evaluation over a number of data sets,
including social networks and other graphs, with varying
numbers of shards. The data sets are available from the
Stanford SNAP collection [14], and are summarized in the
following table. All graphs are undirected.

Graph Name Type Nodes Edges
LiveJournal Social 3,997,962 34,681,189
Orkut Social | 3,072,441 | 117,185,083
FB Athletes Social 13,866 86,858
FB Companies Social 14,113 52,310
roadNet CA Road 1,965,206 5,533,214
Enron Email Comm 36,692 367,662

All of our methods were implemented in C**+ and run on
a single node '. We did not optimize for running time, as our
goal here is to explore the potential of the various optimiza-
tions to improve partitioning quality. An implementation in
MapReduce or Pregel is also left for future work.

In Figure 6, we show results for the final partitioning
locality on LiveJournal, as the number of shards is varied

Uhttps://github.com/SteveDengZishi/Graph- Partitioning- Research
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from 10 to 90. Of course, locality decreases with more shards.
All methods with random initialization are at the bottom, as
expected. We note that just METIS, with no refinement, does
well for small numbers of shards, but worse as the number of
shards increases. SBM benefits significantly from adding BLP
refinement, and also from KL swaps as disruptors.

livejournal Graph - Final Locality (Y) against number of partitions (X)

-+ BLP(Random)
~O- BLP-MC(Random)
=4~ BLP-KL(Random)
0.8 -OF BLP(SBM)
-O- BLP-MC(SBM)
=~ BLP-KL(SBM)
-0~ BLP(Metis)
0.75 ~O- BLP-MC(Metis)
=~ BLP-KL(Metis)
o — (SBM)
2 .
= — (Metis)
x 0.7
>
=
®
[4]
S
0.65
0.6
0.55

20 40 60 80
Number of partitions

Fig. 6: Final locality comparison on LiveJournal

Next, in Figure 7, we show result for Orkut. We notice that
METIS does badly on one data point (30 shards), but does
well for the rest. Both SBM and METIS initial assignments
benefit significantly from adding BLP refinement, and METIS
gets additional significant benefits from KL Swaps.
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Fig. 7: Final locality comparison on Orkut

Next, in Figure 8 and Figure 9, We show results for two
small data sets on Facebook athletes network and companies
page network. We observe METIS does really well on small
data sets and leaves very little room for refinement. SBM has a
significant boost from refinement, but minor benefits from KL
Swaps or cluster moves. The high-diameter companies page
network appears to get more benefit from cluster movements
than from KL Swaps.

Next, we look at email-Enron, an email graph, in Figure
10. We notice that METIS does very well, but refinement adds
little value to it. SBM is clearly worse than METIS, but adding
BLP to SBM gives significant improvements, while KL Swaps
give minor extra benefits.

Finally, in Figure 11 we look at RoadNet data, a very differ-
ent type of data set that is arguably much easier to partition.
Here, METIS completely dominates, getting an almost perfect
partitioning, with no potential for further improvement via
refinement. SBM also sees very little improvement from any
refinement steps. In summary, we see significant benefits from
adding BLP refinement and, to a lesser degree, KL. Swaps, to
initial assignments based on SBM and METIS, for the social
graphs and email network, but not for the high-diameter and
almost planar RoadNet and the companies network data.

V. CONCLUDING REMARKS

In this paper, we have studied distributed algorithms for
graph sharding, with a focus on optimizing the BLP and SBM
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Fig. 10: Final locality comparison on email-Enron

roadNetCA Graph - Final Locality (Y) against number of partitions (X)
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approaches proposed in [18] and [7]. Our results show that a  quality.

combination of SBM and BLP has significant potential, and is In future work, we plan to do evaluations on additional data
often competitive with widely used sequential methods such as  sets, including web graphs and additional social networks.
METIS, and that additional benefits can be obtained by adding We also plan to implement our methods in a distributed
disruptions based on cluster moves and KL (Kernighan-Lin) environment, most likely MapReduce [6], to measure resulting
Swaps. The success of KL Swaps in particular suggests that the running times on even larger graphs. Beyond these immediate
approach of constraining multi-way moves via an LP taken in  goals, the problem of how to best perform graph sharding of
the basic BLP approach adversely affects the resulting partition large social networks in distributed environments remains an



interesting research challenge with many open questions and
the potential for further significant gains.
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