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ABSTRACT
Many web search services allow users to constrain text queries
to a geographic location (e.g., yoga classes near Santa Mon-
ica). Important examples include local search engines such
as Google Local and location-based search services for smart
phones. Several research groups have studied the efficient
execution of queries mixing text and geography; their ap-
proaches usually combine inverted lists with a spatial ac-
cess method such as an R-tree or space-filling curve. In
this paper, we take a fresh look at this problem. We feel
that previous work has often focused on the spatial aspect
at the expense of performance considerations in text pro-
cessing, such as inverted index access, compression, and
caching. We describe new and existing approaches and dis-
cuss their different perspectives. We then compare their
performance in extensive experiments on large document
collections. Our results indicate that a query processor that
combines state-of-the-art text processing techniques with a
simple coarse-grained spatial structure can outperform ex-
isting approaches by up to two orders of magnitude. In fact,
even a näıve approach that first uses a simple inverted index
and then filters out any documents outside the query range
outperforms many previous methods.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]:
Information Search and Retrieval; H.3.4 [INFORMATION
STORAGE AND RETRIEVAL]: Systems and Software

General Terms
Algorithms, Experimentation, Performance
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Efficient query processing, Geographic web search engines
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1. INTRODUCTION
In just a few years, geographic web search has emerged from
a niche service to one of the most popular applications. It
allows users to focus queries to a particular geographic re-
gion; e.g., “yoga lessons near Los Angeles” to yoga schools in
the LA area, or“pizza”to pizza stores near the user’s current
location (as reported by her smartphone). The underlying
data collections usually either originate from business direc-
tories (yellow pages), or consist of geo-coded web documents.
In the latter case, the search provider found a geographic ref-
erence (e.g., a city name, or an address) in a document, and
was able to map this to a location. As data on the web
grows in size, more and more detailed local information be-
comes available, making geographic web search more useful.
In addition to the increase in geo-coded documents, the in-
creasing use of GPS-enabled smartphones further boosts the
number of geographic queries.

This massive amount of geographic queries necessitates ef-
ficient query processing. Commercial search providers main-
tain vast server farms to process this workload, and even
a small increase in efficiency results in significant savings.
However, geographic queries differ significantly from tradi-
tional text queries. Standard inverted indexes hence do not
directly extend to geographic search, nor do the existing
techniques for query optimization. The main challenge lies
in the combination of textual and spatial constraints, i.e.,
finding pages that contain query terms and are close to the
intended location. Both textual and spatial queries have
been extensively studied within their respective communi-
ties, but much less work has been spent on combining them.

On the one hand, research in Information Retrieval (IR)
has resulted in extremely fast algorithms for textual search
using inverted indexes. In particular, major web search en-
gines employ a range of performance optimizations including
caching, index compression, and early termination. For typi-
cal setups, these techniques are able to execute most (or all)
queries directly from main memory, running in just a few
milliseconds. The rare cache misses only lead to sequential
disk access, still significantly cheaper than random I/O. On
the other hand, research in spatial databases has proposed
numerous specialized index structures such as quad-trees or
R*-trees. These however commonly result in a fair amount
of random I/O, once the data exceeds main memory. This
behavior is partially due to (geo-)database systems having
different objectives than web search systems. However, it



raises the question of how to best integrate spatial struc-
tures in geographic web search.

Over the past years, several studies have explored tech-
niques for efficient processing of geographic queries over doc-
ument collections. While there are a number of different al-
gorithms, most of them rely on a single R-tree, into which
the textual index entries are then inserted. The resulting
index structure contains a tremendous number of small tex-
tual index structures at the leaves of the R-tree. Signifi-
cant amounts of CPU are hence spent navigating the spatial
structure, even after employing various pruning heuristics.
Moreover, when the data does not fit in main memory, this
approach necessitates multiple random I/Os per query, ren-
dering it too expensive for web search applications.

We observe that in any typical geo web search scenario,
textual clearly dominates spatial data. In particular, the
average web page contains several hundred distinct terms,
but only one or few geographic references. Even yellow page
entries commonly contain at least tens of terms, but only a
single location (the address of the business). Any efficient
method for processing geographic web queries thus has to
primarily address text indexing. Namely, it has to encor-
porate the various performance optimizations employed in
current web search engines. Conversely, a solution that fo-
cuses on organizing documents into a fine-grained spatial
structure results in significantly decreased performance.

In this paper, we substantiate this claim by experimen-
tally comparing three basic approaches: First, a Näıve R*-
Tree maintains an inverted index at each leaf, indexing all
documents within the leaf’s MBR. Second, a Clairvoyant
R*-Tree assumes an oracle that can prune unproductive sub-
trees, and thus supersedes many of the optimizations in the
literature. Third, a brute-force Text-First baseline first de-
termines all textually relevant documents using a state-of-
the-art inverted index implementation. Only thereafter, it
discards documents outside the query area. Our experimen-
tal results show that Text-First beats both R*-tree methods,
and substantially outperforms the numbers reported in pre-
vious papers.

Of course, we should expect a geographic search query to
run faster than the Text-First approach, since it actually
only needs to be evaluated on a subset of “local” documents.
We thus further optimize our approach, by integrating fairly
coarse-grained, and thus light-weight, spatial structures into
the inverted index without adversely impacting its perfor-
mance. This leads us to algorithms based on kd-trees and
space-filling curves that outperform the CPU cost of our
baseline by up to two orders of magnitude.

In our experimental evaluation, we try to create setups
that closely resemble scenarios encountered by commercial
geographic search services. Thus, we use documents and
queries extracted from real data sets that preserve the nat-
ural correlation between text and geographic location. In
addition, we consider cases where (i) data is completely in
main memory, (ii) data is on disk but partially cached in
main memory, and (iii) data is on disk with no caching. The
latter case is in fact not realistic in current engines, which
all have at least a substantial cache of index data in main
memory. In fact, cache hit rates commonly range at 90% or
higher, due to the natural skew in query term frequencies.
We also evaluate the algorithms on additional synthetic data
sets, in order to observe the impact of various parameters.
Overall, our contributions can be summarized as follows:

• We show that a brute-force inverted index-based method
without any spatial index structure outperforms the
previous techniques from the literature.

