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Abstract. Most spatial join algorithms either assume the existence ofa spatial in-
dex structure that is traversed during the join process,or solve the problem by sort-
ing, partitioning, or on-the-fly index construction. In this paper, we develop a sim-
ple plane-sweeping algorithm that unifies the index-based and non-index based
approaches. This algorithm processes indexed as well as non-indexed inputs, ex-
tends naturally to multi-way joins, and can be built easily from a few standard op-
erations. We present the results of a comparative study of the new algorithm with
several index-based and non-index based spatial join algorithms. We consider a
number of factors, including the relative performance of CPU and disk, the quality
of the spatial indexes, and the sizes of the input relations.An important conclu-
sion from our work is that using an index-based approach whenever indexes are
available does not always lead to the best execution time, and hence we propose
the use of a simple cost model to decide when to follow an index-based approach.

1 Introduction
Geographic Information Systems (GIS) have generated considerable interest in the com-
mercial and research database communities over the last decade. A GIS typically sup-
ports the management and manipulation of spatial data typessuch as points, lines, poly-
lines, polygons, and surfaces. Since the amount of data thatneeds to be managed is often
quite large, GISs are usually disk-based systems.

One of the fundamental operations on spatial data is thespatial join,which combines
two relations based on some spatial criterium. The most common case is thespatial over-
lay join where theintersect predicate is used for joining the input relations. Spatial ob-
jects can be quite complex, and their accurate representation can require a large amount
of memory. Since manipulating such large objects can be cumbersome and expensive, it
is customary toapproximate spatial objects and manipulate the approximations as much
as possible. The most common technique is to bound each spatial object by the smallest? Supported in part by National Science Foundation grants EIA–9870734 and EIA-9972879.?? Supported in part by the U.S. Army Research Office under grantDAAH04–96–1–0013 and by
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axis-parallel rectangle that completely contains it, called theminimal bounding rectan-
gle (MBR). Spatial overlay joins can then be performed in two steps [28]:

– Filter Step: The spatial operation is first performed on the MBR representation, i.e.,
the first step is to identify all intersecting pairs of MBRs.

– Refinement Step:The exact representations of the objects corresponding to each
such pair of MBRs are used to validate the results.

In this paper, we focus on the filter step. (For the rest of the paper, we use the term “spatial
join” to refer to the filter step of the spatial join, unless explicitly stated otherwise.) This
step has been studied extensively by a number of researchers, and most existing work can
be broadly categorized into two approaches. The first approach relies on the existence
of a spatial index structure (e.g., an R-tree or R�-tree) that is traversed during the join
process. The second approach does not use any existing indexstructures, but instead
uses techniques such as partitioning, sorting, or on-the-fly construction of indexes.

The first contribution of this paper is a simple spatial join algorithm, calledPriority
Queue-Driven Traversal (orPQ for short), that combines the index-based and non-index
based approaches. The algorithm can be built from a few standard operations, and can
process indexed as well as non-indexed inputs. It can also easily be extended to handle
certain multi-way joins.

Our second contribution is to show that using an index-basedspatial join whenever
indexes are available does not always yield the fastest execution time. This is mainly due
to the difference between the performance of sequential andrandom I/O. We propose
the use of a cost model that explicitly takes this differenceinto account when choosing
which approach to use.

The third contribution is an extensive comparative study ofseveral index-based and
non-index based spatial joins. We present experiments on three different hardware plat-
forms representing the typical range in CPU and disk performance of current worksta-
tions. Our experiments use real-world data sets scaling up to tens of millions of spatial
objects. Most previous studies consider only input sizes inthe tens or at most hundreds of
thousands. We consider both the number of disk block accesses and the actual execution
time, thus quantifying the effect of random versus sequential disk accesses, as well as
the quality of the index structures, on the performance. In contrast, most previous work
focuses on only one of the two measures.

The remainder of this paper is organized as follows. In Section 2, we provide a brief
summary of related work on spatial joins. In Section 3, we describe the algorithms we
considered for the comparative study. Section 4 describes our new algorithm PQ. Sec-
tion 5 describes our experimental platform, and in Section 6we present and discuss the
experimental results. Finally, Section 7 offers some concluding remarks.

