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Abstract. Most spatial join algorithms either assume the existenaesphtial in-
dex structure that is traversed during the join processloeshe problem by sort-
ing, partitioning, or on-the-fly index construction. Inglgaper, we develop a sim-
ple plane-sweeping algorithm that unifies the index-basedren-index based
approaches. This algorithm processes indexed as well amdered inputs, ex-
tends naturally to multi-way joins, and can be built easityri a few standard op-
erations. We presentthe results of a comparative studyeafehv algorithm with
several index-based and non-index based spatial joinitigts. We consider a
number of factors, including the relative performance obiGidd disk, the quality
of the spatial indexes, and the sizes of the input relatidnsmportant conclu-
sion from our work is that using an index-based approach eterindexes are
available does not always lead to the best execution timeehance we propose
the use of a simple cost model to decide when to follow an idzhesed approach.

1 Introduction

Geographic Information Systems (GIS) have generated deratile interest in the com-
mercial and research database communities over the lastieleA GIS typically sup-
ports the management and manipulation of spatial data sysas points, lines, poly-
lines, polygons, and surfaces. Since the amount of datadieals to be managed is often
quite large, GISs are usually disk-based systems.

One of the fundamental operations on spatial data isgtéal join, which combines
two relations based on some spatial criterium. The most comuase is thgpatial over-
lay join where thentersect predicate is used for joining the input relations. Spatial o
jects can be quite complex, and their accurate representzdin require a large amount
of memory. Since manipulating such large objects can be etsnme and expensive, it
is customary t@pproximate spatial objects and manipulate the approximations as much
as possible. The most common technique is to bound eaclalsplajiect by the smallest
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axis-parallel rectangle that completely contains it,ezbheminimal bounding rectan-
gle (MBR). Spatial overlay joins can then be performed in twst28]:

— Filter Step: The spatial operation is first performed on the MBR repregen, i.e.,
the first step is to identify all intersecting pairs of MBRs.

— Refinement Step:The exact representations of the objects correspondingcio e
such pair of MBRs are used to validate the results.

Inthis paper, we focus on the filter step. (For the rest of Hpep we use the term “spatial
join”to refer to the filter step of the spatial join, unlespbeitly stated otherwise.) This
step has been studied extensively by a number of researahdnnost existing work can
be broadly categorized into two approaches. The first agprogies on the existence
of a spatial index structure (e.g., an R-tree d¢rtRee) that is traversed during the join
process. The second approach does not use any existingstrdeiures, but instead
uses techniques such as partitioning, sorting, or on-thesfistruction of indexes.

The first contribution of this paper is a simple spatial jdgosithm, calledPriority
Queue-Driven Traversal (or PQ for short), that combines the index-based and non-index
based approaches. The algorithm can be built from a few atdraperations, and can
process indexed as well as non-indexed inputs. It can aksly & extended to handle
certain multi-way joins.

Our second contribution is to show that using an index-bapatlal join whenever
indexes are available does not always yield the fastesué&radime. This is mainly due
to the difference between the performance of sequentiatamtbm 1/0. We propose
the use of a cost model that explicitly takes this differeinte account when choosing
which approach to use.

The third contribution is an extensive comparative studsesieral index-based and
non-index based spatial joins. We present experimentsrer thifferent hardware plat-
forms representing the typical range in CPU and disk perémce of current worksta-
tions. Our experiments use real-world data sets scaling tgnis of millions of spatial
objects. Most previous studies consider only input sizésdriens or at most hundreds of
thousands. We consider both the number of disk block aceesgkthe actual execution
time, thus quantifying the effect of random versus segaédisk accesses, as well as
the quality of the index structures, on the performanceohtrast, most previous work
focuses on only one of the two measures.

The remainder of this paper is organized as follows. In $a@j we provide a brief
summary of related work on spatial joins. In Section 3, wecdbs the algorithms we
considered for the comparative study. Section 4 describea@w algorithm PQ. Sec-
tion 5 describes our experimental platform, and in Sectiarepresent and discuss the
experimental results. Finally, Section 7 offers some aadliclg remarks.

