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Abstract. We study local-control algorithms for maximum flow and multicommodity
flow problems in distributed networks. We propose a second-order method for acceler-
ating the convergence of the “first-order” distributed algorithms recently proposed by
Awerbuch and Leighton. Our experimental study shows that second-order methods are
significantly faster than the first-order methods for approximate single- and multicom-
modity flow problems. Furthermore, our experimental study gives valuable insights into
the diffusive processes that underly these local-control algorithms; this leads us to iden-
tify many open technical problems for theoretical study.

1 Introduction

The multicommodity flow problemis the problem of simultaneously shipping multiple com-
modities through a capacitated network such that the total amount of flow on each edge is
no more than the capacity of the edge. Each commodityi has a source node, a sink node,
and an associateddemanddi, which is the amount of that commodity that must be shipped
from its source to its sink. The objective is to find a flow that meets the individual demands of
all the commodities without exceeding any edge capacity (finding afeasible flow)4. The case
when there is only a single commodity and the goal is to maximize the feasible flow is the
well knownmaximum flow problem. The importance of the single- and multicommodity flow
problems need hardly be stressed – a substantial body of workin Algorithms and Operations
Research is devoted to these problems.

In this paper, we focus on local-control (or distributed) algorithms for the single- and mul-
ticommodity flow problems. Besides their inherent interest, local-control algorithms for these
problems are relevant because of the following reasons:

(1) Many routing, communication, and flow-control problemsbetween multiple senders and
receivers, including various uni/broad/multicasts, can be modeled as multicommodity flow
problems on networks (e.g., see the references in [BG91, BT89, AL93, AL94, AAB97]).
These applications typically require online, local-control (distributed) algorithms, since
global communication and control is expensive and cumbersome. Local algorithms for4 An alternate objective is to maximizez such that the flow satisfies a percentagez of every demand

without exceeding any edge capacity (called theconcurrent flow problem[SM86]); we do not consider
this version here.



multicommodity flow not only provide a generic solution to these problems, but they also
give valuable insights for the centralized/global solution of these problems.

(2) The best currently known algorithms for maximum flow and multicommodity flow prob-
lems are fairly sophisticated (see, e.g., [GR97, GT88, K97,LM+91, V89]), and typically
rely on augmenting paths, blocking flows, min-cost flows, or linear programming. In con-
trast, local-control algorithms are appealingly simple, as they rely on simple “edge balanc-
ing” strategies of appropriately balancing commodities between adjacent nodes (details
below). Thus, they are easy to implement, understand, and experiment with.

(3) Local-control algorithms have several other attractive features. For example, they adjust
gracefully to dynamic changes in the topology (e.g., link failures) and the traffic demands
(e.g., bursty multicasts) in communication networks. Theyare iterative, that is, running
them longer gives progressively better approximations to the optimal solution. Hence, one
can use them either for rapid coarse solutions or for slow refined solutions. Finally, they
may expose alternate structure in the problem, as the convergence of such local-control al-
gorithms is typically related to the eigenstructure of the network (for intuition, see [C89]).

1.1 First-Order Algorithms

Local-control algorithms for the multicommodity flow problem were recently designed by
Awerbuch and Leighton [AL93, AL94]. Their algorithms proceed in parallel rounds. At the
start of a round, (approximately)di units of commodityi are added to the source node of that
commodity, wheredi is the demand of commodityi. The commodities accumulated in each
node are then distributed equally among the local endpointsof the incident edges, and flow is
pushed across each edge of the network so as to “balance” eachcommodity between the two
endpoints of the edge (subject to edge capacity constraints). Finally, any commodity that has
arrived at the appropriate sink is removed from the network.How to trade off the flow between
different commodities that compete for the capacity of an edge is nontrivial. Awerbuch and
Leighton proved in [AL93, AL94] that this simple “edge balancing” algorithm (and some of its
variants) converges and, maybe somewhat surprisingly, that it provides a provably approximate
solution to the multicommodity flow problem in a small numberof rounds.

We refer to such edge-balancing algorithms asfirst-order algorithms. The first-order al-
gorithms in [AL93, AL94] can clearly be implemented on a distributed network in which
each node communicates only with neighboring nodes and has no global knowledge of the
network.5 Similar local-control algorithms have been designed for several other problems
[LW95], including distributed load balancing [C89, AA+93,MGS98] and end-to-end com-
munication [AMS89].

