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Abstract. We study local-control algorithms for maximum flow and medtinmodity
flow problems in distributed networks. We propose a secaoddramethod for acceler-
ating the convergence of the “first-order” distributed aitjons recently proposed by
Awerbuch and Leighton. Our experimental study shows thedrs#-order methods are
significantly faster than the first-order methods for apprate single- and multicom-
modity flow problems. Furthermore, our experimental stuiegvaluable insights into
the diffusive processes that underly these local-contgarahms; this leads us to iden-
tify many open technical problems for theoretical study.

1 Introduction

The multicommaodity flow problerns the problem of simultaneously shipping multiple com-
modities through a capacitated network such that the totaumt of flow on each edge is
no more than the capacity of the edge. Each commaditgs a source node, a sink node,
and an associatedemandd;, which is the amount of that commaodity that must be shipped
from its source to its sink. The objective is to find a flow thatets the individual demands of
all the commodities without exceeding any edge capacitylifiip afeasible floy*. The case
when there is only a single commodity and the goal is to mazéntire feasible flow is the
well knownmaximum flow problenThe importance of the single- and multicommodity flow
problems need hardly be stressed — a substantial body ofiwagorithms and Operations
Research is devoted to these problems.

In this paper, we focus on local-control (or distributedjaithms for the single- and mul-
ticommodity flow problems. Besides their inherent interiestal-control algorithms for these
problems are relevant because of the following reasons:

(1) Many routing, communication, and flow-control problebetween multiple senders and
receivers, including various uni/broad/multicasts, camwodeled as multicommodity flow
problems on networks (e.g., see the references in [BG919BAB93, AL94, AAB97]).
These applications typically require online, local-coh{distributed) algorithms, since
global communication and control is expensive and cumineesd.ocal algorithms for

4 An alternate objective is to maximizesuch that the flow satisfies a percentagef every demand

without exceeding any edge capacity (calledabacurrent flow problerfSM86]); we do not consider
this version here.



multicommodity flow not only provide a generic solution t@$e problems, but they also
give valuable insights for the centralized/global solotid these problems.

(2) The best currently known algorithms for maximum flow analtmommodity flow prob-
lems are fairly sophisticated (see, e.g., [GR97, GT88, K&F+91, V89]), and typically
rely on augmenting paths, blocking flows, min-cost flowsjmear programming. In con-
trast, local-control algorithms are appealingly simpketreey rely on simple “edge balanc-
ing” strategies of appropriately balancing commoditiesMeen adjacent nodes (details
below). Thus, they are easy to implement, understand, goeriement with.

(3) Local-control algorithms have several other attracfivatures. For example, they adjust
gracefully to dynamic changes in the topology (e.g., linkufas) and the traffic demands
(e.g., bursty multicasts) in communication networks. Thegiterative, that is, running
them longer gives progressively better approximationbkéaoiptimal solution. Hence, one
can use them either for rapid coarse solutions or for slomedfsolutions. Finally, they
may expose alternate structure in the problem, as the agewee of such local-control al-
gorithms is typically related to the eigenstructure of teéaork (for intuition, see [C89]).

1.1 Firgt-Order Algorithms

Local-control algorithms for the multicommodity flow presh were recently designed by
Awerbuch and Leighton [AL93, AL94]. Their algorithms prazkin parallel rounds. At the
start of a round, (approximately) units of commodityi are added to the source node of that
commodity, wherel; is the demand of commodity The commodities accumulated in each
node are then distributed equally among the local endpoirttse incident edges, and flow is
pushed across each edge of the network so as to “balanceteauwhodity between the two
endpoints of the edge (subject to edge capacity constyakitslly, any commodity that has
arrived at the appropriate sink is removed from the netwiddw to trade off the flow between
different commaodities that compete for the capacity of ageeid nontrivial. Awerbuch and
Leighton proved in [AL93, AL94] that this simple “edge batamg” algorithm (and some of its
variants) converges and, maybe somewhat surprisinglyit fhi@vides a provably approximate
solution to the multicommodity flow problem in a small numbérounds.

We refer to such edge-balancing algorithmdiest-order algorithms The first-order al-
gorithms in [AL93, AL94] can clearly be implemented on a disited network in which
each node communicates only with neighboring nodes and tnagoibal knowledge of the
network® Similar local-control algorithms have been designed foresal other problems
[LW95], including distributed load balancing [C89, AA+9BIGS98] and end-to-end com-
munication [AMS89].

