A Candidate Filtering Mechanism for Fast Top-K Query
Processing on Modern CPUs

Constantinos Dimopoulos, Sergey Nepomnyachiy, Torsten Suel
Computer Science & Eng.
Polytechnic Institute of NYU

constantinos@cis.poly.edu, snepom01@students.poly.edu, suel@poly.edu

ABSTRACT

A large amount of research has focused on faster methods
for finding top-k results in large document collections, one
of the main scalability challenges for web search engines. In
this paper, we propose a method for accelerating such top-k
queries that builds on and generalizes methods recently pro-
posed by several groups of researchers based on Block-Max
Indexes [15, 10, 13]. In particular, we describe a system
that uses a new filtering mechanism, based on a combina-
tion of block maxima and bitmaps, that radically reduces
the number of documents that have to be further evalu-
ated. Our filtering mechanism exploits the SIMD processing
capabilities of current microprocessors, and it is optimized
through caching policies that select and store suitable filter
structures based on properties of the query load. Our ex-
perimental evaluation shows that the mechanism results in
very significant speed-ups for disjunctive top-k queries un-
der several state-of-the-art algorithms, including a speed-up
of more than a factor of 2 over the fastest previously known
methods.

Categories and Subject Descriptors

H.3.3 INFORMATION STORAGE AND RETRIEVALJ:

Information Search and Retrieval

General Terms

Algorithms, Performance, Experimentation

Keywords

top-k query processing, early termination, block-max in-
verted index, docID-oriented block-max index, candidate fil-
tering mechanism, posting bitset, live area computation

1. INTRODUCTION

One of the major problems for large search engines is to
keep up with the tremendous growth in the size of the web

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM or the author must be honored. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGIR’13, July 28—August 1, 2013, Dublin, Ireland.

Copyright 2013 ACM 978-1-4503-2034-4/13/07 ...$15.00.

and the number of queries submitted by users. As discussed
in [12], each of these measures increased by several orders
of magnitude over the course of a decade. This creates per-
formance challenges in many parts of the search engine ar-
chitecture, including data acquisition, data analysis, and in-
dex maintenance. However, these challenges are particularly
acute in the query processing component, whose workload
grows with both data size and query load. In fact, one might
naively expect query processing costs to increase with the
product of these measures, though in practice various tech-
niques are used to limit this increase. In this paper, we focus
on such techniques for improving query processing efficiency.

Query processing in search engines is a fairly complex
process, typically involving hundreds of features used for
ranking, multiple phases that identify promising documents
based on subsets of the features, and a distributed archi-
tecture that routes queries and results within and between
clusters of thousands of machines. However, most systems
appear to process a query by first evaluating on each ma-
chine a fairly simple ranking function over an inverted index.
This results in an initial set of say a few thousand results
that is then further processed to identify the best ten or
more results to return to the user [26]. We focus on im-
proving this initial step, which is responsible for a significant
fraction of the overall work. We assume that this initial step
is a ranking function of the form r(q, D) = 3=, s(t, D), i.e.,
it is the sum of the scores of all the terms occurring in the
query. This is a fairly common assumption, and accommo-
dates popular functions such as BM25 as well as approaches
based on automatically learning term scores that approxi-
mate more complex ranking functions [1].

A straightforward way to execute such a simple disjunctive
ranking function is to completely traverse the index struc-
tures of all the query terms and compute or retrieve the
scores of all the postings. Under this exhaustive method,
the cost of each query increases linearly with the number of
documents, making it very expensive for large collections.
To overcome this problem, many researchers have proposed
so-called early-termination techniques, i.e., techniques for
finding the top results without computing or retrieving all
posting scores [25, 9, 6, 23, 15, 10]. We focus on safe early-
termination techniques, which must return the same top re-
sults as the exhaustive method [22].

Content of this Paper: Recent work by several groups
of researchers [10, 15, 19, 13] has shown significant improve-
ments in performance based on a Block-Mazx Indez, first pro-
posed in [10, 15]. This is an index structure that stores
maximum scores for groups of postings, thus allowing quick

skipping, without full evaluation, of sets of postings with low
scores. In this paper, we build on this approach to derive
new algorithms with additional very significant performance
gains. In particular, our contributions are as follows:

(1) We design a general mechanism that can improve the
performance of a whole class of query processing al-
gorithms. Given a space budget, we maintain a set
of block-max and posting-bitmap structures that can
be used to transparently accelerate any DAAT index
traversal algorithm. We show how to exploit the ag-
gregated information from the auxiliary structures for
aggressive candidate filtering.

(2) We present a space efficient caching policy for storing
an optimal set of structures given a query distribution.

(3) We propose an optimized implementation of the mech-
anism that exploits SIMD instructions of modern CPUs
and restricts the critical data structures to L1 cache.

(4) We provide an extensive experimental evaluation that
shows significant improvements in query throughput
for multiple algorithms. Our fastest results are more
than a factor of two faster than the best previous re-
sults.

The remainder of this paper is organized as follows. In
Section 2 we outline the background and related work. Sec-
tion 3 describes the proposed filtering mechanism that uses
Block-Max Indexes. Next, in Section 4 we present how to
augment the mechanism with posting information. Section
5 explains our proposed solutions for the space overhead of
the auxiliary structures and Section 6 presents preliminary
results on our proposed methods. In Section 7 we show the
performance of the filtering mechanisms on several scenar-
ios, whereas in Section 8 we discuss caching policies for our
mechanism. Finally, Section 9 presents additional results
and Section 10 concludes and discusses future work.

2. BACKGROUND AND PREVIOUS WORK

In this section, we provide some background on inverted
indexes, query processing and early termination techniques,
Block-Max Indexes, and describe previous work.

2.1 Inverted Indexes

Inverted Indexes: An inverted index [27, 30] is a simple
and efficient data structure widely used by large search en-
gines for query processing. This structure allows finding the
documents where specific terms occur and can be formally
defined as follows. Given a collection of N documents, we
assume each document is identified by a unique document
ID (docID) between 0 and N-1. An inverted index contains
an inverted list L., for each distinct term w in the collec-
tion. Each L, is a list of postings describing all documents
where term w appears in the collection. More specifically,
each posting contains the ID of the document (docID) that
contains the term w, the number of occurrences of w in
the document (the frequency), and potentially additional
information such as the exact positions of these occurrences
of term w in the document (positions) or other data. Un-
less stated otherwise, we store docIDs and frequencies such
that each posting is of the form (d;, f;). There are several
ways to layout the inverted lists, but in this work we focus
on document-sorted indexes, where postings in each list are

sorted by their docIDs d;; see [18, 16, 6, 8, 23] for work using
other layouts.