• We describe, implement, and evaluate several opti-
mizations, integrating a coarse-grained spatial struc-
ture into the inverted index. The proposed approaches
achieve significant speed-ups over the baseline method,
and thus over previous work.

• We evaluate the various methods through extensive
experiments on real and synthetic data.

The remainder of the paper is structured as follows. First,
Section 2 provides background and discusses previous work
on text indexing, spatial data structures, and geographic IR.
Next, Section 3 outlines the basic application scenario and
describes the data setup. Section 4 presents the baseline
approaches and performs a brief experimental comparison
of these methods. Then, Section 5 discusses how to further
optimize performance using coarse kd-trees and space-filling
curves. Section 6 evaluates the various approaches and op-
timizations through a large set of experiments. Finally, Sec-
tion 7 concludes the paper.

2. BACKGROUND AND RELATED WORK
Geographical search engine technology builds on contribu-
tions from several research communities, in particular (i)
text indexing and query processing, (ii) spatial index struc-
tures, and (iii) geographical information retrieval. In the
following, we give a short overview of relevant techniques in
these areas and subsequently discuss previous work on query
processing in geographic search queries.

2.1 Indexing and Querying in Search Engines
There are a number of textual index structures in the liter-
ature including inverted indexes [28], signature files [9], and
suffix arrays [18, 1]. However, almost all current web search
engines and text information retrieval systems are based
on inverted indexes, and substantial efforts have been in-
vested in optimizing the construction, size, and access speed
of these structures; see, e.g., [28, 26].

An inverted index contains one inverted list for each dis-
tinct term (word) in the document collection. Each list con-
sists of postings describing occurrences of the term in the
collection. We assume that a posting contains the ID of the
document where the term occurs (docID), and the number of
times it occurs (frequency). Postings may contain additional
data such as the precise positions of the terms in the doc-
ument. However, docIDs and frequencies already suffice to
compute simple common ranking functions such as BM25 or
Cosine measures. The postings in each list are usually sorted
by docID, and an additional dictionary structure stores for
each distinct term a pointer to the start of the correspond-
ing list. Query processing basically involves intersecting
(conjunctive queries) or merging (disjunctive queries) the
inverted lists of the query terms and then computing the
ranking function on top. The main performance challenge
is the length of the inverted lists for common query terms,
which increases with collection size.

While inverted indexes and basic query mechanisms seem
almost trivial, there are a number of non-trivial optimiza-
tions such as index compression, caching, index pruning and



reorganization, early termination, and parallel query pro-
cessing. These can increase query throughput drastically
[28]. As a result, state-of-the-art search tools achieve im-
pressive query processing, typically in the range of a few
milliseconds per query, on machines indexing millions of
pages. We refer to [26, 22] for recent numbers on the widely
used GOV2 collection of 25 million pages. As we demon-
strate in this paper, such state-of-the-art techniques for text
query processing are crucial for building high-performance
geographic search engines.

2.2 Spatial Indexing
There exists a tremendous body of work in spatial databases
and geographic information systems on index structures for
spatial data. The main approaches can be classified into:
(i) tree-based methods [8], (ii) grid structures [20], and (iii)
space-filling curves [12, 3, 21]. Most relevant to our work
here are tree-based methods and space-filling curves.

Tree-based indexing structures can be divided into (i)
space- and (ii) data-partitioning. The former divides space
into disjoint tiles, while the latter divides the spatial ob-
jects into disjoint subsets. Important examples of space-
partitioning techniques are quad-trees [11] and kd-trees [2].
Their major drawback is that objects that span across a bor-
der between tiles are stored twice. This problem occurs for
relatively large objects, but not when objects are fairly small
or just points. The most widely used data-partitioning ap-
proach is the R-tree family of index structures [13]. These
store each object only once, but use overlapping subareas
that may result in a search operation having to visit multi-
ple subtrees. An optimized version, the R*-tree, employs an
improved partitioning heuristic, and is widely used in many
applications. We refer to [8] for a more detailed discussion
of tree-based spatial index structures.

Space-filling curves (SFCs) are continuous curves that cover
the entire space. The basic goal of a SFC is that most points
that are close to each other in space should also be reason-
ably close to each other on the curve. There are a number of
different SFCs in the literature, with the Z curve and Hilbert
curve being the most widely used. For an overview of space-
filling curves, we refer to [12, 3, 21]. In this paper, we use
index structures for geo search based on R*-trees, kd-trees,
and space-filling curves.

2.3 GIR and Geo Query Processing
Geographic information retrieval (GIR) deals with items
(documents) containing both spatial data and unstructured
data, most commonly text. We refer to [16] for early work,
and to [15] for a recent overview. This area commonly re-
quires techniques from both textual information retrieval
and spatial data processing.

We focus on efficient query processing over web documents
and yellow page collections under both textual and spatial
constraints, as motivated by the local and mobile search
services provided by all the major search engines. Thus, we
have a set of documents, each containing textual content
and one or more locations (points or rectangles). Given a
query consisting of terms and a rectangle, the goal is to find
(and possibly rank) all documents that contain the query
terms and have a location in the query rectangle.1

1There are several variations of this problem, but for now
this basic version suffices.

A number of researchers have studied this and related
problems over the last few years, starting with the early work
in [23], where three techniques based on a grid scheme for
spatial indexing along with inverted indexes are proposed.
In the first approach, an inverted index is built for each grid
cell and each query is performed by first applying spatial
filtering and then textual. In their second technique, the
postings are spatially clustered based on the grid cells their
footprints belong to. The third approach separately applies
spatial and textual filtering and merges the results. This
work is the most closely related to our work. The main
drawback of the second proposed approach, which is similar
to our work, is that the documents in lists do not preserve
a sorted order which in turn does not permit performing
effective skipping while processing the inverted lists.

