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ABSTRACT
Web search engines are facing formidable performance chal-
lenges due to data sizes and query loads. The major engines
have to process tens of thousands of queries per second over
tens of billions of documents. To deal with this heavy work-
load, such engines employ massively parallel systems consist-
ing of thousands of machines. The significant cost of operat-
ing these systems has motivated a lot of recent research into
more efficient query processing mechanisms.

We investigate a new way to build such high performance
IR systems using graphical processing units (GPUs). GPUs
were originally designed to accelerate computer graphics ap-
plications through massive on-chip parallelism. Recently a
number of researchers have studied how to use GPUs for
other problem domains such as databases and scientific com-
puting [9, 8, 12]. Our contribution here is to design a basic
system architecture for GPU-based high-performance IR, to
develop suitable algorithms for subtasks such as inverted list
compression, list intersection, and top-k scoring, and to show
how to achieve highly efficient query processing on GPU-
based systems. Our experimental results for a prototype
GPU-based system on 25.2 million web pages shows promis-
ing gains in query throughput.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIE-
VAL]: Information Search and Retrieval.

General Terms
Algorithms, Performance

Keywords
Search Engines, Query processing, Index Compression, GPU

1. INTRODUCTION
Due to the rapid growth of the web and the number of

web users, web search engines are faced with enormous per-
formance challenges. Current large-scale search engines are
based on data sets of many terabytes, and have to be able to
answer tens of thousands of queries per second over tens of
billions of pages. At the same time, search engines also have
to accommodate demands for increased result quality and for
new features such as spam detection and personalization.
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To provide high throughput and fast response times, cur-
rent commercial engines use large clusters consisting of thou-
sands of servers, where each server is responsible for searching
a subset of the data (say, a few million pages). This architec-
ture successfully distributes the heavy workload over many
servers. Thus, to maximize overall throughput, we need to
maximize throughput on a single machine. This problem is
not trivial at all since even a single machine needs to process
many queries per second. To deal with this workload, search
engines use many performance optimizations including index
compression, caching, and early termination.

In this paper, we investigate a new approach to building
web search engines and other high-performance IR systems
using Graphical Processing Units (GPUs). Originally de-
signed to accelerate computer graphics applications through
massive on-chip parallelism, GPUs have evolved into power-
ful platforms for more general classes of compute-intensive
tasks. In particular, researchers have recently studied how to
apply GPUs to problem domains such as databases and scien-
tific computing [9, 8, 12, 19, 11]. Given their extremely high
computing demands, we believe that search engines provide
a very interesting potential application domain for GPUs.
However, we are not aware of previous published work on
using GPUs in this context. Building an efficient IR query
processor for GPUs is a non-trivial task due to the challeng-
ing data-parallel programming model provided by the GPU,
and also due to the significant amount of performance engi-
neering that has gone into CPU-based query processors.

We make several contributions here, described in more de-
tail later. We outline and discuss a general architecture for
GPU-based IR query processing that allows integration of the
existing performance optimization techniques. We then pro-
vide data-parallel algorithms and implementations for major
steps involved in IR query processing, in particular index
decompression, inverted list traversal and intersection, and
top-k scoring, and show how these techniques compare to
a state-of-the-art CPU-based implementation. Finally, we
study how to schedule query loads on hybrid systems that
utilize both CPUs and GPUs for best performance.

2. BACKGROUND AND RELATED WORK
For a basic overview of IR query processing, see [24]. For

recent work on performance optimizations such as index com-
pression, caching, and early termination, see [2, 23, 6].

We assume that we are given a collection of N documents
(web pages covered by the search engine), where each doc-
ument is uniquely identified by a document ID (docID) be-
tween 0 and N − 1. The collection is indexed by an inverted

index structure, used by all major web search engines, which
allows efficient retrieval of documents containing a particular
set of words (or terms). An inverted index consists of many



inverted lists, where each inverted list Iw contains the do-
cIDs of all documents in the collection that contain the word
w. Each inverted list Iw is typically sorted by document ID,
and usually also contains for each docID the number of oc-
currences of w in that document and maybe the locations of
these occurrences in the page. Inverted indexes are usually
stored in highly compressed form on disk or in main memory,
such that each list is laid out in a contiguous manner.

Given such an inverted index, the basic structure of query
processing is as follows: The inverted lists of the query terms
are first fetched from disk or main memory and decompressed,
and then an intersection or other Boolean filter between the
lists is applied to determine those docIDs that contain all or
most of the query terms. For these docIDs, the additional
information associated with the docID in the index (such as
the number of occurrences) is used to compute a score for
the document, and the k top-scoring documents are returned.
Thus, the main operations required are index decompression,
list intersection, and top-k score computation.

Index Compression: Compression of inverted indexes
reduces overall index size as well as the total amount of disk
and main memory data transfers during query processing.
There are many index compression methods [24]; the basic
idea in most of them is to first compute the differences (gaps)
between the sorted docIDs in each inverted list. We then ap-
ply a suitable integer compression scheme to the gaps, which
are usually much smaller than the docIDs (especially for long
inverted lists). During decompression, the gaps are decoded
and then summed up again in a prefix sum type operation. In
our GPU-based query processor, we focus on two compres-
sion methods that are known to achieve good compression
ratios and that we believe are particularly suitable for im-
plementation on GPUs: the well-known Rice coding method
[24], and a recent approach in [25, 13] called PForDelta.

To compress a sequence of gaps with Rice coding, we first
choose an integer b such that 2b is close to the average of
the gaps to be coded. Then each gap n is encoded in two
parts: a quotient q = ⌊n/(2b)⌋ stored in unary code, and a
remainder r = n mod 2b stored in binary using b bits. While
Rice decoding is often considered to be slow, we consider
here a new implementation recently proposed in [23] that is
much faster than the standard one. The second compression
method we consider is the PForDelta method proposed in
[25], which was shown to decompress up to a billion integers
per second on current CPUs. This method first determines
a b such that most of the gaps in the list (say, 90%) are less
than 2b and thus fit into a fixed bit field of b bits each. The
remaining integers, called exceptions, are coded separately.
Both methods were recently evaluated for CPUs in [23], and
we adopt some of their optimizations.