2 Previous Work
Early Work. Orenstein [29] uses a transformational approach based on space-filling
curves, and then performs a sort-merge join along the curve to solve the join problem. In
another transformational approach [6], the MBRs of two-dimensional spatial objects are
transformed into points in four dimensions. These points are stored in a multi-attribute
data structure such as the grid file [27], which is then used toperform the join. An ef-
ficient algorithm for the rectangle intersection problem based on plane-sweeping was



proposed by Güting and Schilling [13], who observed that real data sets from VLSI ap-
plications tend to obey a so-calledsquare-root rule, i.e., in a set ofN rectangles there
are onlyO(pN) rectangles that intersect a given vertical or horizontal line. Rotem [32]
proposes a spatial join algorithm based on the join index of Valduriez [37] and a grid
file.

Spatial Index-Based Approaches.Several join algorithms have been proposed that
use spatial index structures such as the R-tree [14], R+-tree [34], R�-tree [7], or PMR
quad-tree [33]. Brinkhoff, Kriegel, and Seeger [8] proposean algorithm based on R�-
trees that performs a carefully synchronized depth-first traversal of the two trees to be
joined. An optimized version of this algorithm was described in [16]. Günther [12] stud-
ies the tradeoffs between using join indexes and spatial indexes for the spatial join. He
concludes that a join index approach is better for low join selectivities, while for higher
join selectivities, spatial indexes perform better. Hoel and Samet [15] propose to use
PMR quad-trees for the spatial join and compare it against members of the R-tree fam-
ily. Lo and Ravishankar [21] discuss the case where only one of the relations has an
index. They construct an index for the other relation on the fly, by using the existing
index as a starting point (orseed). Afterwards, the tree join algorithm of [8] is used to
perform the actual join. Another algorithm for the case where only one relation has an
index was recently proposed by Mamoulis and Papadias [24], who also discuss how to
perform multiple joins occurring in more complex spatial queries.

Non Index-Based Approaches.Recently a lot of work has focused on thecase where
neither of the input relations has an index. Lo and Ravishankar [22] propose to first build
indexes using spatial sampling techniques, and then use thetree join algorithm of [8] to
compute the join. Another recent paper [20] proposes an algorithm based on a filter tree
structure. Patel and DeWitt [30] and Lo and Ravishankar [23]both proposehash-based
algorithms that use a spatial partitioning function to subdivide the input such that each
partition fits in memory. Patel and DeWitt then use a standardplane-sweeping technique
to perform the join for each partition, while Lo and Ravishankar use an indexed nested
loop join. Arge et al. [4] propose an algorithm based on plane-sweeping and partitioning
along a single axis that guarantees an asymptotically optimal number of disk accesses
in the worst case. The algorithm is essentially an improved version of the algorithm of
Güting and Schilling [13]. As shown in [4], for common data sets the partitioning steps
are never executed, and the algorithm thus reduces to an initial sort followed by a plane
sweep.

3 Description of the Algorithms
In this section, we describe the previously known algorithms that we compare in our
study. We implemented two non-index based algorithms, thePartition-based Spatial
Merge Join (PBSM) of Patel and DeWitt [30] and theScalable Sweeping-based Spa-
tial Join (SSSJ) of Arge et al. [4], as well as an index-based algorithm, the synchronized
R-tree traversal (ST) of Brinkhoff et al. [8].

3.1 Scalable Sweeping-based Spatial Join (SSSJ)

The Scalable Sweeping-based Spatial Join (SSSJ) algorithm [4] combines an optimized
internal memory plane-sweep algorithm with a partitioningalong a single dimension
that makes the algorithm provably robust against worst-case data distributions.



Plane-Sweeping.We first briefly describe the internal memory plane-sweep algo-
rithm,which is used as a component in all four algorithms that we implemented. A plane-
sweep algorithm solves a two-dimensional geometric problem by moving a vertical or
horizontalsweep-line across the data, processing each object as it is reached by the sweep-
line (see, e.g., [31]). Clearly, for any pair of intersecting rectangles, there exists a hori-
zontal line that passes through both rectangles, and thus only rectangles located on the
same sweep-line (or rather, the intervals corresponding totheir projections onto that line)
need to be tested for intersection. This observation is usedin plane-sweeping to reduce
the join problem to a (dynamic) one-dimensional interval intersection problem. Arge et
al. [4] experimentally compared four internal memory data structures for storing the in-
tervals corresponding to rectangles cut by the same sweep-line, including two methods
calledStriped-Sweep andForward-Sweep. Forward-Sweep has been used
in several previous implementations of spatial join algorithms (see, e.g., [8, 30]), while
Striped-Sweep was shown in [4] to be by a factor of2 to 5 faster than the other
methods for most real-life data sets. We refer to [4] for a detailed discussion of these
algorithms and their performance.