Some follow-up work was done in [27, 6]. In particular,
Zhou et al. in [27] studies three approaches combining in-
verted indexes and R*-trees: (i) keeping separate indexes,
(ii) an inverted file on top of an R*-tree (the overall best),
and (iii) an R*-tree on top of an inverted file.

The work by Chen et al. in [6] combines inverted indexes
with space-filling curves. More precisely, efficient query pro-
cessing is achieved by laying out the inverted lists along a
space-filling curve. This work is also different from [27] as it
focuses on disk performance and assumes that larger spatial
payloads (not just points or rectangles) may be attached to
the documents, and that a document may relate to several
locations. However, the CPU performance in [6] suffers from
bottlenecks in the inverted index implementation.

Several more recent papers have proposed additional query
processing algorithms based on combining inverted indexes
with R*-trees [14, 10, 7, 17]. These papers all use R*-trees as
the main structure, and basically insert the document data
into the R*-tree. Basic query processing involves traversing
the R*-tree to visit leaf nodes satisfying the spatial con-
traint, and then traversing the (fairly small) textual indexes
in the leaves. Additional improvements are obtained by
pushing some textual information up in the tree, allowing
pruning of subtrees that do not contain the query terms or
cannot contain high-scoring results.

In particular, in the KR*-tree algorithm [14], dictionary
information is propagated from leaves to internal nodes. In
the IR2-tree algorithm in [10], R*-trees are combined with
signature files [10]. Thus, every node in the IR2-tree main-
tains a signature of the textual content in its subtree. Cong
et al. [7] look at a slight variation of the problem where only
the top-k results need to be returned, based on textual rel-
evance and spatial proximity (but without an a-priori cut-
off distance as implied by a query rectangle). They build
an optimized R*-tree structure for this problem that also
stores suitable summary information in the internal nodes.
Follow-up work in [4] studies a modified ranking function
based on textual relevance, proximity, and a new prestige
measure derived from query logs. Finally, the work in [17]
presents a structure called IR-Tree that stores impact and
location information for selected high-scoring terms in inter-
mediate nodes of the R*-tree, enabling additional pruning
during top-k query processing.

In this paper, we revisit the problem of efficient geo query
processing, with emphasis on both CPU time and disk per-
formance. Our goal is to design techniques that integrate
state-of-the-art techniques from IR query processing, and
that achieve significant improvements over existing approaches.



In our experiments we will show that a fairly general class
of approaches based on R*-trees cannot come close to our
best techniques in the most commonly studied scenarios.

3. PROBLEM AND EXPERIMENT SETUP
We assume conditions similar to those encountered by com-
mercial geo search engines such as Google Local. Specifi-
cally, we envision a scenario where entities have a precise
location; e.g., a web page about a cafe that is assigned the
business’ street address. Thus, each document in our collec-
tion is associated with a single point location. (Though, we
could extend this to multiple locations or small areas with
negligible modifications in the code.) In the remainder of the
paper, we refer to these markers as the geographic footprint
of a document. Each query consists of several keywords, and
a rectangular geographic search area. The latter is usually
small, at least compared to the continental U.S., the region
under investigation. We refer to this set of rectangles as
query footprints.

We pursue a realistic geographic web search scenario, sim-
ilar to that encountered by a large local (geographic) search
engine. For a realistic setting, it is of utmost importance to
use data sets that reflect the natural relationship between (i)
terms and positions and (ii) keywords and documents. For
example, a page about opera tickets is more likely to relate
to a large city; the query “cattle feed” most likely originates
from a rural location.

To maintain this natural relationship between terms and
locations, we geo-coded real web documents and search quer-
ies. To this end, we scanned each document for geographic
markers, such as zip codes or names of counties, cities, and
towns. Next, we assigned a geographic position to the doc-
ument, using the “Census 2000 U.S. Gazetteer” [5]. This
data collection maps 95, 000 geographical entities (zip codes
and location names) to geographic coordinates. In cases
where we found more than one location in a document, we
chose the one with the larger population. For example, if a
document contained a reference to New York City as well as
Smalltown, we assumed it belonged to the former. Similarly,
we geo-coded web queries. Namely, we first parsed real web
queries for geographic terms, subsequently translated into a
geographic position. Finally, we associated each query with
a search rectangle, corresponding to the square miles of the
geographical location found.

We conduct our experiments on two sets of documents.
First, we use 6.1 million pages from a broad web crawl per-
formed by our group (referred to as R6.1). These documents
were assigned locations by means of geo-coding, as described
above. They were part of a larger collection, from which we
removed all web pages that did not refer to a U.S. loca-
tion. Second, we use the 25 million documents of the GOV 2
data set (referred to as F25). Here we assign random lo-
cations, however according to the distribution observed in
R6.1. The characteristics of the R6.1 web data collection
summarize as follows. There are a total of 6.1 million geo
documents, containing 29, 872, 888 distinct terms. The size
of the uncompressed inverted index is 17.9 GB, whereas its
compressed version is only 3.36 GB. Our collection contains
14, 134 distinct geographic footprints. The F25 data set con-
sists of 25, 205, 179 documents, 36, 759, 149 distinct words
and 6, 797 M postings. We also obtained much larger data
sets of size 50, 75 and 100 million documents by suitably
replicating the F25 data set.

A set of geographic web queries was obtained by geo-
coding entries of the 2006 AOL search log. In particular, we
selected queries containing the name of a town, county, or
a zip code. The query was then assigned a search rectangle
centered around this location.Consequently, the term indi-
cating the geographic position (e.g., the name of a town) was
removed from the query string. The resulting query trace
contains 49, 978 geo queries, 5, 841 distinct locations and an
average of 2.8 textual terms per query.

We do not assume any particular search scenario, as could
arise from a person on foot vs. a person travelling by car
(larger area of interest). To model different scenarios, we
partition our geo queries into four subsets, called small,
medium, large, and mixed, based on the sizes of their foot-
prints. In particular, the small set corresponds to areas of
less than 0.5 sq. miles, the medium set to areas between 0.5
and 450 sq. miles and the large set to areas larger than 450
sq. miles. For every experiment we used 1, 000 queries from
each set.