List Intersection and DAAT Query Processing: A
significant part of the query processing time is spent on travers-
ing the inverted lists. For large collections, these lists become
very long. Given several million pages, a typical query in-
volves several MBs of compressed index data that is fetched
from main memory or disk. Thus, list traversal and intersec-
tion has to be highly optimized, and in particular we would
like to be able to perform decompression, intersection, and
score computation in a single pass over the inverted lists,
without writing any intermediate data to main memory.

This can be achieved using an approach called Document-
At-A-Time (DAAT) query processing, where we simultane-
ously traverse all relevant lists from beginning to end and

compute the scores of the relevant documents [24, 5, 15].
We maintain one pointer into each inverted list involved in
the query, and advance these pointers using forward seeks
to identify postings with matching docIDs in the different
lists. At any point in time, only the postings currently ref-
erenced by the pointers must be available in uncompressed
form. Note that when we intersect a short list (or the result
of intersecting several lists) with a much longer list, an effi-
cient algorithm should be able to skip over most elements of
the longer list without uncompressing them [18]. To do this,
we split each list into chunks of, say, 128 docIDs, such that
each chunk can be compressed and decompressed individu-
ally. DAAT can implement these types of optimizations in
a very elegant and simple way, and as a result only a part
of the inverted lists needs to be decompressed for typical
queries. DAAT is at first glance a sequential process, and to
get good performance on GPUs we need to find data-parallel
approaches that can skip large parts of the lists.

Score Computation: Web search engines typically re-
turn to the user a list of 10 results that are considered most
relevant to the given query. This can be done by applying a
scoring function to each document that is in the intersection
of the relevant inverted lists. There are many scoring func-
tions in the IR literature that take into account features such
as the number of occurrences of the terms in the document,
the size of the document, the global frequencies of the terms
in the collection, and maybe the locations of the occurrences
in the documents. In our experiments here, we use a widely
used ranking function called BM25, part of the Okapi family
of ranking function; see [22] for the precise definition. We
could also use a cosine-based function here, of course; the
exact ranking function we use is not important here as long
as it can be efficiently computed from the data stored in the
index, in particular docIDs and frequencies, plus document
sizes and collection term frequencies that are kept in addi-
tional global tables. Scoring is performed immediately after
finding a document in the intersection.

During traversal of the lists in a CPU-based DAAT im-
plementation, the current top-k results are maintained in a
small memory-based data structure, usually a heap. When
a new document in the intersection is found and scored, it
is compared to the current results, and then either inserted
or discarded. This sequential process of maintaining a heap
structure is not suitable for GPUs, and we need to modify
it for our system. In contrast, implementation of the actual
scoring function is trivial and highly efficient on GPUs.

Graphical Processing Units (GPUs): The current
generations of GPUs arose due to the increasing demand for
processing power by graphics-oriented applications such as
computer games. Because of this, GPUs are highly opti-
mized towards the types of operations needed in graphics, but
researchers have recently studied how to exploit their com-
puting power for other types of applications, in particular
databases and scientific computing [9, 8, 12, 19, 11]. Modern
GPUs offer large numbers of computing cores that can per-
form many operations in parallel, plus a very high memory
bandwidth that allows processing of large amounts of data.
However, to be efficient, computations need to the carefully
structured to conform to the programming model offered by
the GPU, which is a data-parallel model reminiscent of the
massively parallel SIMD models studied in the 1980s.

Recently, GPU vendors have started to offer better support
for general-purpose computation on GPUs, thus removing



some of the hassle of programming them. However, the re-
quirements of the data-parallel programming model remain;
in particular, it is important to structure computation in a
very regular (oblivious) manner, such that each concurrently
executed thread performs essentially the same sequence of
steps. This is challenging for tasks such as decompression
and intersection that are more adaptive in nature. One major
vendor of GPUs, NVIDIA, recently introduced the Compute
Unified Device Architecture (CUDA), a new hardware and
software architecture that simplifies GPU programming [1].
Our prototype is based on CUDA, and was developed on an
NVIDIA GeForce 8800 GTS graphics card. However, other
cards supporting CUDA could also be used, and our approach
can be ported to other programming environments.

Probably the most closely related previous work on GPUs
is the very recent work in [12, 11]. The work in [11] ad-
dresses the problem of implementing map-reduce operations
on GPUs; this is related in that map-reduce is a widely used
framework for data mining and preprocessing in the context
of search engines. However, this framework does not apply to
the actual query processing in such systems, and in general
the problems considered in [11] are quite different from our
work. The recent work in [12] is more closely related on a
technical level in that query processing in search engines can
be understood as performing joins on inverted lists. Also,
one of the join algorithms in [12], a sort-merge join, uses an
intersection algorithm very similar to the case of our inter-
section algorithm with a single level of recursion. However,
beyond this high-level relationship, the work in [12] is quite
different as it does not address issues such as inverted index
decompression, integration of intersection and decompression
for skipping of blocks, and score computation, that are crucial
for efficient IR query processing.

Parallel Algorithms: Our approach adapts several tech-
niques from the parallel algorithms literature. We use pre-
vious work on parallel prefix sums [3], recently studied for
GPUs in [10, 17], and on merging sorted lists in parallel [7],
which we adapt to the problem of intersecting sorted lists.

3. CONTRIBUTIONS OF THIS PAPER
We study how to implement high-performance IR query

processing mechanisms on Graphical Processing Units (GPUs).
To the best of our knowledge, no previous work has applied
GPUs to this domain. Our main contributions are:

(1) We present a new GPU-based system architecture for
IR query processing, which allows queries to be exe-
cuted on either GPU or CPU and that contains an ad-
ditional level of index caching within the GPU memory.

(2) We describe and evaluate inverted index compression
techniques for GPUs. We describe how to implement
two state-of-the-art methods, a version of PForDelta
[25, 13] and an optimized Rice coder, and compare them
to CPU-based implementations. Our implementation
of PForDelta achieves decompression rates of up to 2
billion docIDs per second on longer inverted lists.

(3) We study algorithms for intersecting inverted lists on
GPUs, based on techniques from the literature on par-
allel merging. In particular, we show how to integrate
compression and intersection such that only a small
part of the data is decoded in typical queries, creating
a data-parallel counterpart to DAAT query processing.

(4) We evaluate a basic version of our GPU-based query
processor on the 25.2 million pages of the TREC GOV2

data set and associated queries, and compare it to an
optimized CPU-based query processor developed in our
group. We show that the GPU-based approach achieves
faster processing over all queries, and much faster pro-
cessing on expensive queries involving very long lists
and on disjunctive queries.