2 Previous Work

Early Work. Orenstein [29] uses a transformational approach based anejtling
curves, and then performs a sort-merge join along the corselve the join problem. In
another transformational approach [6], the MBRs of two-ghisional spatial objects are
transformed into points in four dimensions. These poirgsséored in a multi-attribute
data structure such as the grid file [27], which is then usquketform the join. An ef-
ficient algorithm for the rectangle intersection problersdzhon plane-sweeping was



proposed by Guting and Schilling [13], who observed that data sets from VLSI ap-
plications tend to obey a so-calleguare-root rule, i.e., in a set ofV rectangles there
are onlyO(+/N) rectangles that intersect a given vertical or horizontel.|IRotem [32]

proposes a spatial join algorithm based on the join indexadliez [37] and a grid
file.

Spatial Index-Based ApproachesSeveral join algorithms have been proposed that
use spatial index structures such as the R-tree [1#trRe [34], R -tree [7], or PMR
qguad-tree [33]. Brinkhoff, Kriegel, and Seeger [8] propasealgorithm based on*R
trees that performs a carefully synchronized depth-fiestarsal of the two trees to be
joined. An optimized version of this algorithm was descdibe[16]. Glunther [12] stud-
ies the tradeoffs between using join indexes and spatiabiesifor the spatial join. He
concludes that a join index approach is better for low jolecévities, while for higher
join selectivities, spatial indexes perform better. Haall &amet [15] propose to use
PMR quad-trees for the spatial join and compare it againstinees of the R-tree fam-
ily. Lo and Ravishankar [21] discuss the case where only drikeorelations has an
index. They construct an index for the other relation on theby using the existing
index as a starting point (eeed). Afterwards, the tree join algorithm of [8] is used to
perform the actual join. Another algorithm for the case vehamly one relation has an
index was recently proposed by Mamoulis and Papadias [24),also discuss how to
perform multiple joins occurring in more complex spatiaégjes.

Non Index-Based ApproachesRecently a lot of work has focused on the case where
neither of the inputrelations has an index. Lo and Ravisag#2] propose to first build
indexes using spatial sampling techniques, and then usesthin algorithm of [8] to
compute the join. Another recent paper [20] proposes anidhgobased on a filter tree
structure. Patel and DeWitt [30] and Lo and Ravishankar f@2h proposéash-based
algorithms that use a spatial partitioning function to suiatk the input such that each
partition fits in memory. Patel and DeWitt then use a stangdkmade-sweeping technique
to perform the join for each partition, while Lo and Raviskanuse an indexed nested
loop join. Arge et al. [4] propose an algorithm based on plswweeping and partitioning
along a single axis that guarantees an asymptotically @bteimber of disk accesses
in the worst case. The algorithm is essentially an improwerdien of the algorithm of
Guting and Schilling [13]. As shown in [4], for common datsthe partitioning steps
are never executed, and the algorithm thus reduces to & gdtt followed by a plane
sweep.

3 Description of the Algorithms

In this section, we describe the previously known algorghhmat we compare in our
study. We implemented two non-index based algorithmsPgition-based Spatial
Merge Join (PBSM) of Patel and DeWitt [30] and th&cal able Sweeping-based Spa-
tial Join (SSSJ) of Arge et al. [4], as well as an index-based algorithm, §mekronized
R-tree traversal3T) of Brinkhoff et al. [8].

3.1 Scalable Sweeping-based Spatial Join (SSSJ)

The Scalable Sweeping-based Spatial J888() algorithm [4] combines an optimized
internal memory plane-sweep algorithm with a partitionsthgng a single dimension
that makes the algorithm provably robust against worse-dasa distributions.



Plane-SweepingWe first briefly describe the internal memory plane-sweep-alg
rithm, whichis used as a componentin all four algorithmsweimplemented. A plane-
sweep algorithm solves a two-dimensional geometric prolidg moving a vertical or
horizontakweep-lineacross the data, processing each object as itis reached iydep-
line (see, e.g., [31]). Clearly, for any pair of intersegtinectangles, there exists a hori-
zontal line that passes through both rectangles, and tHysemtangles located on the
same sweep-line (or rather, the intervals corresponditigeipprojections onto thatline)
need to be tested for intersection. This observation is irspthne-sweeping to reduce
the join problem to a (dynamic) one-dimensional intervegisection problem. Arge et
al. [4] experimentally compared four internal memory datactures for storing the in-
tervals corresponding to rectangles cut by the same svileepisicluding two methods
calledSt ri ped- Sweep andFor war d- Sweep. For war d- Sweep has been used
in several previous implementations of spatial join altoris (see, e.g., [8, 30]), while
Stri ped- Sweep was shown in [4] to be by a factor @fto 5 faster than the other
methods for most real-life data sets. We refer to [4] for ailiedl discussion of these
algorithms and their performance.