Index Compression: The inverted lists of frequent terms
may contain millions or even billions of postings. To de-
crease space requirements, inverted lists are usually kept in
compressed form. A common approach for docID-sorted in-
dexes is to store the differences between consecutive docIDs
in a list in suitably compressed form [30]. Index compression
is crucial for search engine performance, and many compres-
sion methods have been proposed; see [29, 28, 21] for some
recent work. For fast access, inverted lists are usually com-
pressed in blocks of, say, 64 or 128 postings, such that each
block can be accessed and decompressed individually. This
is done by storing the uncompressed last docIDs and sizes
of all blocks in a separate array that can then be used to lo-
cate and decompress individual blocks. Here, we compress
the inverted lists into blocks of 64 docIDs followed by the
corresponding 64 frequencies.

Index Quantization: We usually store each posting as
a pair (d;, f;). However, it may sometimes be preferable
to store postings as (d;, s;) where s; is a score of d; with
respect to w. There are two main motivations for this: (1)
to save the cost of computing scores from frequency values
and other statistics such as document size and global term
frequency, and (2) for scores that cannot be easily computed
on the fly as they are derived from complex ranking functions
with hundreds of features, using techniques similar to those
in [1]. However, storing each s; as a 32- or 64-bit number
would result in very large index sizes. To reduce the size, so-
called index quantization techniques are used that basically
round the floating point score values to one out of a fixed
set of, say, 256 distinct values. This may lead to a slight loss
in precision during ranking, but guarantees that each score
can be stored in only 8 bits. There are several quantization
techniques in the literature; see [2, 3, 5, 4]. In this paper, we
use the Global-by-Value technique proposed in [5], and also
used in [11], using 8 bits for each score. All necessary score
accumulations can be done directly in integer space, as in
[2]. We refer to such an index structure as a quantized indez,
in contrast to a standard index storing frequencies values.

Index access: Document-sorted indexes allow fast index
traversal during query execution based on a Document-At-
A-Time (DAAT) approach. In DAAT index traversal, every
list has a pointer to a current posting, and all pointers move
forward in a synchronized manner as a query is processed.
Thus, all postings (and thus documents) to the left of the
pointers have already been processed, while postings to the
right are yet to be considered. In DAAT, we typical have
functions for opening and closing inverted lists for reading,
and a function nextGEQ that, given a docID d and an open
inverted list L, moves the pointer in L forward to the first
posting with docID greater or equal to d. In addition, there
is a function for retrieving other data (such as frequency or
score) associated with the current posting. All decompres-
sion operations in the inverted lists are hidden within these
functions. In this work, we focus on algorithms that perform
DAAT traversal on document-sorted indexes.

2.2 Query Processing and Early Termination

The simplest way to query an inverted index is to ask for
all documents containing some (disjunctive) or all (conjunc-
tive) of a set of query terms. Of course, this would return
too many results on large document collections, and thus IR

systems supporting ranked queries return the highest scor-
ing documents among those that satisfy the condition. Many
simple ranking functions have been proposed for this task,
including BM25 and the Cosine measure [7]. These functions
are typically of the form r(q, D) = 7, s(t,D), meaning
that the score of a document with respect to a query is the
sum (or some other simple combination) of the query term
scores of the document. In this paper, as in almost all pre-
vious work, we assume disjunctive queries with a ranking
function of this form, that is, our goal is to return the high-
est scoring among all documents containing at least one of
the query terms.

We note that such disjunctive queries tend to be more
expensive than conjunctive queries that only need to score
documents containing all query terms. For this reason, many
search systems try to use conjunctive queries whenever pos-
sible. However disjunctive queries are known to return bet-
ter results in many situations, and thus it is important for
search engines to also support these more expensive types
of queries.

Cascade Ranking: The above simple ranking on top of
a disjunctive or conjunctive filter is only the first phase of
query processing in current search engines. These engines
will typically take a limited number k of top-scoring results
from the simple ranking, say a few thousand overall, or as
little as tens per node on a large cluster of machines, and
evaluate a second, more complicated but more precise, rank-
ing function on these results. This process may be repeated
with an even more evolved ranking function applied to the
top results from this ranking. Thus, we expect our top-k
algorithms to be the first phase of such an architecture, and
will look at the effect of varying k from 10 to a few thousand.

Early Termination: The main performance bottleneck
that we have to deal with is the length of the inverted lists,
which can grow to many MBs or even GBs on large col-
lections. As mentioned, a simple algorithm for this prob-
lem would compute the score of any document containing at
least one of the query terms; we call such an algorithm ex-
haustive. To avoid scoring many of these documents, early-
termination (ET) algorithms have been proposed. We say
that an ET algorithm is safe if it outputs exactly the same
top k results as an exhaustive algorithm [22]. (In the case of
a quantized index, safeness is of course defined with respect
to an exhaustive algorithm on the full quantized index.)

There are many safe and unsafe ET algorithms in the lit-
erature; see, e.g., [25, 9, 6, 23, 15, 10] for a small sample.
Some algorithms keep inverted lists sorted by docID, while
others reorganize the lists by score s(g, D), so that all high-
scoring postings are encountered early during query process-
ing. In this paper, we focus on safe early termination. All
our algorithms keep the inverted lists sorted by docID and
use DAAT for index traversal — but our running times also
outperform all safe methods with other index layouts.

2.3 ET Algorithms

In this part, we first describe a simple exhaustive algo-
rithm and then outline two basic safe ET algorithms that use
DAAT traversal on document-sorted indexes, the WAND al-
gorithm in [9] and the Maxscore algorithm in [25]. Both al-
gorithms store for each inverted list the highest impact score
of any posting, called the maxscore of the list. Recall that
in DAAT traversal, we maintain a pointer to the current
posting of each list. Also, we use € to refer to the current

threshold, which is the smallest score that can still make it
into the top k results during the execution of the algorithm.

Exhaustive: The simplest query processing algorithm
first picks the smallest current docID across all query terms,
called cID. This can be done using either a loop or a heap,
and cID is then fully evaluated. Afterwards, all pointers are
moved to at least the next posting after docID cID. We also
maintain a heap of the current top-k results, and add cID to
this heap if it has a score larger than the current k" highest
score.

WAND: This algorithm, proposed in [9], consists of three
phases: pivot selection, alignment check, and evaluation. In
every iteration, a pivot term is selected by summing up the
maxscores of the participating lists in order of increasing
current doclD, until the sum becomes larger or equal to 6.
Next, WAND tries to align the current docIDs of the pre-
ceding lists in the ordering with the pivot docID, by moving
the pointers in these lists forward to the pivot docID. If this
succeeds, and all pointers up to the pivot point to the same
docID, then this docID is evaluated, if necessary inserted
into the top-k heap, and the current pointer in the pivot list
is moved forward. Then we go to the next iteration.

Maxscore: This algorithm was first described in [25]. We
focus here on the DAAT versions of the algorithm in [24, 17,
13]. Maxscore splits the query terms into essential and non-
essential terms as follows. We sum up the maxscores of the
lists from lowest to highest while the sum remains less than
0. The terms that contribute to this sum form the non-
essential terms, and the others are the essential terms. The
basic idea is that any document that can make it into the
top k results must contain at least one essential term. Now
we select as candidate, the smallest current docID of any
essential list, and evaluate it. Thus, we basically run the
exhaustive algorithm on the essential lists only. Of course,
as the threshold # for making it into the top k increases
during execution of the algorithm, we may move additional
terms from the essential to the non-essential set.