We compute the precise relevance scores for all documents,
but allow the choice of any k in top-k pruning approaches.
We focus on conjunctive queries and retrieve all the docu-
ments that satisfy the textual and geographical constraints
of the query. To be more specific, we consider every docu-
ment that (i) has a non-zero term-based score, and (ii) whose
spatial focus lies strictly within the query rectangle. For the
purpose of this paper, we use a simple scoring function. In
particular, we employ a linear combination of a term-based
measure (BM25) and a geographic score, the distance be-
tween the center of the query footprint and the geographic
footprint of the document. However, our approach also ap-
plies to many other ranking functions.

4. BASELINES AND PRELIMINARIES
In this section, we first describe several basic solutions, and
then show experimentally that a simple Text-First index al-
ready outperforms previous approaches. Finally, we discuss
these observations, providing valuable insights for the sub-
sequent optimizations.

4.1 The Naïve R*-Tree Algorithm
As described in Section 2, a number of previous approaches
have used R(*)-trees. We describe the Näıve R*-Tree, the
most basic such approach. This method inserts documents
into an R*-Tree according to their geographic locations. At
each leaf node, there is a small inverted index over all docu-
ments residing therein. Given a query, we first traverse the
R*-tree to find all leaf nodes intersecting the query footprint.
Subsequently, we access the inverted indexes stored at each
of these leaves. The approach thus first filters by space, and
only thereafter by text. We implemented the Näıve R*-Tree
by adding inverted indexes to the leaf nodes of the canonical
R*-tree implementation of [19].

4.2 The Clairvoyant R*-Tree Algorithm
While the Näıve R*-Tree does not perform any textual filter-
ing before reaching the leaf level, several authors have pro-
posed textual pruning at intermediate nodes. We hence con-
ceptualize a Clairvoyant R*-Tree, employing perfect textual
pruning inside the R*-Tree, at zero cost. This hypothetical
data structure would thus outperform any of the approaches
using R*-trees, as presented in the literature.

The Clairvoyant R*-Tree structurally resembles a Näıve
R*-Tree, but employs an oracle that indicates if a path leads



to a leaf containing results. Recall that while traversing the
Näıve R*-Tree we may visit leaves that do not contain a
single result. For example, consider the query “cat, dog”, on
the index structure of Figure 1. Assume that the query rect-
angle intersects spatially with all depicted leaf nodes. The
intermediate nodes of the Näıve R*-Tree only store spatial
information. One would thus visit all leaves, and traverse
the inverted lists for “cat” and “dog” in nodes n3 and n4.
However, only n4 actually returns a result, and exploring
n3 wastes considerable resources, due to R*-tree traversal,
dictionary lookup, and inverted index access. In contrast,
the Clairvoyant R*-Tree features an oracle at each interme-
diate node of the R*-tree. For a given query, it directs us
exclusively to leaves in the subtree that contain at least one
result. The oracle thus allows us to avoid any nodes in the
tree that are not on a path between the root and leaves
containing results. In our example, it would spare us from
visiting n3 as well as exploring this leaf’s inverted index,
while still finding the results at n4.

cat d4,d15,d25

dog d2,d3,d11

cat d1, ,d28

dog d1,d5,d7

cat d9,d10,d21

d6,d8

dog d12,d16,d20

fish d13,d14,d30

n1

n2

n3 n4 n6

n5

n7

d4,d15,d25 d1,d5,d28rat rat d12,d13,d20

fish

cat,dog,fish,rat

cat,dog,fish,ratcat,dog,fish,rat

cat,dog,fish cat,dog,ratcat,dog,rat cat,fish dog,fish,rat

Figure 1: A hybrid R-Tree based structure.

Obviously, this data structure is entirely hypothetical.
Yet, it makes an excellent contestant for our experiments,
as it subsumes all optimizations storing textual hints at in-
termediate nodes. In fact, it subsumes many optimizations
not in the literature. We simulated its implementation by
executing every query twice. First, we issue an exploratory
query, recording all inner nodes that actually lead to a re-
sult. Subsequently, we execute the actual query, only visit-
ing these productive nodes.

The main limitation of the Clairvoyant R*-Tree is that the
algorithm must visit and score every document that satisfies
the textual and spatial filters. Some top-k early termination
techniques such as in [7, 17] however do not score every
document passing the filters. The performance of these data
structures is not bounded by the Clairvoyant R*-Tree. We
further elaborate on this topic below.

4.3 Text-First Baseline
We now describe a trivial algorithm that relies on an inverted
index, and uses no spatial index structure at all. While
this algorithm is trivial, we are not aware of any previous
work that compares an optimized implementation of it to the
various R-Tree based methods. More precisely, we use an
inverted index structure, and a simple array storing the geo
locations of the documents. This array, almost two orders
of magnitude smaller than the inverted index, fits into main

memory. This Text-First algorithm then executes a query
as follows:

1. Issue a query against the inverted index, retrieving the
docID of any document containing all query terms.

2. For each docID returned, perform a lookup in the ar-
ray to check if the document’s location is in the query
interval.

3. For any docID passing this spatial check, fetch the fre-
quency values of the postings and compute the BM25
score.

In our implementation, we used an inverted index that
compresses docIDs and frequencies in blocks of 128 elements
using the OPT-PFD algorithm [25]. We executed queries on
our own document-at-a-time (DAAT) query processor, op-
timized through block-wise compression and forward skips
in the inverted lists. DocIDs were assigned to documents
at random; thus we did not try to obtain additional bene-
fits due to sorted assignment as described in [25]. Overall,
this implementation contains many of the techniques used in
state-of-the-art IR query processors. To illustrate its perfor-
mance, we later also report experimental results on this text
index alone (Text-Only), without applying any geographic
filtering at all.