(5) We study the query throughput of different system con-
figurations that use either CPU, or GPU, or both, for
query processing under several scheduling policies.

The remainder of this paper is organized as follows. In the
next section, we discuss some assumptions and limitations
of our work. Section 5 outlines the proposed GPU-based
query processing architecture. In Section 6 we study index
compression schemes for GPUs, and Section 7 looks at list in-
tersection algorithms. Section 8 evaluates the performance of
the full query processing mechanism on the 25.2 million pages
from the TREC GOV2 collection. In Section 9 we evaluate
scheduling mechanisms for systems that use both GPUs and
CPUs. Finally, Section 10 provides concluding remarks. Our
code is available at http://cis.poly.edu/westlab/.

4. ASSUMPTIONS AND LIMITATIONS
In addition to query processing, large web search engines

need to perform many other operations including web crawl-
ing, index building, and data mining steps for tasks such as
link analysis and spam and duplicate detection. We focus
here on query processing, and in particular on one phase of
this step as explained further below. We believe that this
part is suitable for implementation on GPUs as it is fairly
simple in structure but nonetheless consumes a dispropor-
tionate amount of the overall system resources. In contrast,
we do not think that implementation of a complete search
engine on a GPU is currently realistic.

Modern search engines use far more complex ranking func-
tions than the simple BM25 variant used by us. Such engines
often rely on hundreds of features, including link-based fea-
tures derived, e.g, using Pagerank [4], that are then combined
into an overall scoring function using machine learning tech-
niques. To implement such a scoring function, search engines
typically divide query processing into two phases: An initial
phase uses a fairly simple ranking function, such as BM25
together with some global document score such as Pagerank,
to select a set of candidate documents, say a few hundred or
thousand. In a second phase, the complete machine-learned
scoring function is applied to only these candidates to select
the overall top results. Thus, our approach can be seen as
implementing the first phase, which aims to select promis-
ing candidates that the complete scoring function should be
applied to. In contrast, the second phase has a very differ-
ent structure, and implementing it on a GPU would be an
interesting and challenging problem for future work.

In our experiments, we assume that the entire index is in
main memory, or at least that caching performs well enough
to effectively mask disk access times. Of course, if disk is
the main bottleneck, then any approach based on optimizing
CPU or GPU performance is futile. In general, large-scale
search engine architectures need to balance CPU, main mem-
ory, and disk cost and performance – if processor (CPU or
GPU) throughput is improved, a savvy system designer will
exploit this, e.g., by using fewer processors or adding data,
disks, or main memory in order to rebalance the architecture
at a more cost-efficient point.



Finally, we do not consider index tiering and early ter-
mination techniques, which allow answering of top-k queries
without traversing the full index structures. Such techniques
could in principle be added to our approach. In particular,
tiering [21, 6] could be trivially combined with our approach
as it does not impact query processing within a node.

5. GPU-BASED SEARCH ARCHITECTURE
We now describe and discuss the proposed query processing

architecture. We start out with a typical (slightly simplified)
CPU-based architecture, shown in Figure 1, where a query
enters the search engine through a query integrator node.
This query integrator first checks a local cache of query re-
sults, the result cache. If the same query was recently issued
by another user of the engine, then the result of that query
may already be contained in the result cache and can be di-
rectly returned to the user. Otherwise, the query integrator
forwards the query to a number of machines, each responsible
for a subset of the collection. Each machine has an inverted
index structure for its own subset, and computes the top-k
results on this subset. The results are returned to the master,
who then determines the overall top-k results. The index in-
side each machine is either kept completely in main memory,
or it resides on disk but a substantial amount of main mem-
ory is used to cache parts of the index. In practice, cache hit
rates of 90% or more are obtained as long as about 20% or
more of the index data can be kept in main memory. In our
setup, we assume that disk is not the main bottleneck.

Figure 1: A basic CPU-based search engine cluster.

Our GPU-based architecture can use the same distributed
architecture, but each node contains CPUs as well as GPUs
for query processing. We show the structure of a single node
in our system in Figure 2. The compressed inverted index is
either completely in main memory, or stored on disk but par-
tially cached in main memory for better performance. The
GPU itself can access main memory only indirectly, but has
its own global memory (640 MB in our case) plus several
specialized caches, including shared memory shared by many
threads. Data transfers between main memory and GPU
memory are reasonably fast (a few GB/s), and can be per-
formed while the CPU and GPU are working on other tasks.
Memory bandwidth between the GPU and its own global
memory is in the tens of GB/s and thus higher than typical
system memory bandwidths; however, for best performance
memory accesses need to be scheduled to avoid bank conflicts.

Figure 2: Architecture of a GPU-based system.

Each query is first preprocessed by the CPU, and the corre-
sponding inverted lists are retrieved from disk if not already
in main memory. In the case where both CPU and GPU par-
ticipate in query processing, the CPU then decides whether to
schedule the query on CPU or GPU. In addition to the index
cache in main memory, the GPU also maintains its own cache
of index data in GPU global memory to avoid unnecessary
data transfers from main memory. This cache is smaller than
the main memory cache, and thus the hit rate will be lower,
say around 50% to 80% instead of over 90%. The assignment
of a query to CPU or GPU is done based on the current
load of each processor, the characteristics of the query (cer-
tain types of queries may run better on CPU and others on
GPU), and the availability of index data in GPU memory. If
data needs to be transferred to GPU global memory to run
the query, then this transfer is performed while processing
other queries. To get good utilization of both processors, we
assume a certain level of concurrency that allows reordering
of queries as long as queries are answered within a certain
acceptable delay, say 500 ms or less.

A query is executed on the GPU by uncompressing and in-
tersecting the inverted lists from shortest to longest, similar
to Term-At-A-Time (TAAT) processing on CPUs. However,
to get the performance benefits of skipping over parts of the
longer lists enjoyed by DAAT, we split list intersection into
several phases, an initial phase that determines which parts
of the longer list need to be decompressed, the decompression
of those parts, and then the intersection of the decompressed
parts with the shortest list (or the intersection of the lists
already processed). We will show that the amount of docID
data decompressed under this scheme is very close to that
under DAAT, while allowing an efficient data-parallel imple-
mentation on the GPU. After each intersection, we also fetch
the frequencies of any docIDs in the intersection and update
their BM25 scores. Finally, the top-k results are returned to
the CPU. More details are provided in the next few sections.

