
Optimizing Positional Index Structures
for Versioned Document Collections

Jinru He
∗

Facebook Inc.
1601 Willow Road

Menlo Park, CA, 94025
jihe@fb.com

Torsten Suel
CSE Department

Polytechnic Institute of NYU
Brooklyn, NY, 11201
suel@poly.edu

ABSTRACT
Versioned document collections are collections that contain multiple
versions of each document. Important examples are Web archives,
Wikipedia and other wikis, or source code and documents main-
tained in revision control systems. Versioned document collections
can become very large, due to the need to retain past versions, but
there is also a lot of redundancy between versions that can be ex-
ploited. Thus, versioned document collections are usually stored us-
ing special differential (delta) compression techniques, and a num-
ber of researchers have recently studied how to exploit this redun-
dancy to obtain more succinct full-text index structures.

In this paper, we study index organization and compression tech-
niques for such versioned full-text index structures. In particular, we
focus on the case of positional index structures, while most previ-
ous work has focused on the non-positional case. Building on earlier
work in [32], we propose a framework for indexing and querying in
versioned document collections that integrates non-positional and
positional indexes to enable fast top-k query processing. Within
this framework, we define and study the problem of minimizing
positional index size through optimal substring partitioning. Ex-
periments on Wikipedia and web archive data show that our tech-
niques achieve significant reductions in index size over previous
work while supporting very fast query processing.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]: Infor-
mation Search and Retrieval.

Keywords
Inverted index, index compression, versioned documents, positional
index structures, redundancy elimination.

1. INTRODUCTION
Large search engines now have to process thousands of queries

per second over tens of billions of documents, resulting in very sig-
nificant hardware and energy costs. Query processing algorithms

∗Work performed while this author was a PhD student at Polytech-
nic Institute of NYU

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’12, August 12–16, 2012, Portland, Oregon, USA.
Copyright 2012 ACM 978-1-4503-1472-5/12/08 ...$10.00.

in these engines are based on inverted index structures, and a large
amount of research over the last decade has focused on how to better
organize, compress, and access such indexes. This has contributed
to significant increases in algorithmic efficiency that, together with
increases in CPU speeds and counts, have allowed the major engines
to keep up with the ever increasing user demands [9].

In this paper, we study how to organize and compress inverted
index structures. However, we focus here on the case of versioned
document collections, i.e., collections where each document is rep-
resented by multiple versions. Such versioned document collections
occur in a number of search applications, such as search in the web
collection of the Internet Archive, consisting of more than 150 bil-
lion snapshots (versions) of web pages collected since 1996, or in
Wikipedia, which retains the complete edit history of all articles.
Other important scenarios are version control systems, document
management systems, and versioned file systems, which retain all
past versions of the files they manage. The goal in indexing ver-
sioned document collections is to build full-text index structures that
allow keyword search across all versions.

The primary challenge is that because all past versions are re-
tained, a versioned document collection is much larger than a col-
lection that only keeps the latest version. For example, the English
language part of Wikipedia contained about 2.4 million articles in
January 2008, but each article had 35 versions on average. An in-
verted index that simply indexes each version separately would thus
be much larger than an index that only considers the latest versions.
However, versioned document collections also have very significant
redundancies between the different versions, which could be ex-
ploited by suitable compression techniques. In fact, there has been a
large amount of research on delta (or differential) compression and
other redundancy elimination techniques for storage systems and
networks (see, e.g., [23, 16, 27, 19, 29, 28]), and many systems now
use such techniques to store their collections.

There has also been some amount of work on how to exploit these
redundancies to better compress full-text indexes for versioned doc-
ument collections [4, 7, 32, 15, 5, 11, 12, 8]. Note that this is a
different problem and that compression schemes for content do not
directly imply how to compress an inverted index, though some ba-
sic ideas are useful in both scenarios. Most previous work on index-
ing has focused on non-positional index structures storing document
IDs and maybe term frequencies or quantized impact scores, while
only [32, 8] consider positional index structures that also store the
locations of term occurrences inside the document versions.

We focus here on such positional index structures. Positional in-
dexes are used by most search engines and other IR systems to en-
able better ranking and for features such as phrase searches. How-
ever, positional indexes are typically about 3 to 5 times larger than
non-positional ones. An additional challenge arises in the versioned
case, in that a single insertion or deletion of a term produces a shift
in the position information for all subsequent terms in the new doc-

ument version. This problem does not exist in the non-positional
case, where we can simply add or remove one posting, and as a re-
sult, techniques for the positional case are very different from those
for non-positional indexes.

In this paper, we propose improved techniques for positional in-
dexing in versioned document collections, building on the approach
described in [32]. In particular, we describe a framework for ef-
ficient query processing with non-positional and positional index
structures that combines the approaches in [32] and [12]. Within
this framework, we study the problem of optimizing positional in-
dex size by modeling it as a substring partitioning problem. We
then describe heuristic optimization algorithms for this problem that
can scale to large document collections. Our experiments on large
versioned data sets from Wikipedia and the Internet Archive show
significant reductions in index size over [32] and [8] with very fast
access speeds.

The remainder of the paper is organized as follows. Next, we pro-
vide some technical background and discuss related work. Section
3 summarizes our contributions. Section 4 describes our overall in-
dexing and query processing framework and provides some baseline
experimental results. Sections 5 and 6 describe algorithms for docu-
ment partitioning and our lookup mechanism for accessing position
data. Finally, Section 7 provides some concluding remarks.

2. BACKGROUND AND RELATED WORK
We now provide some background and describe related work.

We first introduce inverted indexes and index compression methods.
Then we discuss previous work on indexing and querying versioned
document collections. Finally, we provide background on redun-
dancy elimination using content-dependent partitioning methods.

2.1 Inverted Index Structures
Most search engines and other textual IR systems use inverted in-

dex structures to support keyword queries. For a given document
collection C, let w0, . . . , wm−1 be the set of all distinct terms in C.
An inverted index IC for C contains an inverted list Iwi for every i.
Each inverted list Iwi is a list of index postings, where each posting
contains the ID (called docID) of a document containing wi, and
additional information such as the number of occurrences of wi in d
(called frequency), or the locations of each occurrence of wi in the
document (called positions). An index structure is called positional
if it contains position information, and non-positional otherwise. In
this paper, we focus on indexes with docIDs, frequencies, and posi-
tions. We refer to [33] for a survey of inverted indexing techniques
and applications.

There are several ways inverted index structures can be laid out on
disk or in memory. A direct layout would place each posting’s do-
cID next to the corresponding frequency and position values, but in
practice this is rarely done. Better performance is usually achieved
by either keeping docIDs, frequencies, and positions in separate lay-
ers with their own access structures, or at least interleaving larger
chunks of values (e.g., 128 docIDs followed by their associated fre-
quencies). We will use separate layers for docIDs, frequencies, and
positions.