2.4 Block-Max Indexes

The idea of storing and exploiting the maximum impact
score of each inverted list was recently and independently
extended by two research groups [10, 15], who proposed an
augmented index structure called Block-Mazx Index (BM).
This structure stores the highest impact score for each block
in the inverted lists, where the blocks are defined by the
index compression method. Recently in [13], the blocks of
the Block-Max structures were decoupled from the index
compression and defined on doclID space rather than posting
distribution. We will refer to Block-Max structures whose
blocks are defined by postings as posting-oriented, while the
ones defined on docID space as docID-oriented.

2.5 Previous Work Using Block-Max Indexes

In this paper, we build on the work of [15, 10, 13], where
we generalize and extend these ideas by proposing a filtering
mechanism that uses Block-Max Indexes to further improve
the query processing for disjunctive queries.

More specifically, [10, 15] proposed the posting-oriented
BM structure to approximate the score of a block in posting
space. The Block-Max Indexes provide score approxima-
tions in posting block resolution that enables skipping of
compressed blocks. The approach in [15] proposed an en-
hancement of the WAND [9] algorithm that uses the Block-

Max index, called BM W, and operates as follows. After the
sorting and pivot selection step as in [9], there is an addi-
tional block-max check that tests whether the pivot docID
can make it into the top-k results. In case the block-max test
fails, BMW can safely skip until the end of the blocks. The
work in [10] suggested an algorithm that is built on top of
the Maxscore and also uses posting-oriented BM structures.
In particular, given a query, the algorithm reads the stored
BM information, generates aligned intervals in the docID
domain, and computes upper bound scores for each interval.
During query processing, each interval’s upper bound score
is checked whether is larger or equal to the k" highest scor-
ing document seen so far and if the test fails, the algorithm
can skip blocks and safely save computations.

Both previous studies show experimentally that these aux-
iliary indexes provide fast query response times with small
space requirements. However, the skipping power offered by
posting-oriented BM indexes is limited because the blocks
are defined by the index compression method. More re-
cently, a new layout of the BM was proposed [13], where the
blocks are defined on the docID domain. The blocks of the
BM structure are decoupled from the index compression and
their block size can be assigned per-term using the fixed, the
expected or the variable block size selection method. The
docID-oriented BM indexes provide very fast lookups, be-
cause the block-max access can be performed with bit shift
operations. The authors in [13] use the variable size selec-
tion scheme to deal with the space overhead of the structure
and show that several algorithms perform faster using the
proposed BM index. We refer to [15, 10, 13] for more de-
tails on Block-Max indexes and query processing algorithms
using such structures.

In this work, we extend the idea of constructing aligned in-
tervals in docID space and computing interval upper bounds
as in [10] by generalizing it on the docID-oriented BM struc-
ture [13] with fixed block size. The result is aligned BM
blocks for all lists, allowing fast block-maxscore accesses and
aggregation of “aligned block” upper bounds. We build on
this scheme and propose a filtering mechanism that utilizes
docID-oriented BM indexes to discover the “live” blocks in
consecutive windows of docID space, which leads to signifi-
cant performance gains over a series of DAAT algorithms for
disjunctive queries. For the remainder of the paper we as-
sume doclID-oriented BM using the fixed block size selection
method.

3. LIVE BLOCK MECHANISM

In this section we describe our proposed candidate filtering
method that exploits the Block-Max index.

Live Area Computation: We can model DAAT query
processing algorithms as a sequence of rounds, where in
each one we examine whether a specific candidate docID
can make it into the top-k results (by evaluating it or safely
early terminating). Since our goal is to retrieve the top-
k results fast, we can reduce the cost of query processing
by minimizing the number of candidate docIDs. In previous
works [10, 15, 13], the BM structure is utilized for candidate
filtering in an online fashion, meaning that in each round
there is a block-maxscore test checking whether the candi-
date has a chance to be added in the result heap. However,
in our approach the aggregation of the upper bound block-
maxscores across query terms for consecutive aligned blocks
is performed in batch mode and then exploited to aggres-

sively skip blocks. Due to the docID-oriented BM layout,
there is no need for the alignment step as needed in [10].

In typical DAAT query processing algorithms, at the end
of each round, the candidate docID for the next round is se-
lected. The selection of this document is always preceded by
invocation of the nextGEQ() on some lists. Since nextGEQ()
usually demands expensive block decompression, we would
prefer to make this decision based on the available block-
max information. Therefore, given a query with m terms
and a threshold 6, we define a block as live if the sum of
block-max scores across m terms is greater or equal to 6.
Thus, we can safely skip the block and avoid redundant de-
compressions and score calculations when a block is “dead”.
Remark that in [13] a similar optimization was suggested by
the BMM-NLB algorithm, but in their setting there is no
enforced block-max alignment.

We extend this idea by computing the live blocks of a
window of docID space, where window refers to a contigu-
ous doclD region. Thus, we calculate block-maxscore sums
for all blocks of a window. By definition, only blocks that
summed up to more or equal than 6 (of the specific window)
are live blocks. We will refer to this procedure as Live Area
computation (LA) of a window. This per-window liveness
information is stored in a structure called Liveness Bitset
(LB), where each bit corresponds to a block of the window.
LB is used for candidate filtering by skipping “dead” blocks.
In particular, our mechanism first obtains the next live block
from the LB and then provides the first docID of this block
to the nextGEQ(). The live area computation is performed
prior to query processing to provide efficient filtering oracle
for candidate selection. Note that at the end of query pro-
cessing of each window, we re-use the memory occupied by
the LB structure to avoid the costly memory initializations.

Windows: The window size under this setting is crucial
since the number of live blocks depends on the most updated
0. When the size of the window is too small, we pay for the
construction overhead (LA). On the other hand, if the win-
dow size is too large, the effectiveness of the LB would drop
due to outdated thresholds. In practice we observed that
the appropriate window size should be a function of L1 or
L2 cache size. As you advance in docID space (and 0 grows),
LB becomes more sparse, and hence, more effective. In pre-
liminary experiments we observed that the convergence rate
of 0 is quite fast.

SIMD: The computation of live areas is performed during
query processing (online) per window, thus it must be fast.
This process includes the summation of the aligned block-
maxscores across terms, the comparison of this sum with
0, and the encoding of the liveness information in LB. Since
all inverted lists block-maxes are aligned in doclID space, the
LA calculation is vectorizable and SIMD capabilities of mod-
ern CPUs can be exploited to accelerate this computation.
Our calculation of LA is coded for the SSE instruction set
and performs the following operations: (i) load 4 consecutive
block-maxscores from each query term, (ii) sum the block-
maxscores vectors, (iii) compare the results with 6, and (iv)
set the corresponding bits in LB. In a nutshell, LA’s calcula-
tion overhead is negligible because of the natural speed-up of
vectorized operations (SSE) and the limitation of LB to L1
cache. Note that SSE also applies to the integer operations
used in the quantized index scenario.