A particularly simple local-control algorithm can be obtained for the case of the maxi-
mum flow problem by specializing the first-order algorithm in[AL93, AL94] for the single-
commodity case. There are many other algorithms for the maximum flow problem, but none
that is a distributed first-order algorithm. The algorithm most closely related in spirit is the
algorithm of Goldberg and Tarjan in [GT88], where a “preflow”is adjusted into a flow by
pushing excess local flow towards the sink along estimated shortest paths. However, this al-
gorithm needs to maintain estimated shortest-path information and is thus less amenable to a
distributed, local-control implementation in dynamic networks.5 In contrast, other approximation algorithms for the multicommodity flow problem rely on global com-

putations [V89, LM+91].



1.2 Second-Order Algorithms

In this paper, we initiate a new direction in distributed flowalgorithms aimed at speeding up
the first-order algorithms of [AL93, AL94] for the multicommodity flow problem. The basic
idea is that in any round, we use the knowledge of the amount offlow that was sent across the
edge in the previous round in order to appropriately adjust the flow sent in the current round.
Specifically, for a parameter�, the flow sent across an edge is chosen as� times what would
be sent by the first-order algorithm, plus� � 1 times what was actually sent across the edge in
the previous round. (A more detailed description of these methods is given in Sections 3 and
4.)

We call algorithms derived in this mannersecond-order algorithms. Perhaps surprisingly,
the main conclusion of this paper is that second-order algorithms appear to substantially out-
perform their first-order counterparts for maximum flow and multicommodity flow problems,
as shown by our experiments.

1.3 Background and Related Work

First-Order methods. The first-order algorithm of Awerbuch and Leighton for the maximum
flow problem is conceptually similar to the probabilistic phenomena of diffusion and random
walks. The algorithm works based on diffusion since the excess flow always flows down the
gradient along each edge. For simpler problems such as distributed load balancing, if one con-
siders the vector of flows accumulated at the nodes as iterations progress, they can be modeled
as transitions of a Markov Chain, or a suitable random walk [C89]. However, for the general
multicommodity flow problem, these conceptual similarities have not yet been formalized.
The analysis of Awerbuch and Leighton is sophisticated evenfor the case of the maximum
flow problem. It does not rely on Markov Chain methods, and is entirely combinatorial.

First-order algorithms for flow problems are also related tomatrix-iterative methods for
solving linear systems, and in particular, the Gauss-Seidel iterations. This connection is made
explicit in [BT89]. Also, there is a way to interpret the first-order algorithms as iteratively
solving a dual network optimization problem involving a single variable per node. At each
iteration, the dual variables of a single node or its incident edge flows are changed in an attempt
to improve the dual cost. This process is also explained in [BT89].

Thus, there are intriguing connections between the first-order methods for flow problems
and classical techniques such as matrix-iterative methods, diffusion, random walks and primal-
dual relaxations. These techniques have been studied in different areas with somewhat different
emphasis, but seem directly relevant to the work in [AL93, AL94].

Second-Order methods. Second-order algorithms, as described above, may seem ad-hoc, and
further explanation is needed to motivate them. Our second-order algorithms are motivated
by the observation that the first-order flow algorithms in [AL93] are iterative methods rem-
iniscent of the matrix-iterative methods used for solving systems of linear equations. There
is already a mature body of knowledge about speeding up thesefirst-order methods (see, e.g.,
[A94, BB+93, HY81, Var62]). Very recently, these methods were explored for speeding up dif-
fusive load-balancing schemes [MGS98]. Of the many known iterative techniques, the authors
in [MGS98] identified a specific second-order scheme best suited for distributed implementa-
tions, and our second-order scheme for the multicommodity flow problem is inspired by that
method.



There are fundamental similarities between our work here and the work in [MGS98] for
distributed load balancing, but there are fundamental differences as well. The basic similarity
is that our algorithmic strategy for second-order methods relies on the same stationary accel-
eration of the first-order method determined by a parameter� (fixed throughout all iterations)
as that in [MGS98]. The main difference arises in the fact that the problem of multicom-
modity flow is much more general than the distributed load-balancing problem considered in
[MGS98]. First, the edges in our problem have capacity constraints, while the edge capacities
are unbounded in the load-balancing problem. Second, our algorithms aredynamicin that they
introduce new flow in each round as described in Section 3; in contrast, the total load remains
unchanged in [MGS98]. There are other differences (such as the fact that we do not useIOUs
as in [MGS98]), but we omit these details.