4.4 Preliminary Experimental Evaluation
We implemented the baseline methods and conducted ex-
periments using the R6.1 data set and the mixed query
set. Table 1 shows the CPU costs of the above methods
in milliseconds when both spatial and textual indexes re-
side in memory. Observe that the trivial Text-First method
clearly outperforms both R*-tree methods. The Clairvoy-
ant R*-Tree is much faster than the Näıve R*-Tree, but still
significantly slower than Text-First. This illustrates the im-
portance of comparing newly proposed spatial optimizations
to simple baselines employing state-of-the-art IR query pro-
cessing techniques. Comparing Text-First and Text-Only,
the former performs additional table lookups and intersec-
tions with the query rectangle. This spatial check however
results in fewer frequency values being fetched and BM25
scores computed. The performance of both algorithms is
thus very similar. Note that to guarantee fairness during
this preliminary evaluation, both spatial and textual index
structures are memory-resident.

Method time/query

Näıve R*-Tree 33.0ms
Clairvoyant R*-Tree 12.0ms
Text-Only 7.2ms
Text-First 6.9ms

Table 1: CPU costs of baseline approaches (R6.1)

We now compare the CPUs costs to those reported in pre-
vious papers. The best published results appear to be those
in [7], where queries on 2.5 million web pages take about 20
ms of CPU time on a similar processor, while our results are
for 6.1 million pages. Thus, even though our Clairvoyant R*-
Tree does not provide a bound for the top-k methods in [7],
as discussed earlier, all our numbers compare well to their
reported CPU numbers. In fact, [7] also provides numbers
for larger data sets up to 10 million pages, but performance
degrades in this case. We note that results reported in other
previous papers are limited to even smaller data sets, and
achieve much slower performance relative to data size.



In conclusion, it is important to integrate state-of-the-art
IR query processing into geographic search. Moreover, for
several million pages, R-tree based methods do not appear
to perform as well as a carefully implemented trivial base-
line. Note that these findings are not restricted to R(*)-trees
in particular; any other deep spatial data structure (e.g.,
kd-trees) would have shown similar performance. All these
indexes spend significant amounts of time navigating the
fine-grained spatial structure and performing the multiple
dictionary lookups to find the inverted lists in the leaf nodes.
The Text-First baseline algorithm does not have these over-
heads.

Of course, when further increasing data size to tens and
hundreds of millions of pages, the trivial baseline will even-
tually fail. In the next section, we thus add coarse-grained
spatial optimizations that achieve significant improvements.
We evaluate these algorithms on data sets up to 100 million
pages, assuming data to be entirely in memory, entirely on
disk, and cached in memory. This scenario thus exceeds any
experimental setup in literature.

5. IMPROVED ALGORITHMS
As seen in the previous section, even the simple Text-First
approach outperforms the best results in the literature in
terms of CPU performance. In this section, we present var-
ious improved algorithms with optimizations, which as we
will see through the experimental results in Section 6 per-
form significantly better than the baseline solutions. In fact,
we outline and compare two approaches and their variations:
(i) a coarse-space partitioning (CSP) and (ii) a spatial in-
dexing based on a space-filling curve (SFC).

5.1 Coarse Space Partitioning
The first improved algorithm uses a fairly coarse-grained par-
titioning of the geographic space into a limited number of
regions. Subsequently, it runs Text-First on any region in-
tersecting the query (typically just one, as regions are larger
than most query rectangles). We would thus like to divide
space into a small number of k regions such that each con-
tains approximately the same number of documents. One
could think of various optimizations that try to avoid, e.g.,
cutting through major metropolitan areas, but we decided to
partition space using a simple kd-tree. We hence recursively
divide space along vertical and horizontal axes, until the
desired number of regions has been obtained. The optimal
choice of k naturally depends on the size of the collection
and the sizes of the query footprints, a trade-off explored
thereafter. Choosing a relatively small value of k allows us
to fit the dictionary structures of all regions into main mem-
ory, avoiding random I/O at query time. (Caching is also
known to perform extremely well on disk-based dictionaries,
due to the extreme skew in query term frequencies). We
obtain the following simple query processing algorithm:

1. Determine all regions that intersect the query rectan-
gle, using either a scan over an array or a traversal of
the (small) kd-tree structure.

2. Run Text-First in each intersecting region, fetching list
data from disk if needed.

We implemented two versions of this method, using dif-
ferent layouts of inverted lists. In the first approach, called

CSP-SEQ, the k inverted lists for each term are stored se-
quentially. They are thus organized as a single inverted
list with the k dictionaries pointing to the starts of the k
sublists. In the second approach, CSP-SUB, each region
builds its own index substructure independently. As seen
later, the choice of layout does not significantly affects CPU
time. However, when data resides on disk, CSP-SEQ tends
to outperform CSP-SUB. Its sequential layout commonly
consumes only a single disk seek, even when several regions
intersect with the query rectangle. Only in rare cases do
lists get so long that it would be preferable to utilize two or
three separate seeks. In our memory-resident experiments
we present only the results of the CSP-SEQ algorithm for
simplicity, since the choice of layout doesn’t affect CPU time
of the coarse-space partitioning methods.

5.2 Space-Filling Curves
This approach uses space-filling curves [12] to lay out in-
dex structures in geo search engines. In fact, as recently
disclosed in [24], all the major search engines currently use
index structures based on space-filling curves in their local
search services. Thus, our results can be seen as providing
experimental support that such methods indeed outperform
methods based on other, more involved, spatial data struc-
tures. Its core idea was proposed by [6], albeit under a very
different setup. The authors of [6] assumed that each loca-
tion may have an associated document footprint record of up
to several hundred bytes. These may contain polygon data
or textual annotations that needs to be fetched at query
runtime. Space-filling curves were thus utilized to organize
these footprints on disk. Also, the work in [6] did not em-
ploy a state-of-the-art IR query processor, and thus reports
higher CPU costs.

We use a so-called Z curve [21], which is a fairly simple but
still effective SFC. (The approach extends directly to other
types of space-filling curves, such as Hilbert.) We first assign
to each document a docID that corresponds to the position
of its location on the SFC, and then build a standard block-
compressed inverted index. The idea is that all documents in
the query rectangle are likely close to each other on the SFC,
and thus close to each other in the inverted list. This allows
skipping large parts of the list. To achieve this skipping
effect, we explore two approaches described in the following.