In Figure 1, we see an example of LA computation for the
2-term query “cat squirrel” of 4 consecutive block-maxscores.

In this example, the BM scores for both terms are shown in
grey, whereas their sum is colored green if the block is live,
otherwise it is red. Under this scenario, only the third bit in
LB is set. Since we are using SSE for the computation, every
step is performed in one instruction. Thus, for any 2-term
query we only need 5 instructions instead of 20 to compute
the liveness of 4 consecutive blocks. The obtained informa-
tion can filter all blocks in the window that could not make
it into the top-k results and therefore, save decompressions
and evaluations.

L T 1 LB

-6

block-max
sums

squirrel

cat

block

window

Figure 1: LA computation using terms’ BM structures.

Varying Block Size and Threshold: The window-
based LA calculation is computed using the most updated
0. The early knowledge of a good threshold makes the fil-
tering mechanism very effective since less blocks will be live.
In Figure 2, we show the percentage of live blocks for var-
ious block sizes and for different fixed thresholds (6 is not
updated). We observe that the number of live blocks de-
creases when (i) decreasing the size of the block and (ii)
providing higher 0. Since larger blocks provide worse block-
score approximations, with higher threshold they have bet-
ter chances of being live. These observations provide a
strong evidence about the effectiveness of the proposed filter-
ing mechanism. In practice, when 6 is updated per window,
the decrease in liveness is more significant (not linear).

10’\’\\‘\1*\\ .

—te 128
—p— 256

% Live Blocks (log scale)
-
2w
28

0.7 0.75 0.8 0.85 0.9 0.95 1

Starting Threshold (% of oracle)

Figure 2: Live block percentage varying block size and
fixing the starting threshold, for the TRECO06 query
trace.

Filtering Mechanism Interface: Our proposed window-
based candidate filtering mechanism provides a simple inter-
face that can be easily used by any DAAT query processing
algorithm. We now describe the various low-level compo-
nents of our framework so its adaptation to existing or new
algorithms becomes trivial.

In this part, we outline the computation of LB structure
and how to utilize it during query processing. First, the LA
computation is performed whenever the termination condi-
tion of DAAT algorithms occurs. More specifically, these

algorithms terminate when the docID of the candidate doc-
ument is greater than the largest possible docID in the col-
lection. At this point, the algorithms using our mechanism
should be adapted to operate in the boundaries of the cur-
rent window. Thus, whenever the docID of the candidate
document exceeds the current window boundaries, the LA
computation should be performed with the current 8. This
consists of block-maxscores summation, comparison to 6 for
all blocks of the window, and setting the appropriate bits
in the LB. Note that if the BM scores are not available,
our mechanism needs direct access to the index to com-
pute them. The liveness information of the LB can be ac-
cessed by a core function called nextPotentialLiveDid, which
given a docID returns the first docID of the current or the
next live block. The returned docID and a specific list are
then provided to the nextGEQ(). We hide the complex-
ity of this procedure by introducing a new function called
newNextGE(Q, which encapsulates both nextLivePotential-
Did() and nextGEQ(). Note that the original nextGEQ()
performed on the “live” candidate can still return a docID
in a “dead” block. Thus, instead of calling the nextGEQ()
the algorithms using our filtering mechanism could just use
the new function newNextGEQ.

To sum up, algorithms could use our filtering mechanism
by first changing the halting condition to be windows aware,
then performing the described LA computation whenever
the candidate docID is out of the current window bound-
ary, and finally, by calling the newNextGEQ() instead of
nextGEQ(). Hence, our mechanism offers a simple interface
to query processing algorithms, by hiding all the complexity
behind few functions.

Architecture of the Filtering Mechanism: We now
describe how our technique communicates with the available
data during query processing. Figure 3 shows our query
processing pipeline, which consists of the Index, the Query
Processor, the Filter Mechanism and the Filter Cache. The
Filter Mechanism has direct bulk access to the Index so
that it can generate the augmented structures on-the-fly for
lists out of the Filter Cache, as we will describe in Section
5. Hence, the Filter Cache contains augmented structures
(such as the BM Index and the LB) that are accessed and ex-
ploited by the Filter Mechanism for effective skipping during
query processing. The Query Processor uses the core func-
tion nextGEQ() to access the Index and move the pointers
of the inverted lists. It may also use the Filter Mechanism
to request the liveness bit of a docID or the maxscore of a
block. In that case, the information is served by the Fil-
ter Cache and returned to the Query Processor. Remark
that the communication between the Query Processor and
the Filter Mechanism can in fact be encapsulated within the
newNextGEQ() operator.

X . doclIDs, blocks
Filter Mechanism) «—————» (‘Query Processor

GQ_

nextGEQ() I
S5

Filter Cache Index

Figure 3: Filtering mechanism architecture.

4. POSTING BITSET (PB)

The LB provides a smart exploitation of the BM struc-
ture with performance gains as we will experimentally show
in the next section. Its effectiveness to filter candidate do-
cIDs relies solely on the approximation quality of the block-
maxscores. The early termination methods of algorithms
using BM structures are mainly based on the score approx-
imation. However, we could also filter candidate docIDs us-
ing additional information about the postings existence in a
block. For example, a block without postings does not con-
tribute to the block-maxscore aggregation in LA. In fact, a
block-maxscore is non-zero if and only if the block contains
postings. In order to exploit the additional posting exis-
tence information of a term we encode it as follows: for a
contiguous doclD region called sub-block, we store a bit de-
scribing whether the term contains any posting in it. Thus,
for each term we store a Posting Bitset (PB), where each bit
represents the posting liveness of a specific sub-block. This
encoding offers extremely fast accesses to the PB structure
(because sub-blocks are docID-oriented).

The PB can be seen as a per-term filtering method that
query processing algorithms can benefit from. In particular,
this filtering mechanism consists of a basic function called
nextLivePotential Posting that given a docID and a list, re-
turns a docID belonging to the current or next populated
sub-block of the given list. Moreover, this function can be
used to answer whether a term has any postings in a specific
region, thus saving redundant computations such as decom-
pressions of blocks and score calculations. Similar to the LB
mechanism, the PB filtering technique also requires direct
access to the index for construction. The PB structure can
be easily combined with the BM index during LA compu-
tation to provide finer granularity candidate filtering as we
will shortly see.

4.1 LB-PB Mechanism

In the previous section, we proposed the PB structure
that provides information about the posting liveness. This
structure can be utilized during the LA computation to pro-
vide finer granularity filtering. In order to obtain a useful
combination of the BM index and the PB, we need to mean-
ingfully select the block size of the sub-blocks. Note that
having a sub-block larger than the BM block does not in-
troduce new information. We experimentally observed that
a good size for the sub-blocks is 23, where 2™ is the size
of the BM block. For the rest of the paper, we assume that
the sub-block size is 2™ 3.