The similarity of iterative flow algorithms to matrix-iterative methods and distributed load
balancing is helpful. In particular, known results [Var62]show that0 < � < 2 is theonly
suitable range for the convergence of that iterative method. Furthermore, from the results in
[MGS98], we would expect that the second-order method will be outperformed by the first-
order method for0 < � < 1, and thus the fruitful range for� is (1; 2); as we will see,
this also holds for distributed flow problems.6 However, the above mentioned differences ex-
plain the considerable difficulty in analyzing the first-order and second-order method for the
multicommodity flow problem [AL93, AL94]. The first-order method for distributed load bal-
ancing can be analyzed fairly easily based on stationary Markov Chain methods [C89], and
known second-order analyses for matrix-iterative methodscan be fairly easily adopted to load
balancing [MGS98]. However, standard approaches (e.g., based on Dirichlet boundary con-
ditions [C97] for analyzing dynamic situations) do not seemto apply if edges have capacity
constraints.

1.4 Contents of this Paper

In this paper, we propose second-order methods for accelerating the distributed flow algo-
rithms proposed by Awerbuch and Leighton [AL93, AL94]. We perform an experimental study
and show that the second-order algorithms are significantlyfaster than the first-order ones of
[AL93, AL94] both for the maximum flow and the multicommodityflow problems. This is of
possible applied interest as an online distributed solution for many routing problems arising in
communication networks. Surprisingly, our algorithms seem to be of interest in the off-line,
centralized context as well. While our algorithms are not asfast as the best known algorithms
for the maximum flow problem, they seem to be at least competitive with (and possibly much
faster than) the best known algorithms for the approximate multicommodity flow problem.
This is a bit surprising since the best known centralized algorithms for the multicommodity
flow problem [LM+91] use sophisticated techniques; in contrast, the first-order and second-
order algorithms are exceedingly simple.

Our experimental study also leads to a number of observations and conjectures about the
behavior of the diffusive processes used in the first- and second-order flow algorithms. We
describe some of these as open problems for theoretical study.6 See [MGS98, Var62] for results on choosing the “best” value of �, and [DMN97] for choosing the best� for distributed load-balancing as a function of the graph structure. We plan to perform an experi-

mental study of the best choices of� for flow problems on different classes of input graphs in the near
future.



The remainder of this paper is organized as follows. The nextsection provides some defini-
tions and notations used throughout the paper. Section 3 describes the first-order and second-
order methods for the maximum flow problem, and presents a variety of experimental results.
These results also give intuition to the reader about the behavior of first- and second-order
algorithms for flow problems. Section 4 describes the algorithms and experimental results for
the case of multicommodity flow, and they are more interesting in terms of comparative per-
formance. A few open questions appear in Section 5.

We have a fully functional implementation with a graphical interface for vizualizing the
behavior of our algorithms. Some additional information about our implementation and the
input instances used in our experiments is contained in the appendix.

2 Preliminaries

Throughout this paper, we assume a network (or graph)G = (V;E) with n nodes andm
edges. We assume a model of the graph in which each edgee in the network has one capacityc1(e) � 0 in one direction, and another capacityc2(e) � 0 in the other direction.7 Each nodev has one queue for each incident edge. This queue can hold an unbounded amount of flow (or
commodity), and should be considered as being located at theendpointv of the edge.

In the case of the maximum flow problem, we are given a source nodes and a sink nodet,
and our goal is to maximize the flow betweens andt. In the multicommodity flow problem withk commodities, we are givenk source/sink pairs(si; ti) and corresponding demandsdi, and
we are interested in finding a flow that satisfies the demands ofall commodities, if such a flow
exists. In the description of the algorithms, we use�i(e) (or �(e) in the single-commodity
case) to denote the difference between the amounts of commodity i located in the queues at
the two endpoints of edgee.
3 Maximum Flow

In this section, we focus on the maximum flow problem. This special case of the multicom-
modity flow problem leads to particularly simple and efficient versions of the first-order and
second-order methods. In the first subsection, we describe the first-order local-control algo-
rithm for maximum flow. In Subsection 3.2 we explain our new second-order method, while
Subsection 3.3 presents and discusses our experimental results.