A particularly simple local-control algorithm can be oltad for the case of the maxi-
mum flow problem by specializing the first-order algorithn{A.93, AL94] for the single-
commodity case. There are many other algorithms for the mmaxi flow problem, but none
that is a distributed first-order algorithm. The algorithmsnclosely related in spirit is the
algorithm of Goldberg and Tarjan in [GT88], where a “preflois”adjusted into a flow by
pushing excess local flow towards the sink along estimatedes$t paths. However, this al-
gorithm needs to maintain estimated shortest-path infoomand is thus less amenable to a
distributed, local-control implementation in dynamicwetks.

5 In contrast, other approximation algorithms for the multienodity flow problem rely on global com-
putations [V89, LM+91].



1.2 Second-Order Algorithms

In this paper, we initiate a new direction in distributed flalgorithms aimed at speeding up
the first-order algorithms of [AL93, AL94] for the multiconodity flow problem. The basic
idea is that in any round, we use the knowledge of the amouidwfthat was sent across the
edge in the previous round in order to appropriately adjustfiow sent in the current round.
Specifically, for a parametét, the flow sent across an edge is chosefd imes what would
be sent by the first-order algorithm, plds- 1 times what was actually sent across the edge in
the previous round. (A more detailed description of thesthods is given in Sections 3 and
4)

We call algorithms derived in this mannagcond-order algorithmd$erhaps surprisingly,
the main conclusion of this paper is that second-order @fgos appear to substantially out-
perform their first-order counterparts for maximum flow anaglttommodity flow problems,
as shown by our experiments.

1.3 Background and Related Work

First-Order methods. The first-order algorithm of Awerbuch and Leighton for thexmaum
flow problem is conceptually similar to the probabilisticgpiomena of diffusion and random
walks. The algorithm works based on diffusion since the sxdw always flows down the
gradient along each edge. For simpler problems such aghdigtdl load balancing, if one con-
siders the vector of flows accumulated at the nodes as tesgirogress, they can be modeled
as transitions of a Markov Chain, or a suitable random waB9CHowever, for the general
multicommodity flow problem, these conceptual similagtigave not yet been formalized.
The analysis of Awerbuch and Leighton is sophisticated deethe case of the maximum
flow problem. It does not rely on Markov Chain methods, andhitsrely combinatorial.

First-order algorithms for flow problems are also relatedntatrix-iterative methods for
solving linear systems, and in particular, the Gauss-$#&atations. This connection is made
explicit in [BT89]. Also, there is a way to interpret the fistder algorithms as iteratively
solving a dual network optimization problem involving a @im variable per node. At each
iteration, the dual variables of a single node or its inctaelye flows are changed in an attempt
to improve the dual cost. This process is also explained im8[.

Thus, there are intriguing connections between the firdéiomethods for flow problems
and classical techniques such as matrix-iterative metldiffission, random walks and primal-
dual relaxations. These techniques have been studiedénatif areas with somewhat different
emphasis, but seem directly relevant to the work in [AL939A].

Second-Order methods. Second-order algorithms, as described above, may seemcad+id
further explanation is needed to motivate them. Our se@yddf algorithms are motivated
by the observation that the first-order flow algorithms in P8l are iterative methods rem-
iniscent of the matrix-iterative methods used for solviggtems of linear equations. There
is already a mature body of knowledge about speeding up fhieserder methods (see, e.g.,
[A94, BB+93, HY81, Var62]). Very recently, these methods&vexplored for speeding up dif-
fusive load-balancing schemes [MGS98]. Of the many knoerattve techniques, the authors
in [MGS98] identified a specific second-order scheme bestddior distributed implementa-
tions, and our second-order scheme for the multicommodity firoblem is inspired by that
method.