6. GPU-BASED LIST DECOMPRESSION
In this section, we present two index decompression al-

gorithms for GPUs based on Rice coding and PForDelta,
two methods known to achieve good compression on inverted
lists. Both can be efficiently implemented using parallel pre-
fix sums, a basic primitive in parallel computation [3], and
thus are good candidates for implementation on GPUs.

6.1 Rice Coding for GPUs
Recall the description of Rice coding from Section 2, where

each integer is encoded into a fixed-width binary and a variable-
width unary part. As in [23], we keep the unary and binary
parts separately in two different bit fields. The important
new observation for our purpose is that we can decompress
the code by running two separate parallel prefix sums, one on
the binary codes, and the other on the unary codes, where
each prefix is tuned slightly differently as described below.
Then each uncompressed docID can be retrieved by summing
up its binary prefix sum and 2b times the corresponding unary
prefix sum. Note that as a result we directly obtain the orig-
inal docIDs, not just the gaps between docIDs. In summary,
decompression reduces to two customized prefix sums, plus a
shift and addition for each element.

Parallel Prefix Sum: Our implementation relies on an
highly efficient implementation of parallel prefix sum. There
are two types of prefix sum operations, inclusive prefix sum,



where the sum includes the element itself, and exclusive pre-
fix sum, where it does not. In this paper, we use the inclusive
prefix sum, that is, given an array < a0, a1, ..., an−1 >, the
resulting prefix sum is an array < a0, (a0 + a1), ..., (a0 + a1 +
.... + an−1) >. The prefix sums problem has been studied
extensively in the parallel processing literature [3]. An ef-
ficient implementation on GPUs was presented in [10], and
some additional optimizations are described in [17]. The ba-
sic idea in [10], based on [3], is to perform the computation
using a tree structure that is traversed first bottom-up and
then top-down, resulting in a fast and work-optimal parallel
implementation. This idea is further improved in [17], which
primarily optimizes memory accesses by loading more data
per step from GPU memory.

We adopt the best implementation in [17] and add some
optimizations of our own since our prefix problems are some-
what more specialized than the general case. First, we design
a bit-oriented rather than integer-oriented prefix sum as we
are dealing with numbers of fixed bit width much smaller
than 32. Second, we localize the prefix sum to blocks of a
certain size, say 128 elements, by storing one base address
with respect to which the prefix sums are performed in each
block. This is motivated by the fact that inverted lists are
typically compressed in blocks such that each block can be de-
compressed independently; in this case each prefix sum only
accumulates blocks of, say, 128 consecutive elements. We
call such a prefix sum associated with blocks a localized pre-
fix sum. This partition of inverted lists into blocks not only
results in faster prefix sum operations, but also allows us to
skip many blocks completely, as in CPU-based DAAT query
processing, but in a data-parallel manner.

Index Organization: As explained in Section 2, Rice
coding encodes an integer (the gap between two consecutive
docIDs) by choosing a number of bits b such that 2b is close to
the average of all the gaps, and then representing each integer
as q · 2b + r for some r < 2b. Then the integer is encoded
in a unary part, consisting of q 1s followed by a 0, and a
binary part of b bits representing r. In our implementation,
all the binary and unary codes are stored separately in two
bit vectors, a unary list Iu and a binary list Ib. To take
advantage of the localized prefix sum operation, and to enable
skipping in the underlying inverted list, we additionally store
for each block of 128 bits in Iu, and for each block of 128
b-bit number in Ib, the sum of all elements preceding this
block. (These arrays of sums could themselves be compressed
recursively, and then decompressed with very minor overhead
before accessing a list, but in our implementation we simply
store them as 32-bit integers.) Thus, all prefix sums within
a block are performed with these two values as base sums.

Processing Unary Codes: To process the unary codes
in Iu, we use a bit-wise prefix sum that interprets Iu not as
a sequence of unary codes but just as a bit array. After a
prefix sum on the n bits of Iu we obtain an integer array of
size n where the i-th integer contains the number of 1s up
to and including bit i in the bit array. Thus, in the position
corresponding to the j-th 0 value in the bit vector, we ob-
tain the sum of all unary codes for the first j gaps, which
multiplied by 2b gives us the total unary contributions of all
numbers up to the j-th gap. Next, we compact the result
array so that only the values in positions with 0 values in
the bit vector are retained; now the value for the j-th gap
is in the j-th position of the result array. Thus, the prefix
sum produces an array of n integers from our array of n bits,

while compaction reduces this to an array with one entry for
each docID in the list.

Decompressing Binary Codes and Combining: The
binary codes can be decoded in a simpler way, without com-
paction step, since each binary code has exactly b bits. Thus,
we now use a prefix sum operation on b-bit numbers, where
b is usually much smaller than the 32 bits per element used
by standard prefix sums. This saves on memory access costs
during prefix computation, at the cost of some complexity in
our program. Finally, we can now directly compute the i-th
docID by computing the sum of the i-th binary prefix sum
and 2b times the i-th unary prefix sum (after compaction).

6.2 Decompression using PForDelta
Recall that PForDelta first selects a value b such that most

gaps are less than 2b, and then uses an array of b-bit values
to store all gaps less then 2b while all other gaps are stored
in a special format as exceptions. However, while exceptions
we organized in a linked list in [25, 13, 23], we store them
in two arrays. More precisely, for each exception we store
its lower b bits with all the non-exceptions, and then store
the higher overflow bits and the offsets of the exceptions in
two separate arrays. We then recursively apply PForDelta to
compress these two arrays. During decompression, we recur-
sively decompress the two arrays specifying the overflow bits
and offsets of the exceptions. Then we decompress the other
values using a b-bit oriented prefix sum, and add the higher
bits of the exceptions to the positions specified by the offsets.
In contrast to [25, 13, 23], we select a single value of b for the
entire inverted list, rather than potentially a different value
for each block. This avoids memory alignment and other im-
plementation issues that arise if we have a different bit-width
for the prefix sums in each block. We store the lowest b bits
of all gaps in their corresponding b-bit slot, and for any ex-
ceptions we store the additional higher bits and the offset of
the exception in corresponding entries of two additional ar-
rays. As it turns out, using the same b for an entire inverted
list would result in worse compression if we stored exceptions
as in [23]. Instead, we recursively compress the array with
the overflow bits, and the array with the exception offsets
(more precisely, the gaps between the offsets), using again
PForDelta. This provides good compression while giving us
a uniform b-bit slot size for the entire inverted list. As before,
decompression and prefix computation can be performed in
a block-wise manner by storing one uncompressed docID for
each block. (We use a block size of 512 elements for our
GPU-based PForDelta.) More details on how to skip over
blocks during query processing are provided next.