Structure of SSSJ.After initially sorting the two sets of input MBR’s based ony-coordinates, a plane-sweep is performed by reading both sorted inputs sequentially
while maintaining two internal memory interval data structures. This approach works
efficiently as long as the data structures do not grow beyond the size of the available in-
ternal memory. It was observed by Arge et al. [4] that even forvery large real-life data
sets, the maximum size of the data structures will be relatively small. To handle cases
where the structures do not fit in memory,SSSJ combines the plane-sweep approach with
an I/O-optimal algorithm based on the distributionsweeping technique [5,11]. In all ex-
periments performed for this study the data structures werealways significantly smaller
than the available internal memory, and thusSSSJ essentially consists of a sorting step
followed by a single scan over the data.

Implementation.Our implementation of SSSJ is the same as that in [4], and is based
on external memory multiway mergesort and the internal memory algorithmStriped-
Sweep. For data sets of the size we used, and excluding the output ofthe intersections,
SSSJ performs two sequential read passes, one non-sequential read pass (while merg-
ing), and two sequential write passes over the data.

3.2 Partition-based Spatial Merge Join (PBSM)

Partition-based Spatial Merge Join (PBSM) [30] is a hash-join algorithm that consists of
a partitioning step followed by a plane-sweep step. In the partitioning step the objects
from both input sets are distributed to a number ofpartitions such that each partition is
likely to fit into internal memory. Then intersections within each partition are computed
using theForward-Sweep algorithm.

Since a copy of each input rectangle is assigned to each partition that it intersects, it
can be difficult to compute a priori the numberp of partitions that are needed. To avoid
overfull partitions in the case of clustered data, a larger numbert� p of tiles is created
to which the rectangles are distributed. The algorithm thenassigns thet tiles to thep
partitionsby enumerating the tiles in row-major order and applying a hash function (e.g.,
round-robin); see [30] for details. Excluding the reporting of the intersections,PBSM



usually performs two sequential read passes and one non-sequential write pass over the
data.

Implementation. Our implementation ofPBSM followed closely that of Patel and
DeWitt [30]. Although we estimated the available internal memory very conservatively,
we observed several partitions exceeding the internal memory size. Handling these par-
titionscaused a fairly large number of page faults, which slowed down the internal mem-
ory part of the algorithm. We were able to alleviate this problem by increasing the num-
ber of tiles from32 � 32 (as suggested by Patel and DeWitt) to128 � 128, and this
number of tiles was used throughout all experiments.

3.3 Synchronized R-tree Traversal (ST)

One of the most widely studied spatial join algorithms usingR-trees was proposed by
Brinkhoff et al. [8], and it has been used as a benchmark in several recent experimental
studies [16, 21, 23, 30]. The main idea is to perform a synchronized depth-first traversal
of two trees storing the MBR’s of the two data sets. For each pair of nodes in the tree
whose bounding rectangles intersect, the algorithmcomputes all pairs of children whose
bounding rectangles intersect, and then recurses. Finally, the intersections are reported
once the search reaches the leaves.

If the MBR’s in the two sets to be joined are distributed in approximately the same
way, then all nodes from both trees are involved in the join operation. Assuming that
each node occupies exactly one page, the total number of nodes in the R-trees is clearly
a lower boundon the number of page requests for dense data sets. We refer to this number
as the “optimal”number of page accesses. Recently, Huang, Jing,and Rundensteiner [16]
proposed an algorithm based on breadth-first traversal thatis reported to take approxi-
mately the same amount of CPU time asST, while performing an almost optimal number
of I/O operations (if a sufficiently large buffer pool is available).

Implementation. Since ST usually visits R-tree nodes more than once, it benefits
from the use of a buffer pool storing previously touched nodes. In other spatial join
experiments buffer pools occupying between 0.5 MB and 1 MB [8, 16,24] or between
2 MB and 24 MB [30] have been used. Having 24 MB of internal memory available (see
Section 5.1), we decided to giveST as much advantage as possibleby using a buffer pool
of size 22 MB (the remaining 2 MB were used for internal memorycomputations). Pages
were replaced using theleast recently used (LRU) policy. Following the recommenda-
tions of Brinkhoff et al. [8], we computed intersections between MBR’s in two R-tree
nodes using theForward-Sweep algorithm, while considering only rectangles over-
lapping the intersection of the MBR’s of the nodes under consideration.