There are fundamental similarities between our work hecktha work in [MGS98] for
distributed load balancing, but there are fundamentaédifices as well. The basic similarity
is that our algorithmic strategy for second-order methadies on the same stationary accel-
eration of the first-order method determined by a parante{éixed throughout all iterations)
as that in [MGS98]. The main difference arises in the fact tha problem of multicom-
modity flow is much more general than the distributed loaldih@ing problem considered in
[MGS98]. First, the edges in our problem have capacity cairgs, while the edge capacities
are unbounded in the load-balancing problem. Second, garitims arelynamicn that they
introduce new flow in each round as described in Section 3pimrast, the total load remains
unchanged in [MGS98]. There are other differences (suchefatt that we do not ud®Us
as in [MGS98]), but we omit these details.

The similarity of iterative flow algorithms to matrix-itenae methods and distributed load
balancing is helpful. In particular, known results [Var&tow that) < g < 2 is theonly
suitable range for the convergence of that iterative metRadthermore, from the results in
[MGS98], we would expect that the second-order method velbtperformed by the first-
order method fo) < < 1, and thus the fruitful range fof is (1,2); as we will see,
this also holds for distributed flow problerfisdowever, the above mentioned differences ex-
plain the considerable difficulty in analyzing the first-erc&and second-order method for the
multicommodity flow problem [AL93, AL94]. The first-order rtteod for distributed load bal-
ancing can be analyzed fairly easily based on stationankda€hain methods [C89], and
known second-order analyses for matrix-iterative metluaasbe fairly easily adopted to load
balancing [MGS98]. However, standard approaches (e.gedan Dirichlet boundary con-
ditions [C97] for analyzing dynamic situations) do not setenmapply if edges have capacity
constraints.

1.4 Contentsof this Paper

In this paper, we propose second-order methods for actelgrde distributed flow algo-
rithms proposed by Awerbuch and Leighton [AL93, AL94]. Wefpem an experimental study
and show that the second-order algorithms are significéaster than the first-order ones of
[AL93, AL94] both for the maximum flow and the multicommodiftgw problems. This is of
possible applied interest as an online distributed saluftito many routing problems arising in
communication networks. Surprisingly, our algorithmsrsee be of interest in the off-line,
centralized context as well. While our algorithms are ndiaas as the best known algorithms
for the maximum flow problem, they seem to be at least conipetitith (and possibly much
faster than) the best known algorithms for the approximatéticommodity flow problem.
This is a bit surprising since the best known centralizedtitlgms for the multicommodity
flow problem [LM+91] use sophisticated techniques; in casitirthe first-order and second-
order algorithms are exceedingly simple.

Our experimental study also leads to a number of obsensa#iod conjectures about the
behavior of the diffusive processes used in the first- andrsgorder flow algorithms. We
describe some of these as open problems for theoretical. stud

6 See [MGS98, Var62] for results on choosing the “best” valug,and [DMN97] for choosing the best
3 for distributed load-balancing as a function of the graphcitire. We plan to perform an experi-
mental study of the best choices@for flow problems on different classes of input graphs in tearn
future.



The remainder of this paper is organized as follows. The sestion provides some defini-
tions and notations used throughout the paper. Section@ildes the first-order and second-
order methods for the maximum flow problem, and presentsiatyasf experimental results.
These results also give intuition to the reader about thebehof first- and second-order
algorithms for flow problems. Section 4 describes the atgors and experimental results for
the case of multicommodity flow, and they are more intergstinterms of comparative per-
formance. A few open questions appear in Section 5.

We have a fully functional implementation with a graphiaakirface for vizualizing the
behavior of our algorithms. Some additional informatiomatbour implementation and the
input instances used in our experiments is contained inpberadix.

2 Préiminaries

Throughout this paper, we assume a network (or gr@phy (V, E) with n nodes andn
edges. We assume a model of the graph in which eacheithgde network has one capacity
c1(e) > 0in one direction, and another capadcitye) > 0 in the other directiod.Each node
v has one queue for each incident edge. This queue can holdanmted amount of flow (or
commodity), and should be considered as being located &nitheointy of the edge.