6.3 Experimental Results
We describe our setup, which we also use in later sections.

The data set we used in our experiments is the TREC GOV2
data set of 25.2 million web pages, and we selected 1000 ran-
dom queries from the supplied query logs. On average, there
were about 3.74 million postings in the inverted lists associ-
ated with each query. All experiments are run on a machine
with a 2.66GHz Intel Core2 Duo CPU (only a single core
was used), 8GB of memory, and an NVIDIA GeForce 8800
GTS graphics card with 640 MB of global memory and 96
stream processors. We focus on decompression speed, since
compression is a one-time cost while decompression happens
constantly during query processing. All methods compress
at least tens of millions of postings per second.



Figure 3: Compression in bytes per docID for different

methods and recursion levels. The second bar from the

left corresponds to the PForDelta method with a different

selection of b for each block used in [23].

Algorithm CPU GPU

Rice 310.63 305.27

PForDelta 1165.13 1237.57

Table 1: Decompression speeds on CPU and GPU in
millions of integers per second.

We first compare the average compressed size of a docID
under the different algorithms, in particular Rice Coding, our
version of PForDelta without recursive compression and with
one to four levels of recursion, and the version of PForDelta
from [23]. In Figure 3, we see that Rice decoding gives
the best compression ratio, as expected. Our GPU-based
PForDelta without recursion is much worse than the version
in [23], which can select a different b for each block. How-
ever, a single level of recursive compression already achieves
a slightly smaller compressed size than the PForDelta in [23],
while additional levels give only slight extra benefits. In the
following, we always use a single level of recursion.

Next we compare decompression speeds on GPU and CPU,
shown in Table 1, where the speed is represented in millions
of integers uncompressed per second. From the table we can
see that the GPU achieves better performance than CPU for
PForDelta but is very slightly slower for Rice coding, and
that PForDelta is much faster than Rice coding. We note
however one difference between the CPU and GPU meth-
ods: Our GPU implementations directly compute the actual
docIDs during decompression, while the CPU versions only
obtain the gaps. This is done because we found that in CPU-
based query processors, the summing up of the gaps to obtain
docIDs is most efficiently done during the forward seeks for
finding matching docIDs in DAAT query processing rather
than during decompression. Thus, the results for GPU in
Table 1 contain some work that is done during other phases
of the query processing in the CPU, and the actual relative
performance of GPUs is somewhat better than shown.

Next we look at the decompression speed of PForDelta as
we vary the lengths of the inverted lists, shown in Figure 4.
We show on the x-axis the length of the list in 1000s of do-
cIDs; in fact, we bin the list lengths into ranges so that, e.g.,
a value of 32 on the x-axis represents list lengths between
16000 and 32000 (this is necessary since we use real rather
than synthetic inverted list data). As discussed above, the
GPU-based implementations compute actual docIDs while
the ones for CPU only compute gaps. To evaluate the im-
pact of this decision, we also tested a version of PForDelta
on GPUs that does not perform the final localized prefix sum
on b-bit numbers and thus only returns gaps. From Figure 4,
we see that the GPU implementation without localized pre-
fix sum performs much better than the other methods, and
decodes up to 2.5 billion integers per second for longer lists.

We also observe that the GPU-based methods are much

Figure 4: Decompression speed of PForDelta on CPU

and GPU, for inverted lists of different lengths, in millions

of integers per second. GPU+LPS is the algorithm with

localized prefix from Table 6.3, while GPU is a version

without prefix that only computes gaps between docIDs.

worse than the CPU for short lists, and outperform the CPU
for longer lists. There are two reasons. First, there are
startup costs involved in running tasks on the GPU that are
significant for short lists. Second, a certain data size is needed
to exploit the full parallelism of the 96 stream processors in
the GPU during all phases of the computation (though addi-
tional fine tuning may improve this a bit). If only some of the
stream processors are used, then the more flexible program-
ming model and higher clock frequency of the CPU (2.66Ghz)
win out over the 500Mhz frequency of the GPU. On our data
set, the average length of the lists occurring in queries is
fairly large; as a result we get the slight advantage for GPUs
in Table 1. We expect GPUs to do even better on larger data
sets.

7. GPU-BASED LIST INTERSECTION
In this section, we describe how to perform intersections

between inverted lists during query processing. We first de-
fine a basic operation, Parallel Merge Find, and then use
this to introduce our merging algorithms. These algorithms
are further developed in the next section, when we integrate
intersection with decompression and score computation.

7.1 Intersect, Merge, and Parallel Merge Find
Our intersection algorithms are based on parallel algorithms

for merging sorted lists. Note that in principle, intersection
does not require merging, and there are other solutions based,
e.g., on hashing. We select a merging-based approach be-
cause of the availability of suitable highly efficient parallel
algorithms for merging [7], but also for another more subtle
reason that will become apparent in the next section: We
can use the same merge-based approach not just to perform
the actual intersection, but also to select those blocks that
need to be uncompressed. This turns out to be crucial for
performance. An intersection algorithm that does not use
the linear ordering of docIDs would not work for this task.

To describe our merging algorithms, we define an opera-
tion called Parallel Merge Find. Given two sorted and un-
compressed inverted lists, list A of m numbers and list B of
n numbers, Parallel Merge Find in parallel finds for each el-
ement Ai in A, where i = 1, 2, ..., m, the pair Bj , Bj+1 in B
such that Bj < Ai ≤ Bj+1. Parallel Merge Find is of course
closely related to the problem of merging two lists of integers,
and our resulting intersection algorithm is motivated by the
classical approach in [7]. An obvious way to implement Par-
allel Merge Find on a GPU involves using one thread for each
element Ai to do an independent binary search in list B.