Index compression: The postings in inverted lists are usually
sorted by docID and then compressed [33]. To obtain better com-
pression, most approaches store not the actual docIDs, but the dif-
ferences between consecutive docIDs in the list, called d-gaps. The
same is also done for different position values within the same doc-
ument. Of course, this requires summing up these differences again
during decompression. To support fast random access, inverted lists
(or their individual layers) are often organized into blocks of, say,
128 values, such that each block can be individually accessed and
decompressed by searching in an auxiliary array containing the last
(or first) docID of each block in uncompressed form.

Many inverted index compression algorithms have been proposed.
In our experiments, we use the OPT-PFD method proposed in [31],
which belongs to the PForDelta [13, 34] family of compression
methods. OPT-PFD achieves very high decompression rates (up
to more than a billion integers per second and per core on current
CPUs). It also achieves a very small compressed index size, partic-
ularly for highly clustered data sets. OPT-PFD was previously used
to compress non-positional indexes for versioned collections in [11,
12]. Some moderate additional reductions in index size could be ob-
tained by using the Interpolative Coding techniques (IPC) in [22], at
the cost of slower position lookups.

Query processing and positions: Very simple ranking functions
such as BM25 or the Cosine measure can be implemented by in-
tersecting (conjunctive queries) or merging (disjunctive queries) the
inverted lists of the query terms, and then computing a score based
on the frequency data in the postings and other information such as
document sizes and term frequencies. However, it is known that po-
sition data can be used to obtain significantly better result rankings
than those achievable using only frequency data (see, e.g., [21]).

Fetching the position data for all postings in the intersection or
union of the inverted lists would be quite expensive. Instead, a
widely used approach [24] first applies a simple non-positional rank-
ing function (e.g., BM25), and then determines the top-k results un-
der the positional ranking by fetching position data only for the top
k′ results under the simple function, for some k′ > k. This signif-
icantly reduces the cost of fetching positions, such that positional
ranking can be performed in almost the same time as non-positional
ranking. One consequence of this approach is that accesses to po-
sitional index data are much sparser than accesses to docIDs and
frequencies.

2.2 Indexing Versioned Collections
A versioned document collection C is a set of documents d0, . . . , dn−1

where each document di consists of mi versions d1i , . . . , d
mi
i . For

simplicity, we assume a linear history of versions; however, our
techniques also apply to collections with branches (forks) in the
revision history. For a general overview of challenges in building
large-scale archival systems for versioned data, see [3, 26]. There is
some amount of recent work on indexing and searching in versioned
document collections that can be split into three subsets, as follows.

Non-positional versioned indexing: A number of compression
methods for non-positional versioned indexes have been proposed
[4, 15, 7, 5, 11, 12, 8]. The first work on this problem appears to
be the work of Anick and Flynn in [4], which proposes a scheme
based on the idea of indexing the delta between consecutive doc-
ument versions and then adjusting query processing suitably. The
last few years have seen several new techniques that achieve much
better compression. While our focus in this paper is on positional
index structures, our complete query processor also requires an ad-
ditional non-positional index. This index is used to first compute
a simple ranking function that determines which items need to be
fetched from our positional structure, as discussed at the end of the
previous subsection.

We employ a non-positional index structure proposed in [12],
which appears to achieve a very good trade-off between size and
speed. This structure is based on a two-level approach, inspired by
an earlier idea in [1] for a related but different problem. In a nutshell,
the idea is to use two levels of indexing, a small first-level index that
only stores whether a term occurs anywhere in a document (plus
quantized upper-bound scores for each document in the case of dis-
junctive queries), and a larger second-level index that stores which
versions contain the term and what their frequencies are. Query
processing involves accessing the first level to perform filtering, and
then selectively those parts of the second level that are still needed.

However, other non-positional structures could also be used with
our approach.

Positional versioned indexing: There has been much less work
on positional indexes for versioned collections. We note that there
are basic differences between the positional and non-positional case.
Non-positional indexes can use a set- or bag-oriented approach to
model differences between consecutive versions of a document. In
the positional case, however, we need to think in terms of common
substrings. This way a change in position information due to an
insertion or deletion before the start of the substring can be handled
by changing the offset of the substring in the document, following
an idea first proposed in [20] for index updates. Thus, techniques for
non-positional indexes are of limited help for the positional case.

We are aware of two previous approaches for positional indexing
of versioned collections [32, 8]. The basic idea in [32] is to use
a content-dependent partition technique such as Karp-Rabin finger-
prints [18] or Winnowing [25] to split document versions into frag-
ments during indexing. Then each unique fragment is only indexed
once. This is done by computing for each fragment a hash value that
is compared to those of the already indexed fragments. In addition,
extra meta data structures are built, and appropriate changes in the
query processor made, in order to translate fragment-based matches
back to document versions during query processing.

Thus, the performance of the method in [32] depends on finding
a high-quality partition of document versions into fragments, such
that the total size of the distinct fragments is minimized. In this
paper, we follow the approach in [32], and our main goal is to come
up with new fragment selection and optimization mechanisms that
improve significantly over the Winnowing technique used in [32].

The approaches in [8], on the other hand, are based on very dif-
ferent techniques such as Lempel-Ziv compression, re-pairing, and
self-indexing structures. We will provide an experimental compari-
son with results in [32] and [8] in later sections.

Range and Aggregation Queries: Several recent papers have
studied query operations other than standard ranked queries for ver-
sioned collections. In particular, [2, 10] looked at how to support
temporal range queries over versioned collections, where queries are
restricted to a certain interval of time. Also, [30] proposed a query
operator called durable search that returns documents that consis-
tently rank highly over some time period, thus aggregating scores
over multiple versions.

We note here that these operations are orthogonal to our approach,
and could be easily integrated into our framework by suitably mod-
ifying the non-positional part of the index and query processor. In
general, we try to sidestep the question of what the best ranking
function and query operations are, and in our experiments we just
use a fairly simple ranking function (BM25) in the non-positional
part in order to drive the lookups into our positional structure.

2.3 Content-Dependent String Partitioning
A large amount of research in operating systems and network-

ing has focused on how to detect and eliminate redundancies in
large data collections; see, e.g., [23, 16, 27, 19, 29, 28]. While the
proposed methods utilize a number of interesting algorithmic tech-
niques, one technique, content-dependent string partitioning, is of
particular interest to us here.

In a nutshell, the goal is to divide each file into substrings (or
fragments) such that files that contain a lot of similarity have a lot of
common substrings. Note that if we simply split files into fixed-size
fragments, we might not see any common fragments at all even if
the files differ by only a single insertion or deletion at the beginning
of the file, due to misalignments of the fragment boundaries in the
files. Thus, the goal is to come up with partitioning methods that are
robust to small changes due to insertions and deletions, and that can

be applied independently on the various files, which might in fact be
located on different machines.

Several approaches have been proposed in the literature which
all use hash values on small local substrings to determine fragment
boundaries. This means that any long common substrings in dif-
ferent files (or versions) are partitioned in the same way, resulting
in common fragments. The first and best known partitioning tech-
nique is based on Karp-Rabin (KR) fingerprints [18], and works as
follows: We first slide a window of some size c through the file and
compute a hash value h(s) for each substring s of length c. We
then declare a fragment boundary before any substring s such that
h(s) is xmod y for some fixed choice of x and y. Two more re-
cent techniques, the Winnowing (WIN) approach in [25] and the
2-way Min (2MIN) approach in [29], follow the same idea of hash-
ing substrings of fixed size, but use different conditions for defining
fragment boundaries.