In the case of the maximum flow problem, we are given a sourde fiand a sink node,
and our goal is to maximize the flow betweeandt. In the multicommodity flow problem with
k commodities, we are giveh source/sink pair$s;, t;) and corresponding demands and
we are interested in finding a flow that satisfies the demandi cdmmodities, if such a flow
exists. In the description of the algorithms, we usge) (or A(e) in the single-commodity
case) to denote the difference between the amounts of coityriddcated in the queues at
the two endpoints of edge

3 Maximum Flow

In this section, we focus on the maximum flow problem. Thiscggdecase of the multicom-
modity flow problem leads to particularly simple and efficiearsions of the first-order and
second-order methods. In the first subsection, we desdréérst-order local-control algo-
rithm for maximum flow. In Subsection 3.2 we explain our newsal-order method, while
Subsection 3.3 presents and discusses our experimenthisres

3.1 First-Order Distributed Maximum Flow

We now describe the first-order algorithm for maximum floweTdlgorithm proceeds in a
number of synchronous parallel rounds (or iterations), r&hie each round, a small set of
elementary operations is performed in each node and eaehaddige network. In particular,

each round consists of the following steps.

" Thus, each edge is equivalent to two directed edges withdiei capacities; (e) ande: (). However,
our algorithms and implementations also extend to a grapiteinshere the capacity of each edge is
shared between the two directions.



(1) Addd units of flow to the source node, whetés chosen as the sum of the capacities of
the outgoing edges (or some other upper bound on the valbe ofiaximum flow).

(2) Ineach node, partition the flow that is currently in the node evenly amtimey (v) local
queues of thé(v) incident edges.

(3) In each edge, attempt to balance the amount of commodity between the tweues
at the endpoints of the edge, by routingn{ﬁ, ¢(e)} units of flow across the edge,
whereA(e) is the difference in the amount of flow between the two queaed(e) is
the capacity of the edge in the direction from the fuller te @mptier queue.

(4) Remove all flow that has reached the sink from the network.

We point out that this algorithm is a simplified version of thigorithm in [AL93] for
the single-commodity case; the simplification results fritva fact that we do not have to
resolve any contention between different commodities. @msequence is that the algorithm
correctly finds the maximum flow evendfis much larger than the value of that flow, that is,
the algorithm does not rely on the existence of a feasible dibvalued.

3.2 Second-Order Distributed Maximum Flow

We now describe how to obtain a second-order method forildisrd maximum flow. As
already mentioned in the introduction, the second-ordehatecomputes the flow to be sent
across an edge in the current round as a linear combinatitimedflow that would be sent
according to the first-order method and the flow that was settie previous iteration. The
second-order method has an additional param&taith the case = 1.0 being identical to
the first-order method. More precisely, Step (3) of the atagerithm becomes:

(3a) In each edge, compute the desired flow across the edge as

Ale

f=p- 2
whereA(e) is defined as before, anf is the (possibly negative) amount of flow that was
sent in the direction of the imbalance, in the previous ttera

(3b) Obtain the amount of flow actually sent across the edgedpystings for the capacity of
the edge, and for the amount of commodity available at thdisgmueue.

Note that the value of computed in Step (3a) can not only exceed the available edge
capacity, but may also be larger than the amount of commadéitable at the sending queue.

Idealized and Realistic Versions. We distinguish two cases depending on how Step (3b) is
handled if the amount of commodity available at the sendingug is smaller than the flow to
be sent across that edge as calculated in Step (3a). ldehkzedalgorithm, we treat the flow
accumulated at each node as just some (possibly negatisr@)aruand we send out as much
flow as the capacity constraint permits even if the amounbafimodity stored at a sending
queue becomes negative as a result. Inr¢iadistic algorithm, we treat the flows as physical
flows and therefore, flows at nodes may only be non-negatives,fwe send out the minimum
of the flow calculated in Step (3a), the capacity of the edgé the flow in the sending queue.
We expect the idealistic algorithm to converge faster, angleineral, have smoother con-
vergence properties than the realistic algorithm. In otdsolve the standard sequential max-
imum flow problem, it suffices to implement the idealized ca$awvever, if we want to solve



the flow problem online in a distributed environment as flomtawously enters the source,
the realistic algorithm must be employed. In what followsr, experimental results are for the
realistic algorithm unless stated otherwise.

3.3 Experimental Evaluation

In this subsection, we present a number of experimentaltsesn the behavior of the first-
order and second-order methods. Due to space constramtsamnot hope to provide a de-
tailed study of the behavior of the methods on differentsgasof input graphs. Instead, we
present a few selected results that illustrate the mogstastiag aspects of the behavior of the
algorithm, and provide a brief summary of other results agthd. Some information about our
implementation, and about the graphs used in the experanesm be found in the appendix.