SFC-QUAD: The first approach uses a quad-tree struc-
ture to enable skipping. We built a fairly shallow and thus
small quad-tree over the document space, roughly consum-
ing 0.5 MB. We then first traverse the quad-tree to deter-
mine up to m docID ranges that contain all documents in-
tersecting the query footprint. The query processor, adapted
again from the Text-First approach, hence only accesses (de-
compresses) these m docID ranges and can skip the rest
of the inverted lists. Moreover, when data resides on sec-
ondary storage, the query processor only retrieves the rele-
vant ranges of the inverted lists from disk.

We evaluated different values of m, and found that in main
memory, values in the order of several hundred perform best.
When fetching inverted list from disk, such a fine-grained
approach fails, since for any given list, one should spend only
a few (often just one, and rarely more than three) random
seeks. We thus merge the m ranges into a smaller number of
k disk sweeps. In fact, we can choose the number of sweeps
optimally, based on the lists lengths and layouts as well as
disk model. Overall, we obtain the following algorithm:



1. Traverse the quad-tree and obtain m docID ranges cov-
ering all documents in the query rectangle.

2. For each term t whose inverted list is not in main mem-
ory, determine k = 1, 2, or 3 docID ranges. These
should cover the above m docID ranges and minimize
total I/O cost.

3. For each such term perform k seeks on disk to fetch
the needed parts of the inverted list.

4. Run Text-First on the m docID ranges.

SFC-SKIP: We also explored an alternative, yet natu-
ral, way to skip parts of the docID space. Remember that
our inverted lists are compressed in blocks of 128 postings.
Suppose that for each such block we store a minimum bound-
ing rectangle (MBR), encompassing all of the locations of
documents represented in the block. During query process-
ing, we can skip any block whose MBR does not intersect
with the query rectangle. This skipping fits naturally into
any typical IR query processor, which already performs skips
over compressed blocks of postings. In fact, we can store ad-
ditional MBRs for groups of, say, 2, 4, 8, etc. blocks. The
resulting structure thus allows hierarchical skipping. This
structure differs from the others approaches presented in
this paper, because it is defined on a per-list basis. Thus,
we have more detailed skipping information for longer lists,
and no such information at all for lists with fewer than 128
postings.

We explored different settings and found that storing MBRs
and shortcut pointers on 3 levels, for 4, 16, and 64 com-
pressed blocks, provided excellent performance. The MBRs
and shortcuts are stored separately from the lists and are
usually kept in main memory. Using this information, we
can again determine optimized sweeps for fetching index
data from disk, as in the SFC-QUAD method. In our disk-
resident experiments we found that the performance of the
two versions of the SFC approach is similar. Thus, in our
experiments when data reside on disk, we only present the
performance of SFC-QUAD for simplicity.

6. EXPERIMENTS
In this section we present the results of an extensive perfor-
mance evaluation of our proposed algorithms.

6.1 Experimental Evaluation
In Section 4, preliminary experiments showed that the Text-
First baseline outperforms the commonly considered R-Tree
based approaches in terms of CPU. In this section, we in-
vestigate the benefits achieved by the various optimizations
from Section 5. In particular, we evaluate three approaches:
(i) Coarse Space Partitioning (CSP), (ii) Space Filling Curve
Quad Tree (SFC-QUAD), and (iii) Space Filling Curve Skip
pointers (SFC-SKIP). The parameters under investigation
are: (a) the size of the query rectangle, (b) the number k
of sweeps, (c) the amount of memory available for caching
index data, and (d) the size of the data set. By default, we
used query rectangles of mixed size, and a choice of up to
three sweeps. In every set of experiments, we modify one
parameter, while the others remain at their default. All ex-
periments were conducted on a single core of an Intel Xeon
server with 2.27Ghz.

We first conduct experiments in main memory. Subse-
quently, we evaluate setups where data resides on secondary

storage. In particular, we use a standard disk model to
estimate the time spent retrieving data from disk. We as-
sume 8ms access time for each random access, and 50MB/s
sequential transfer rate, settings typical for current SATA
disks. In the remainder of the paper, we refer to the to-
tal disk cost including both seek and transfer time as I/O
cost. For CPU results all structures are kept in main mem-
ory, while for disk and disk-cached results, only the spatial
structures plus the stated amount of cached inverted lists
are in memory while the rest of the inverted list is on disk.

Index size: Table 2 reports the space required to store
the inverted index with docIDs and term frequencies. We
index (and compress) gaps between docIDs, so smaller gaps
among docIDs achieve better compression. We observe that
CSP has larger index size than other methods, because do-
cIDs are scattered into separate indexes (partitions). The
relative gap between docIDs of the same partition hence in-
creases, resulting in a larger docID index. On the other
hand, the baseline and SFC approach achieve smaller in-
dex size due to their smarter docID assignment scheme. Of
course, the increased index size for CSP also has an adverse
effect on disk access costs (both with and without caching).

in GB docID freq total

Baseline 2.49 0.87 3.36
CSP 4.55 1.12 5.67
SFC 2.50 0.87 3.37

Table 2: Compressed index size (R6.1)

Spatial structure size: Table 3 presents the size of the
spatial structures in memory. We observe that the R*-Tree
is significantly larger than the CSP and SFC methods. For
each document we assign footprints of 8 bytes and thus need
roughly 48 MB of memory for maintaining this information
for the R6.1 data set. The size of these footprints is not
included in any of the spatial structure sizes reported, and
is thus listed separately. Moreover, we assume that the doc-
ument footprints always reside in memory.

size in MB

R*-tree 680.935
CSP-SEQ 0.004
SFC-QUAD 0.513
SFC-SKIP 17.502

Doc footprints 48.8

Table 3: Size of spatial structures (R6.1)