While all three approaches are used in the literature, experimental
results suggest that 2MIN [29] results in more (and overall longer)
common substrings, thus identifying more redundancy. The tech-
nique works as follows: As before, we compute hash values for all
substrings of some fixed size c, say c = 10 or c = 20. This gives us
an array of integer hash values h[0 · · ·n−c]. We then set a fragment
boundary before position i in the input file if h[i] is strictly smaller
than all other h[j] with i−w ≤ j < i+w for some fixed w that we
select. In other words, we set a boundary wherever the hash value is
the smallest value within a neighborhood of radius w. This results
in an average fragment size of about 2w. The process is illustrated
in Figure1:

Figure 1: Example of the 2MIN file partition techniques in [29]. A
small window of size c = 3 moves over the input file (top) to create an
array of hash value (bottom). Then we select fragment boundaries using
w = 2.

3. OUR CONTRIBUTIONS
In this paper, we study the problem of organizing and compress-

ing positional index structures for versioned collections. In particu-
lar, our main contributions are as follows:

• We describe a complete framework for full-text indexing and
querying in versioned document collections. This framework
combines ideas from [32] and [12], and enables fast top-k
query processing with succinct index structures.

• We study the problem of finding good partitionings of docu-
ment versions into fragments. Our methods differ from strictly
local methods such as KR, WIN, and 2MIN in that we can ex-
ploit knowledge of the edit history of a document.

• We describe a multi-level optimization approach for finding
good partitionings that scales to very large data sets.

• Finally, we perform an experimental evaluation of our ap-
proach based on large document collections from Wikipedia
and the Internet Archive. The results show significant reduc-
tions in index size over previous work while maintaining very
fast query processing.

4. VERSIONED INDEXING FRAMEWORK
We now describe our general framework for indexing and query-

ing versioned document collections. The framework further devel-
ops earlier ideas in [32], and combines them with ideas for the non-
positional case in [12]. We first give a high-level description of
our positional indexing approach, and then show how to combine
positional and non-positional indexes to support query processing.
Finally, we provide some experimental results for several baseline
methods.

In the following, we use the term fragment to refer to any sub-
string generated by some partitioning of the document versions,
based on the content-dependent partitioning schemes in Subsection
2.3 or other techniques. All our partitioning schemes and fragments
respect word boundaries, such that no word is cut in the middle; this
is done by first replacing words with word IDs, and then hashing
each sequence of c word IDs. Each occurrence of a fragment f is
called an application of f . We assume that each document is identi-
fied by a docID, each version of a document by a vID (which could
consist of a docID and a version number), and each fragment by a
fragID.

4.1 Positional Index Structure
Now we describe our positional index structure for versioned doc-

ument collections.
Positional indexing process: We first describe the indexing pro-

cess assuming that we directly apply one of the content-dependent
partitioning techniques in section 2.3, as in [32]; we later discuss
how to accommodate the new partitioning schemes used in this pa-
per. To build the positional index, we partition each new version of
a document into fragments. For each fragment, we then compute an
MD5 hash over the entire fragment, and check a table to see if the
same fragment was previously encountered in the same document.
If the fragment has not occurred before, we assign it a new fragID,
and then index the fragment as if it were a separate document, creat-
ing postings consisting of a fragID and the position of a term within
the fragment. Note that there is no frequency stored in the post-
ings since most such frequencies are 1; it is more efficient to repeat
the fragID in several postings if needed, at least after index com-
pression. The resulting posting lists are ordered by fragID, where
fragments in the same document are assigned a common range of
fragIDs. The fragment-based position index is then compressed us-
ing standard techniques. In particular, we use OPT-PFD on blocks
of 128 values for both fragIDs and positions within fragments, thus
allowing efficient random lookups into the lists.

Meta data structures: To support positional lookups on this in-
dex structure, we need additional data structures that allow us to map
between positions in fragments and positions in document versions.
Thus, we maintain a version/frag table that stores, for each version,
the number of fragment applications in the version and the list of
fragIDs in the order in which the fragments occur in the version.
This table is compressed using suitable techniques, as described
later. In addition, we store the size of each fragment (in words)
in a separate frag size table. Note that these two tables, which we
call meta data, are kept completely in main memory during query
execution.

All the major structures are shown in Figure 2. Our meta data
structures are similar to, but different from, those described in [32].
Note that we are not showing the table of fragment hashes men-
tioned earlier. The reason is that this table is only useful for index
updates when directly applying the content-dependent partitioning
schemes in Subsection 2.3. Our goal in later sections is to come up
with new partitioning schemes that exploit the history of a document
for better compression; however, the update scheme based on a hash
table will not apply in this case anymore. We discuss this issue later.

Performing position lookups: Accesses to the positional index

structure are in the form of lookups containing a term and a vID,
asking for the positions of all occurrences of the term in a version. A
lookup is performed by first obtaining the range of fragIDs assigned
to the document – recall that each document has its own contigu-
ous range of fragIDs, though this is not true for each version. Then
we access the inverted lists to get all fragIDs within this range that
contain the term. Next, we access the version/frag table and fetch
and uncompress the entry for the version. Finally, we use this infor-
mation to check which fragIDs returned by the index occur in the
requested version, and for those that do, we translate the position
within the fragment back to a position within the version.

Figure 2: Major data structures in the positional index, including the
inverted lists (top) and the meta data (bottom).

Note that if several versions of the same document need to be
looked up for the same term, we can do this faster by passing a
list of vIDs and performing only one lookup into the inverted list.
Finally, when accessing several inverted lists for the same vID (as
would happen as part of a multi-term query), we could try to fetch
and uncompress the corresponding entry in the version/frag table
only once, but the benefits of this are very small.

4.2 Query Processing
Next we describe how to integrate the positional index structure

into our overall framework for positional query processing over ver-
sioned document collections. For this, we add a non-positional in-
dex structure. In particular, we implemented a two-level index struc-
ture called 2R-MSA described in [12], which supports fast ranked
top-k queries under simple non-positional ranking functions such as
BM25. The resulting structure is sketched in Figure 3, showing the
two levels of the non-positional index on the left, and the positional
index and meta data on the right.

Note that only the meta data needs to be kept in memory during
query processing, while all layers of the inverted lists can be kept
on disk or partially cached in main memory using any state-of-the-
art caching policy. Also, the first-level, second-level, and positional
inverted lists for each term are actually laid out next to each other
on disk, such that all three structures can be fetched with a single
disk seek. Finally, we note that in principle the non-positional index
is not even required to perform query processing, as all necessary
information is also contained in the positional index and meta data.
However, each such query would take hundreds of ms to complete,
while the non-positional two-level index (which is much smaller
than the positional index) accelerates it to a few ms.

Using this setup, a top-k keyword query for a positional ranking
function is executed by first issuing the query to the non-positional
index structures to return the top k′ results (vIDs) for some k′ > k.
This is done by using DAAT query processing over the first level,
and lookups into the second level, as described in [12]. In the sec-
ond stage, we perform lookups into the positional index for these
k′ results, and then use the positional data to rerank the results and
return the top k results.