Structure of SSSJ.After initially sorting the two sets of input MBR’s based on
y-coordinates, a plane-sweep is performed by reading baetedsmputs sequentially
while maintaining two internal memory interval data sturets. This approach works
efficiently as long as the data structures do not grow beyloadire of the available in-
ternal memory. It was observed by Arge et al. [4] that evervéoy large real-life data
sets, the maximum size of the data structures will be redgtismall. To handle cases
where the structures do not fitin mema®aSJ combines the plane-sweep approach with
an I/0-optimal algorithm based on the distribution swegpathnique [5, 11]. In all ex-
periments performed for this study the data structures algrays significantly smaller
than the available internal memory, and tI888J essentially consists of a sorting step
followed by a single scan over the data.

Implementation. Our implementation of SSSJ is the same as that in [4], andsiexba
on external memory multiway mergesort and the internal nglgorithmSt r i ped-
Sweep. For data sets of the size we used, and excluding the outplu dfitersections,
SSSJ performs two sequential read passes, one non-sequemibpess (while merg-
ing), and two sequential write passes over the data.

3.2 Partition-based Spatial Merge Join (PBSM)

Partition-based Spatial Merge JoPBSM) [30] is a hash-join algorithm that consists of
a partitioning step followed by a plane-sweep step. In thétmming step the objects
from both input sets are distributed to a numbeparftitionssuch that each partition is
likely to fit into internal memory. Then intersections wittéach partition are computed
using theFor war d- Sweep algorithm.

Since a copy of each input rectangle is assigned to eachipathat it intersects, it
can be difficult to compute a priori the numheof partitions that are needed. To avoid
overfull partitions in the case of clustered data, a largeniber: > p of tilesis created
to which the rectangles are distributed. The algorithm thesigns the tiles to thep
partitions by enumerating the tiles in row-major order goplging a hash function (e.g.,
round-robin); see [30] for details. Excluding the repagtof the intersection$?BSM



usually performs two sequential read passes and one nomssgg write pass over the
data.

Implementation. Our implementation oPBSM followed closely that of Patel and
DeWitt [30]. Although we estimated the available intern&mory very conservatively,
we observed several partitions exceeding the internal mesire. Handling these par-
titions caused a fairly large number of page faults, whiolweld down the internal mem-
ory part of the algorithm. We were able to alleviate this peabby increasing the num-
ber of tiles from32 x 32 (as suggested by Patel and DeWitt)lZ8 x 128, and this
number of tiles was used throughout all experiments.

3.3 Synchronized R-tree Traversal (ST)

One of the most widely studied spatial join algorithms udtiyees was proposed by
Brinkhoff et al. [8], and it has been used as a benchmark iars¢évecent experimental
studies [16, 21, 23, 30]. The main idea is to perform a synubkeal depth-first traversal
of two trees storing the MBR’s of the two data sets. For eachgianodes in the tree
whose bounding rectangles intersect, the algorithm coagalt pairs of children whose
bounding rectangles intersect, and then recurses. Fittadlyntersections are reported
once the search reaches the leaves.

If the MBR’s in the two sets to be joined are distributed in mpgmately the same
way, then all nodes from both trees are involved in the joiarapon. Assuming that
each node occupies exactly one page, the total number of motlee R-trees is clearly
alower bound on the number of page requests for dense dsits\&tefer to this number
asthe “optimal”’ number of page accesses. Recently, Huargg ahd Rundensteiner [16]
proposed an algorithm based on breadth-first traversalgimaported to take approxi-
mately the same amount of CPU timesiswhile performing an almost optimal number
of 1/0 operations (if a sufficiently large buffer pool is aladile).

Implementation. Since ST usually visits R-tree nodes more than once, it denefi
from the use of a buffer pool storing previously touched rsode other spatial join
experiments buffer pools occupying between 0.5 MB and 1 MB§324] or between
2 MB and 24 MB [30] have been used. Having 24 MB of internal mgnawailable (see
Section 5.1), we decided to gi¥ as much advantage as possible by using a buffer pool
of size 22 MB (the remaining 2 MB were used for internal menmammyputations). Pages
were replaced using tHeast recently used (LRU) policy. Following the recommenda-
tions of Brinkhoff et al. [8], we computed intersectionsweén MBR’s in two R-tree
nodes using thBor war d- Sweep algorithm, while considering only rectangles over-
lapping the intersection of the MBR’s of the nodes under wheration.