Our assumption about the sub-block size implies that ev-
ery BM block is split into 8 sub-blocks. Therefore, for each
BM block we have additional information about the post-
ing liveness of its sub-blocks. Utilizing the PB structure
in LA computation requires the following steps: first ev-
ery block-maxscore is duplicated 8 times and masked with 8
sub-block bits, then the sub-block level scores are summed
across terms, and finally, we compare the sums with the
current most updated 6 and set the appropriate bit in the
liveness bitset. Note that in our case, the temporary PB
structure is 8 times larger than the corresponding structure
we used for LB. We will refer to this structure that provides
an effective candidate filtering mechanism for the query pro-
cessing algorithms, as LB-PB. Similarly to LB, during query
processing the algorithm can provide a docID to the LB-PB
to obtain the next live sub-block in the window, avoiding

redundant computations such as decompressions and score
calculations. Given a docID, the mechanism returns a do-
cID in the current or the next live sub-block. Remark that
this filtering technique can exploit both nextLivePotential-
Did and nextLivePotentialPosting functions, that now oper-
ate on sub-block level, and its complexity can be hidden as
well behind the newNextGEQ().

In Figure 4, we describe the live area computation of the
query “cat squirrel” for 4 BM blocks using the LB-PB mech-
anism. The BM scores of both terms are colored in grey,
and only the PB of the third block is shown. The non-
empty sub-blocks are shaded. The available PB information
enables finer block-maxscore granularity on sub-block level.
Focusing on the third block, the LA-PB computation in-
cludes the multiplication of the posting bitset of the third
block of each term with the corresponding BM score. The
result is depicted as grey sub-blocks, whereas the summa-
tion of the aligned sub-blocks across terms is shown as red or
green sub-blocks sums. We can alternatively think this pro-
cedure as an alignment step in sub-block resolution. After
the LB-PB filtering, only the sixth sub-block of third block
was found to be live, while the original LB mechanism would
label the entire third block (8 sub-blocks) as live. This ex-
ample shows the effectiveness of the LB-PB mechanism and
its superiority over the simple LB filtering technique.

S D B | —1 LB-PB

]
= sub-block

sums

‘ ’ ‘ ‘ ‘ ‘ ‘ squirrel
+
l u cat
block =

window

Figure 4: Example of the LB-PB filtering mechanism.

SIMD: Similarly with the LA computation, the calcu-
lations of LA when combined with the PB structure can
exploit the SIMD opportunities of modern CPUs. All steps
of the LA computation of the LB-PB mechanism are vector-
izable and therefore, the SSE instruction set is used in the
implementation to speed up the calculations.

Varying Block Size and Threshold: Figure 5 presents
the percentages of the live sub-blocks for various block sizes
and different fixed thresholds. As in Figure’s 2 observations,
smaller block sizes and higher starting threshold result in less
live sub-blocks, as expected. Comparing the percentages of
Figure 2 and 5, we observe that the combination of LB and
PB leads to less live blocks. These statistics provide evidence
that the proposed candidate filtering mechanisms could give
significant performance gains.

5. SPACE OVERHEAD

In this section we discuss how to deal with the space over-
head of the auxiliary structures.

5.1 Block-Max Index

So far we have not mentioned the space overhead of the
BM index needed during the LA computation and we as-
sumed BM resides in memory. In practice, the BM structure

1"\.\\
1‘\‘\‘\’\‘\‘

—-—16
01 ——32
64

—t— 128

001 —— 256

0
0.7 0.75 0.8 0.85 0.9 0.95 1

% Live Sub-blocks (log scale)

Starting Threshold (% of oracle)

Figure 5: Live sub-block percentage varying block size
and fixing the starting threshold, for the TRECO06 query
trace.

with fixed block size is too large to be memory-resident, so
we address the space overhead using the approach in [13],
and we will refer to this as Length-based. Under this method,
the BM for terms with few postings are not stored at all, but
generated on-the-fly (OTF), while the BM scores for the rest
are undergoing linear quantization (BMQ), such that every
block-maxscore is 1-byte (instead of 4). The difference in our
setting is that the OTF is now performed per window. The
window-based OTF computation involves (i) the decompres-
sion of the blocks (docIDs and frequencies), (ii) the score
calculation of these docIDs, and (iii) the Block-Max Gener-
ation (BMG). We further extend the length-based approach
by compressing the quantized Block-Max values (BMQC) of
the medium-sized lists. More specifically, we first create a
skiplist for non-zero values and then we compress them us-
ing a version of PForDelta [29]. This requires decompression
of the compressed quantized values during query processing,
but its overhead is minimal compared to its space gains.

5.2 Posting Bitset

The size of the sub-block plays a crucial role on the ef-
fectiveness of the posting bitset structure. Very large sub-
blocks provide poor posting existence information, whereas
too small sub-blocks add significant space overhead. Overall,
we address the space overhead of the posting bitset structure
by following a length-based approach as in the case of the
BM structure. A first observation is that for long lists we ex-
pect most sub-blocks to be non-empty, hence a PB with all
bits set is a decent approximation for it. Instead of storing
the actual PBs for such lists, we “fake” them by pointing to a
static array of 1’s, thus saving this space. We experimentally
observed that this approximation of PB does not impair fil-
tering abilities and does not cause a slow down. Moreover,
since we already decompress the short lists in OTF BMG,
we can use the docIDs to construct the PBs on-the-fly as
well. The PB structures are stored in main-memory only
for the medium-sized terms. Note that the construction of
PB should be also considered under the window-based sce-
nario as described in the previous section.

We will revisit the length-based approach for both struc-
tures in Section 8 to achieve a better space/time tradeoff.

6. PRELIMINARY EXPERIMENTS

In this section, we evaluate and compare the performance
of the simplest query processing algorithm, the exhaustive,
when our filtering mechanisms are applied, with the best
previously reported numbers to our knowledge [13] under
the scenario of a standard index.

6.1 Experimental Setup

For our experiments, we use the TREC GOV2 dataset
that contains 25.2 million web pages. We build inverted in-
dex structures with 64 docIDs and frequencies per block,
using a version of the PForDelta compression method [31]
described in [29], but our ideas also apply to other compres-
sion methods. The size of the uncompressed size of the data
set is 426GB, whereas its compressed standard index size is
8.75GB and its compressed quantized index 11.97GB. We
evaluate our methods using 1000 queries randomly selected
from the TREC 2006 and 2005 Efficiency track query set.

We implemented all the algorithms in C++ using BM25 as
our ranking function, and return top-10 results unless stated
otherwise. For the rest of the paper, we assume docID-
oriented BM using the fixed block size selection method with
64 docIDs per block. The experiments were conducted on
a single core of an Intel Xeon server with 2.27Ghz and all
data structures reside in memory.