Note that there is a natural trade-off between meta data size and
positional index size that is present in both our work here and [32].

Basically, using smaller fragments results in more meta data but also
more common fragments between versions and thus (up to a point)
a smaller index. Our goal in this paper is to obtain the best trade-off
between meta data and index size. A smaller meta data size means
that less memory is needed to store this data, and that more main
memory is available for caching the other index data, an issue that
we will explore later.

Figure 3: Major data structures in our indexing framework.

One feature of our framework is that it separates positional and
non-positional query processing issues. Thus, for example, the de-
cision on whether to perform disjunctive or conjunctive query pro-
cessing only impacts query processing in the non-positional part. It
is also easy to support temporal range queries by applying the tech-
niques in [10] in the non-positional index. Aggregate operations
such as the durable search operator in [30] can also be handled in
the first level. Finally, when performing searches in versioned doc-
ument collections, it is often desirable to limit the number of results
from the same document that are returned, say, returning only the
highest-scoring version of each document. This is also easy to do in
our setup.

4.3 Preliminary Experimental Results
In this section, we first describe the data sets used in this paper.

Then we present some preliminary experimental results comparing
existing approaches, thus setting a baseline over which to improve
in subsequent sections.

Data sets: We use a versioned document collection from Wikipedia
(WIKI) and a data set from the Internet Archive. The Wikipedia data
consists of 240,000 distinct documents with on average 35 versions
per document. The documents were selected as a 10% random sam-
ple from a complete snapshot of the English language Wikipedia
from Jan 2001 to Jan 2008. The Internet Archive data consists of
1.06 million documents from the Irish web domain collected be-
tween 1996 to 2006. Only documents with at least 10 distinct ver-
sions were selected, and each document has 15 versions on average.
Similar data sets were also used in [30, 12, 8].

Experimental results: We now present preliminary experimen-
tal results on our data sets. We compare three basic approaches,
the one in [32] (ZS), the best approach in [8] based on VByte and
LZMA (CFMN), and a trivial baseline where all versions are treated
as separate documents (no sharing). For the ZS approach, we ex-
plore three different content-dependent partitioning techniques: KR,
WIN (used in [32]), and 2MIN.

We set the parameter w = 20 for the 2MIN version of ZS, result-
ing in a total of 348, 548, 098 fragment applications. To enable a
fair comparison with ZS-KR and ZS-WIN, we selected parameters
for those methods such that they result in approximately the same
number of applications and the same meta data size. For CFMN, we
report the best result presented in [8]. CFMN and the trivial baseline
do not have a distinction between meta data and the actual index.

Table 1 shows the index size, meta data size (if applicable), to-
tal index size, and number of indexed positions for each method,
for the WIKI data set. All methods except CFMN use OPT-PFD to
compress the positional index. As we see, all methods achieve sig-

index meta total millions of positions
No sharing 19053 - - 14404

ZS-KR 2762 96 2858 1880
ZS-WIN [32] 1479 96 1575 971

ZS-2MIN 1324 96 1420 867
CFMN [8] - - 1954 -

Table 1: Comparison of resulting index sizes for different baseline
methods on the Wikipedia data. Shown from left to right are index size,
meta data size, and total index size in MB, and the number of positions
indexed in millions.

nificant improvements over the trivial baseline. Both ZS-WIN (used
in [32] and ZS-2MIN) achieve a smaller size than CFMN, with ZS-
2MIN outperforming ZS-WIN by about 10%. Surprisingly, ZS-KR
is much worse than the other methods, showing that the choice of
content-dependent partitioning technique can make a big difference
in practice.

index meta total millions of positions
No sharing 13026 - 13026 9885

ZS-KR 4820 84 4904 3391
ZS-WIN [32] 3708 84 3792 2422

ZS-2MIN 3618 84 3702 2386

Table 2: Comparison of resulting index sizes for different baseline
methods on the Internet Archive data set. Shown from left to right are
index size, meta data size, and total index size in MB, and the number
of positions indexed in millions.

Table 2 shows results for the Internet Archive data set. For this
data set, no results for CFMN were available. Here, the reduction
in size over the trivial baseline is smaller but still substantial (up to
a factor of 3.6). This is probably because the average number of
versions per document is smaller than for Wikipedia. Again, ZS-
2MIN achieves the smallest index size of all. Thus in the remainder
of the paper, we use ZS-2MIN as the baseline over which we need
to improve.

5. IMPROVED PARTITIONING METHODS
In this section, we describe new algorithms for selecting good

fragments, i.e., for partitioning versions into substrings in a way
that obtains a good trade-off between index and meta data size.

We start by defining the problem more formally. To model index
size, we assume (for now) that it is proportional in the number of
positions that are indexed, that is, the sum of the sizes of all distinct
fragments that are created in the partitioning. On the other hand, the
size of the meta data is proportional to the total number of fragment
applications. This is because the meta data size is dominated by the
version/frag table, which needs to store at least one fragID for each
application. Note that fragments in our setup are only reused within
versions of a single document, and thus we perform fragment selec-
tion separately in each document. For a document d with versions
d1, . . . , dm, the problem of minimizing index size given an upper
bound on meta data size can be formulated as follows:

Problem: Given strings d1, . . . , dm and an integer t, find a set
of strings F minimizing

∑
f∈F len(f) such that every di can be

partitioned into a multiset of substrings Ci with
∑

i |C
i| ≤ t and

set(Ci) ⊂ F .1

The problem discussed here is similar to the Minimum Substring
Cover Problem studied by Hermelin et al. [14], which was moti-
vated by applications in Computational Biology and Formal Lan-
guage Theory. The main difference is that in [14] the bound t is on
the size of each Ci, rather than the sum of the sizes. This changes
the structure of the problem, and thus the algorithms in [14] and
their proof of NP Completeness do not extend to our case. (We con-

1set(Ci) is the set corresponding to multiset Ci.

jecture that our problem is also NP Complete, but are still working
on a proof.)

Note that the numbers of postings and fragment applications do
not provide a precise model for the sizes of the index and meta data
structures, respectively. The meta data contains an additional frag
size table that is not accounted for in this model, and both structures
are compressed using a technique (OPT-PFD) that defies easy anal-
ysis. However, we found that this simplistic model is usually good
enough to guide our optimization methods towards good solutions
(though we introduce a slightly refined model later).

In the following subsections, we describe several methods for
finding good partitionings via careful selection of fragments, given
a limitation on the number of fragment applications. Most of our
methods follow the same overall structure, consisting of several lev-
els of optimization. On the top level, we need to decide how much
of the allowed meta data size (or number of applications) should
be allocated to each document, and on the lower level we optimize
fragment selection in each document given a bound on the num-
ber of applications. This fragment selection method greedily selects
fragments from a pool of candidate fragments, and the main overall
challenge is how to generate a limited-size pool of promising can-
didate fragments, given that putting all possible substrings into the
pool is not a feasible option. Due to space constraints we can only
sketch some of the methods.