For all R-tree experiments, we used packed R-trees thatdedliulk-loaded using
the Hilbert heuristic [17]. The maximum fanout was set to 4f@0responding to a page
size of 8192 bytes (see Section 5.1). Following recomménriaby DeWitt et al. [10],
we were careful not to pack all nodes to 100% of capacity,esthat might result in
too much overlap between bounding rectangles on the sarak &\ thus decrease the
quality of the index. Instead, we filled each node to 75% anlided additional rectan-
gles only if they did not increase the area already coverdbdgode by more than 20%.
For our data sets, the resulting trees had an average paekiogf around 90%.



4 Priority Queue-Driven R-tree Traversal (PQ)

In this section, we describe our new spatial join algorittathed Priority Queue-Driven
Traversal (PQ). The main advantage of this algorithmis thatit combinesnidex-based
and non-index-based approaches in a way such that inpuithér eepresentation can
be processed using the same algorithm. The algorithm incatgs aspects of the plane-
sweep approach &S] as well as the tree traversal ideaSit

Structure of PQ. A non-indexed input is processed B in essentially the same
way as inSSSJ; the MBR's are first sorted and then feed into a plane-sweggrithm.
If an input has a spatial index structure, such as an R-theealgorithm will exploit
this structure and directly extract the data in sorted oadeording to the direction of
the plane-sweep. The extracted data is directly fed intplige-sweep algorithm. The
other input to the sweep can be extracted in the same way fnother index structure
or read from a sorted non-indexed input.

PQ can be thought of as an extensionS¥] to the case of indexed inputs: it uti-
lizes the same sorting and plane-sweep components as $6&ddb an “index adapter”
which extracts data from a spatial index structure in sastddr. In the following we de-
scribe how this extraction is performed by means of a treestsal. A somewhat sim-
ilar way of traversing the indexed data in sorted order wappsed by Kitsuregawa,
Harada, and Takagi [19] in the context of joining two reladndexed by &-d-tree.
Here we present a conceptually simpler algorithm based oio&tp queue.

The main idea in our traversal algorithm is to run a horizbswaeep-line through
the nodes of the R-tree. To do so, we maintain a priority queitially containing the
bounding rectangle of the root of the tree. We advance thegne by extracting the
rectangle with minimum lowey-coordinate from the priority queue. If this rectangle is
a bounding rectangle of an internal node of the R-tree, thetoad all bounding rect-
angles of its children from disk and insert them in the ptiogueue. If the rectangle is
a bounding rectangle stored within a leaf (i.e., the MBR ofisspatial object), then we
feed it into the plane-sweep algorithm, which performs tttei@ join. Figure 1 shows
the basic structure of the algorithm for extracting eleraémisorted order.

Algorithm Extract_Next_| tem:
/* We have a priority queu® for bounding rectangles organized by their loweroordinate!.
Initially, P contains only the bounding rectangle of the regt.

while P is not empty
Extract the minimum elementfrom P
if r is an internal node of the tree
Read the children of and insert them intd@
else
Returng)
endwhile
Return(“End of input”)

Fig. 1. Algorithm for extracting the next item from the index in sttorder.



We point out that while the version BfQ described here will always access all nodes
of the index structure, the algorithm can be modified so thanly visits those parts
that can result in intersections; the details of this (dlighmore complicated) version
are omitted from this paper. This modification is importamtdases where one of the
relations is very sparse or localized (see the discussiSeation 6.3), but has no influ-
ence on performance for any of the experiments in this paper.

The presentation ¢1Q given here assumes that the priority queue never growslarge
than the amount of internal memory available. Note, howetetPQ can be modified
to handle overflow gracefully by using an external prioritege [2, 9], and that it can
also be combined with the partitioning step along one dinoerthatSSS] performs in
the case of an overflow of the interval data structure. We timette details here since
they are only needed for unusual worst-case input disiohat

One key feature dPQ is that it touches each node of the R-tree at most once. Thus,
the algorithm achieves an “optimal” number of page accessts tree (provided that
the size of the priority queue never grows beyond the availalbernal memory). Since
PQ can process both indexed and non-indexed inputs, it carealsty be extended to
multi-way intersection joins. For example, a 3-way intet&m join can be performed
by feeding the output of a two-way join directly into anotf@n with a third (indexed
or non-indexed) input.

