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ABSTRACT

The dominating set problem asks for a small subset D of
nodes in a graph such that every node is either in D or ad-
jacent to a node in D. This problem arises in a number of
distributed network applications, where it is important to
locate a small number of centers in the network such that
every node is nearby at least one center. Finding a dominat-
ing set of minimum size is NP-complete, and the best known
approximation is logarithmic in the maximum degree of the
graph and is provided by the same simple greedy approach
that gives the well-known logarithmic approximation result
for the closely related set cover problem.

We describe and analyze new randomized distributed algo-
rithms for the dominating set problem that run in polylog-
arithmic time, independent of the diameter of the network,
and that return a dominating set of size within a logarithmic
factor from optimal, with high probability. In particular,
our best algorithm runs in O(lognlog A) rounds with high
probability, where n is the number of nodes, A is the maxi-
mum degree of any node, and each round involves a constant
number of message exchanges among any two neighbors; the
size of the dominating set obtained is within O(log A) of the
optimal in expectation and within O(logn) of the optimal
with high probability. We also describe generalizations to
the weighted case and the case of multiple covering require-
ments.
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1. INTRODUCTION

Given an undirected graph G = (V, E), a dominating set D
of GG is a subset of V such that for every node v € V, either
v € D or there exists anode u € D such that (u,v) € E. The
minimum dominating set problem, henceforth referred to as
MDS, is to find a dominating set of minimum size. In this
paper, we devise fast distributed approximation algorithms
for MDs and its generalizations.

The MDS problem is a classic NP-complete optimization prob-
lem [12] and is closely tied to the well-known set cover prob-
lem. Given a universe I/, containing n elements, and a col-
lection & = {S; : S; C U} of subsets of U, the minimum
set cover problem asks for the minimum-size subcollection
C C S that covers all of the n elements in /. The set cover
problem, henceforth referred to as Msc, was one of the first
problems shown to be NP-complete [18]. It can be easily
seen that MDs is a special case of MsC; in any instance I
of MDs, for each node v, the corresponding instance of MSC
has an element v and a set S, that consists of v and all the
neighbors of v in I. On the other hand, MSC is equivalent
to a version of MDS that has the constraint that the desired
dominating set can only contain nodes from a prespecified
subset of nodes. Both MDs and MSC can be approximated
well by a natural greedy algorithm which repeatedly adds
the node (resp., set) that covers the most number of uncov-
ered nodes (resp., elements). The greedy algorithm achieves
an Ha-approximation where A is the maximum degree of
a node (resp., maximum number of elements in a set), and
H; is the ith harmonic number [9, 17, 22]. Furthermore,
Feige has shown that the approximation ratio achieved by
the greedy algorithm for either problem is the best possi-
ble (to within a lower order additive term) unless NP has
n@Uo8log ™) _time deterministic algorithms [11].

Dominating sets and their variants (e.g., k-dominating sets)
are useful in a number of distributed network applications,
where the goal is to select a subset of nodes that will pro-
vide a certain service, such that every node in the network
is close to some node in the subset. For example, a set of
k-dominating centers can be selected to locate servers [4] or
copies of a distributed directory [26] so that every node is
within distance k of some server or directory copy, respec-
tively. In recent work on mobile ad-hoc network routing [20],
dominating sets have been proposed for storing location in-
formation of the network nodes. Dominating sets have also
been used in the distributed construction of minimum span-
ning trees [19].



1.1 Our contributions

Our main contribution is a fast randomized distributed ap-
proximation algorithm for MDS. Our algorithm yields a dom-
inating set of size within O(Ha) = O(log A) of the optimal
in expectation and O(logn) of the optimal whp' and ter-
minates in O(log nlog A) time whp, where n is the number
of nodes in the network. Our algorithm consists of a sim-
ple local procedure in which each node repeatedly performs
a small number of fixed operations. For our analysis, we
adopt a standard synchronous model of computation [2, 3,
21, 25] in which, in a communication step, each node can
exchange a message with each of its neighbors; the time
complexity of an algorithm is measured by the total number
of communication steps. Our focus in this paper is on the
time complexity and the approximation factor achieved; we
do not attempt to optimize message complexity. Neverthe-
less, we note that all of our time bounds require O(log n)-bit
messages only. Although our results are stated for a syn-
chronous model, our algorithm can be implemented in an
asynchronous model using a standard synchronizer such as
the « synchronizer of [1].