For all R-tree experiments, we used packed R-trees that had been bulk-loaded using
the Hilbert heuristic [17]. The maximum fanout was set to 400, corresponding to a page
size of 8192 bytes (see Section 5.1). Following recommendations by DeWitt et al. [10],
we were careful not to pack all nodes to 100% of capacity, since that might result in
too much overlap between bounding rectangles on the same level, and thus decrease the
quality of the index. Instead, we filled each node to 75% and included additional rectan-
gles only if they did not increase the area already covered bythe node by more than 20%.
For our data sets, the resulting trees had an average packingratio of around 90%.



4 Priority Queue-Driven R-tree Traversal (PQ)

In this section, we describe our new spatial join algorithm calledPriority Queue-Driven
Traversal (PQ). The main advantage of this algorithmis that it combines the index-based
and non-index-based approaches in a way such that inputs in either representation can
be processed using the same algorithm. The algorithm incorporates aspects of the plane-
sweep approach ofSSSJ as well as the tree traversal idea ofST.

Structure of PQ. A non-indexed input is processed byPQ in essentially the same
way as inSSSJ; the MBR’s are first sorted and then feed into a plane-sweep algorithm.
If an input has a spatial index structure, such as an R-tree, the algorithm will exploit
this structure and directly extract the data in sorted orderaccording to the direction of
the plane-sweep. The extracted data is directly fed into theplane-sweep algorithm. The
other input to the sweep can be extracted in the same way from another index structure
or read from a sorted non-indexed input.

PQ can be thought of as an extension ofSSSJ to the case of indexed inputs: it uti-
lizes the same sorting and plane-sweep components as SSSJ, but adds an “index adapter”
which extracts data from a spatial index structure in sortedorder. In the followingwe de-
scribe how this extraction is performed by means of a tree traversal. A somewhat sim-
ilar way of traversing the indexed data in sorted order was proposed by Kitsuregawa,
Harada, and Takagi [19] in the context of joining two relations indexed by ak-d-tree.
Here we present a conceptually simpler algorithm based on a priority queue.

The main idea in our traversal algorithm is to run a horizontal sweep-line through
the nodes of the R-tree. To do so, we maintain a priority queueinitially containing the
bounding rectangle of the root of the tree. We advance the sweep-line by extracting the
rectangle with minimum lowery-coordinate from the priority queue. If this rectangle is
a bounding rectangle of an internal node of the R-tree, then we load all bounding rect-
angles of its children from disk and insert them in the priority queue. If the rectangle is
a bounding rectangle stored within a leaf (i.e., the MBR of some spatial object), then we
feed it into the plane-sweep algorithm, which performs the actual join. Figure 1 shows
the basic structure of the algorithm for extracting elements in sorted order.

Algorithm Extract Next Item:=� We have a priority queueP for bounding rectangles organized by their lowery-coordinate.
Initially, P contains only the bounding rectangle of the root.�=

while P is not empty
Extract the minimum elementr from P
if r is an internal node of the tree

Read the children ofr and insert them intoP
else

Return(r)
endwhile
Return(“End of input”)

Fig. 1. Algorithm for extracting the next item from the index in sorted order.



We point out that while the version ofPQ described here will always access all nodes
of the index structure, the algorithm can be modified so that it only visits those parts
that can result in intersections; the details of this (slightly more complicated) version
are omitted from this paper. This modification is important for cases where one of the
relations is very sparse or localized (see the discussion inSection 6.3), but has no influ-
ence on performance for any of the experiments in this paper.

The presentation ofPQ given here assumes that the priorityqueue never grows larger
than the amount of internal memory available. Note, however, thatPQ can be modified
to handle overflow gracefully by using an external priority queue [2,9], and that it can
also be combined with the partitioning step along one dimension thatSSSJ performs in
the case of an overflow of the interval data structure. We omitthese details here since
they are only needed for unusual worst-case input distributions.