Implementation. PQ use the same internal memory componentS3s3 (see Sec-
tion 3.1). For the priority queue, we chose the heap-basptementation provided by
theC++ Standard Template Library (STL) [26]. To optimize the performance and re-
duce the space requirements of the priority queue, we &gtuaintained two priority
gueues: one for the bounding rectangles of the internalsade one for the data rect-
angles in the leaves. Since the only information neededrfizgssing an internal node
is its position on disk and the lowgrcoordinate of its bounding box, we maintained
the internal nodes by storing tuples of the fofmpage ID) in the first queue. For data
MBR'’s however, we need to store four coordinates and an IDirguhe algorithm,
the next MBR to be processed can be found by comparing thefastents of the two
queues.

As the priority queues grow larger, the individual accessrapons &dd and ex-
tract_min) get noticeably slower, even though each operation on asieapg/V objects
takes at mosP(log V') comparisons. To increase the performance of the priorigyqu
we therefore used the following strategy: Whenever we |dateR-tree leaf from disk,
we sorted its rectangles by their lowecoordinates and inserted only the first rectangle
from this sorted sequence into the priority queue. Whenexeextracted a rectangle
corresponding to a leaf from the queue, we added the nextnglet from that leaf (if
any) to the queue. This technique does not significantlyedeser the total space require-
ment, since all data rectangles of a given leaf have to beetbado internal memory in
order to perform the initial sort. However, by reducing tleeof the priority queue, we
saveO(lg B) time per priority queue operation.

! However, for more complicated multi-way joins which do notrespond ta:-way intersec-
tions, it is not clear how to extend the algorithm in an eladashion; see [25] for a discussion
of such cases.



5 Experimental Platforms

In this section, we describe the experimental set-up foistudies, providing detailed
information on the hardware, software, and data sets the used.

5.1 Hardware Platforms

To cover a wide range of CPU speeds and disk transfer ratgseri@med experiments
on three different system configurations—refer to Tablete first system (also used
in [4,16]) is a combination of a relatively slow processod anfast disk. The second
system has a fast processor (slightly faster than the ortbing24]) and a disk with

high transfer rate but relatively slow average access fiihe.third is a state-of-the-art
workstation, with both a fast processor and a fast disk. Althines were equipped with
64 MB of internal memory and the amount of free internal mgnveas at least 24 MB.

Workstation | CPU Hard Disk Size|Buffer|Read Throughput
(Model) (MHz) (Model) (GB)| (KB) | (ms)|(peak, MB/s
1 ||SUN Sparc 20| 50 |ST-32550N (Barracudap.1 | 512 | 8.0 10

N

SUN Ultra 10 | 300 |ST-34342A (Medalist)| 4.3 | 128 |12.5 33.3
3 ||DEC Alpha 500 500 [ST-34501W (Cheetah) 4.4 | 512 | 7.7 40

Table 1. Hardware configurations used in our experiments.

The page size on Machines 2 and 3 was 8 KB, while Machine 1 haabe pize
of 4 KB. In order to obtain comparable results, we used 8 KBRdree node in all
experiments. Thus, on Machine 1 we always requested twdébloer 1/0-operation.

5.2 Software Environment

We implemented the algorithms @+ using theTransparent Parallel 1/O Program-
ming Environment (TPIE) [3], a templated library that supports high-level gfficient
implementations of external memory algorithms.

In TPIE, the actual page transfers between disk and interealory is performed by
a so-called Block Transfer Engine (BTE). One implementaémploys the ead and
wr i t e system calls, which improve the performance of purely strbased algorithms
like PBSM or SSSJ. Hence, we used this BTE in our experiments with these alyos,
and in order to take advantage of the sequential disk acegterm, we used a logical
page size of 512 KB. For our R-tree implementation, howewerchose a BTE that
performs memory-mapped I/O operations usimgp system calls, thus bypassing the
operating system’s buffer cache in a way similar to usingradisk device (as done in
many commercial database systems [36, p. 535]).

We compiled all programs using tl@&NU C++ compiler (version 2.8), with O2
level of optimization.

5.3 Data Sets

The TIGER/Line data set from the US Bureau of the Census E3&he of the standard
benchmarks for spatial databases. Its current distributhmsists of six CD-ROMs of
data. We extracted the hydrographic and road features ddrttiee United States and
created six data sets of different sizes (see Table 2). Thestaallest sets consist of



the state of New Jersey (NJ) and New York (NY), respectivEhese sets were also
used in our previous experiments wRBSM and SSSJ [4]. The data on the first disk
(Disk1) covers 15 states from the Eastern US. The data on disk®4s&4-6) covers
the Western half of the US, while the data on disks 1-8{1-3) covers the Eastern
half. Our largest data set is obtained from all six diskss{{1 -6).