3.1 First-Order Distributed Maximum Flow

We now describe the first-order algorithm for maximum flow. The algorithm proceeds in a
number of synchronous parallel rounds (or iterations), where in each round, a small set of
elementary operations is performed in each node and each edge of the network. In particular,
each round consists of the following steps.7 Thus, each edge is equivalent to two directed edges with their own capacitiesc1(e) andc2(e). However,

our algorithms and implementations also extend to a graph model where the capacity of each edge is
shared between the two directions.



(1) Add d units of flow to the source node, whered is chosen as the sum of the capacities of
the outgoing edges (or some other upper bound on the value of the maximum flow).

(2) In each nodev, partition the flow that is currently in the node evenly amongthe�(v) local
queues of the�(v) incident edges.

(3) In each edgee, attempt to balance the amount of commodity between the two queues
at the endpoints of the edge, by routingminf�(e)2 ; c(e)g units of flow across the edge,
where�(e) is the difference in the amount of flow between the two queues,andc(e) is
the capacity of the edge in the direction from the fuller to the emptier queue.

(4) Remove all flow that has reached the sink from the network.

We point out that this algorithm is a simplified version of thealgorithm in [AL93] for
the single-commodity case; the simplification results fromthe fact that we do not have to
resolve any contention between different commodities. Oneconsequence is that the algorithm
correctly finds the maximum flow even ifd is much larger than the value of that flow, that is,
the algorithm does not rely on the existence of a feasible flowof valued.

3.2 Second-Order Distributed Maximum Flow

We now describe how to obtain a second-order method for distributed maximum flow. As
already mentioned in the introduction, the second-order method computes the flow to be sent
across an edge in the current round as a linear combination ofthe flow that would be sent
according to the first-order method and the flow that was sent in the previous iteration. The
second-order method has an additional parameter�, with the case� = 1:0 being identical to
the first-order method. More precisely, Step (3) of the abovealgorithm becomes:

(3a) In each edgee, compute the desired flow across the edge asf = � � �(e)2 + (� � 1) � f 0;
where�(e) is defined as before, andf 0 is the (possibly negative) amount of flow that was
sent in the direction of the imbalance, in the previous iteration.

(3b) Obtain the amount of flow actually sent across the edge byadjustingf for the capacity of
the edge, and for the amount of commodity available at the sending queue.

Note that the value off computed in Step (3a) can not only exceed the available edge
capacity, but may also be larger than the amount of commodityavailable at the sending queue.

Idealized and Realistic Versions. We distinguish two cases depending on how Step (3b) is
handled if the amount of commodity available at the sending queue is smaller than the flow to
be sent across that edge as calculated in Step (3a). In theidealizedalgorithm, we treat the flow
accumulated at each node as just some (possibly negative) number, and we send out as much
flow as the capacity constraint permits even if the amount of commodity stored at a sending
queue becomes negative as a result. In therealistic algorithm, we treat the flows as physical
flows and therefore, flows at nodes may only be non-negative. Thus, we send out the minimum
of the flow calculated in Step (3a), the capacity of the edge, and the flow in the sending queue.

We expect the idealistic algorithm to converge faster, and in general, have smoother con-
vergence properties than the realistic algorithm. In orderto solve the standard sequential max-
imum flow problem, it suffices to implement the idealized case. However, if we want to solve



the flow problem online in a distributed environment as flow continuously enters the source,
the realistic algorithm must be employed. In what follows, our experimental results are for the
realistic algorithm unless stated otherwise.

3.3 Experimental Evaluation

In this subsection, we present a number of experimental results on the behavior of the first-
order and second-order methods. Due to space constraints, we cannot hope to provide a de-
tailed study of the behavior of the methods on different classes of input graphs. Instead, we
present a few selected results that illustrate the most interesting aspects of the behavior of the
algorithm, and provide a brief summary of other results at the end. Some information about our
implementation, and about the graphs used in the experiments, can be found in the appendix.