Query footprint size: First, we vary the size of the
query rectangles. Table 4 illustrates the effects of this pa-
rameter on CPU consumption, using the R6.1 data set. We
observe that all methods significantly improve over the Text-
First baseline. These results confirm our expectation that
coarse spatial partitioning outperforms any fine grained par-
titioning. Overall, light-weight spatial indexing techniques
such as SFC achieve best performance. The spatial ordering
of documents in the inverted lists according to SFC answers
even queries with large footprint in less than one millisec-
ond. For this setting, we also evaluated different index lay-
out for the CSP method. Results however indicated that the
choice of layout in main memory does not noticeably affect
performance. Next, we evaluate the proposed methods on
disk-resident data. In Table 5 we show experimental results,
assuming that the inverted index resides entirely on disk and



in ms mixed small medium large

Baseline 6.95 6.81 6.97 7.10
CSP-SEQ 0.50 0.14 0.28 1.27
SFC-QUAD 0.14 0.07 0.08 0.40
SFC-SKIP 0.17 0.08 0.09 0.48

Table 4: Query footprint size vs. CPU (R6.1)

using the R6.1 data set. Note that the CSP-SEQ and SFC
approaches achieve significantly better performance than the
baseline method. The SFC-QUAD method clearly domi-
nates all other approaches. The experimental results allow
the following observations. First, we observe the same order-
ing of the algorithms for I/O cost as for CPU cost. Second,
the layout of inverted lists on disk significantly affects effi-
ciency. In particular, the CSP-SEQ method with sequential
layout outperforms its rival CSP-SUB using smaller inde-
pendent inverted indexes. It is thus beneficial to write all
inverted lists for the same term sequentially on disk. Queries
located close to a partition border can thus be answered with
a single seek operation per term.

in ms mixed small medium large

Baseline 79.1 79.1 79.1 79.1
CSP-SEQ 29.1 24.8 27.3 44.2
CSP-SUB 41.2 34.5 40.2 62.9
SFC-QUAD 25.1 23.6 24.9 34.1

Table 5: Query footprint size vs. I/O (R6.1)

For this parameter, we also investigate seek and trans-
fer time individually. Table 6 presents the transfer time for
various query footprint sizes. In contrast, seek time remains
stable between 22ms to 28ms for all methods and settings.
This is not surprising, if we recall that queries on average
contain 2.8 terms. For each term, we need to perform at
least one seek (of about 10ms), and thus expect a total seek
time of 28ms. Only in the case of large footprints and the
CSP-SUB method, seek time increases to 43.2ms. This is
expected, since large footprints are more likely to cross par-
tition borders, thus necessitating multiple random seeks for
the same term.

For the Text-First baseline, transfer cost strongly domi-
nates seek time, since the method ignores spatial filtering,
and thus frequently retrieves redundant blocks. Note that
the baseline’s transfer time remains the same for different
footprint sizes, since inverted lists are always retrieved in
full length; the same holds for the seek time. All proposed
optimizations achieve notably lower transfer cost than the
baseline, because the spatial filtering enables them to re-
trieve fewer blocks. Also, note that the layout of inverted
lists on disk affects transfer cost. In particular, sequential
layout shows smaller transfer cost for small query footprints.
As footprints become larger, both layouts start to achieve
similar transfer cost.

in ms mixed small medium large

Baseline 56.7 56.7 56.7 56.7
CSP-SEQ 5.9 3.1 4.7 17.8
CSP-SUB 13.2 10.5 12.2 19.7
SFC-QUAD 2.3 1.2 2.1 10.1

Table 6: Query footprint vs. disk transfer (R6.1)

Number of sweeps: Next, we evaluate the degree to
which the number of sweeps affects performance. Table 7
depicts I/O cost as the number of sweeps increases. Since

SFC-QUAD and SFC-SKIP perform exactly the same I/O,
we only report the numbers of the former. In the normal
setting, the algorithm performs exactly k sweeps. Using the
hybrid k-sweeps technique, the optimum of up to k sweeps
is chosen. In particular, it is beneficial to choose a large
k for long inverted lists. As these become longer, multiple
sweeps improve performance by skipping redundant blocks.
In both data sets we observe that, as the number of sweeps
increases, performance drops significantly. On the R6.1 data
set, hybrid methods exhibit stable performance, very close
to 1-sweep. On the F25 data set, the option of using larger
k in the hybrid approach yields more substantial benefits.
This effect can largely be explained by F25 having longer
inverted lists than R6.1.

R6.1 F25
in ms normal hybrid normal hybrid

1 sweep 26.5 26.5 41.4 41.4
2 sweeps 58.1 25.6 68.6 36.8
3 sweeps 79.6 25.1 93.4 35.2

Table 7: Effects of the number of sweeps in SFC

Cache size: So far, we have assumed that the index
structure is either completely in main memory, or only on
disk. However, the latter case is not realistic. In real large-
scale local search engines the index is either entirely in mem-
ory or a significant fraction of the index is cached. To deter-
mine the impact of caching, we apply a simple scheme that
maintains a static subset of lists in memory. Inverted lists
are cached according to (i) their frequency in a large query
trace, and (ii) their length. Caching small lists is slightly
more preferable, due to the high cost of random accesses on
disk. As shown in Figure 2, the I/O cost decreases signifi-
cantly as cache size grows. Allowing 512MB of cache, the
total disk cost for SFC-QUAD decreases to less than 10% of
the cost without caching. Also, we observe that the relative
performance gap between SFC-QUAD versus coarse-grained
methods increases with cache size.

Figure 2: Effects of cache size (R6.1)

Data set size: Table 8 shows the CPU costs (SFC-Quad
and SFC-Skip) and I/O-costs (Hybrid k-sweeps) when eval-
uating the SFC methods for document collections of various
sizes. Namely, we use 50, 75 and 100 million documents.
The total cost is the sum of the CPU and I/O costs. We
observe that all optimizations scale extremely well to larger
data. Also, note that the quad-tree approach consistently
outperforms skip pointers.