6.2 Baseline algorithms

Setup: We begin with a performance comparison of the
exhaustive algorithm and its versions that use the LB and
the LB-PB mechanisms, called FX, EX-LB and EX-LB-PB
respectively, on the standard index. For this experiment we
use the following length-based policies for the BM: (i) OTF
for lists with length less than 95042, (ii) BMQC for lists
between 95042 and 2'®, and (iii) BMQ for the remaining
ones. Similarly, for the PB structure we use the subsequent
length-based rules: (i) OTF for lists with length less than
179758, (ii) maintaining in main memory the posting live-
ness information for lists with length between 179758 and
222 and (iii) faking of bitsets for lists larger than 222. The
space requirement for the described policy for the GOV2
data set is 2GBs, less than 25% of the compressed index,
while the use of PB increases the space to 4GBs. We also
compare the performance of the exhaustive algorithm when
the filtering methods are applied with the fastest previous re-
sults to our knowledge [13]. More specifically, the approach
in [13] uses docID-oriented BM structures, variable block
size selection methods and both OTF BMG (up to lists of
size 2'%) and BMQ techniques (on the remaining lists), with
2.76GBs space overhead. The authors of [13] were willing to
share the code for their fastest algorithm, called BM-OPT,
which selects based on the number of query terms the fastest
algorithm between BMM, BMM-NLB and BMW.

Exhaustive speed-up: In Table 1, we present the query
response times for the BM-OPT algorithm and all versions
of the exhaustive algorithm for the TRECO06 query trace,
when the number of query terms varies. We can see that
the LB filtering mechanism makes the exhaustive algorithm
faster by a factor of 10, whereas the availability of PB boosts
the exhaustive 16 times! The exhaustive algorithm is signif-
icantly accelerated by the availability of the LB mechanism
achieving average query response time of 13.47ms. When
the LB-PB is used it further reduces the average time to
8.59ms, 16 times faster over EX. The performance boost
of the mechanisms is consistent across varying number of
query terms. Table 2 shows the radical decrease in term
score evaluations and calls to nextGEQ() when the proposed
mechanisms are applied. The reason for the significant re-
duction in query response times, evaluations and nextGEQ()
is the following: at the end of each iteration of any query
processing algorithm, the pointers of some or all lists must

be moved using the expensive nextGEQ() (which usually in-
cludes decompression). Our mechanism checks the LB (or
the LB-PB) structure in order to obtain the next live block
(or sub-block) and then provides to the nextGEQ() the first
docID of this block (or sub-block). Therefore, this test be-
fore the call of nextGEQ() moves the pointers much further
in docID space and results in much less redundant expensive
decompressions, which is the main reason for the significant
performance speed-up of our mechanisms.

Comparison with BM-OPT: Furthermore, we see that
the performance of both EX-LB and EX-LB-PB outper-
forms that of BM-OPT. Concerning the space requirements
of the algorithms, as mentioned, the EX-LB occupies 2G Bs,
less than the 2.76GBs needed by the best previous approach.
Thus, our filtering method uses less space to achieve faster
times compared to the state-of-the-art algorithm, BM-OPT.
When the PB structure is also available the space increases
to 4GBs and EX-LB-PB achieves much faster query re-
sponse times compared to BM-OPT. Remark that our filter-
ing mechanisms accelerate significantly the simplest query
processing algorithm, the exhaustive, which outperforms the
state-of-the-art BM-OPT algorithm.

Algorithm avg 2 3 4 >5
EX 138.98 | 37.68 | 97.06 | 166.39 | 301.24
EX-LB 13.47 2.71 5.89 16.63 35.08
EX-LB-PB 8.59 2.65 5.07 10.72 18.69

[BM-OPT | 14.96 | 381 | 9.91 | 188 | 34.29 |

Table 1: Performance of the exhaustive algorithm on
the availability of our mechanisms for the standard index
and the TRECO06 query trace.

Algorithm | Time (ms) | # nextGEQ/query | # evals/query
EX 138.98 4,489,430 4,489,430
EX-LB 13.47 195,080 194,741
EX-LB-PB 8.59 86, 792 86,454

Table 2: Number of term score evaluations and calls to
nextGEQ for the standard index and the TRECO06 query
trace.

7. EXPERIMENTS

In this section, we present a performance comparison of
widely used DAAT query processing algorithms when our
filtering techniques are applied. These algorithms either
use (BMM-NLB, BMW) or not (WAND, Maxscore) the BM
structure for early termination during query processing.

7.1 LB-PB on DAAT algorithms

In particular, the WAND algorithm was implemented based
on [9], Maxscore and BMM-NLB were coded according to
[13], while the BMW algorithm based on [15]. All algorithms
were modified in order to use the filtering mechanisms in-
terface as previously described.

The performance comparison of these algorithms for the
TREC06 and TRECO05 query trace when we vary the number
of query terms is presented in Table 3 and 4. The significant
speed-up of our candidate filtering mechanism over several
query processing algorithms shows the effectiveness of the
filtering. Table 3 shows that Maxscore outperforms WAND
when any filtering method is applied. On algorithms that
use the BM index to early terminate documents, BMW is
consistently faster from BMM-NLB. We observe that the
performance of Maxscore is similar to BMM-NLB and the

reason is that BMM-NLB spends too much time during its
several cascading filtering steps, which are not very useful
when our mechanisms are used. BMW outperforms all al-
gorithms with 6.45ms using the LB and 5.74ms when PB is
also available. A similar performance behavior is observed
for the TRECO05 query trace in Table 4. Enforcing candi-
date selection with LB (and LB-PB) in all algorithms con-
sistently accelerates them. However, this was apparent from
preliminary experiments, where the simplest algorithm out-
performed the state-of-the-art BM-OPT. Due to space lim-
itation, for the remainder of the paper we omit any results
for the TRECO5.

LB (2G'Bs)
Algorithm avg 2 3 4 >5
WAND 11.563 | 2.51 | 4.97 | 13.86 | 31.15
Maxscore 8.1 2.3 | 4.17 | 10.08 19.4
BMM-NLB | 829 | 2.13 | 3.97 | 10.2 | 20.38
BMW 6.45 | 2.03 | 3.45 | 7.63 | 15.44
LB-PB (4GBs)
WAND 8.19 | 2.59 | 4.7 | 10.05 | 18.23
Maxscore 6.22 | 2.34 | 3.93 | 7.89 12.68
BMM-NLB | 6.21 | 2.21 | 3.73 | 7.88 | 13.06
BMW 5.74 | 2.18 | 3.59 | 7.04 | 12.03

Table 3: Performance comparison of several DAAT
query processing algorithms when LB and LB-PB mech-
anisms are applied on standard index, for the TRECO06
query trace.