7.2 Intersection Algorithms for GPUs
As discussed in Section 2, although DAAT works well in

a CPU-based architecture, the sequential nature of the list
traversal via pointer movements makes it unsuitable for ef-
ficient parallel processing. Instead, we use a merge-based
parallel intersection algorithm based on applying the above
Parallel Merge Find operation as follows: Given two uncom-
pressed lists A and B, shown in Figure 5, we first select a
small subset of splitter elements in A, say elements 8, 14,
and 24, and use Parallel Merge Find to find the correspond-
ing values (or closest pairs of values) in B. Note that this
implicitly partitions both A and B into segments as show in
Figure 5. To intersect the complete lists A and B, we now
only need to intersect the elements in one section of A with
the elements in the corresponding section of B, by calling
Parallel Merge Find on each segment. This process can be
repeated recursively, such that the segments are further di-
vided into smaller sub-segments. Note that the basic idea
of this recursive merging algorithm is well established in the
parallel algorithms literature [7].

Figure 5: An example of parallel intersection, where 8,

14, and 24 occur in both lists and thus direct matches are

found rather than neighboring elements.

For queries involving k lists, we order the lists from short-
est to longest, and then first intersect the shortest with the
second-shortest list. In general, we process all lists in order of
increasing length, where in each step we intersect the output
of the previous intersection with the next longer list. We note
that this is essentially a Term-At-A-Time (TAAT) approach,
as opposed to the more popular DAAT approach used in cur-
rent CPU-based systems. However, we will show in Section
8 how to avoid uncompressing most parts of the longer lists
during intersection, thus achieving one of the main benefits
of the DAAT approach on GPUs.

7.3 Experimental Results
We now perform a preliminary evaluation of our intersec-

tion algorithms. For now we assume that we have two lists
that are in completely uncompressed form. The performance
of our algorithms is summarized in Figure 6, where we con-
sider the direct algorithm that performs one binary search
into B for each element in A, as well as algorithms perform-
ing 1 to 4 recursive levels of splitting the lists into segments as
described above. Figure 6 assumes two lists of equal length,
and varies the list length from 5000 to 16 million elements.
We see that for longer lists the recursive approaches perform
much better than the direct approach. In particular, using
two or three levels of recursion we get close to best perfor-
mance over the entire range of values, with costs below 4ns
per element for larger lists. We also ran experiments (not
shown due to space constraints) where we fixed the length
of the shorter list to 200000 and then vary the length of the
longer list from 200000 to 12.8 million. As is to be expected,
we see a moderate rise in cost from about 4 to 15ns per
element in the shorter list as the length of the longer list in-
creases. Overall, three levels of recursion appear to perform
best, and in the following we focus on this case.

Figure 6: Intersection speeds with different levels of re-

cursions for two lists of the same length, where list length

is varied from 5000 to 16 million. We show performance

in nanoseconds per integer in one of the lists.

8. RANKED QUERY PROCESSING
As discussed in Section 2, a state-of-the-art query processor

involves not only compression and list intersection, but also
other techniques that support skipping over parts of the index
and scoring and accumulation of top-k results. In this section,
we complete our GPU-based query processing architecture by
integrating all the necessary techniques.

8.1 Advanced Intersection with Skips
In our basic intersection algorithm discussed in the previ-

ous section, we assumed that both lists are completely de-
compressed before we intersect them. We now show how to
remove this assumption. In our solution, we assume that at
the beginning, the shortest list is uncompressed, and then in
each step we intersect the result from previous intersections
(or in the first step, the shortest list) with the next longer list
in compressed form. To do so, we add one additional step be-
fore the intersection, where we determine which of the blocks
of the longer list need to be decompressed.

Suppose we want to intersect two lists, a shorter list A
that is already decompressed, and a longer list B that is still
in compressed form. We assume a block-wise compression
scheme, where for each block of, say, 128 docIDs we store
the first value (or sometimes the last value of the previous
block) in uncompressed form in a separate much smaller list
B∗. Now suppose that instead of intersecting A and B, we
first perform a Parallel Merge Find (or its recursive variants)
between A and B∗, and that for two consecutive entries B∗

i

and B∗

i+1 there is no element in A that has a value in between
these two values. This implies that the block in B that is
delimited by B∗

i and B∗

i+1 cannot possibly intersect with any
element in A, and does not have to be decompressed. If A
is much shorter than B, which is common when intersecting
the result of previous intersections with the longer lists in the
query, then most blocks of B can be skipped.

Thus, our advanced intersection algorithm involves three
steps. First, we determine the blocks in the longer list that
need to be decompressed by using a Parallel Merge Find oper-
ation. Next, we decompress only those blocks from the longer
list that are needed, and finally we use the algorithm from
the previous section to complete the intersection. We note
that overall, compressing inverted lists in blocks and keep-
ing one docID per block in uncompressed form in a separate
array serves two purposes in our system. First, we can skip
over many blocks without decompressing them, and second,
we can use a localized prefix sum instead of a slower global
prefix sum during decompression. Finally, we point out that
the number of blocks that can be skipped under this method
is in fact the same as the number of blocks skipped under a



variant of DAAT query processing in which forward seeks are
used in all lists except for the shortest one, where we process
one element at a time. We omit the formal argument due
to space constraints. (We note however that in our recursive
PForDelta we always decompress the complete arrays for the
exceptions, which are much smaller than the full lists.)

8.2 Ranked Query Processing
In our query processing system, ranked query processing

involves two more steps after performing an intersection be-
tween the inverted lists: One step is to decompress the fre-
quency values corresponding to the candidate docIDs and use
these values to calculate BM25 scores [22]. The other step
is to select the k documents with the highest scores. Both
steps are executed in parallel on the GPU as follows.

Score Computation: In systems with block-wise com-
pression schemes, typically an entire block of values is decom-
pressed if we need any one of the values. However, for fre-
quencies this is actually not necessary for two reasons. First,
frequencies are stored as absolute values, not gaps between
values, and thus we do not need to sum up any preceding
values in the block to retrieve a value. Second, in PForDelta,
each value that is not an exception occupies a fixed b-bit slot.
Thus, to fetch a frequency value in a particular slot of a block
(say, the i-th entry in the block), we first need to check if the
entry is an exception; if not, we directly retrieve it from its
slot, and otherwise we locate and add the overflow bits from
the separate array. Thus, we can decompress and retrieve
individual frequency values.