Dependenceon 3 We first look at the performance of the second-order methodifferent
values of the parametet. Figure 1 shows the flow arriving at the sink in each time step,
several choices gf ranging from1.0 to 1.95, using a20-level mesh graph witH02 nodes and
1180 edges. The results in Figure 1 show that the rate of conveegegreases significantly
as we increasg from 1.0 to 1.95. In particular, afterl500 iterations, the first-order method
(8 = 1.0) is still more thanl0% away from the exact solution. In contrast, the second-order
method with3 = 1.95 has already converged to withir001%, and with a few thousand more
iterations it reaches essentially floating point precision

Figure 2 shows the behavior of the algorithms for very smadl eery large values of.
In particular, we see that fgf = 0.5 the performance of the algorithm becomes even worse
than in the first-order method, while fgr= 2.5, the method becomes unstable, and does not
converge to a final value. We point out that we observed a airoilerall behavior on all the
graphs that we tested, with very rapid convergence for tis¢ \mues ofs (usually, but not
always, around.9), slower convergence for smaller valuesipfand instability as we increase
3 beyond2.0.

In general, the “optimal3, namely, the one that gives the fastest convergence is lpisoba
a complex function of the eigenstructure of the underlyiragpp. This is provably the case in
second-order methods for the distributed load balanciablpm [MGS98]. Although in many
of the examples we show here, the optimak large (around .95), there are cases when a
smaller value of3 is preferable; see Section 4.2 for one such example.

Convergence of Edge Flows The results in Figure 1 indicate a very rapid convergenchef t
amount of flow that arrives at the sink. However, this doesdireictly imply that all the flows
inside the network converge to a steady state. To investighether this is the case, we define
the flow change nornas the sum, over all edges, of the absolute value of the charfigav
between the current and the previous iteration. Thus, $f tieirm converges to zero, then the
network converges to a steady flow state.

Figure 3 shows the behavior of this norm ferequal to1.0, 1.5, and1.95, for the mesh
graph considered before. As can be seen, the flow change wormarges to zero. Convergence
is again most rapid for values gfaroundl.9. Note that for the firsi50 or so iterations, the
flow change norm fog = 1.95 is actually larger than that of the other curves, indicang
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faster initial response to the injected flow. A similar rap@hvergence behavior of the flows
was observed in all our experiments.

The convergence of the flows is significant because it allsie directly use the stabilized
flow in the network as an approximate solution for the statidéftine maximum flow problem,
instead of computing the flow by averaging out the historyhefédge flows, as suggested in
[AL93]. Averaging the history implies the algorithm must then for a much longer period to
obtain a good approximation since the approximation rattbén given by the ratio of the area
under the curve and the area under the horizontal line ateiggnhof the maximum flow.

Idealized Second-Order Method Recall that in Step (3b) of the second-order method, we
may have to adjust the amount of flow sent across an edge intordeoid getting a negative
amount of commodity in the sending queue. In the following,imvestigate how the behavior
of the algorithm changes if we allow negative amounts of cality at the nodes, that is, we
consider the idealized second-order method describeddaestion 3.2, which does not adjust
the flow for the amount of available commaodity.

Figure 4 shows the convergence of the idealized and reatistthods for different values
of 3, for the mesh graph considered before. Note thatfer 1.95, the flow converges to more
than15 digits of accuracy in less thair)00 iterations. If we increasg further toward<.0 we
notice that the flow starts oscillating more extremely, amdvilues beyond.0 the method
does not converge anymore. Figure 5 shows the behavior ddélaéized method for the case
of 8 = 2.0. (For the realistic method, this effect appears to be diighss abrupt in that the
method becomes instable more slowly as we incrgaseyond2.0.)

Note that whether allowing negative amounts of commodityratnodes is appropriate or
not depends on the particular application. If the goal istogind a solution to the maximum
flow problem, and the actual routing of the commodities isadiora separate phase afterwards,
then the idealized version is fine. On the other hand, a majeartage of the distributed
methods is that they overlap the process of finding the flolgatith that of routing the
commaodities, in which case the idealized version is not ayiate.
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4 Multicommodity Flow

In this section, we consider the case of multiple commoslitige first outline the first-order
algorithm, which is a slightly simplified versiémf the algorithm proposed by Awerbuch and
Leighton [AL93], and describe the modifications neededHertecond-order method. We then
present our experimental results.