LB (2GBs)
Algorithm avg 2 3 4 >5
WAND 10.22 | 2.51 | 5.02 | 7.56 | 47.19
Maxscore 5.62 | 2.18 | 4.13 | 5.75 | 20.37
BMM-NLB | 6.19 | 2.03 | 3.98 | 5.66 | 24.88
BMW 5.35 | 1.96 | 3.58 | 4.89 | 20.79
LB-PB (4GBs)
WAND 7.66 2.62 | 5.02 6.9 29.98

Maxscore 5 2.32 | 4.21 | 541 | 15.03
BMM-NLB 5.21 2.18 | 4.06 | 5.24 | 17.22
BMW 5.12 2.15 | 3.93 | 5.03 | 17.11

Table 4: Performance comparison of several DAAT

query processing algorithms when LB and LB-PB are
applied on standard index, for the TRECO05 query trace.

8. SPACE/TIME TRADEOFF

In this section, we discuss how we can further optimize
both space and time constraints by moving from simple
length-based caching policies to cost-based.

8.1 Length-based Caching

In the previous experiments, the performance of our meth-
ods and their space requirements were based on decisions
governed by the length of the lists, called Length-based poli-
cies. These policies include (i) OTF computation of BM and
PB for short lists, (ii) storing compressed quantized BM for
medium lists (BMQC), (iii) faking of PB for long lists, and
(iv) storing quantized BM and PB for all remaining lists.

For the previous experiments, the length-based parame-
ters were fixed to specific values using acceptable space re-
quirements to show the effectiveness of our mechanism. Al-
though the length-based caching provides a good space/time
tradeoff, it is solely depends on the length of the list. More
specifically, it forces short lists’ augmented structures (BM
and PB) to be computed OTF, whereas it always stores in
the Filter Cache these structures for large-sized lists. This is

not always optimal, since it is likely that some short terms
will occur frequently in the query trace and thus, it may be
more beneficial to store their augmented structures rather
than computing them OTF. Therefore, we would like to
move to policies that take into account the frequency of
terms in the query workload and offer better space/time
tradeoffs.

8.2 Cost-based Caching

It is common that large web search engines use caching
mechanisms so their performance adapts and optimizes to
the query workload. Such mechanisms maintain statistics
about the terms appearances in the query logs and based on
them, decide whether to cache the additional information.
The main idea behind such approach is to achieve perfor-
mance speed-up by using less space smartly. Therefore, we
try to maximize the obtained performance gains by following
optimal policies for each term according to query statistics
and under specific space requirements. We will refer to the
proposed policies that are based on a benefit function that
takes into account the frequency of the terms in the training
query trace, as Cost-based policies. In particular, if a short
term occurs very frequently in the query log, it would be
reasonable to maintain its augmented structures in memory.
On the other hand, if a long term does not appear too often
in the queries, we refrain from storing it in memory.

The proposed cost-based caching policy follows the next
steps: first, for each term we compute a rank under various
policies P; as follows time(zgai)e?;j;"e(lji) x freq(term). The
policies for the BM index include the length-based policies
(i) OTF, (ii) BMQC and (iii) BMQ. Similarly, the policies
for the PB structure consist of (i) OTF, (ii) PB, and (iii)
faking of PB. Then, given a space budget, we select the
terms (from highest benefit rank to lowest) and store their
structures in the Filter Cache. This selection procedure ends
when the space requirements are met and thus, for all terms
that were not selected by the caching policy, we use OTF
(regardless of their length). We obtained the frequency of
terms in the query log using as our training set the 99k
queries from the TREC 2006 Efficiency track query trace
and then, applied our method to the remaining 1k queries.

In Figure 6, we compare the space/time tradeoff of both
caching methods on WAND, BMM-NLB and BMW, when
only the LB filtering mechanism is available for the stan-
dard index. As expected, given a specific space budget, the
cost-based policy always achieves faster times for all the al-
gorithms compared to the length-based approach. Our pro-
posed method is very effective even in scenarios with very
limited space constraints. In particular, for space budget of
0.5GBs, BMW achieves 15.75ms using the length-based pol-
icy, whereas 10.22ms using the cost-based. For the remain-
der of the paper we will use the cost-based caching approach.
Figure 7 shows that when more space is available, using the
PB structure accelerates the query processing time. More-
over, we observe that the quantized index can further reduce
the query response times, for example Q-BMW-LB-PB for
2G Bs achieves 4.36ms.

9. EXTENSIONS

In this section, we provide some additional results. More
specifically, we look the performance of our methods for re-
odered indexes and the impact of increasing top-k on the
performance of our techniques.

208, N Length-based
/g * = w s == WAND
o = %=« BMM-NLB
é == s = BUW
o
o
o Cost-based
g WAND
z BMM-NLB

— B\

Space (GBs)

Figure 6: Space/Time tradeoff of Length-based and
Cost-based caching on the standard index.

P S~
o N N O

Average qgp time (ms)
(2] o
o
(8]
-
N

—&— BMW-LB

—— BMW-LB-PB
Q-BMW-LB

—#— Q-BMW-LB-PB

IN

N}

o

Space (GBs)
Figure 7: Space/Time tradeoff of Cost-based caching on
the availability of LB and LB-PB on the standard and
the quantized index.

DocID Reordering: There has been a huge amount of
work to reduce the size of the compressed inverted indexes
by reordering the docIDs. Under doclD reordering, the doc-
uments are assigned docIDs using different techniques in or-
der to minimize the index size. The main idea is to assign
closeby docIDs to documents sharing lots of terms. A sim-
ple and effective method proposed by [20], which first sorts
the URLs alphabetically and then assigns docIDs based on
this ordering. More sophisticated reordering techniques were
proposed in [14], whereas [28] showed that reordering speeds
up the conjunctive query processing. Recent work in [15, 13]
showed that docID reordering also accelerates the query re-
sponse times of disjunctive queries. In Table 5 we show the
performance of BMW using the cost-based caching policy
under the simple reordering method of [20] when varying
the number of query terms. For the remainder of the pa-
per, the space requirement of the algorithms using the LB
structure is 2GBs, and 4GBs when the PB is also used.
As expected reordering gives a speed-up for both filtering
mechanisms. In particular, BMW-LB achieves 3.02ms av-
erage times, whereas BMW-LB-PB performs similarly with
3.04ms. The reason the performance of BMW-LB-PB is
not better is that the reordering changes the distribution of
postings in docID space.

Algorithm avg 2 3 4 >5
BMW-LB 3.02 | 1.31 | 2.16 | 3.25 | 6.06
BMW-LB-PB | 3.04 | 1.33 | 2.23 | 3.3 | 5.89

Table 5: Impact of docID reordering on BMW on the
standard index.

Varying k in Top-k: In this experiment, we show the
performance of our methods when k is increased. In Table 6
we see the performance of the filtering mechanisms on BMW
as we increase k and vary the number of query terms for the
standard and the quantized index. We observe that both
mechanisms scale very well, but LB-PB performs better as
k increases in both indexes. BMW-LB returns the top-100
results in 13.5ms. In the quantized index scenario, the query
times are further reduced since calculations operate in the
integer domain. In particular, Q-BMW-LB-PB returns the
top-10 results in 3.83ms, while the top-1000 in 24.8ms.