Dependence on � We first look at the performance of the second-order method for different
values of the parameter�. Figure 1 shows the flow arriving at the sink in each time step,for
several choices of� ranging from1:0 to 1:95, using a20-level mesh graph with402 nodes and1180 edges. The results in Figure 1 show that the rate of convergence increases significantly
as we increase� from 1:0 to 1:95. In particular, after1500 iterations, the first-order method
(� = 1:0) is still more than10% away from the exact solution. In contrast, the second-order
method with� = 1:95 has already converged to within0:001%, and with a few thousand more
iterations it reaches essentially floating point precision.

Figure 2 shows the behavior of the algorithms for very small and very large values of�.
In particular, we see that for� = 0:5 the performance of the algorithm becomes even worse
than in the first-order method, while for� = 2:5, the method becomes unstable, and does not
converge to a final value. We point out that we observed a similar overall behavior on all the
graphs that we tested, with very rapid convergence for the best values of� (usually, but not
always, around1:9), slower convergence for smaller values of�, and instability as we increase� beyond2:0.

In general, the “optimal”�, namely, the one that gives the fastest convergence is probably
a complex function of the eigenstructure of the underlying graph. This is provably the case in
second-order methods for the distributed load balancing problem [MGS98]. Although in many
of the examples we show here, the optimal� is large (around1:95), there are cases when a
smaller value of� is preferable; see Section 4.2 for one such example.

Convergence of Edge Flows The results in Figure 1 indicate a very rapid convergence of the
amount of flow that arrives at the sink. However, this does notdirectly imply that all the flows
inside the network converge to a steady state. To investigate whether this is the case, we define
theflow change normas the sum, over all edges, of the absolute value of the changein flow
between the current and the previous iteration. Thus, if this norm converges to zero, then the
network converges to a steady flow state.

Figure 3 shows the behavior of this norm for� equal to1:0, 1:5, and1:95, for the mesh
graph considered before. As can be seen, the flow change norm converges to zero. Convergence
is again most rapid for values of� around1:9. Note that for the first150 or so iterations, the
flow change norm for� = 1:95 is actually larger than that of the other curves, indicatinga
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Fig. 1. Convergence of the
second-order method with�
set to 1.0 (lower curve), 1.2,
1.4, 1.6, 1.8, and 1.95 (up-
per curve).

Fig. 2. Behavior for� = 2:5
(upper curve) and� = 0:5
(lower curve).

Fig. 3. Convergence of the flow
change norm for� equal to1:0, 1:5,
and1:95.

faster initial response to the injected flow. A similar rapidconvergence behavior of the flows
was observed in all our experiments.

The convergence of the flows is significant because it allows us to directly use the stabilized
flow in the network as an approximate solution for the standard offline maximum flow problem,
instead of computing the flow by averaging out the history of the edge flows, as suggested in
[AL93]. Averaging the history implies the algorithm must berun for a much longer period to
obtain a good approximation since the approximation ratio is then given by the ratio of the area
under the curve and the area under the horizontal line at the height of the maximum flow.

Idealized Second-Order Method Recall that in Step (3b) of the second-order method, we
may have to adjust the amount of flow sent across an edge in order to avoid getting a negative
amount of commodity in the sending queue. In the following, we investigate how the behavior
of the algorithm changes if we allow negative amounts of commodity at the nodes, that is, we
consider the idealized second-order method described in Subsection 3.2, which does not adjust
the flow for the amount of available commodity.

Figure 4 shows the convergence of the idealized and realistic methods for different values
of �, for the mesh graph considered before. Note that for� = 1:95, the flow converges to more
than15 digits of accuracy in less than1000 iterations. If we increase� further towards2:0 we
notice that the flow starts oscillating more extremely, and for values beyond2:0 the method
does not converge anymore. Figure 5 shows the behavior of theidealized method for the case
of � = 2:0. (For the realistic method, this effect appears to be slightly less abrupt in that the
method becomes instable more slowly as we increase� beyond2:0.)

Note that whether allowing negative amounts of commodity atthe nodes is appropriate or
not depends on the particular application. If the goal is just to find a solution to the maximum
flow problem, and the actual routing of the commodities is done in a separate phase afterwards,
then the idealized version is fine. On the other hand, a major advantage of the distributed
methods is that they overlap the process of finding the flow paths with that of routing the
commodities, in which case the idealized version is not appropriate.
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Fig. 5. Behavior of the idealized second-order
method with� = 2:0.