The sizes given in Table 2 refer to files containing the MBReauth feature. Each
MBR occupies20 bytes (6 bytes for the corner coordinatespytes for the ID), and
each outputitem is a pair of IDs corresponding to overlagpifBRs.

| Category || NJ | NY [ Diskl | Disk4-6] Disk1-3| Disk1-6 |
Objecty 414,442 870,4126,030,84511,888,47@.7,199,839,088,1713

“Road” Data | 7.9MB|16.6 MB|{115.0 MB 226.7 MB 328.0 MB 554.8 MB
R-tree || 8.3 MB|17.7 MB|122.8 MB 245.8 MB 352.5 MB 598.4 MB
Objectg| 50,853 156,56 1,161,90T 3,446,09T 3,967,64T 7,413,353

“Hydro” Data | 1.0MB| 3.0 MB| 22.1MB| 65.7MB| 75.6 MB| 141.4 MB
R-tree || 1.1 MB| 3.3 MB| 25.0MB| 74.6 MB| 85.5 MB| 160.2 MB
Objectd[130,756 421,1103,197 520 8,554,133 9,378,64717,938,53
Data [[1.0 MB? 3.2 MB? 24.4 MBT 65.3 MBT 716 MBflse.g MEf

Output

Table 2.Bounding rectangles of the TIGER/Line 97 data sets.

In addition to the disk space required to hold the originghdend the spatial index,
we need scratch space for temporary files created duringépeqressing. Since bulk
loading an R-tree requires a sorting step, we had to stohretbeunsorted and the sorted
stream of rectangles on the local disk. Together with théapadex, the overall space
requirement was a little more than three times the size dfttiggnal data set, and there-
fore we were unable to construct the R-trees for the largst sbts on Machine 1.

6 Experimental Results

In this section, we present some of the results of an extersiperimental study of the
performance of the four algorithms described in the prevamctions. We measured 1/0
cost, internal computation time, and memory requiremeffesconsider two different
measures of the I/O cost: the total number of /O operati@nfpmed, and the actual
time taken by the 1/0 operations. The first set of experimehsgussed in the next sec-
tion, considers the internal memory requirements of the P@join algorithm and ver-
ifies that its data structures indeed fit in internal memaryséction 6.2 we compare the
performance of the two index-based algorithfd® @ndST). Finally, in Section 6.3 we
compare the running times of all four algorithms.

6.1 Memory Requirements of PQ

The space requirementsie® on the different data sets are shown in Table 3. The space
requirement is measured as the size of the sweep-line datéLses plus the size of the
priority queues. The latter includes the actual STL priogiteues as well as the buffers
needed to hold the currently active sorted lists of MBR’s@scdbed in Section 4. We
see that even though the priority queue is significantlydatiyan the sweep-line struc-
ture, it nevertheless easily fits in memory even on the ladgs: set. In particular, the
size of the priority queue is always less than 1% of the tcitd det.



| Data Structurd] NJ[NY |Disk1|Disk4-6|Disk1-3[Disk1-6
Priority Queue||0.320.76 1.44 2.72 3.65 4.99
Sweep Structuf0.090.10 0.12 0.1 0.17  0.20

Total ||O.410.86 1.56 2.87 3.82 5.19

Table 3. Maximal memory usage (in MB) for the PQ Join algorithm

6.2 Comparison of Indexed Joins

A common measure for the 1/O efficiency of index-based atbors is the number of
pages requested by read or write operations. In this seatierconsider the 1/O effi-
ciency of the index-based join algorithi§8 andPQ under this measure and compare
the results to the actual running times of the algorithms.

Page Accessesn Table 4, we show the number of pages requesteSitgnd PQ.
We give the total number of page requests as well as the avatagber of requests per
R-tree node. These numbers are independent of the maclitesirsce internal memory
and logical page sizes are identical for all machines. Towér bound” refers to the
number of pages occupied by the indexes.

| Method [Requests NJ [ NY |Disk1]|Disk4-6|Disk1-3Disk1-6|
Total |(1,1982,70618,911 41,011 56,061 97,096
Avg. 1.00 1.0 1.0 1.0 1.0 1.00
Total |(1,1982,70618,911 41,011 56,061 97,096
Avg. 1.00 1.0 1.0 1.00 1.0 1.00
Total |(1,1962.70427,001 66,937 63,823 112,323
Avg. 1.00 1.0 1.4 1.63 1.1 1.1q

Lower Bound

PQ Join

ST Join

Table 4. Number of pages requested during joining.