4.1 Description of the Algorithms

As in the single-commodity case, the algorithm proceedsnalfel rounds (or iterations). In
our first-order implementation, the following operatione performed in each round.

(1) Addd; units of commodityi to source node;, for 0 <i < k.

(2) For each node and each commodity, partition the amount of commaoditythat is cur-
rently in nodev evenly among thé(v) local queues of thé(v) incident edges.

(3) In each edge, attempt to balance the amount of each commodity betweemwthqueues
at the endpoints of the edge, subject to the capacity constrthe edge. Several com-
modities may be contending for the capacity of the edge cihvigention is resolved in the
following way:

Let A;(e) be the difference in the amount of commodityetween the two queues at the
endpoints of edge. The flow f; for commodityi is computed from thd;, A;(e), and the
edge capacity by using the algorithm described in Sectidri2f [AL93], the details of
which are omitted here.

(4) Remove from the network any commodity that has reachedpipropriate sink.

8 In particular, we get rid of the terms needed for the analysis in [AL93].



The second-order method can again be obtained with only arroirange in the algorithm.
In particular, we compute

Al(e)=p-Ai(e) +2.0-(8—1)- f},

where f! is the amount of commodity sent across the edge in the previous iteration. In the
non-idealized version of the algorithm, where we do notvalegative amounts of commodity,

we also have to adjust’(e) if AT(E) is larger than the amount of commoditgvailable in the
sending queue; this leads to the idealized and realisteasawith the maximum flow problem.
We then apply the same algorithm as in the first-order methaddolve contention between
the different commodities, but use th¥(e) in place of theA;(e).

4.2 Experimental Results

We now present experimental results on the performancescfebond-order method. Due to
space constraints, we can only give a few selected results.

Sample Performance Results. Figure 6 shows the behavior of the idealized second-order
method with3 = 1.95 on a5 x 5 x 20 RMF graph with5 sources and sinks selected at
random from the nodes in the first and last level of the gragépectively. The demands for
the flows were chosen such that the flow is feasible, but wabiout2% of the upper bound
given by the maximum concurrent flow. Figure 6 shows dhifows converging to their re-
spective demands. After aboti00 iterations, all flows have converged to withif digits of
precision. In contrast, if we use the first-order method éghoblem, then we need more than
10000 iterations to converge to withit0% of the demands.
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Fig. 6. Convergence of the idealized second-ordesecond-order methods with different values@f
method with3 = 1.95 on an RMF graph with five on a500 node RMF graph witl25 commaodities.
commodities. For each case, we plot the maximum and minimum

flow/demand ratios over all commodities.

Figure 7 shows the behavior of the second-order method foxas x 20 RMF graph
with 25 commaodities routed between the first and the last layer ofytaph, with demands



chosen at random and then scaled such that they are wviithiaf the maximum concurrent
flow. The values measured on thexis are the minimum and maximum fractionsover all
commaodities, such thattimes the demand of a commodity arrives at its sink in a gitep.s
Figure 7 shows the convergence behavior for the realistiorsorder method witl¥ = 1.0,
1.5, and1.95, and for the idealized second-order method vtk 1.95 and1.99. The figure
shows a clear advantage of the second-order over the futst-arethod, and of the idealized
over the realistic method.

Dependence on 3. The behavior of the second-order multicommaodity flow aldoris for
varying values of3 turned out to be similar to that of the second-order maximunv filgo-
rithm. While for most of our input graphs the optimal valuetbivas between.95 and1.99,
there are other classes of graphs where the optimal valignificantly smaller; see Figures 8
and 9 for an example.

Flow arriving at sink
Flow arriving at sink

0 20 0 60 80 0 20 20 60 80
Iterations Iterations

Fig.8. Behavior of the idealized second-orderFig.9. Behavior of the idealized second-order
method on & node clique graph with commodi- method on & node clique graph with commodi-
tiesandg = 1.4. ties and3 = 1.98.

Running Times. In Table 1, we provide some very preliminary timing resufl. timings
were performed on a Sun Ultra 30 workstation wi) Mhz UltraSPARCII processor and
256 MB of RAM, and the codes were compiled with th@® option using the vendor-supplied
C compiler.