The main idea motivating our work here is that standard content-
dependent partitioning techniques such as KR, WIN, and 2MIN
choose boundaries using only local information, and are thus blind
to version history. In fact, this is a major advantage in many ap-
plications, where boundaries have to be chosen independently, e.g.,
for similar files located on different machines. But in our case, we
have all the different versions available during indexing, and thus we
should be able to select better fragments by looking beyond a single
version and peeking into earlier and later versions of the same docu-
ment. While this seems intuitive, it turns out to be quite challenging
to really outperform the results obtained by just applying 2MIN to
the approach in [32].

5.1 A Simple Improvement
We start out with a simple improvement over ZS-2MIN that demon-

strates some of the issues we have to address. Recall that the 2MIN
partitioning uses a parameter w that determines the average frag-
ment size. However, it is not obvious what the best choice of w
is, as this depends on the amount of redundancy between different
versions. More significantly, we should not expect the best overall
trade-off from using the same parameter w for all documents – we
may get much better results by using a smaller w for some docu-
ments and a larger for others.

ZS-MF: This leads to the first improved heuristic, ZS-MF. We
start out by partitioning every document several times using 2MIN
with different parameters w, and storing the number of postings gen-
erated and the number of fragment applications for each w. This
results in a small table such as Table 3 showing a trade-off between
postings and fragment applications. We generate such a table for
each document in the collection.

w # of frag. applications # of dist. frags # of positions
no sharing - - 68906

50 4832 483 51580
42 5518 509 46112
34 6641 552 41056
26 9003 608 34167
18 12538 713 27762
10 21844 956 21420

Table 3: An example of an actual position/meta data trade-off table for
a document, where w is varied from 10 to 50.

Note that there is no obvious best choice for w based on the above
table, as the best choice depends on choices available in other docu-

ments. To deal with this, we optimize across all different documents
as follows. We first select in all documents the largest value of w. If
this already results in more applications than the global budget, then
we would fail, so we make sure to choose a large enough maximum
value for w. Now we repeatedly select one document and decrease
its w value, resulting in an increase in the number of applications
but a decrease in index size, until we reach the limit for the number
of applications. In fact, we greedily select the document, and the
new smaller value of w, that gives us the largest benefit, defined as
the ratio of index size decrease and meta data increase.

To do this, we initialize a heap structure containing an entry for
every possible choice of document and new value of w. Elements
in the heap are organized by their benefit. Now we repeatedly ex-
tract the element with the largest benefit, update our overall counts
of fragment applications and positions, and then update any other
elements in the heap whose benefit is changed due to our choice. In
the example table above, if we decrease w from 50 to 34, we would
delete the entry for w = 42 from the heap, and update the benefits
of w = 26, w = 18, and w = 10 to reflect the new starting point
w = 34. (Only entries for the same document need to be deleted
or updated.) We continue this process until we have exhausted our
fragment application budget.

The simple heuristic used in ZS-MF already gives measurable im-
provements over ZS-2MIN, as we will see in the later experimental
results. Note that the heap-based optimization across different doc-
uments using trade-off tables is also used in all our subsequent algo-
rithms. Finally, we note that partitioning files using many different
values of w does not have to be expensive at all, due to an inter-
esting property of the 2MIN partitioning scheme. In particular, any
boundary selected using w will also be a boundary for any w′ < w,
fragments obtained using different values of w form a hierarchical
partitioning, and we can compute the boundaries for all possible val-
ues of w in a single computation using some simple data structures.

5.2 Hierarchical Fragment Selection
We now present the next set of heuristics for further improve-

ments. While the approach in the previous subsection tried different
values of w, in the end we selected one single value of w in each
document. However, one would expect that updates between ver-
sions are not uniformly distributed over files, and that it might be
beneficial to use different fragment sizes in different parts of the file
(e.g., smaller or larger fragments at the start or end of the file, or in
earlier or later versions). In fact, a similar idea was used in [17] in
the context of removing redundancy in network transmissions.

Implementing this requires a new mechanism that allows us to se-
lect a mix of fragments of different sizes. Our high-level approach
for this is as follows: We start out by generating a large pool of can-
didate fragments for each document. Then we greedily select good
fragments from the pool until all versions are completely covered,
as discussed further below. The main problem is how to create a
good candidate pool. We propose two simple approaches for this:

ZS-MFS: We use 2MIN partitioning in order to define a hierar-
chical partitioning, by varying w from a small value w0 to some
maximum value, and defining the candidate pool as containing all
fragments on all the levels. We note that this number is linear in the
number of bottom-level fragments.

ZS-MOF: This approach attempts to create a larger and richer
candidate pool by using a hierarchy that contains additional partially
overlapping fragments on some levels. In particular, we first select
all fragments for the smallest value of w0. Then we add to the pool
new artificial fragments consisting of any consecutive k fragments
from the bottom level, for k = 2, 3, 4 up to some kmax. Above this
level, we simply continue as in ZS-MFS. Thus, in ZS-MOF we put
all candidate fragments from ZS-MFS into the pool, and then add
additional overlapping (shifted) fragments at the lower levels. As we

will see, in practice kmax = 3 or 4 is enough, and thus the candidate
pool does not get overly large. (We also tried other schemes for
creating larger candidate pools of overlapping fragments, but this
simple approach did almost as well as the best.)

Figure 4: Example of the candidate fragments considered in ZS-MFS
(top) and ZS-MOF (bottom), showing only the bottom two layers. As
shown, ZS-MOF adds additional overlapping fragments in Level 2. Note
that we use characters instead of word IDs for the underlying terms, to
simplify the figure.

The ZS-MFS and ZS-MOF schemes are illustrated in Figure 4.
We now describe how to select fragments from the candidate pools.
We first insert all fragments in the pool into a heap, organized by
a fragment score s, and then greedily select the fragments with the
highest scores from this heap. To define the score s, we first need to
introduce three other values for each fragment:

• the coverage c = l × m where m is the number of times
the fragment occurs in the document AFTER removing all
occurrences that intersect with previously chosen fragments.

• the index cost, which we define as ic = 1.0 (one unit per
position value).

• the meta data cost, which we define as mc = 1.0+ z×m for
some constant z (we choose z = 1.0).

Then the score of a fragment is defined as s = c/(ic + x × mc).
Here, the value x determines how much we value meta data size ver-
sus index size, and running the optimization with a larger x results
in a solution with a smaller meta data size. Thus, by trying several
different values of x we can again get a trade-off table as in ZS-MF,
and then run a global optimization across documents as before.

Note that after each extraction of a fragment from the heap, we
need to update the s-scores of all other fragments that overlap the
chosen fragment somewhere in some version of the document. This
is done by keeping for each fragment a list of conflicting (overlap-
ping) other fragments and then updating only these after an extrac-
tion. The overall problem of selecting the fragments given a can-
didate pool and a value x is sketched in Algorithm 1, with some
details omitted due to space constraints:

5.3 Frequency-Based Partitioning
In the previous subsection, we explained how to obtain better par-

titionings by creating a suitable pool of candidate fragments and
then greedily selecting from this pool. For efficiency reasons, the
size of the pool had to be limited; thus it is not feasible to place all
substrings of all sizes occurring anywhere in the document into the
pool, as some documents are quite large. Instead, we attempted to
create sparse but rich enough sets of fragments for the pool.