We generalize our main result in two directions. We con-
sider the multi-dominating set problem (MMDS) in which we
are also given for each node v a coverage requirement r(v),
and the goal is to find a dominating set that covers v at
least r(v) times, for all v € V. For MMDS, our randomized
algorithm terminates in O(lognlog Rlog A) time whp and
achieves an approximation ratio of O(log A) in expectation
and O(logn) whp, where R equals maxyev r(u). Our ap-
proximation results also extend to the weighted dominating
set problem in which the nodes have weights and we wish to
select a dominating set of minimum total weight; while we
achieve the same expected approximation ratio as for MDS,
the time complexity increases to O(lognlog(AW)), where
W is the ratio of the maximum and minimum weights.

1.2 Related work

Our algorithm is a refinement of a distributed implementa-
tion of the greedy algorithm, in which we relax the criteria
for adding a node to the dominating set and use randomiza-
tion to break symmetries when several nodes attempt to add
to the dominating set. The notion of relaxing the selection
criteria is not new and has been used before, most notably
in the parallel set cover algorithms of Berger et al [6] and
Rajagopalan and Vazirani [28]. They describe RNC® and
RNC? algorithms, respectively, that achieve an O(log A)-
approximation. These results, however, make use of certain
global synchronization steps or computations such as find-
ing the global maximum, all of which can be performed ef-
ficiently in parallel but do not directly lend themselves to
fast distributed implementations. Furthermore, our particu-
lar relaxation and selection criteria are new and the resulting
algorithms are different than the ones considered in [6, 28].
We note that [28] also considers other generalizations of set
cover including MMDs, which we study as well. The RNC
algorithm of [28] has been derandomized in [7].

"We use the abbreviation “whp” throughout the paper to
mean “with high probability” or, more precisely, “with prob-
ability 1 — n™ ¢, where n is the number of nodes in the net-
work and c is a constant that can be set arbitrarily large by
appropriately adjusting other constants defined within the
relevant context.”

Kutten and Peleg describe a distributed dominating set al-
gorithm which takes O(log* n) time [19] on any network,
and hence is asymptotically much faster than the algorithms
we propose in this paper. Their algorithm is based on the
O(log* n) algorithm of [13] for finding a maximal indepen-
dent set in graphs, which uses the deterministic coin-flipping
technique of [10]. The primary emphasis in [19] is on time
complexity, however, and there is no nontrivial asymptotic
upper bound on the approximation ratio. In contrast, Haas
and Liang [20] have recently presented a distributed imple-
mentation of the greedy algorithm, which we refer to as dis-
tributed greedy, that achieves the same approximation ratio
as the greedy algorithm; however, as we discuss in Section 2,
there exist networks for which the distributed greedy algo-
rithm takes Q(n) time.

Closely related to MDS and MSC is positive linear program-
ming, which captures linear relaxations of the two problems.
Luby and Nisan [23] introduce an NC algorithm for positive
linear programming. As noted in [23], their result taken
together with the randomized rounding approach of Ragha-
van [27] yields an RNC algorithm for Msc and MDs. In
recent work, Bartal et al. [5] present a distributed algorithm
for positive linear programming with applications to flow
control.

1.3 Outline of the paper

The remainder of the paper is organized as follows. Sec-
tion 2 presents our randomized distributed algorithm. Sec-
tion 3 establishes a tight analysis of the algorithm. Sec-
tion 4 presents generalizations of our basic result. Finally,
Section 5 discusses future research directions.

2. ARANDOMIZEDDISTRIBUTED ALGO-
RITHM FOR DOMINATING SETS

In this section, we present a simple randomized algorithm
for MDS that admits an efficient distributed implementa-
tion. The algorithm is developed in Section 2.1 and the
distributed implementation is discussed in Section 2.2.

2.1 The algorithm

Our randomized algorithm is a refinement of the distributed
greedy algorithm of [20]2. In order to motivate our algo-
rithm, we first present the distributed greedy algorithm and
discuss its time complexity. The distributed greedy algo-
rithm proceeds in rounds, and each round consists of 3 steps.
First, each node u calculates its span, which is the number
of yet uncovered nodes that u covers. Next, each node u
sends its span and its ID to all nodes within distance 2 of u.
The final step is the selection step, in which a node u adds
itself to the dominating set if its ordered pair of span and
ID is lexicographically higher than that of any node within
distance 2.