Algorithm 10 50 100 500 1000
BMW-LB 5.93 | 10.31 | 13.5 | 26.88 | 36.27
BMW-LB-PB 5.06 | 8.53 | 11.23 | 23.33 | 32.34
Q-BMW-LB 4.32 | 7.59 | 10.01 | 19.72 | 26.32
Q-BMW-LB-PB | 3.83 | 6.65 8.89 | 18.09 | 24.8

Table 6: Impact of top-k on BMW performance on the
standard and the quantized index.

10. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a general filtering mechanism
based on docID-oriented Block-Max indexes that significantly
improves the performance of several widely used algorithms
for safe early termination in disjunctive queries. We present
a simple interface that can be easily used by several query
processing algorithms. Moreover, we augment the mech-
anism with an auxiliary structure that maintains posting
liveness information for each term and show how it can be
exploited to achieve faster query times. We also propose
caching techniques that address the space/time tradeoff of
our mechanisms and overall, we achieve more than a factor
of 2 speed-up over the fastest previous methods.

The future work will introduce additional query process-
ing algorithms that exploit the advanced parallel instruction
sets available in modern CPUs (AVX) and faster compres-
sion methods that use SIMD operations of current CPUs.

Acknowledgement

This research was supported by NSF Grant I1S-1117829 “Ef-
ficient Query Processing in Large Search Engines”, and by
a grant from Google. Sergey Nepomnyachiy was supported
by NSF Grant I'TR-0904246 “The Role of Order in Search”.

11. REFERENCES

[1] D. Agarwal and M. Gurevich. Fast top-k retrieval for model
based recommendation. In Proc. of the Fifth Int. Conf. on
Web Search and Data Mining, pages 483-492, 2012.

[2] V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking
with effective early termination. In Proceedings of the 24th
Annual Int. ACM SIGIR Conference on Research and
Development in Inf. Retrieval, 2001.

[3] V. N. Anh and A. Moffat. Impact transformation: effective and
efficient web retrieval. In Proc. of the 25th Annual Int. ACM
SIGIR Conf. on Research and Development in Information
Retrieval, pages 3—10, 2002.

[4] V. N. Anh and A. Moffat. Improved retrieval effectiveness
through impact transformation. In Proc. of the 13th
Auwustralasian Database Conference, 2002.

[5] V. N. Anh and A. Moffat. Simplified similarity scoring using
term ranks. In Proc. of the 28th Annual Int. ACM SIGIR
Conf. on Research and Development in Information
Retrieval, pages 226—233, 2005.

[6] V. N. Anh and A. Moffat. Pruned query evaluation using
pre-computed impacts. In Proc. of the 29th Annual Int. ACM
SIGIR Conf. on Research and Development in Information
Retrieval, 2006.

[7] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern
Information Retrieval. ACM Press / Addison-Wesley, 1999.

8]

19

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(28]

(26]

(27]

(28]

(29]

(30]

(31]

H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and

G. Weikum. IO-Top-K: Index-access optimized top-k query
processing. In Proceedings of the 32th International
Conference on Very Large Data Bases, 2006.

A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Y.
Zien. Efficient query evaluation using a two-level retrieval
process. In Proc. of the 12th ACM Conf. on Information and
Knowledge Management, 2003.

K. Chakrabarti, S. Chaudhuri, and V. Ganti. Interval-based
pruning for top-k processing over compressed lists. In Proc. of
the 27th Int. Conf. on Data Engineering, 2011.

R. Cornacchia, S. Héman, M. Zukowski, A. P. de Vries, and

P. A. Boncez. Flexible and efficient ir using array databases.
VLDB J., 17(1):151-168, 2008.

J. Dean. Challenges in building large-scale information retrieval
systems. In Proceedings of the Second ACM International
Conference on Web Search and Data Mining, 2009.

C. Dimopoulos, S. Nepomnyachiy, and T. Suel. Optimizing
top-k document retrieval strategies for block-max indexes. In
Proc. of the Sixzth ACM International Conference on Web
Search and Data Mining, 2013.

S. Ding, J. Attenberg, and T. Suel. Scalable techniques for
document identifier assignment in inverted indexes. In Proc. of
the 19th Int. Conf. on World Wide Web, 2010.

S. Ding and T. Suel. Faster top-k document retrieval using
block-max indexes. In Proc. of the 34th Int. ACM SIGIR
Conf. on Research and Development in Information
Retrieval, 2011.

R. Fagin. Combining fuzzy information: an overview. SIGMOD
Record, 31:2002, 2002.

S. Jonassen and S. E. Bratsberg. Efficient compressed inverted
index skipping for disjunctive text-queries. In Proc. of the 33th
European Conf. on Information Retrieval, 2011.

M. Persin, J. Zobel, and R. Sacks-davis. Filtered document
retrieval with frequency-sorted indexes. Journal of the
American Society for Information Science, 47:749-764, 1996.
D. Shan, S. Ding, J. He, H. Yan, and X. Li. Optimized top-k
processing with global page scores on block-max indexes. In
Proc. of the Fifth Int. Conf. on Web Search and Data
Mining, 2012.

F. Silvestri. Sorting out the document identifier assignment
problem. In Proc. of the 29th European Conf. on Information
Retrieval, 2007.

F. Silvestri and R. Venturini. Vsencoding: efficient coding and
fast decoding of integer lists via dynamic programming. In
Proc. of the 19th ACM Conf. on Information and Knowledge
Management, 2010.

T. Strohman. Efficient Processing of Complex Features for
Information Retrieval. PhD thesis, University of Massachusetts
Ambherst, 2007.

T. Strohman and W. B. Croft. Efficient document retrieval in
main memory. In Proc. of the 30th Annual Int. ACM SIGIR
Conf. on Research and Development in Information
Retrieval, 2007.

T. Strohman, H. R. Turtle, and W. B. Croft. Optimization
strategies for complex queries. In Proc. of the 28th Annual Int.
ACM SIGIR Conf. on Research and Development in
Information Retrieval, 2005.

H. R. Turtle and J. Flood. Query evaluation: Strategies and
optimizations. Inf. Processing and Management,
31(6):831-850, 1995.

L. Wang, J. J. Lin, and D. Metzler. A cascade ranking model
for efficient ranked retrieval. In Proc. of the 34th Annual Int.
ACM SIGIR Conf. on Research and Development in
Information Retrieval, 2011.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images, Second
Edition. Morgan Kaufmann, 1999.

H. Yan, S. Ding, and T. Suel. Inverted index compression and
query processing with optimized document ordering. In Proc.
of the 18th Int. Conf. on World Wide Web, 2009.

J. Zhang, X. Long, and T. Suel. Performance of compressed
inverted list caching in search engines. In Proc. of the 17th Int.
Conf. on World Wide Web, 2008.

J. Zobel and A. Moffat. Inverted files for text search engines.
ACM Comput. Surv., 38(2), 2006.

M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar
RAM-CPU cache compression. In Proceedings of the 22th Int.
Conf. on Data Engineering, 2006.