However, all of the candidate fragments were derived from a 2MIN-
based partitioning, and all the fragment boundaries occur as bound-
aries in 2MIN for some w. But there is really no reason to believe

Algorithm 1 optimize(frags, x)
Output: results

results← ∅;
h← ∅;
for i = 0 to frags.size() do

frags[i].score = getScore(frags[i], x);
h.push(frags[i]);

end for
while not (h.empty()) do

f ← h.pop();
results.insert(f);
flist← findConflictFragments(f);
for i = 0 to frags.size() do

flists[i].count← flists[i].count−1;
if flists[i].count = 0 then

h.remove(flists[i]);
else

/* update count and score for flists[i] in the h */
flists[i].score = updateScore(flists[i], x);
h.update(flists[i]);

end if
end for

end while
return results

that a random hash function (as used in 2MIN) is very good as pick-
ing exactly the right fragment boundaries. Thus, given that we can
look at the entire history of the document, can we come up with a
better and different way to determine fragment boundaries?

In this subsection, we describe such a way. We note that we still
take the general approach from the previous subsections. Thus, we
have a candidate pool from which fragments are greedily selected
based on their s-score, and we also have the global optimization
across documents using the trade-off tables.

Consider the first step in 2MIN partitioning, as described in Sub-
section 2.3, where we slide a window of some size c over a file and
compute a hash value for each window. Now however, instead of
choosing cuts based on this hash value, we choose cuts based on
the frequency (multiplicity) of the hash value which, ignoring colli-
sions, is equal to the number of times this substring of size c occurs
in entire document. In particular, we place a cut whenever we see
a large change in this frequency from one window position to the
next. In particular, when we see a sharp increase, we use the left
boundary of the current window to make a cut, and when we see a
sharp decrease we use the right boundary of the previous window
for the cut.

The intuition for this is quite simple: A high frequency indicates
that the content is shared by many versions and thus good mate-
rial for fragment candidates, while a low frequency indicates con-
tent that had a much shorter lifetime. Placing boundaries this way
should thus allow us to choose fragments of maximum size that are
undisturbed by edits, or more informally, we identify and cut out the
bad parts that limit the number of applications that a fragment sees.
Also, we have a good chance of getting consistent cuts in different
versions, avoiding misalignment problems as discussed in Subsec-
tion 2.3 in the context of fixed-size blocks.

To implement this, we need to add two details. First, we need to
define when a difference in frequency is significant enough to merit
placing a cut; this is determined by a value x. Second, we need a
safety valve for cases when the frequency-based approach creates
some very large fragments. We do this by using 2MIN to cut any
fragment of size greater than some value y, say y = 100 or more.

This gives us a partitioning of the versions into basic fragments.
We now create additional candidate fragments as in ZS-MFS and

ZS-MOF, by combining several consecutive base fragments into larger
candidate fragments. This gives us our candidate pool, and then the
rest of the method is as before. We refer to the resulting method as
ZS-FREQ.

5.4 Experimental Results
We now evaluate the different partitioning schemes by looking at

the resulting index sizes and index construction costs. We compare
the four new methods, ZS-MF, ZS-MFS, ZS-MOF, and ZS-FREQ,
and the ZS-2MIN method from Section 4. As before, we use OPT-
PFD to compress the resulting positional indexes.

Overview of results: We start with the positional index size, total
number of positions, and total number of distinct fragments for the
various methods, shown in Table 4. To allow a fair comparison, we
set the target budget for fragment applications as the number of frag-
ment applications in ZS-2MIN for w = 20. The numbers given are
for the best choices of various parameters; we investigate some of
these choices later. We can make the following observations: First,
all methods achieve decreases in total index size and in the number
of positions compared to ZS-2MIN. The best result is obtained by
ZS-FREQ, which reduces index size by about 22% over ZS-2MIN,
followed by ZS-MOF, ZS-MFS and ZS-MF. Second, the total num-
ber of distinct fragments is also reduced in these methods. Since the
number of fragment applications is fixed, this means that the pro-
duced fragments are used more frequently on average (which is of
course the whole point).

index meta total size positions distinct frags
ZS-2MIN 1324 96 1420 867 20.3
ZS-MF 1238 96 1334 771 18.9

ZS-MFS 1121 97 1218 702 16.7
ZS-MOF 1089 97 1186 661 15.8
ZS-FREQ 1035 97 1133 623 15.4

Table 4: Comparison of the different partitioning methods on the
Wikipedia data. Shown from left to right are the index size, meta data
size, and total index size in MB, and the total number of positions and
distinct fragments in millions.

In Table 5, we show results for selected methods on the Internet
Archive data. As before, the reductions in size are more limited,
due to the smaller number of versions per document. We observe
that ZS-FREQ achieves a roughly 18% smaller index size than ZS-
2MIN.

index meta total size positions distinct frags
ZS-2MIN 3618 85 3703 2386 55.6
ZS-MOF 3125 86 3211 2060 40.8
ZS-FREQ 2971 86 3057 1893 38.2

Table 5: Comparison of selected partitioning methods on the Internet
Archive data.

In Table 6, we show the time needed to build the index structures
for the trivial baseline, ZS-2MIN, and ZS-FREQ. All runs were per-
formed on a single core of an Intel Xeon E5520 processor running
at 2.26 Ghz, using the Wikipedia data with a total of about 8 million
versions and about 19 billion term occurrences. We divide the in-
dex construction into three phases: First, the time for selecting good
fragments; this applies only to ZS-FREQ (and the other new tech-
niques). Second, the time for parsing and creating postings, which
in the case of ZS-2MIN also includes the cost of running the 2MIN
partitioning (for ZS-FREQ, this cost is mostly included in the time
for the first phase). Third, the cost of merging the postings into a
final index.

We see that ZS-FREQ spends most of its time in the selection
phase, which is not surprising. Most of this time is spent inside the
optimize() algorithm, and we expect this could be brought down
somewhat through additional optimizations. We note that the time

for ZS-MOF and ZF-MFS is similar to that of ZS-FREQ, while that
for ZS-MF is closer to ZS-2MIN. ZS-2MIN spends a lot of time in
the 2MIN partitioning code, but then is much faster than the trivial
baseline during the merge, as much less position data needs to be
processed in this phase.

No sharing ZS-2MIN ZS-FREQ
Selection - - 18hours
Parsing 93 mins 2hours 40mins 10mins
Merging 65 mins 5 mins 5mins

Total 2hours 38 mins 2hours 45mins 18hours 15 mins

Table 6: Index construction time for different algorithms on the
Wikipedia data.