One key feature ofPQ is that it touches each node of the R-tree at most once. Thus,
the algorithm achieves an “optimal” number of page accessesto the tree (provided that
the size of the priority queue never grows beyond the available internal memory). Since
PQ can process both indexed and non-indexed inputs, it can alsoeasily be extended to
multi-way intersection joins. For example, a 3-way intersection join can be performed
by feeding the output of a two-way join directly into anotherjoin with a third (indexed
or non-indexed) input.1

Implementation. PQ use the same internal memory components asSSSJ (see Sec-
tion 3.1). For the priority queue, we chose the heap-based implementation provided by
theC++ Standard Template Library (STL) [26]. To optimize the performance and re-
duce the space requirements of the priority queue, we actually maintained two priority
queues: one for the bounding rectangles of the internal nodes and one for the data rect-
angles in the leaves. Since the only information needed for processing an internal node
is its position on disk and the lowery-coordinate of its bounding box, we maintained
the internal nodes by storing tuples of the form(y; page ID) in the first queue. For data
MBR’s however, we need to store four coordinates and an ID. During the algorithm,
the next MBR to be processed can be found by comparing the firstelements of the two
queues.

As the priority queues grow larger, the individual access operations (add andex-
tract min) get noticeably slower, even though each operation on a heapstoringN objects
takes at mostO(logN ) comparisons. To increase the performance of the priority queue,
we therefore used the following strategy: Whenever we loaded an R-tree leaf from disk,
we sorted its rectangles by their lowery-coordinates and inserted only the first rectangle
from this sorted sequence into the priority queue. Wheneverwe extracted a rectangle
corresponding to a leaf from the queue, we added the next rectangle from that leaf (if
any) to the queue. This technique does not significantly decrease the total space require-
ment, since all data rectangles of a given leaf have to be loaded into internal memory in
order to perform the initial sort. However, by reducing the size of the priority queue, we
saveO(lgB) time per priority queue operation.

1 However, for more complicated multi-way joins which do not correspond ton-way intersec-
tions, it is not clear how to extend the algorithm in an elegant fashion; see [25] for a discussion
of such cases.



5 Experimental Platforms
In this section, we describe the experimental set-up for ourstudies, providing detailed
information on the hardware, software, and data sets that were used.

5.1 Hardware Platforms

To cover a wide range of CPU speeds and disk transfer rates, weperformed experiments
on three different system configurations—refer to Table 1. The first system (also used
in [4, 16]) is a combination of a relatively slow processor and a fast disk. The second
system has a fast processor (slightly faster than the one used in [24]) and a disk with
high transfer rate but relatively slow average access time.The third is a state-of-the-art
workstation,with both a fast processor and a fast disk. All machines were equipped with
64 MB of internal memory and the amount of free internal memory was at least 24 MB.

Workstation CPU Hard Disk Size Buffer Read Throughput
(Model) (MHz) (Model) (GB) (KB) (ms) (peak, MB/s)

1 SUN Sparc 20 50 ST-32550N (Barracuda)2.1 512 8.0 10
2 SUN Ultra 10 300 ST-34342A (Medalist) 4.3 128 12.5 33.3
3 DEC Alpha 500 500 ST-34501W (Cheetah) 4.4 512 7.7 40

Table 1.Hardware configurations used in our experiments.

The page size on Machines 2 and 3 was 8 KB, while Machine 1 had a page size
of 4 KB. In order to obtain comparable results, we used 8 KB perR-tree node in all
experiments. Thus, on Machine 1 we always requested two blocks per I/O-operation.

5.2 Software Environment

We implemented the algorithms inC++ using theTransparent Parallel I/O Program-
ming Environment (TPIE) [3], a templated library that supports high-level, yet efficient
implementations of external memory algorithms.

In TPIE, the actual page transfers between disk and internalmemory is performed by
a so-called Block Transfer Engine (BTE). One implementation employs theread and
write system calls, which improve the performance of purely stream-based algorithms
like PBSM or SSSJ. Hence, we used this BTE in our experiments with these algorithms,
and in order to take advantage of the sequential disk access pattern, we used a logical
page size of 512 KB. For our R-tree implementation, however,we chose a BTE that
performs memory-mapped I/O operations usingmmap system calls, thus bypassing the
operating system’s buffer cache in a way similar to using a raw disk device (as done in
many commercial database systems [36, p. 535]).

We compiled all programs using theGNU C++ compiler (version 2.8), with-O2
level of optimization.

