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ABSTRACT

An inverted index is the basic data structure used in most current
large-scale information retrieval systems. It can be modeled as
a collection of sorted sequences of integers. Many compression
techniques for inverted indexes have been studied in the past, with
some of them reaching tremendous decompression speeds through
the use of SIMD instructions available on modern CPUs. While
there has been some work on query processing algorithms for
Graphics Processing Units (GPUs), little of it has focused on how
to efficiently access compressed index structures, and we see some
potential for significant improvements in decompression speed.

In this paper, we describe and implement two encoding schemes
for index decompression on GPU architectures. Their format and
decoding algorithm is adapted from existing CPU-based compres-
sion methods to exploit the execution model and memory hierarchy
offered by GPUs. We show that our solutions, GPU-BP and GPU-
VByte, achieve significant speedups over their already carefully
optimized CPU counterparts.
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1 INTRODUCTION

An inverted index is the key data structure used in most current
large-scale text search systems. It is composed of posting lists, one
for each distinct term in a collection. A posting list is a sequence
of the IDs of the documents containing the corresponding term,
usually along with respective in-document frequencies or other
information needed for ranking. Given the extremely large col-
lections indexed by current search engines, even a single node
of a large search cluster typically contains many billions of inte-
gers. Thus, both space efficiency and index access speed are crucial
to maintain acceptable query response times [9]. This motivates
the use of specialized index compression techniques that reduce
space while also supporting extremely fast decompression. Such
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techniques have been extensively studied, and recently much atten-
tion has been directed towards improving decoding throughput by
taking advantage of SIMD instructions available on modern CPU
architectures [6, 7, 11, 13-15].

While CPU manufacturers are constantly widening vector reg-
ister sizes, their degree of parallelism comes nowhere close to the
one offered by current GPUs. There is some amount of recent work
on techniques for processing search queries on GPUs [3-5, 8, 16],
but most of it does not focus on how the index is compressed. Some-
times the inverted index is used in uncompressed form, while most
other papers focus on query processing and spend little effort on
speeding up decompression. Although graphics card memory is
increasing in size, such memory is still quite expensive, and thus
index compression is crucial when dealing with large corpora. Thus
we believe that there is still a potential for significant improvements

in decompression speed for GPU-based inverted index structures.
Our contributions. We list here our main contributions.

(1) We explore efficient ways of decoding the posting lists of
an inverted index on GPUs. Any improvements for index
decoding speed is likely to translate into faster query process-
ing. Furthermore, an efficient and well-assessed compression
solution is necessary to further improve GPU-accelerated
query processing algorithms.

(2) We design and implement two encoding schemes that are
able to perform index decompression on GPU architectures.
Their format and decoding algorithm is adapted from exist-
ing CPU-based compression methods to exploit the program-
ming model offered by GPUs.

(3) We conduct an extensive experimental analysis to demon-
strate the effectiveness of our approach. Compared to exist-
ing techniques implemented for standard CPUs, our GPU
counterparts are: (1) one to almost two orders of magnitude
faster, and (2) only marginally larger in size.

2 BACKGROUND AND RELATED WORK

We start by providing background on GPUs and index compression.

Graphics Processing Units. Modern GPUs, massively parallel ar-
chitectures consisting of thousands of cores and high memory
bandwidth, can achieve superior performance on many demand-
ing applications [10]. However, to fully exploit the functionality
of GPUs, data and algorithms need to be carefully adapted to its
programming model. In the context of GPUs, threads are grouped
into blocks of 32, known as warps. Every thread in a warp executes
the same instruction according to the SIMD paradigm. For this
reason, it is important to avoid branch divergence within warps.
GPUs come with their own, hierarchically structured, device
memory. The CPU transfers data to and from the GPU’s global
memory. Although this comes with a high overhead, recent GPUs
feature up to 32 GB of memory capacity, enough to store an inverted
index for tens of millions of documents. Despite global memory’s
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high bandwidth, directly accessing it by GPU threads is inefficient
due to long latency response times. Thus, specific access patterns
utilizing L2 and L1 caches are required for efficient algorithms.
Delta encoding. Typically, document IDs in each posting list are
sorted and then represented by the differences between consecutive
numbers, called delta gaps. As a result, the values we encode are
smaller, which can significantly improve compression,; this is espe-
cially true for dense lists. Once decoded, delta gaps are converted
to IDs by computing a prefix sum.
Binary packing. Binary Packing [1] groups numbers into fixed-sized
blocks. For each block, its selector b is the smallest number of bits
required to binary-encode the largest element of the group. The
selector is binary-encoded in one byte, followed by the values be-
longing to the group, each encoded in b bits. For better performance,
we can store four selectors at a time in one 32-bit word, followed by
their respective groups. In the experiments described in Section 4,
we use blocks of 32 elements, and we refer to this approach as BP32.
Lemire and Boytsov [6] proposed a Binary Packing method that ex-
ploits SIMD instructions. This method, called SIMD-BP, packs 128
consecutive integers into as few 128-bit words as possible. Selectors
are stored in groups of 16, to fully utilize 128-bit SIMD operations.
Variable Byte. The encodings in the Variable Byte family are known
for their high decoding speed. Arguably the simplest and best
known is VByte, which uses 7 bits per byte to store the binary rep-
resentation of a number and one remaining bit to indicate whether
the same binary code continues in the next byte. These continua-
tion bits, when put together, form unary-encoded byte-lengths of
encoded numbers. To improve decoding speed, Dean [2] proposed
VarintGB, which groups these lengths together and encodes them
in binary instead: one byte is used to store four 2-bit sizes of the
next four integers, followed by their binary representations.
StreamVByte [7] combines the benefits of VarintGB and SIMD
instructions. Like VarintGB, it stores four integers per block with a
1-byte binary descriptor. However, descriptors are stored sequen-
tially in a separate bit stream, which improves access speed.