Choosing parameters: Next, we present results on how to tune
the various parameters. In Figure 5, we show the trade-off between
positional index size and meta data size for the various methods on
Wikipedia. To obtain the results, we first use ZS-2MIN with window
sizes ranging from 20 to 40. Then we run the other algorithms us-
ing the number of fragment applications from ZS-2MIN as an upper
bound. We see from Figure 5 that as the meta data size increases, po-
sitional index size decreases for all methods, as expected. Our new
partitioning methods all achieve a better trade-off than ZS-2MIN,
with ZS-FREQ consistently achieving the best results. We note that
even the largest meta data size chosen, about 97 MB for our 10%
data set, would result in a meta data size of slightly less than 1 GB
on the complete Wikipedia data of 2.4 million articles and over 80
million versions. Keeping this amount of data in main memory is
clearly feasible on many current systems.

Figure 5: Trade-off between index and meta data size for the various
algorithms on the Wikipedia data. The x-axis shows the compressed
meta data size in MB, while the the y-axis shows the positional index
size in MB.

Next, we investigate some more parameter choices. For the ZS-
MOF method, we had to choose a parameter kmax that limits how
many levels of overlapping fragments are put into the candidate
pool, and we suggested that a value of 3 or 4 is sufficient. This
issue is explored in Figure 6, where we show the index size and
index construction time of ZS-MOF for different choices of kmax.
For this data, we used a subset of only 1% of Wikipedia (i.e., 10%
of our set), as these runs were quite time consuming. We see that in-
dex construction time increases with kmax, but index size is already
close to optimal for kmax = 3.

Next, Figure 7 shows the impact of choosing different values for
the x (left) and y (right) parameter in ZS-FREQ. These experiments
were again run on a 1% subset due to time constraints. In both
charts, we have the meta data size in MB on the x-axis, and the
index size in MB on the y-axis. We see that choices of x = 15 and
y = 100 appear to get good results over the entire range.

Figure 6: Index size and index construction time for ZS-MOF with
different values of kmax, on a sample of the Wikipedia data. The y-axis
on the left shows the index size in MB, and the y-axis on the right shows
the index construction time in minutes.

Figure 7: Selecting parameters x and y for the ZS-FREQ method.

6. QUERY PROCESSING
In this section, we describe how to support fast positional lookups

during query processing, and then provide some experimental re-
sults.

Position lookups: As discussed in Section 4, we assume that a
query first executes a simple ranking operation on a non-positional
index structure. Afterwards, position lookups are performed for a
limited number (a few hundred or a thousand) of the most promising
documents that were returned. This means that position lookups
are fairly sparse and essentially random accesses into the positional
lists. (However, given the characteristics of hard disks, we still have
to fetch the entire position list into main memory if it is not cached,
as skips in the accesses are rarely large enough to justify extra disk
seeks.)

Recall the version/frag table, which is assumed to be held in mem-
ory. Then a lookup for the positions of a term within a version
consists of three steps: (1) determining the range of the fragIDs
assigned to a document, (2) fetching all position data for this range
from the position list for this term, and (3) fetching the entry for the
version from the version/frag table and using that information plus
the data from the frag size table to translate positions within frag-
ments into positions within the version. When performing lookups
for several versions of the same document, all vIDs are passed to the
lookup mechanism in one call, enabling faster batch processing of
these lookups.

The range of fragIDs assigned to a document can be stored in a
simple table with one entry per document containing a base fragID
for this document. The frag size table is also easily stored as an
array of unsigned chars (if fragments are of size at most 256) or
shorts otherwise. Some more work is needed to store and compress
the version/frag table, which is the largest of the structures. Here,
we store the first fragID of each version as an offset from the base
fragID of the document, and each subsequent fragID as a gap from
the previous fragID (with an additional bit for the sign of the gap).
These values are then organized in blocks of 128 and compressed
using OPT-PFD, with an appropriate lookup structure that allows
fetching of the list of fragIDs for a particular version. A further

improvement exploits the fact that the list of fragIDs in consecu-
tive versions is often very similar, by using the list of the preceding
version as a reference for encoding the next list (similar to what
is commonly done to compress adjacency lists in web graphs [6]).
Overall, this results in significant size reductions that are crucial for
a good trade-off between meta data and index size.

Lookup performance: We present some performance results for
position lookups in Table 7. The results are based on the ZS-FREQ
method, but similar numbers hold for all partitioning methods since
lookup costs are fairly insensitive to the quality of the partitioning.
In the results, we exclude the cost of the initial traversal of the non-
positional index, and only count the costs of the positional lookups.

From top to bottom, Table 7 shows the number of positions per
query that are returned, the time for finding the first fragID in the
relevant fragID range in the index, the time for decoding index data,
the time for translating fragment positions back into version posi-
tions, and the total time, all in ms per query. Finally, at the bottom
we see the cost per position fetched, in microseconds. This is for the
case where we allow each document to be represented by multiple
versions in the top-k results. As we see, lookups are quite efficient,
and costs are around 2.5 ms when we fetch positions for the top-
1000 results returned by the non-positional index.

Table 8 shows how lookup times increase as we limit the number
of versions per document that are allowed in the top-k results. The
motivation for this is that the user may not be interested in receiving
10 results that are all different versions of the same document, and
thus a query processor may decide to limit the number of versions
from the same document (similar to the way in which search engines
may limit the number of results from the same web site). We would
expect this to result in slower lookups into our structure as there is
less access locality, and less opportunity for batching accesses as
discussed. However, even when fetching position information for
1000 versions from 1000 distinct documents, costs are moderate at
about 6.44 ms per query.

Top-10 Top-100 Top-1000
of decoded positions 130 306 2700

Seek time 0.1 0.24 1.87
Decode time 0.03 0.08 0.29

Translation time 0.02 0.03 0.38
Total time 0.15 0.35 2.54

Cost per position in us 1.2 1.1 0.9

Table 7: Performance of our positional lookup mechanisms. All times
are in ms per query, except for the cost per position which is in microsec-
onds.

Top-10 Top-100 Top-1000
1 0.22 0.92 6.44
5 0.21 0.80 6.25

10 0.15 0.65 5.56
20 0.15 0.51 4.83
40 0.15 0.41 3.79
60 0.15 0.38 2.78

no limit 0.15 0.35 2.54

Table 8: Performance of our positional lookup mechanisms when we
limit the number of versions per document allowed in the top-k, in ms
per query.

Impact of caching: In the above experiments, we assumed that
the positional index is in main memory. We also performed experi-
ments in a scenario where the index resides on disk but is partially
cached in main memory, as is the case in many real systems. As ex-
pected, all methods benefited significantly from caching, with ZS-
FREQ again outperforming the other methods.

7. CONCLUSIONS
In this paper, we have studied how to build succinct positional

full-text index structures for versioned document collections. We

described a general framework for indexing and querying based on
document partitioning, and then proposed new techniques for se-
lecting good partitionings. Our experimental results showed that the
proposed methods achieve significant reductions in index size while
also supporting very fast query processing.

There are a number of open issues that we are trying to resolve.
First, we believe that additional refinements in the ZS-FREQ ap-
proach could result in additional index size decreases and much
faster index building methods. The current approach with its re-
liance on the x and y parameters seems somewhat ad-hoc. Second,
we are looking at how to best update our structures. One of the
benefits of the approach in [32] was that updates could be handled
easily through use of a hash table mechanism, but this breaks down
with the new partitioning techniques. Part of this is fundamental:
Since our goal is to exploit the entire history of a document, any in-
cremental updates are bound to eventually degrade the performance
of the scheme. However, we believe that some of these drawbacks
can be ameliorated.