4 Multicommodity Flow

In this section, we consider the case of multiple commodities. We first outline the first-order
algorithm, which is a slightly simplified version8 of the algorithm proposed by Awerbuch and
Leighton [AL93], and describe the modifications needed for the second-order method. We then
present our experimental results.

4.1 Description of the Algorithms

As in the single-commodity case, the algorithm proceeds in parallel rounds (or iterations). In
our first-order implementation, the following operations are performed in each round.

(1) Adddi units of commodityi to source nodesi, for 0 � i < k.
(2) For each nodev and each commodityi, partition the amount of commodityi that is cur-

rently in nodev evenly among the�(v) local queues of the�(v) incident edges.
(3) In each edgee, attempt to balance the amount of each commodity between thetwo queues

at the endpoints of the edge, subject to the capacity constraint of the edge. Several com-
modities may be contending for the capacity of the edge; thiscontention is resolved in the
following way:
Let �i(e) be the difference in the amount of commodityi between the two queues at the
endpoints of edgee. The flowfi for commodityi is computed from thedi, �i(e), and the
edge capacity by using the algorithm described in Section 2.4.1 of [AL93], the details of
which are omitted here.

(4) Remove from the network any commodity that has reached the appropriate sink.8 In particular, we get rid of the� terms needed for the analysis in [AL93].



The second-order method can again be obtained with only a minor change in the algorithm.
In particular, we compute�0i(e) = � ��i(e) + 2:0 � (� � 1) � f 0i ;
wheref 0i is the amount of commodityi sent across the edge in the previous iteration. In the
non-idealized version of the algorithm, where we do not allow negative amounts of commodity,

we also have to adjust�0i(e) if �0i(e)2 is larger than the amount of commodityi available in the
sending queue; this leads to the idealized and realistic case as with the maximum flow problem.
We then apply the same algorithm as in the first-order method to resolve contention between
the different commodities, but use the�0i(e) in place of the�i(e).
4.2 Experimental Results

We now present experimental results on the performance of the second-order method. Due to
space constraints, we can only give a few selected results.

Sample Performance Results. Figure 6 shows the behavior of the idealized second-order
method with� = 1:95 on a5 � 5 � 20 RMF graph with5 sources and sinks selected at
random from the nodes in the first and last level of the graph, respectively. The demands for
the flows were chosen such that the flow is feasible, but withinabout2% of the upper bound
given by the maximum concurrent flow. Figure 6 shows the5 flows converging to their re-
spective demands. After about4500 iterations, all flows have converged to within16 digits of
precision. In contrast, if we use the first-order method on this problem, then we need more than10000 iterations to converge to within10% of the demands.
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Fig. 6. Convergence of the idealized second-order
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Fig. 7. Convergence of the realistic and idealized
second-order methods with different values of�,
on a500 node RMF graph with25 commodities.
For each case, we plot the maximum and minimum
flow/demand ratios over all commodities.

Figure 7 shows the behavior of the second-order method for a5 � 5 � 20 RMF graph
with 25 commodities routed between the first and the last layer of thegraph, with demands



chosen at random and then scaled such that they are within1% of the maximum concurrent
flow. The values measured on they-axis are the minimum and maximum fractionsz, over all
commodities, such thatz times the demand of a commodity arrives at its sink in a given step.
Figure 7 shows the convergence behavior for the realistic second-order method with� = 1:0,1:5, and1:95, and for the idealized second-order method with� = 1:95 and1:99. The figure
shows a clear advantage of the second-order over the first-order method, and of the idealized
over the realistic method.

Dependence on �. The behavior of the second-order multicommodity flow algorithms for
varying values of� turned out to be similar to that of the second-order maximum flow algo-
rithm. While for most of our input graphs the optimal value of� was between1:95 and1:99,
there are other classes of graphs where the optimal value is significantly smaller; see Figures 8
and 9 for an example.
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Fig. 8. Behavior of the idealized second-order
method on a5 node clique graph with5 commodi-
ties and� = 1:4.

Fig. 9. Behavior of the idealized second-order
method on a5 node clique graph with5 commodi-
ties and� = 1:98.