As expected, the number of page request®€rs optimal. InfactPQ is guaranteed
to be optimal as long as its data structures fit into interreghery. The numbers f&T,
on the other hand, vary quite widely. There are two factoas #ffect the number of
page accesses 81 the heuristic for restricting the search space and thehdst-
search traversal mechanism. The first factor decreasegttloé gages that need to be
touched, while the second results in many pages being regliesre than once. For
the small data sets (NJ and NY), the entire indexes fit in tifeebpool, so no page
needs to be requested more than oimom disk. Furthermore, we can directly see the
positive effect of restricting the search space since thelbmau of pages requested by
ST is actually slightly less than the “lower bound”. As the sdmcome larger than the
buffer pool, the number of page requests increases sigmifjcavith each page being
requested between14 and1.63 times on the average.

Estimated Running Times.The simple method of counting the number of disk ac-
cesses has been used in several papers on index-basetisipetia order to compare
the performance of spatial join algorithms; see, e.g.,63824]. The estimate for the run-
ning time is commonly obtained by multiplying the number afp requests by the av-
erage disk block read access time, and then adding the redasiiernal computation
time. In Figure 2(a)—(c) we show the resulting estimatecdiogtimes forST andPQ on
all three machines. Here and in the following, we suppressdsults for NJ for reasons
of readability. The total CPU cost is the sum of the amountsneé spent iruser and



system mode as reported by tlgget r usage function call. This time was added to the

I/0 cost estimated as described above.
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Fig. 2. Join costs (in seconds) for all machines: estimated (agf(d)observed (d)—(f).

Using the estimated running times, there is no clear wineené&en the two algo-
rithms. On Machine 1, with the slowest processor and a veligtfast disk,PQ seems
to have a slight advantage. On the two faster machines, heywR® does significantly
more CPU work, whileST spends more time on 1/O. The higher CPU cosPqf is
mainly due to the various internal memory data structures.

Actual Running Times. The above estimates are based on the assumption that page
requests are random. While this may be true in some situsa{®g., index structures
that are built in an ad-hoc fashion, or database servers#matle multiple interfering
requests), it is not clear to what degree it applies to paokédilk-loaded spatial index
structures where neighbors in the index are often locateskbl together on the disk.

To investigate whether such issues significantly affecfioperance, we considered
the actual running times &T andPQ. We made sure that no other processes were run-
ning on the machines, and measured the overall running Sing theget t i meof day
function call. The CPU usage time was determined as befatehb I/O cost was now
determined by calculating the difference between the dveraning time and the CPU
usage time. The measured running time$@fand ST are shown in Figure 2(d)—(f).
Note that they are significantly different from the estinddienes in Figure 2(a)—(c). In
particular, on Machine 3, which has both the fastest CPU asid 8T is significantly
faster tharPQ on the larger data sets, while the estimated times are neguiyl.

To explain the above behavior, we note that most R-tree lma#ling algorithms—
including the one we used—construct an index structure @gaantial bottom-up fash-
ion that causes all children of a node to be allocated setplignThus, if there is only



one process allocating pages, it is most likely that thedcln will be laid out sequen-
tially on disk, and, in the best case, may even reside on the sack.ST traverses the
trees in a depth first-search manner, which means that alhéetes having the same
parent are loaded consecutively. Since the leaves are liyddargest part of the tree,
ST could perform significant amounts of sequential /O on tH&ltoaded trees. PQ, on
the other hand, basically performs random 1/Os that do npélé on the way the tree
is layed out on disk. As the sweep-linel®d is advancing, nodes are read more or less
randomly from the different parts of the tree that interseith the sweep-line. This ef-
fect becomes more pronounced as the size of the tree insréém&ever, we expect that
the performance oFT will degrade on systems running multiple processes witbrint
fering requests, whereas the behavioP@fshould be roughly the same. An indication
of such an effect can be found in the relative performanc& ain Machine 2. The on-
disk buffer on this disk is significantly smaller than thattoé other machined £8 KB
vs.512 KB), and on this machine we do not observe the same relativerdage ofST
overPQ. Finally, note that the running times on Machine 1 are maiegrmined by the
internal computation times, since this machine has a faktadid a fairly slow processor.