5.3 Data Sets

The TIGER/Line data set from the US Bureau of the Census [35] is one of the standard
benchmarks for spatial databases. Its current distribution consists of six CD-ROMs of
data. We extracted the hydrographic and road features of theentire United States and
created six data sets of different sizes (see Table 2). The two smallest sets consist of



the state of New Jersey (NJ) and New York (NY), respectively.These sets were also
used in our previous experiments withPBSM andSSSJ [4]. The data on the first disk
(DISK1) covers 15 states from the Eastern US. The data on disks 4-6 (DISK4-6) covers
the Western half of the US, while the data on disks 1-3 (DISK1-3) covers the Eastern
half. Our largest data set is obtained from all six disks (DISK1-6).

The sizes given in Table 2 refer to files containing the MBRs ofeach feature. Each
MBR occupies20 bytes (16 bytes for the corner coordinates,4 bytes for the ID), and
each output item is a pair of IDs corresponding to overlapping MBRs.

Category NJ NY DISK1 DISK4-6 DISK1-3 DISK1-6

“Road”
Objects 414,442 870,4126,030,84411,888,47417,199,84829,088,173
Data 7.9 MB 16.6 MB 115.0 MB 226.7 MB 328.0 MB 554.8 MB
R-tree 8.3 MB 17.7 MB 122.8 MB 245.8 MB 352.5 MB 598.4 MB

“Hydro”
Objects 50,853 156,5671,161,906 3,446,094 3,967,649 7,413,353
Data 1.0 MB 3.0 MB 22.1 MB 65.7 MB 75.6 MB 141.4 MB
R-tree 1.1 MB 3.3 MB 25.0 MB 74.6 MB 85.5 MB 160.2 MB

Output
Objects 130,756 421,1103,197,520 8,554,133 9,378,64217,938,533
Data 1.0 MB 3.2 MB 24.4 MB 65.3 MB 71.6 MB 136.9 MB

Table 2.Bounding rectangles of the TIGER/Line 97 data sets.

In addition to the disk space required to hold the original data and the spatial index,
we need scratch space for temporary files created during the preprocessing. Since bulk
loading an R-tree requires a sorting step, we had to store both the unsorted and the sorted
stream of rectangles on the local disk. Together with the spatial index, the overall space
requirement was a little more than three times the size of theoriginal data set, and there-
fore we were unable to construct the R-trees for the largest data sets on Machine 1.

6 Experimental Results
In this section, we present some of the results of an extensive experimental study of the
performance of the four algorithms described in the previous sections. We measured I/O
cost, internal computation time, and memory requirements.We consider two different
measures of the I/O cost: the total number of I/O operations performed, and the actual
time taken by the I/O operations. The first set of experiments, discussed in the next sec-
tion, considers the internal memory requirements of the newPQ join algorithm and ver-
ifies that its data structures indeed fit in internal memory. In Section 6.2 we compare the
performance of the two index-based algorithms (PQ andST). Finally, in Section 6.3 we
compare the running times of all four algorithms.

6.1 Memory Requirements of PQ

The space requirements ofPQ on the different data sets are shown in Table 3. The space
requirement is measured as the size of the sweep-line data structures plus the size of the
priority queues. The latter includes the actual STL priority queues as well as the buffers
needed to hold the currently active sorted lists of MBR’s as described in Section 4. We
see that even though the priority queue is significantly larger than the sweep-line struc-
ture, it nevertheless easily fits in memory even on the largest data set. In particular, the
size of the priority queue is always less than 1% of the total data set.



Data Structure NJ NY DISK1 DISK4-6 DISK1-3 DISK1-6

Priority Queue 0.320.76 1.44 2.72 3.65 4.99
Sweep Structure0.090.10 0.12 0.15 0.17 0.20

Total 0.410.86 1.56 2.87 3.82 5.19

Table 3.Maximal memory usage (in MB) for the PQ Join algorithm

6.2 Comparison of Indexed Joins

A common measure for the I/O efficiency of index-based algorithms is the number of
pages requested by read or write operations. In this section, we consider the I/O effi-
ciency of the index-based join algorithmsST andPQ under this measure and compare
the results to the actual running times of the algorithms.

Page Accesses.In Table 4, we show the number of pages requested byST andPQ.
We give the total number of page requests as well as the average number of requests per
R-tree node. These numbers are independent of the machine used, since internal memory
and logical page sizes are identical for all machines. The “lower bound” refers to the
number of pages occupied by the indexes.