Running Times. In Table 1, we provide some very preliminary timing results.All timings
were performed on a Sun Ultra 30 workstation with300 Mhz UltraSPARCII processor and256 MB of RAM, and the codes were compiled with the-O option using the vendor-supplied
C compiler.

As input graph, we used a5 � 5 � 20 RMF graph, with25, 50, and100 commodities.
All demands had the same value, while the capacities of the forward edges in the RMF graph
were chosen at random. The sources and sinks were chosen fromthe first and last panels,
respectively, of the graph.9

We give running times for four different methods: (1) the basic first-order method, as de-
scribed by Awerbuch and Leighton [AL93], (2) the realistic second-order method with� =9 Thus, since the number of nodes in the first panel is25, the number of “commodity groups” (see

[LSS93]) in the implementation of Leong, Shor, and Stein [LSS93] is at most25, independent of the
number of commodities.



1:99, (3) the idealistic second-order method with� = 1:97, and (4) the Maximum Concurrent
Flow code of Leong, Shor, and Stein [LSS93], referred to as LSS.

Algorithm 25 commodities50 commodities100 commodities
Leong-Shor-Stein (LSS) 519.77 456.10 501.72
First-order (Awerbuch-Leighton) 642.99 1233.32 2836.62
Realistic second-order,� = 1:99 149.01 304.64 645.16
Idealistic second-order,� = 1:97 9.54 27.70 70.41

Table 1. Running times (in seconds) of the different algorithms on a500 node RMF graph. For LSS, we
chose� = 0:05, while for the other codes, we terminated the runs after every commodity was within a0:01 factor (first-order) or0:001 factor (second-order) of its demand.

When looking at these numbers, the reader should keep the following points in mind:

(1) The code of Leong, Shor, and Stein [LSS93] solves the moregeneral problem of maximiz-
ing the ratio of feasible flow, while our code only finds a feasible flow. However, we are
not aware of any code for feasible flow that outperforms LSS. Following the suggestion in
[LSS93], all our runs are performed with demands very close to the maximum feasible, by
scaling the demands using the maximum edge congestion returned by LSS.

(2) The results for LSS are most likely not optimal, as we wereunsure about the best setting
of parameters for the code. Given the results reported in [LSS93] and the increases in CPU
speed over the last few years, we would have expected slightly better numbers.

(3) We have not yet implemented a good termination conditionfor our code. Instead, we chose
to measure the time until all flows at the sinks have convergedto within a factor of at most0:001 (second-order method) or0:01 (first-order method) of the demands.

(4) We limit the reported numbers to RMF graphs due to differences in the graph formats used
in LSS and in our code, which did not allow a direct comparisonon other types of graphs.

We point out that the behavior of the LSS algorithm is fairly complex, while the perfor-
mance of our second-order methods is dependent on the precise choice of�. Thus, one should
be careful when trying to infer general performance trends from the few numbers provided
above. However, our experiments with other graphs also showed a similar behavior. Thus, we
believe that our implementation is at least competitive with the best previous codes, and may
in fact significantly outperform them. We plan to perform a more thorough study in the future.
We also see significant room for further improvements in the running times of our codes.

Sensitivity Analysis. An attractive feature of local algorithms is that they are, in general, ro-
bust. That is, they are expected to scale gracefully when edges appear or disappear, or traffic
patterns change [AL93]. We will not try to formalize this intuition here. In Figure 10, we
present an illustrative example of the behavior of local flowalgorithms under dynamic sit-
uations, which shows how the resulting flows adapt quickly aswe change the demands of
commodities.
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Fig. 10. Sensitivity of the algorithm to changes in demands, for the idealized method with� = 1:98 on
a 500 node RMF graph with5 commodities. We show the amounts of flow ariving at the sinks as we
repeatedly change the demands, and thus the amounts of commodity injected into the network in each
step.

5 Concluding Remarks

In this paper, we have proposed second-order methods for distributed, approximate maximum
flow and multicommodity flow based on the first-order algorithms recently proposed by Awer-
buch and Leighton [AL93, AL94]. We have presented experimental results that illustrate sev-
eral interesting aspects of the behavior of these algorithms, and that provide strong evidence
that the second-order methods significantly outperform their first-order counterparts.