3 PROPOSED SOLUTIONS

Our GPU-based methods are based on Binary Packing and Variable
Byte encodings that achieve very fast decoding speeds on CPUs
and are particularly suitable for GPU implementation.

3.1 GPU Binary Packing
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Figure 1: Representation of the GPU-BP128 schema

Format. Instead of block descriptors, as in BP32, we store an array
of 32-bit integers that point to block endpoints. For convenience, we
insert an additional endpoint element that points to the beginning,
as shown in Figure 1. Since each block contains the same number of
elements, the bit-length of each element in a block can be computed
by dividing the length of that block by the number of elements,
while the block length is given by the difference between two
consecutive endpoints.

Algorithm 1: Decoding algorithm of GPU-BP

1 Function Decode (out, endpoints, n)

In :The endpoints array endpoints, number of elements
to decompress n
Out:Decompressed array out
2 for each block j do
3 for each thread i do
4 begin « endpoints[j]
5 end « endpoints[j + 1]
6 b « Bits(begin, end)
7 offset «— ix b
8 p < j X BLOCK_SIZE +i
9 out[p] « Extract(begin, offset, b)

Decoding. In our algorithm, each thread block is responsible for
decoding one compressed block, while each thread decodes one
element of the block. The block boundaries and the element offsets
can be quickly determined by accessing the endpoints array and per-
forming several arithmetic operations as shown in Algorithm 1. In
Section 4, we report experiments for blocks of 128 and 256 elements,
referred to as GPU-BP128 and GPU-BP256, respectively.

3.2 GPU VByte
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Figure 2: Representation of the GPU-VByte128 schema

Format. As with VarintGB, integers are grouped into fixed-sized
blocks, and each block is preceded by a fixed number of 2-bit se-
lectors. Similarly to GPU Binary Packing, we also store an array
of endpoints of the blocks, as illustrated in Figure 2. In our experi-
ments, we use blocks of 128 and 1024 elements, referring to these
methods as GPU-VByte128 and GPU-VByte1024.

Algorithm 2: Decoding algorithm of GPU-VByte

1 Function Decode (out, endpoints, n)

In :The endpoints array endpoints, number of elements
to decompress n
Out:Decompressed array out
2 for each block j do
3 for each thread i do
4 begin « endpoints[j]
5 b[i] «— 8 X (1+Extract(begin,ix 2,2))
6 offsets[i] «— InclusiveSum(b)
7 data « begin + 2 x BLOCK_SIZE
8 p < j X BLOCK_SIZE +i
9 out[p] < Extract(data, offset[i], b[i])

Decoding. As with GPU-BP, each thread decodes a single element
in a block. Since elements are encoded with different numbers of
bits, each thread must read its own size and store it to an array
shared by the thread block. Furthermore, to retrieve the offsets to



each binary representation, a cumulative sum over the array must
be computed. The pseudocode is provided in Algorithm 2.