In DAAT processing on CPUs, we usually only fetch the
frequencies and compute the scores for those documents that
are in the intersection of all the lists. In our approach, this
is not easy to do as we process terms one at a time. Instead,
after each intersection, and also for the entire shortest list,
we fetch the frequency values of the current candidate doc-
uments for the term currently being processed, compute the
per-term score, and add it to a current scores for the docu-
ment. Thus, we accumulate scores for documents one term
at a time. Fortunately, the overhead for this is not too high,
as the actual computation of scores is very fast in GPUs.

Choosing Top-k Documents: CPU-based systems typ-
ically use a heap structure in order to maintain the current
top-k results during intersection and scoring. In our setup,
this is not suitable due the sequential nature of the heap
structure and the fact that we accumulate scores one term at
a time. We could of course sort all the final scores, but this
is relatively slow even with very fast GPU implementations
such as [8] (since computing top-k results is an easier prob-
lem than sorting). We found that a 2- or 3-level approach
based on a high-degree heap works well for values of k up
to several thousand. To initialize this heap, we divide the
candidates into groups of some size, say 512 per group, and
compute the maximum score in each group. We then take the
maximum scores of the groups, and divide them into groups
of size 512, then take the maximum of each such group, and
so on. We then repeatedly extract the maximum and update
those branches of the tree where the maximum came from.

8.3 Supporting Disjunctive Queries
We have so far focused on intersection-based queries as

these are widely used in web search engines. We now dis-
cuss disjunctive (OR) queries. We experimented with several
approaches, but a brute-force TAAT approach, where we we

maintain a score accumulator for every document in the col-
lection, performed best on GPUs. For each query, we initial-
ize this data, and then go over the lists for the query terms
one after the other, compute the contribution of each post-
ing according to the ranking function, and add the score to
the corresponding accumulator. Finally, we use the same ap-
proach as in the conjunctive case to select the top-k elements.
We found that for the queries in our query log, where on aver-
age there are several millions of postings associated with the
query terms, such a direct-mapped approach is preferable to
a hash structure that maps to a smaller set of accumulators.
For other types of queries, other approaches may be prefer-
able. (We also tried a brute-force approach in our CPU-based
system, but did not see any benefits.)

Disjunctive queries are known to be much more expensive
than conjunctive queries on CPUs, since we need to com-
pute scores for all encountered postings, not just those in the
intersection of the lists. Moreover, all postings have to be de-
compressed, while conjunctive queries can skip many blocks
of postings entirely. There are two simple ideas for improv-
ing performance on disjunctive queries; see, e.g., [14]. One is
to store precomputed quantized scores instead of frequency
values in the index; this significantly reduces the cost of score
computation but may increase index size. (Quantized scores
usually require about one byte per posting, versus 4 to 5 bits
per frequency value under schemes such as PForDelta.)

The other idea is to only compute a full OR for queries
that benefit from it. It has been shown [14] that for queries
where there is a sufficient number of results in the intersec-
tion, conjunctive queries perform as well as disjunctive ones
under BM25. Thus, a simple optimization first computes
an AND, and then issues another OR query if there are not
enough results. (We note that this is also closely related to
the WAND style of query processing proposed in [5].) We
did not implement quantized scores, but will show results for
the second idea of first issuing an AND query, followed by an
OR if not enough results are returned.

8.4 Experimental Results
The following experimental results are based on the same

setup as before, using the 25.2 million web pages of the TREC
GOV2 data set and 1000 queries selected at random from the
associated query set. We compare our complete GPU-based
query processing system to an optimized CPU-based system
under development in our group. Note that the CPU-based
system we are comparing to achieves running times that we
believe to be competitive with the fastest state-of-the-art sys-
tems. In particular, the CPU-based system uses block-wise
PForDelta for index compression, DAAT query processing,
and optimized score computation using precomputed values
for any expressions in BM25 that are based on term and doc-
ument statistics. While we use BM25 as the scoring function
in the experiments, we would expect essentially the same per-
formance for many other simple term-based functions, or for
functions that add a precomputed global document score such
as Pagerank (provided in a separate array) into the score.

We compare GPU and CPU on three different queries types:
conjunctive queries (AND), disjunctive queries (OR), and
conjunctive followed by a disjunctive query if there are less
than 10 results (AND+OR). All CPU runs were performed
on a single core of a 2.66Ghz Intel Core2 Duo E6750 CPU.

As shown in Table 2, on AND queries our GPU-based sys-
tem manages to only slightly outperform the CPU-based sys-



Algorithm AND OR AND+OR

CPU 8.71 212.72 23.85

GPU 7.66 29.31 9.98

Table 2: Query processing speeds on CPU and GPU,
for top-10 AND queries, OR queries, and AND+OR
queries. For each method, we show the average cost
of a query on the TREC GOV2 set in milliseconds.

Top-k scoring Intersection Decompression

AND 8% 45% 47%

Initialization Decompression Scoring Top-k

OR 9% 30% 48% 13%

Table 3: Relative costs in percent for the different
steps of GPU query processing, for AND and OR
queries. For AND queries, top-k scoring contains
both score computation and selection of top results,
while for OR queries these are listed separately.

tem, though we expect some limited additional gains with
further optimization. Note that in these runs, we are assum-
ing that the inverted lists for the query are available in main
memory for the CPU, and in global memory for the GPU; we
address this assumption in the next section. We also show
in Table 3 the relative costs for the three major parts of our
GPU-based query processor for AND queries: Decompres-
sion, intersection, and scoring and selection of top-k docu-
ments. We see that most of the time for AND queries is
spent on decompression and intersections. Less than 10% is
spent on scoring and identifying top-k results. We found this
also to be true for AND queries on the CPU (not shown),
since only documents in the intersection are scored.

The situation is different for OR queries, where the GPU
substantially outperforms the CPU. For AND+OR queries,
the difference is not as large since for most queries only the
AND part of the query is evaluated. For OR queries on the
GPU, almost 50% is spent on score computation, as shown
in Table 3, but this includes the cost of performing mem-
ory accesses to update the accumulators (which incurs some
memory bank conflicts). Overall, not surprisingly, the GPU
excels at large, fairly non-adaptive computations such as a
brute-force OR, as opposed to more adaptive computations
such as the AND with intersections and skipping.