As input graph, we used @ x 5 x 20 RMF graph, with25, 50, and100 commodities.
All demands had the same value, while the capacities of thvegfial edges in the RMF graph
were chosen at random. The sources and sinks were chosertHeofiist and last panels,
respectively, of the graph.

We give running times for four different methods: (1) theibdist-order method, as de-
scribed by Awerbuch and Leighton [AL93], (2) the realistecend-order method with =

9 Thus, since the number of nodes in the first panelsisthe number of “commodity groups” (see
[LSS93]) in the implementation of Leong, Shor, and Stein$93] is at mos®5, independent of the
number of commodities.



1.99, (3) the idealistic second-order method with= 1.97, and (4) the Maximum Concurrent
Flow code of Leong, Shor, and Stein [LSS93], referred to aS.LS

Algorithm 25 commoditiefls0 commaoditiesl00 commodities
Leong-Shor-Stein (LSS) 519.77 456.10 501.72
First-order (Awerbuch-Leighton) 642.99 1233.37 2836.62
Realistic second-ordefi = 1.99 149.01 304.64 645.14
Idealistic second-ordeff = 1.97 9.54 27.70 70.41

Table 1. Running times (in seconds) of the different algorithms @Gt@node RMF graph. For LSS, we
chosee = 0.05, while for the other codes, we terminated the runs afteryegemmodity was within a
0.01 factor (first-order) 00.001 factor (second-order) of its demand.

When looking at these numbers, the reader should keep tlogvfioly points in mind:

(1) The code of Leong, Shor, and Stein [LSS93] solves the meneral problem of maximiz-
ing the ratio of feasible flow, while our code only finds a féésiflow. However, we are
not aware of any code for feasible flow that outperforms L3flofving the suggestion in
[LSS93], all our runs are performed with demands very cloghé maximum feasible, by
scaling the demands using the maximum edge congestiomeetioy LSS.

(2) The results for LSS are most likely not optimal, as we warsure about the best setting
of parameters for the code. Given the results reported iSfi33and the increases in CPU
speed over the last few years, we would have expected sligbtier numbers.

(3) We have not yetimplemented a good termination condfttoour code. Instead, we chose
to measure the time until all flows at the sinks have convergedthin a factor of at most
0.001 (second-order method) 0r01 (first-order method) of the demands.

(4) We limit the reported numbers to RMF graphs due to difiess in the graph formats used
in LSS and in our code, which did not allow a direct comparisormther types of graphs.

We point out that the behavior of the LSS algorithm is fairyrplex, while the perfor-
mance of our second-order methods is dependent on the pamigce of3. Thus, one should
be careful when trying to infer general performance tremdmfthe few numbers provided
above. However, our experiments with other graphs also sti@similar behavior. Thus, we
believe that our implementation is at least competitivélite best previous codes, and may
in fact significantly outperform them. We plan to perform armthorough study in the future.
We also see significant room for further improvements in thening times of our codes.

Sensitivity Analysis. An attractive feature of local algorithms is that they anegéneral, ro-
bust. That is, they are expected to scale gracefully wheesdppear or disappear, or traffic
patterns change [AL93]. We will not try to formalize this uitton here. In Figure 10, we
present an illustrative example of the behavior of local flgorithms under dynamic sit-
uations, which shows how the resulting flows adapt quicklyvaschange the demands of
commodities.
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Fig. 10. Sensitivity of the algorithm to changes in demands, for tfealized method witl# = 1.98 on

a 500 node RMF graph witth commodities. We show the amounts of flow ariving at the sirksva
repeatedly change the demands, and thus the amounts of aitprimjected into the network in each
step.

5 Concluding Remarks

In this paper, we have proposed second-order methods toibdiged, approximate maximum
flow and multicommodity flow based on the first-order algarihrecently proposed by Awer-
buch and Leighton [AL93, AL94]. We have presented experitaleesults that illustrate sev-
eral interesting aspects of the behavior of these algosttand that provide strong evidence
that the second-order methods significantly outperforrn flist-order counterparts.

The main open problem raised by our results is to give a foamalysis of the performance
of the second-order methods for multicommaodity flow, or teast show a separation between
first-order and second-order methods. We believe thatdlsisery challenging technical prob-
lem. Our experimental results also raise, and leave opamder of other intriguing questions
concerning the behavior of such distributed flow algorithared the diffusive processes un-
derlying them. We list a few below.