Method Requests NJ NY DISK1 DISK4-6 DISK1-3 DISK1-6

Lower Bound
Total 1,1982,70618,917 41,011 56,061 97,096
Avg. 1.00 1.00 1.00 1.00 1.00 1.00

PQ Join
Total 1,1982,70618,917 41,011 56,061 97,096
Avg. 1.00 1.00 1.00 1.00 1.00 1.00

ST Join
Total 1,1962.70427,001 66,937 63,823 112,323
Avg. 1.00 1.00 1.43 1.63 1.14 1.16

Table 4.Number of pages requested during joining.

As expected, the number of page requests forPQ is optimal. In fact,PQ is guaranteed
to be optimal as long as its data structures fit into internal memory. The numbers forST,
on the other hand, vary quite widely. There are two factors that affect the number of
page accesses ofST: the heuristic for restricting the search space and the depth first-
search traversal mechanism. The first factor decreases the set of pages that need to be
touched, while the second results in many pages being requested more than once. For
the small data sets (NJ and NY), the entire indexes fit in the buffer pool, so no page
needs to be requested more than oncefrom disk. Furthermore, we can directly see the
positive effect of restricting the search space since the number of pages requested by
ST is actually slightly less than the “lower bound”. As the trees become larger than the
buffer pool, the number of page requests increases significantly, with each page being
requested between1:14 and1:63 times on the average.

Estimated Running Times.The simple method of counting the number of disk ac-
cesses has been used in several papers on index-based spatial joins in order to compare
the performance of spatial join algorithms; see, e.g., [8, 16, 24]. The estimate for the run-
ning time is commonly obtained by multiplying the number of page requests by the av-
erage disk block read access time, and then adding the measured internal computation
time. In Figure 2(a)–(c) we show the resulting estimated running times forST andPQ on
all three machines. Here and in the following, we suppress the results for NJ for reasons
of readability. The total CPU cost is the sum of the amounts oftime spent inuser and



system mode as reported by thegetrusage function call. This time was added to the
I/O cost estimated as described above.
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Fig. 2.Join costs (in seconds) for all machines: estimated (a)–(c)and observed (d)–(f).

Using the estimated running times, there is no clear winner between the two algo-
rithms. On Machine 1, with the slowest processor and a relatively fast disk,PQ seems
to have a slight advantage. On the two faster machines, however,PQ does significantly
more CPU work, whileST spends more time on I/O. The higher CPU cost ofPQ is
mainly due to the various internal memory data structures.

Actual Running Times.The above estimates are based on the assumption that page
requests are random. While this may be true in some situations (e.g., index structures
that are built in an ad-hoc fashion, or database servers thathandle multiple interfering
requests), it is not clear to what degree it applies to packedor bulk-loaded spatial index
structures where neighbors in the index are often located closely together on the disk.

To investigate whether such issues significantly affect performance, we considered
the actual running times ofST andPQ. We made sure that no other processes were run-
ningon themachines, and measured the overall running time using thegettimeofday
function call. The CPU usage time was determined as before, but the I/O cost was now
determined by calculating the difference between the overall running time and the CPU
usage time. The measured running times ofPQ andST are shown in Figure 2(d)–(f).
Note that they are significantly different from the estimated times in Figure 2(a)–(c). In
particular, on Machine 3, which has both the fastest CPU and disk, ST is significantly
faster thanPQ on the larger data sets, while the estimated times are nearlyequal.

To explain the above behavior, we note that most R-tree bulk-loading algorithms—
including the one we used—construct an index structure in a sequential bottom-up fash-
ion that causes all children of a node to be allocated sequentially. Thus, if there is only



one process allocating pages, it is most likely that the children will be laid out sequen-
tially on disk, and, in the best case, may even reside on the same track.ST traverses the
trees in a depth first-search manner, which means that all leaf nodes having the same
parent are loaded consecutively. Since the leaves are by farthe largest part of the tree,
ST could perform significant amounts of sequential I/O on the bulk-loaded trees. PQ, on
the other hand, basically performs random I/Os that do not depend on the way the tree
is layed out on disk. As the sweep-line ofPQ is advancing, nodes are read more or less
randomly from the different parts of the tree that intersectwith the sweep-line. This ef-
fect becomes more pronounced as the size of the tree increases. However, we expect that
the performance ofST will degrade on systems running multiple processes with inter-
fering requests, whereas the behavior ofPQ should be roughly the same. An indication
of such an effect can be found in the relative performance ofST on Machine 2. The on-
disk buffer on this disk is significantly smaller than that ofthe other machines (128 KB
vs.512 KB), and on this machine we do not observe the same relative advantage ofST
overPQ. Finally, note that the running times on Machine 1 are mainlydetermined by the
internal computation times, since this machine has a fast disk and a fairly slow processor.