The main open problem raised by our results is to give a formalanalysis of the performance
of the second-order methods for multicommodity flow, or to atleast show a separation between
first-order and second-order methods. We believe that this is a very challenging technical prob-
lem. Our experimental results also raise, and leave open, a number of other intriguing questions
concerning the behavior of such distributed flow algorithms, and the diffusive processes un-
derlying them. We list a few below.

Question 1. It would be very interesting to show that not only the amount of flow reaching
the sinks, but in fact the entire “flow pattern” in the networkconverges to a stable state.10
This was the case in all our experiments. If true, this will simplify the process of stopping the
iteration in a distributed manner when the flows have converged; furthermore, it may improve
the analytical bounds on the performance of the algorithm, since we do not have to average the
flows over several steps as suggested in [AL93].

Question 2. For the case of the maximum flow problem, it would be interesting to show bounds
that are tighter than those implied by the analysis for multicommodity flow in [AL93]. In10 As far as we know, this question is still open even in the first-order maximum flow case.



particular, it appears from our experiments that the convergence behavior of the maximum
flow algorithms may be significantly better than1=�.
Question 3. Suppose the flow injected into the sources at each iteration consists of a collection
of packets. Can we analyze or bound the delays of the packets,given an appropriate scheduling
principle for packets at each node (such as first-in-first-out), if only for the first-order methods?
This would correspond to providing certain quality-of-service guarantees to the sessions in
communication networks. Such analysis was recently done for load balancing [MR98] and
packet routing [AK+98] under adversarial models of traffic injection, but assuming unit edge
capacities.

Question 4. As mentioned earlier, random walks can be modeled as a matrixiteration which
is identical to the behavior of first-order algorithms for distributed load balancing [MGS98].
Can we design random walks that correspond to second-order algorithms? This may lead to
improved bounds for mixing times of random walks. Some progress has been made recently
for special graphs [S98]. Another question that arises is whether random walks can be set up
to yield the first/second-order behavior in the presence of edge capacities. 2

We are working on several extensions of our experimental results. In particular, we are
working on an implementation of the improved first-order algorithm presented in [AL94], and
on dynamic acceleration schemes for the second-order method such as those using Chebyshev
polynomials with a� that varies from iteration to iteration. We are also in the process of
carrying out a thorough comparison of our distributed implementations to that of the existing
sequential multicommodity codes (see [LSS93] and the references therein).
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7 Appendix: Experimental Setup

Implementation Details. All algorithms were implemented in C. A graphical frontend based on Tcl/Tk
was used to run experiments and display the results. All input graphs were supplied in the DIMACS graph
format, with some extensions to specify multiple commodities and changes in the demands over time.

Most of the execution time is spent in Steps (2) and (3) of the algorithm, which were implemented
together in one single loop over the edges. Thus, the partitioning of the commodities between the queues
was done during the edge balancing process, by applying an appropriate scaling factor to the flow stored
in a node. This resulted in a very efficient implementation for the maximum flow case.



For the multicommodity flow case, the running time of Step (3)is dominated by the algorithm for
resolving contention between different commodities in Section 2.4.1 of [AL93], which requires sorting
the commodities in each edge by the values of�i(e)=d2i . While these values vary between iterations,
the changes become increasingly smaller as the method converges. We exploited this property by using
insertion sort and inserting the commodities in the sorted order of the previous iteration.

Input Graphs.
In our experiments described in this paper, we used three different classes of input graphs: mesh

graphs, random leveled graphs, and RMF graphs. The first two types of graphs were generated using
the GENGRAPH program of Anderson et al. from the University of Washington. The RMF graphs were
generated with the GENRMF program of Tamas Badics. Both programs are available from the DIMACS
website. Examples of these graphs are shown in Figures 11, 12, and 13.
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Fig. 11. Mesh graph with3 levels and14 nodes.
All edges have randomly chosen capacity, except
for edges connecting to the source or sink, which
have capacity large enough such that they never
constitute a bottleneck.

Fig. 12. Random leveled graph with3 levels and14 nodes. All edges have randomly chosen capac-
ity, except for edges connecting to the source or
sink, which have capacity large enough such that
they never constitute a bottleneck.
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Fig. 13. A 3 � 3 � 2 RMF graph. All edges between different layers have randomlychosen capacity,
while edges inside a layer have capacity large enough such that they never constitute a bottleneck.
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