Question 1. It would be very interesting to show that not only the amounfiaw reaching
the sinks, but in fact the entire “flow pattern” in the netwanverges to a stable stdfe.
This was the case in all our experiments. If true, this withglify the process of stopping the
iteration in a distributed manner when the flows have corearfurthermore, it may improve
the analytical bounds on the performance of the algoritimsesve do not have to average the
flows over several steps as suggested in [AL93].

Question 2. For the case of the maximum flow problem, it would be intengstid show bounds
that are tighter than those implied by the analysis for mattimodity flow in [AL93]. In

10 As far as we know, this question is still open even in the firster maximum flow case.



particular, it appears from our experiments that the cayeece behavior of the maximum
flow algorithms may be significantly better thay.

Question 3. Suppose the flow injected into the sources at each iteratinsists of a collection
of packets. Can we analyze or bound the delays of the pagiets, an appropriate scheduling
principle for packets at each node (such as first-in-firgj;@fonly for the first-order methods?
This would correspond to providing certain quality-ofssee guarantees to the sessions in
communication networks. Such analysis was recently donéofa balancing [MR98] and
packet routing [AK+98] under adversarial models of traffigection, but assuming unit edge
capacities.

Question 4. As mentioned earlier, random walks can be modeled as a niration which

is identical to the behavior of first-order algorithms fostdibuted load balancing [MGS98].
Can we design random walks that correspond to second-oligtaitams? This may lead to
improved bounds for mixing times of random walks. Some peegihas been made recently
for special graphs [S98]. Another question that arises isthvr random walks can be set up
to yield the first/second-order behavior in the presencelgéeapacities. |

We are working on several extensions of our experimentalltsedn particular, we are
working on an implementation of the improved first-orderogithm presented in [AL94], and
on dynamic acceleration schemes for the second-order ghethah as those using Chebyshev
polynomials with a3 that varies from iteration to iteration. We are also in thegess of
carrying out a thorough comparison of our distributed impdatations to that of the existing
sequential multicommodity codes (see [LSS93] and the eafss therein).
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7 Appendix: Experimental Setup

Implementation Details. All algorithms were implemented in C. A graphical fronterabbd on Tcl/Tk
was used to run experiments and display the results. Altigraphs were supplied in the DIMACS graph
format, with some extensions to specify multiple commeditind changes in the demands over time.

Most of the execution time is spent in Steps (2) and (3) of theréhm, which were implemented
together in one single loop over the edges. Thus, the manitityy of the commodities between the queues
was done during the edge balancing process, by applying@opate scaling factor to the flow stored
in a node. This resulted in a very efficient implementatiartie@ maximum flow case.



For the multicommodity flow case, the running time of Stepig3ominated by the algorithm for
resolving contention between different commodities intl®ec2.4.1 of [AL93], which requires sorting
the commodities in each edge by the valuesiefe)/d?. While these values vary between iterations,
the changes become increasingly smaller as the methodrgesvéVe exploited this property by using
insertion sort and inserting the commodities in the sorteléioof the previous iteration.

Input Graphs.

In our experiments described in this paper, we used thrderelift classes of input graphs: mesh
graphs, random leveled graphs, and RMF graphs. The firstypestof graphs were generated using
the GENGRAPH program of Anderson et al. from the UniversftyMashington. The RMF graphs were
generated with the GENRMF program of Tamas Badics. Bothrprog are available from the DIMACS
website. Examples of these graphs are shown in Figures 1anii213.

Fig.11. Mesh graph with3 levels and14 nodes. Fig.12. Random leveled graph with levels and

All edges have randomly chosen capacity, except4 nodes. All edges have randomly chosen capac-
for edges connecting to the source or sink, whichity, except for edges connecting to the source or
have capacity large enough such that they nevesink, which have capacity large enough such that
constitute a bottleneck. they never constitute a bottleneck.

Fig.13. A 3 x 3 x 2 RMF graph. All edges between different layers have randarhlysen capacity,
while edges inside a layer have capacity large enough sathhéy never constitute a bottleneck.

This article was processed using thgK macro package with LLNCS style