6.3 Running Times for all Algorithms

We now compare the measured running times of all four algorithms, the index-based
ST andPQ algorithms and the non-index-basedPBSM andSSSJ algorithms. SinceSSSJ
andPBSM access the data in a highly sequential fashion, we did not include them in
the comparison between estimated and measured running times. The sequential access
should give these algorithms an advantage relative toPQ andST. On the other hand,
SSSJ andPBSM access the data multiple times.
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Fig. 3.Observed join costs (in seconds) for all machines.



The results are shown in Figure 3. With the exception of one experiment,SSSJ (SJ)
always outperforms all other algorithms in terms of total running time even though it
performs the largest number of I/Os. This difference in performance can be explained
by taking the difference between random and sequential I/O into account. If, based on
the disc specifications, we assume that a random read takes onaverage 10 times as much
time as a sequential read and that a sequential write takes onaverage1:5 times as much
time as a sequential read,SSSJ performs the equivalent of3n + (2n) � 1:5 = 6n se-
quential reads (SSSJ performs a total of3 reads and2 writes of the entire data), while
PQ performs the equivalent of10n sequential reads.

Note however, that in some cases index-based algorithms maynot have to read the
entire input data. This can happen when the join is performedbetween small localized
portions of the input data sets, e.g., when joining hydrographic features from the state of
Minnesota and road features of the entire United States. Here, SSSJ will still sort both
data sets, though only a small clustered portion of the road relation needs to participate
in the join. In such a case, index-based algorithms such asST or PQ, which only traverse
the relevant parts of an index, may be significantly more efficient.

In summary,PQ suffers in performance because it naively chooses to use an index
whenever it one available. From the above arguments, we can see that, for the given disk
configuration, it is advantageous to use the index only when the join involves less than60% of the leaf nodes. An estimate of this number can be obtained using, e.g., the spatial
histograms developed in [1]. Using such a cost-based approach to choose between the
index-based and non-index based algorithms,PQ should have the best overall execution
time in most cases.

We also comment on the relationship between our experimentsand a similar set of
experiments performed by Patel and DeWitt [30]. Their experiments, which compare
PBSM andST, were conducted on a machine with a relative CPU/disk performance sim-
ilar to our Machine 1. Our results match their observation that for such a configuration,
the index-basedST is faster than the non-index based PBSM (see Figure 3(a)). (On the
other hand, if the time spent on constructing the index is taken into consideration, the
tree-based joinST is slower thanPBSM.) Furthermore, our experiments extend their re-
sults in two ways. First, we demonstrate that the relative performance of spatial join al-
gorithms depends heavily on the size of the data sets and the relative performance of
the CPU and the I/O subsystems. Second, we show how index layout on disk can sig-
nificantly influence the performance. The latter relates to whether one should take index
loading time into consideration when comparing index-based spatial join algorithms. As
we have seen,ST benefits from the layout produced by a good bulk-loading algorithm,
and its performance may degrade if the R-tree is updated frequently after bulk loading.2

Thus, it seems fair to take into account the costs for building or periodic rebuilding. On
the other hand, since bulk loading essentially consists of (external) sorting of the data,
there would have been no possibility of improving over the sorting basedSSSJ, unless
the cost of building or periodic rebuilding is amortized over several spatial join opera-
tions.

2 Note, however, that Kim and Cha [18] have recently describedhow to locally reorganize the
tree during updates to maintain a good layout of sibling nodes.



7 Conclusions and Open Problems
In this paper, we presented a simple algorithmthat unifies the index based and non-index
based spatial join approaches. Under reasonable assumptions about the input data, our
algorithm is guaranteed to perform an optimal number of I/O operations. We also pre-
sented the results of an extensive set of experiments on real-life data that shows that it is
important to take into account the difference between sequential and random I/O when
designing spatial join algorithms for massive data sets.

The performance of the index-based algorithms depends heavily on the properties of
the spatial index structure. Not surprisingly, tightly packed space-efficient index struc-
tures perform better than structures that achieve a lower space utilization or that do not
map adjacent leaves of the tree to consecutive locations on disk. It remains an open prob-
lem to incorporate these properties of bulk-loaded index structures into testbeds and per-
formance models for spatial join algorithms.
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