Acknowledgments
This research was supported by NSF Grant IIS-0803605 “Efficient
and Effective Search Services over Archival Webs”, and by a grant
from Google. We also thank the Internet Archive for providing ac-
cess to the Ireland data set.

8. REFERENCES
[1] I. Altingovde, E. Demir, F. Can, and O. Ulusoy. Incremental

cluster-based retrieval using compressed cluster-skipping in-
verted files. ACM Trans. on Information Systems, 26(3), June
2008.

[2] A. Anand, S. Bedathur, K. Berberich, and R. Schenkel. Effi-
cient temporal keyword search over versioned text. In Procȯf
the 19th ACM Int. Conf. on Information and Knowledge Man-
agement, 2010.

[3] A. Anand, S. Bedathur, K. Berberich, R. Schenkel, and C. Try-
fonopoulos. Everlast: a distributed architecture for preserving
the web. In Proc. of the 9th ACM/IEEE Joint Conference on
Digital Libraries, 2009.

[4] P. G. Anick and R. A. Flynn. Versioning a full-text information
retrieval system. In Proc. of the 15th Annual Int. ACM SIGIR
Conf. on Research and Development in Information Retrieval,
1992.

[5] K. Berberich, S. Bedathur, T. Neumann, and G. Weikum. A
time machine for text search. In Proc. of the 30th Annual Int.
ACM SIGIR Conf. on Research and Development in Informa-
tion Retrieval, pages 519–526, 2007.

[6] P. Boldi and S. Vigna. The webgraph framework I: compres-
sion techniques. In Proc. of the 13th Int. World Wide Web Con-
ference, 2004.

[7] A. Broder, N. Eiron, M. Fontoura, M. Herscovici, R. Lempel,
J. McPherson, R. Qi, and E. Shekita. Indexing shared content
in information retrieval systems. In Proc. of the 10th Int. Conf.
on Extending Database Technology, pages 313–330, 2006.

[8] F. Claude, A. Fariña, M. Martínez-Prieto, and G. Navarro. In-
dexes for highly repetitive document collections. In Proc. 20th
ACM International Conference on Information and Knowl-
edge Management (CIKM), 2011.

[9] J. Dean. Challenges in building large-scale information re-
trieval systems. In Proceedings of the Second ACM Interna-
tional Conference on Web Search and Data Mining, 2009.

[10] J. He and T. Suel. Faster temporal range queries over versioned
text. In Proc. of the 34th Annual Int. ACM SIGIR Conf. on
Research and Development in Information Retrieval, 2011.

[11] J. He, H. Yan, and T. Suel. Compact full-text indexing of ver-
sioned document collections. In Proc. of the 18th ACM Int.
Conf. on Information and Knowledge Management, 2009.

[12] J. He, J. Zeng, and T. Suel. Improved index compression tech-
niques for versioned document collections. In Proc. of 18th
ACM Int. Conf. on Information and Knowledge Management,
2010.

[13] S. Heman. Super-scalar database compression between RAM
and CPU-cache. MS Thesis, Centrum voor Wiskunde en Infor-
matica, Amsterdam, July 2005.

[14] D. Hermelin, D. Rawitz, R. Rizzi, and S. Vialette. The mini-
mum substring cover problem. Information and Computation,
206(11), 2008.

[15] M. Herscovici, R. Lempel, and S. Yogev. Efficient indexing of
versioned document sequences. In Proc. of the 29th European
Conf. on Information Retrieval, 2007.

[16] J. Hunt, K.-P. Vo, and W. Tichy. Delta algorithms: An em-
pirical analysis. ACM Trans. on Software Engineering and
Methodology, 7, 1998.

[17] U. Irmak and T. Suel. Hierarchical substring caching for effi-
cient content distribution to low-bandwidth clients. In Proc. of
the 14th Int. World Wide Web Conference, May 2005.

[18] R. Karp and M. Rabin. Efficient randomized pattern-matching
algorithms. IBM J. of Research and Development, 31(2):249–
260, 1987.

[19] P. Kulkarni, F. Douglis, J. LaVoie, and J. Tracey. Redundancy
elimination within large collections of files. In USENIX An-
nual Technical Conference, 2004.

[20] L. Lim, M. Wang, S. Padmanabhan, J. S. Vitter, and R. Agar-
wal. Dynamic maintenance of web indexes using landmarks.
In Proc. of the 12th Int. World Wide Web Conference, 2003.

[21] D. Metzler and W. Bruce. A markov random field model for
term dependencies. In Proc. of the 28th Annual Int. ACM SI-
GIR Conf. on Research and Development in Information Re-
trieval, 2005.

[22] A. Moffat and L. Stuiver. Binary interpolative coding for effec-
tive index compression. Information Retrieval, 3:25–47, July
2000.

[23] A. Muthitacharoen, B. Chen, and D. Mazières. A low-
bandwidth network file system. In Proc. of the 18th ACM
Symp. on Operating Systems Principles, pages 174–187, Oc-
tober 2001.

[24] Y. Rasolofo and J. Savoy. Term proximity scoring for keyword-
based retrieval systems. In Proc. of the 25th European Confer-
ence on Information Retrieval, 2003.

[25] S. Schleimer, D. Wilkerson, and A. Aiken. Winnowing: Lo-
cal algorithms for document fingerprinting. In Proc. of ACM
SIGMOD Conf. on Management of Data, pages 76–85, 2003.

[26] S. Song and J. Jaja. Archiving temporal web information: Or-
ganization of web contents for fast access and compact storage.
In Technical Report UMIACS-TR-2008-08, 2008.

[27] N. Spring and D. Wetherall. A protocol independent technique
for eliminating redundant network traffic. In Proc. of the ACM
SIGCOMM Conference, 2000.

[28] T. Suel and N. Memon. Algorithms for delta compression and
remote file synchronization. In K. Sayood, editor, Lossless
Compression Handbook. Academic Press, 2002.

[29] D. Teodosiu, N. Bjorner, Y. Gurevich, M. Manasse, and
J. Porkka. Optimizing file replication over limited bandwidth
networks using remote differential compression. TR2006-157-
1, Microsoft, 2006.

[30] L. U, N. Mamoulis, K. Berberich, and S. Bedathur. Durable
top-k search in document archives. In Proc. of ACM SIGMOD
Conf. on Management Of Data, 2010.

[31] H. Yan, S. Ding, and T. Suel. Inverted index compression and
query processing with optimized document ordering. In Proc.
of the 18th Int. World Wide Web Conference, 2009.

[32] J. Zhang and T. Suel. Efficient search in large textual collec-
tion with redundancy. In Proc. of the 16th Int. World Wide Web
Conference, 2007.

[33] J. Zobel and A. Moffat. Inverted files for text search engines.
ACM Computing Surveys, 38(2), 2006.

[34] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar
RAM-CPU cache compression. In Proc. of the Int. Conf. on
Data Engineering, 2006.