6.3 Running Times for all Algorithms

We now compare the measured running times of all four allgast the index-based
ST andPQ algorithms and the non-index-bade8SM andSSSJ algorithms. Sinc&SSJ
andPBSM access the data in a highly sequential fashion, we did naidechem in
the comparison between estimated and measured running fline sequential access
should give these algorithms an advantage relativeQaand ST. On the other hand,
SSSJ andPBSM access the data multiple times.

1500 [ ] votime
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(a) Machine 1 (8 ms avg. read)
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Fig. 3. Observed join costs (in seconds) for all machines.



The results are shown in Figure 3. With the exception of opeBrment,SSSI (SJ)
always outperforms all other algorithms in terms of totalning time even though it
performs the largest number of 1/Os. This difference in geenance can be explained
by taking the difference between random and sequentialii®account. If, based on
the disc specifications, we assume that a random read take®mage 10 times as much
time as a sequential read and that a sequential write takegspagel .5 times as much
time as a sequential reai3SJ performs the equivalent & + (2n) * 1.5 = 6n se-
guential reads§SSJ performs a total o8 reads an@ writes of the entire data), while
PQ performs the equivalent d0n sequential reads.

Note however, that in some cases index-based algorithmsotdyave to read the
entire input data. This can happen when the join is perforb@tdieen small localized
portions of the input data sets, e.g., when joining hydrphiafeatures from the state of
Minnesota and road features of the entire United States,388J will still sort both
data sets, though only a small clustered portion of the reladion needs to participate
inthe join. In such a case, index-based algorithms su&i as PQ, which only traverse
the relevant parts of an index, may be significantly moreiefiic

In summaryPQ suffers in performance because it naively chooses to usedax i
whenever it one available. From the above arguments, wesesihat, for the given disk
configuration, it is advantageous to use the index only wherjdin involves less than
60% of the leaf nodes. An estimate of this number can be obtaisiedpe.qg., the spatial
histograms developed in [1]. Using such a cost-based apiprtmechoose between the
index-based and non-index based algoritiP@sshould have the best overall execution
time in most cases.

We also comment on the relationship between our experinagtts similar set of
experiments performed by Patel and DeWitt [30]. Their expents, which compare
PBSM andST, were conducted on a machine with a relative CPU/disk perdoice sim-
ilar to our Machine 1. Our results match their observati@t for such a configuration,
the index-base8T is faster than the non-index based PBSM (see Figure 3(a))ti©
other hand, if the time spent on constructing the index isnakto consideration, the
tree-based joilsT is slower tharPBSM.) Furthermore, our experiments extend their re-
sults in two ways. First, we demonstrate that the relativéop@ance of spatial join al-
gorithms depends heavily on the size of the data sets anctlidtgs/e performance of
the CPU and the 1/0 subsystems. Second, we show how indewtlapadisk can sig-
nificantly influence the performance. The latter relateshetiver one should take index
loading time into consideration when comparing index-Hagatial join algorithms. As
we have seer§T benefits from the layout produced by a good bulk-loadingrétiyam,
and its performance may degrade if the R-tree is updatedérety after bulk loading.
Thus, it seems fair to take into account the costs for bugidinperiodic rebuilding. On
the other hand, since bulk loading essentially consistexik(nal) sorting of the data,
there would have been no possibility of improving over theisg basedSSSJ, unless
the cost of building or periodic rebuilding is amortized pseveral spatial join opera-
tions.

2 Note, however, that Kim and Cha [18] have recently descriimal to locally reorganize the
tree during updates to maintain a good layout of sibling sode



7 Conclusions and Open Problems

Inthis paper, we presented a simple algorithm that unifiegnithex based and non-index
based spatial join approaches. Under reasonable assmsptiout the input data, our
algorithm is guaranteed to perform an optimal number of If@rations. We also pre-
sented the results of an extensive set of experiments ctifieedhta that shows that it is
important to take into account the difference between saipleand random 1/0O when
designing spatial join algorithms for massive data sets.

The performance of the index-based algorithms dependé#iyreathe properties of
the spatial index structure. Not surprisingly, tightly ked space-efficient index struc-
tures perform better than structures that achieve a lowaaresptilization or that do not
map adjacent leaves of the tree to consecutive locationiskrntremains an open prob-
lem to incorporate these properties of bulk-loaded indecstires into testbeds and per-
formance models for spatial join algorithms.
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