4 EXPERIMENTAL RESULTS

Testing details. All algorithms are implemented in C++11 and com-
piled with GCC 4.8.5 with the highest optimization settings. The
tests are performed on a machine with an Intel Xeon E5-2690 v4,
with 28 cores, clocked at 3.50 GHz with 256GB RAM, running Linux
3.10.0. Only a single CPU core was used in each run. The server
also has an NVIDIA Tesla V100 GPU with 16GB memory. The GPU
programming platform is CUDA Toolkit 9. We also ran our GPU
codes on an NVIDIA GeForce GTX 1080, which is a lower-end GPU.
Algorithms running on the latter are marked with an asterisk (*).
Before timing, we ensure that the required integer lists are fully
loaded in memory. It is reasonable to believe that in a real-world
scenario the inverted index is transferred to the GPU only once,
and thus does not contribute to the query processing time. We use
the FastPFor! library for the CPU-based implementations of BP32,
VarintGB, SIMD-BP and StreamVByte. Reported times do not in-
clude the cost of summing up the d-gaps to retrieve the document
IDs. Posting lists were not partitioned into blocks: although blocks
are important for document-at-a-time processing on CPUs, it is
questionable if they are useful on GPUs. Encoding blocks of posting
lists only for the CPU compression algorithms would have been
an unfair comparison, as it would have slowed these down even
further due to the additional indirection. Our source code is publicly
available 2 for readers interested in replicating the experiments.

Datasets. We first ran our experiments on synthetic datasets pre-
viously used by Anh and Moffat [1]. They adopted two different
distribution models to generate lists of distinct integers: the Uni-
form model, which produces lists of integers according to a uniform
distribution, and the Clustered model, where values are clustered
such that sub-segments of integers contain similar values. We gener-
ated datasets of random integers in the range [0, 22%) with both the
Uniform and the Clustered model. Sparse lists contain 216 integers,
and dense lists contain 22> integers.

We also ran experiments on standard datasets, in particular:.

e Gov2: the TREC 2004 Terabyte Track test collection consist-
ing of 25 million . gov sites crawled in early 2004.

o ClueWeb09: the ClueWeb 2009 TREC Category B collection
consisting of 50 million English web pages crawled between
January and February 2009.

Documents were parsed using Apache Tika®. The words were
lowercased and stemmed using the Porter2 stemmer; no stopwords
were removed. Document IDs were assigned according to a lexico-
graphic order of URLSs [12]. To evaluate how decoding speed would
improve realistic query processing settings, we randomly selected
1000 queries from the TREC 2005 and TREC 2006 Terabyte Track
Efficiency Task (500 from each query set) and measured decoding
times for all the posting lists in these queries.

Compressed size. Tables 1 and 2 summarize the compression (in
bits per integer) achieved under several setups. For all datasets, our
solutions show a fairly small difference in size with respect to their

!https://github.com/lemire/FastPFor
Zhttps://github.com/amallia/gpu-integers-compression
3http://tika.apache.org

CPU counterparts, with the exception of BP32, which results in a
more compact representation on GPUs due to a smaller block size.

Uniform Clustered
Method Sparse Dense Sparse Dense
BP32 15.71 6.67 13.91 5.40
SIMD-BP 16.04 6.99 14.26 5.60
GPU-BP128 16.22 7.18 14.45 5.79
GPU-BP256 16.20 7.18  14.58 5.86
VarintGB 17.76 10.00 16.27 10.02
StreamVByte 17.76 ~ 10.00 16.27  10.02
GPU-VByte128 18.16 10.50 16.68 10.52
GPU-VByte1024 17.78 10.06 16.27 10.08

Table 1: Compression (in bpi) achieved by the encoders on
Uniform and Clustered datasets for sparse and dense lists.

Gov2 ClueWeb09
Method docids freqs docids freqgs
BP32 5.06 3.44 7.07 3.62
SIMD-BP 6.56 4.56 8.92 5.03
GPU-BP128 6.66  4.27 8.80  4.63
GPU-BP256 7.15 4.50 9.34 5.01
VarintGB 10.86 10.37 11.13 10.34
StreamVByte 10.86 10.37  11.13 10.34
GPU-VByte128 11.67 10.92 11.93 10.92
GPU-VByte1024 11.39 10.34 11.69 10.36

Table 2: Compression (in bpi) achieved by the encoders on
Gov2 and ClueWeb09 datasets.

Decompression speed. Figure 3 plots the achieved decoding speed
in millions of integers per second, while varying the lengths of the
lists. Although the SIMD CPU version of the decoding algorithms is
always faster than the serial CPU one, it is interesting to notice how
the gap decreases as the lists become longer, turning into an almost
marginal difference. This behaviour is caused by the capacity of the
CPU cache, which results in limited SIMD advantages. Furthermore,
VarintGB, in the case of longer and thus denser lists, encodes most of
the values using 8 bits, which becomes a naive case to be optimized
by the branch predictor of CPU and, thus, faster to execute.

On the other hand, our GPU solutions are positively affected
by increasing lists lengths, due to the increase in available data
parallelism. BP32 exhibits an almost flat trend, while VarintGB, for
very dense lists, reaches the same performance of StreamVByte.
This can be explained by the fact that, from a certain point, most
elements can be represented with a single byte, making the task
easier for the CPU and less appealing for vectorization. GPU-BP and
GPU-VByte attain similar decoding speeds, with the former being
slightly faster due to its simpler implementation. The overall fastest
speed is obtained by GPU-BP256, reaching over 100 billion integers
per second decoding speed for long list, way beyond anything
previously reported. We also see a significant gap between the top-
of-the-line Tesla V100 GPU and the lower-end GTX 1080, though
even the latter is still much faster than the CPU methods.