Note that our CPU implementation of OR did not use pre-
computed quantized scores. Using such scores would improve
performance, but would not bring it close to GPU perfor-
mance as measurements showed that only about 40% of CPU
time for OR was spent on computing scores. We plan to im-
plement and evaluate such optimizations in future work.

Finally, we discuss the impact of query properties on CPU
and GPU performance; details are omitted due to space con-
straints. While query processing costs grow with the number
of terms in the query, the relative performance of GPU and
CPU remain about the same. We also looked at queries of
different footprint sizes, defined either as the sum of the in-
verted list sizes or the size of the shortest list in a query.
For OR queries, not surprisingly the CPU is faster for small
queries and the GPU for large queries. For OR, GPU signif-
icantly outperforms CPU for all but the smallest queries.

9. SCHEDULING ON CPU AND GPU
Under our basic system architecture, both CPU and GPU

can be used to process incoming queries, and thus we could
improve query throughput by using the GPU as a co-processor

that takes care of part of the query load. We now investigate
how to best achieve this by assigning queries in an incoming
query stream to either CPU or GPU based on the character-
istics of the query, the current load on each processor, and
the performance requirements for the query.

Some comments about the setup. We assume that queries
arrive in the system according to a Poisson process with a
particular average arrival rate. Our goal is to schedule these
jobs such that (1) no job takes longer than some maximum
time (say, 500 ms after arrival for search engines), (2) the
average delay of a job is as small as possible, and (3) the
system can sustain a high query arrival rate. Each arriving
job has two possible costs, a CPU cost that would be incurred
if the job is scheduled on CPU, and a GPU cost. Thus, we
are dealing with a job scheduling problem on two machines
[16] that is NP Complete for the offline case.

Our problem is complicated by several factors. First, we
do not actually know the CPU and GPU costs of an incom-
ing query, but have to rely on estimates of these costs based
on characteristics such as the lengths of the inverted lists
involved. Second, by analyzing our results from previous sec-
tions, we found that CPU and GPU costs can diverge quite a
lot: Basically, there are some queries that are much more effi-
cient on the CPU, in particular many queries involving short
lists or combinations of short and long lists, while queries
with many long lists are usually more efficient on GPUs. An
interesting consequence of this is that a combined system in-
volving GPU and CPU could potentially be more than twice
as fast as a system using either CPU or GPU, if each query
is scheduled on the most suitable processor.

Assigning Queries to GPU or CPU: Given a stream of
queries arriving one after the other, we need to decide which
processor a query should be assigned to. We assume here
that each processor has a queue for those queries it has to
process. For an incoming query, we would like to assign it
to the processor that will process this query more efficiently.
However, if one processor is very busy, this might not be the
best solution. In our approach we divide queries into three
groups, with a queue for each group: (1) Queries that are
estimated to be much more suitable for the GPU, (2) queries
that are estimated to be much more suitable for the CPU,
and (3) all other queries, which may be more suitable for one
processor but which can also be at least reasonably efficiently
computed on the other. The first two groups of queries are
directly processed by the suitable processor, while the third
group is essentially in a waiting stage and will be later moved
to one of the other groups. Membership in the groups is
determined by some threshold values (say, queries that are
20% faster on GPU than on CPU are in the first group) that
could be chosen adaptively during the process.

Query Stealing and Scheduling: One disadvantage of
the above query assignment policy is that when the query
characteristics change temporarily or when processing time
is not accurately predicted, the load on CPU and GPU may
become unbalanced such that one processor has too much
work and the other too little. To deal with this we employ
work stealing [20]: When a processor is idle, it first executes
the oldest job from the third group, and if there is no such
job it will steal a job from the other processor. Moreover, if
any job approaches the deadline (i.e., has passed a substan-
tial part of the total time to its deadline), we prioritize this
job and schedule it immediately on its preferred processor.
Finally, for the first two groups each processor will process



its queries according to a mix of query cost (small jobs should
get priority to minimize average delay), deadline, and affinity
(run jobs that should definitely run on this processor).

Experimental Results: Our above scheduling algorithm
is evaluated on a simulated environment, where we first use
machine learning to estimate the performance of incoming
queries on CPU and GPU based on the following features:
The length of shortest list and the second shortest list, the
sum of lengths of all lists, and the number of terms included in
the query. We use the M5Rule method from Weka (an open-
source machine learning tool) and train on 3000 other queries
from the same overall query trace as the 1000 queries we used
in our previous experiments. The mean relative prediction
error for the query processing time is 22% for GPU cost and
20% for CPU cost.
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Figure 7: Query processing performance on AND queries

for four methods: Using only GPU or CPU, choosing the

better one for each query, and using both in parallel.

We compare the query processing performance of four con-
figurations in Figure 7. The configurations are: (1) Using
GPU only, (2) CPU only, (3) the better of GPU and CPU
but processing only one query at a time, and (4) using CPU
and GPU in parallel using the above scheduling method. We
set the maximum acceptable delay for each query (deadline)
to 500 ms after arrival, and consider a run failed if the arrival
rate is so high that a query misses its deadline. Given this
constraint we plot the average delay versus the arrival rate.
From Figure 7, we see that using both processors in parallel
achieves much better performance than all other methods.
Using GPU and CPU in parallel we can sustain an arrival
rate beyond 300 q/s, versus less than 100 for CPU only.

10. CONCLUSIONS
In this paper we proposed a framework for high-performance

IR query processing using GPUs, and discussed and imple-
mented algorithms for performing the various subtasks in-
volved. Our experimental results showed the potential for
performance gains from employing GPUs in search engine
nodes, particularly in conjunction with CPUs. We are contin-
uing to optimize our implementations and expect additional
gains, in particular through tuning of the intersection.

Overall, we believe that we have made a promising first
step in this paper, but more work needs to be done to figure
out if GPUs can really be a cost-effective platform for search
engine query processing. This depends not just on speed,
but also on the cost and energy consumption of such devices,
and currently a quad-core CPU still provides better value
than a GPU. However, we feel that the real motivation for
research an general-purpose GPU computing is to identify
strengths and weaknesses in current GPUs and related ar-

chitectures such as multi-core CPUs and cell processors that
should be addressed by future processor generations, and to
study techniques that will be useful on future CPUs with
increasing parallelism.
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