Partition size: Next, we explore the optimal number of
partitions under the CSP approach. Again, we experiment
in main memory as well as on disk. Coarse partitioning is



in ms 6.1 25 50 75 100

SFC-QUAD 0.14 0.23 0.55 0.75 0.89
SFC-SKIP 0.17 0.24 0.57 0.81 0.93
Hybrid k-sweeps 25.1 29.7 31.2 32.8 34.4

Table 8: Number of documents vs. performance

tested by scaling the number of partitions (of the continen-
tal US) from 8 to 1024. As expected, the optimal parti-
tion granularity differs between main memory and disk. In
Figure 3, we observe the effect of partition granularity in
main memory for different query footprint sizes. Initially,
as the number of partitions increases, performance also im-
proves. Note that with 256 partitions, performance for dif-
ferent query footprint sizes converges to optimal. Increasing
the number of partitions does not further reduces the cost
of query processing.
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Figure 3: Partition granularity vs. CPU (R6.1)

Figure 4 depicts the impact of the number of partitions
on I/O cost. Overall, we observe that as the number of
partitions increases, performance degrades. This is reason-
able, since more partitions intersect with each query on av-
erage, resulting to an increase in the number of disk seeks
for fetching all inverted lists. When partition size is set to
64, we observe that all algorithms achieve optimal perfor-
mance. Further fine grained partitioning leads to additional
disk overhead. This experiment supports our claim that fine
grained partitioning does not further improve performance.
In terms of I/O efficiency, this setting encounters a trade-
off between transferring large inverted lists and performing
multiple seeks. The best choice for the number of partitions
naturally depends on the size of the collection and the sizes
of the query footprints.
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Figure 4: Partition granularity vs. I/O (R6.1)

Query terms: We also tested the effect of the number
of query terms on the performance in main memory, using
the R6.1 data set. According to Table 9, the CSP-SEQ

and SFC methods show significant improvements over the
baseline. The SFC approaches outperform CSP-SEQ, while
SFC-QUAD performs slightly better than SFC-SKIP. The
performance of all algorithms decreases as the number of
the query terms increases, due to more lists being accessed.

in ms 1 2 3 4 or 5 ≥ 6 mean

Baseline 4.01 6.71 6.92 8.21 8.43 6.95
CSP-SEQ 0.43 1.23 1.53 1.91 2.43 1.51
SFC-QUAD 0.07 0.12 0.16 0.21 0.27 0.14
SFC-SKIP 0.07 0.13 0.16 0.23 0.31 0.17

Table 9: Query length vs. CPU (R6.1)

Document size: Next, we study how CPU performance
changes depending on the average number of distinct terms
in each document. Table 10 shows the impact on the query
time for our methods, as we utilize 100, 50 and 30% of the
text, meaning the percentage of random distinct terms per
document taken into account. More text naturally results
in longer inverted lists. Therefore, more blocks must be
retrieved which leads to additional performance overhead.
CSP-SEQ and SFC methods achieve much better response
time than our baseline. SFC approaches achieve remarkably
smaller time than other proposed methods. The relative
order between the different algorithms is not changed by
varying the document size.

in ms 100% 50% 30%

Baseline 6.95 3.21 2.01
CSP-SEQ 0.51 0.33 0.21
SFC-QUAD 0.14 0.07 0.05
SFC-SKIP 0.17 0.10 0.07

Table 10: Document size vs. CPU (R6.1)

Query footprint size (F25): We also evaluate the im-
pact of the size of the query footprint. In particular, we com-
pare the performance of our proposed methods when tested
on the F25 data set. Furthermore, we evaluate query per-
formance when data resides (i) in memory as well as (ii) on
disk. The SFC approaches once again perform best, across
all query footprint sizes. As seen in Table 11, they outper-
form their competitors in terms of CPU cost, even on large
document collections. Also, the CPU cost increases with the
size of query footprints, since more inverted list data needs
to be retrieved.

in ms mixed small medium large

Baseline 9.78 9.53 9.61 9.98
CSP-SEQ 1.05 0.35 0.63 3.97
SFC-QUAD 0.23 0.13 0.15 0.60
SFC-SKIP 0.24 0.14 0.17 0.65

Table 11: Query footprint size vs. CPU (F25)

According to Table 12, our proposed methods also out-
perform the baseline on disk. Query footprints naturally
affect performance, since larger query rectangles intersect
with more documents.

7. DISCUSSION AND CONCLUSIONS
This paper studied the query processing problem that arises
in geographic search services such as local search and search
on mobile devices. We described several new and existing
algorithms, and experimentally evaluated their performance
on real and synthetic data sets. Our best methods achieve
very substantial improvements over all previous results.



in ms mixed small medium large

Baseline 122.72 122.72 122.72 122.72
CSP-SEQ 37.13 34.59 36.14 56.78
CSP-SUB 46.32 41.33 47.78 74.61
SFC-QUAD 29.7 28.4 31.5 39.7

Table 12: Query footprint size vs. I/O (F25)

The main lessons to be taken away from our results are
as follows:

1. State-of-the-art query processing techniques for text
data are quite efficient. For related problems such as
geographic web search, it is thus important to consider
approaches that preserve and exploit these techniques.

2. As there is significantly more textual than spatial data
in current geo search engines, it is important to focus
on the textual aspect of the problem.

3. Approaches based on fine-grained spatial structures
may result in significant CPU and I/O overheads com-
pared to more coarse-grained structures.

4. Efficient algorithms must avoid random I/O, since a
single random I/O is significantly more expensive than
the entire CPU cost of a query on millions of pages.

5. The best approaches use a careful layout of the in-
verted lists (and corresponding assignment of docIDs)
according to spatial structure.

6. Since current search engines cache a substantial amount
(or all) of the index data in memory, focusing on the
disk-only case is not sufficient.

There are of course still many open problems in geographic
search. Additional optimizations and other methods are an
obvious research direction. It would also be interesting to
look at parallel query processing in geo search engines, where
data is distributed over many nodes. Also, in this paper we
focused on simple ranking functions such as BM25, while
current engines use several ranking phases that apply in-
creasingly sophisticated ranking functions. Finally, there
are many open problems on aspects of geographic search
other than efficiency.
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