Table 4 summarizes results obtained on Gov2 and ClueWeb09
by decoding the posting lists of terms appearing in actual queries.
These posting lists turn out to be quite long, which indicates our
proposed solutions could be very competitive in real scenarios.

Speedup factors relative to the decompression speed shown in
Figure 3 of GPU algorithms against their CPU/SIMD counterparts
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List length

Method 216 917 218 219 220 221 222 223 224 225
GPU-BP128* 3.11 7.26 11.10 9.81 10.85 11.94 1234 1421 17.40 19.40
GPU-BP128 2.94 7.09 12.27 19.57 26.80 33.58 37.02 4820 54.83 63.29
= GPU-BP256 3.31 7.82 13.45 2381 3739 37.69 43.61 56.52 67.28 78.02
% GPU—VByte]ZS* 7.31 11.69 1690 16.25 18.40 22.68 2585 11.29 11.07 11.13
GPU-VByte128 6.26 11.62 21.19 3433 49.79 60.75 74.76 36.03 3596 36.19
GPU-VByte1024 6.47 1194 20.48 31.71 4429 52.10 61.71 29.85 2943 29.46
GPU-BP128* 1.66 3.06 4.83 4.36 4.81 5.26 5.56 10.96 14.24 14.70
GPU-BP128 1.58 2.99 5.35 8.70 11.89 14.81 16.68 37.18 44.89 47.95
g GPU-BP256 1.77 3.30 5.86 10.58 16.59 16.63 19.65 43.60 55.09 59.11
& GPU—VByte]ZS* 1.78 2.91 4.17 3.97 4.37 4.75 4.97 9.16 11.29 11.39
GPU-VByte128 1.53 2.89 5.24 8.41 11.82 12.74 1439 29.26 36.66 37.05
GPU-VByte1024 1.58 2.97 5.06 7.76 10.52 1093 11.88 24.24 30.00 30.15

Table 3: Speedup factor achieved by GPU-BP and GPU-VByte against their CPU and SIMD counterparts.

Decoding speed [millions ints/sec]

26 Qi1 I8 g1 g0 g2 g2 g2 g o5
List length
—&— VarintGB —#— StreamVByte —®— GPU-VByte128* —i— GPU-VByte128 —#i— GPU-VByte1024
—— BP32 ——&— SIMD-BP —&— GPU-BP128” —#— GPU-BP128 —#— GPU-BP256
Figure 3: Decompression speed (in millions of integers per
second) for lists of different lengths on Uniform dataset. (Re-
sults for Clustered dataset are nearly identical.)

on synthetic datasets are reported in Table 3. At its peak, GPU-
BP is able to decode more than 100 billion integers per second,
reaching an impressive speedup factor of 78x versus BP32. Speedup
factors for Gov2 and ClueWeb09, reaching up to 58x, are included
in Table 4.

Gov2 ClueWeb09
Method docids fregs docids freqs
BP32 1665 1522 1476 1396
SIMD-BP 2257 xi36) 2151 ey 2029 (a3 1989 (43
GPU-BP128* 22773 x3e8) 22339 x1a68) 23 622 x16000 23 277 (x16.67)
GPU-BP128 56 017 (33.69) 54 790 (36000 65 605 (xa4.45y 64 586 (xa6.27)
GPU-BP256 70552 (xa237) 67 802 (xaa55) 84 293 xs7.11) 81 527 (x58.40)
VarintGB 2073 2039 1517 1544
StreamVByte 2204 106 2215 109 1545 102 1544 (x100
GP U—VByte128* 17 807 859 17 887 877 18724 (x12399 18 702 xa2.11)
GP U-VByte128 49555 xeson 48 518 ess) 57 496 (3790 56 311 (x36.47)
GPU—VByte1024 41598 (x20.07) 40717 (x19.97) 46 385 (x30.58) 46 199 (x29.92)

Table 4: Decoding speed (in millions of integers per second)
achieved by the encoders on Gov2 and ClueWeb09 datasets.

5 CONCLUSIONS

In this paper, we described GPU-BP and GPU-VByte, two encoding
techniques based on Binary Packing and Variable Byte that are
adapted to the high degree of parallelism available in GPU archi-
tectures. Our experimental evaluation showed that our methods
consistently outperform their CPU/SIMD analogs. Our future work
will focus on using the new encoding methods in conjunction with
fast query processing algorithm properly adapted to GPUs.
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