The above algorithm is a faithful implementation of the se-
quential greedy algorithm, and consequently the approxi-
mation ratio achieved is identical to that of the greedy al-
gorithm. The distributed time complexity of the algorithm,

*What we call the distributed greedy algorithm is referred
to as the distributed database coverage heuristic (DDCH)
in [20], where it is proposed as an algorithm for locating
routing databases in mobile ad-hoc networks.



however, could be polynomial in the number of nodes. To
see this, we first note that in the distributed greedy algo-
rithm a node adds itself to the dominating set in a round
only if its span is maximum among all nodes within distance
2. Thus, in networks where there is a long chain of nodes
with decreasing degrees, the number of rounds until com-
pletion may be proportional to the length of the chain. For
instance, the distributed greedy algorithm takes time Q(y/n)
to obtain a dominating set for the “caterpillar graph” shown
in Figure 1. The problem raised by the caterpillar graph can
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Figure 1: The caterpillar graph.
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Figure 2: The star-complete network.

be addressed by “rounding up” the span of each node to the
nearest power of 2 and allowing any node that has maximum
rounded span among nodes within distance 2 to participate
in the selection step. More precisely, in the selection step a
node adds itself to the dominating set if its ordered pair of
rounded span and ID is lexicographically higher than that
of any other node within distance 2. (This natural idea of
grouping nodes with spans to within a constant factor is also
used in the RNC algorithm of [6].) It can be easily seen that
such a modification will yield O(1)-approximate dominat-
ing sets in O(logn) rounds for networks like the caterpillar
graph. Both the distributed greedy algorithm and the mod-
ification with grouped spans, however, suffer from another
serious drawback that results in a linear running time even
for constant-diameter networks.

Consider the network of Figure 2, which consists of a com-
plete network K,,3 with two additional neighbors for each
node of the network. It is easy to see that in each round,
the distributed greedy algorithm or the modification with
grouped spans will add exactly one node from K, 3 into the
dominating set; hence the algorithm will complete in n/3
rounds. The primary reason for the inefficiency of the two
algorithms is that they only consider the span of the nodes
but not how the nodes covered by an individual node are
also covered by other nodes. This leads us to our algorithm,
which we refer to as the Local Randomized Greedy algorithm,
or LRG for short.

The LRG algorithm proceeds in rounds. We now describe
the computation in each round.

e Span calculation: We first calculate for each v the
span d(v), which equals the number of uncovered nodes
that are adjacent to v (including v itself if uncovered).
Let the rounded span c?(v) of node v be the smallest
power of base b that is at least d(v), where b > 1 is
a real constant. The parameter b presents a tradeoff
between time complexity and approximation ratio.

o Candidate selection: We say that a nodev € Fis a
candidate if d(v) is at least d(w) for all w € F within
distance 2 of v. For each candidate v, let cover C(v)

denote the set of uncovered nodes that v covers.

e Support calculation: For each uncovered node u,
we calculate its support s(u), which is the number of
candidates that cover wu.

e Dominator selection: For each candidate v, we add
v to D with probability 1/med(v), where med(v) is the
median support of all the nodes in C(v).

‘We now provide some intuition for the definition of the dom-
inator selection step of LRG. Consider a node u that is
covered by s(u) candidates. We would like the dominator
selection step to include at least one, but not many, dom-
inators that cover u. One approach to breaking the sym-
metry among the candidates that cover w is to select each
of the candidates as a dominator independently with a cer-
tain probability. Suppose we set this probability to 1/s(u)
for each of the candidates that cover w. Then u is covered
with constant probability; furthermore, the expected num-
ber of dominators that cover w in this step is only 1. It is
not hard to see, however, that no setting of the probabili-
ties will guarantee the preceding property to be satisfied for
all nodes simultaneously. A key challenge in this approach
for dominator selection is to set the probabilities such that
a small number of dominators are selected, and yet a large
fraction of nodes are covered by the dominators.

In LRG, we set the probability Ps(v) of selecting a candidate
v as a dominator to be the reciprocal of the median support
of all the nodes that are covered by v. One consequence
of this choice is that if a node w has support larger than
1/P;(v) for more than half the candidates v that cover w,
then w is covered with constant probability. Furthermore,
we are able to show that the expected ratio of the number
of nodes covered to the sum of the spans of the domina-
tors selected is constant. The preceding two claims are key
ingredients in the efficiency and the effectiveness (in terms
of the approximation ratio) of LRG, which are analyzed in
Sections 3.1 and 3.2, respectively.

An alternative natural choice for the setting of the probabil-
ities in the dominator selection step is to select a candidate
as a dominator with a probability equal to the average of
the reciprocal of the supports of the nodes covered by the
candidate. In Section 4.1, we show that this approach also
leads to a O(polylog(n))-time O(polylog(n))-approximation
algorithm.

2.2 Distributed implementation
The span calculation step is implemented by simply ex-
changing identification messages with those neighbors that



are still uncovered. For candidate selection, each node v
sends d(v) to all of its neighbors; each neighbor then com-
putes the maximum and forwards it one more step, resulting
in at most one message per step and communication link.
After this second step, every node can determine whether it
is a candidate. For support calculation, each node v sends
a message to each of its neighbors indicating whether v is a
candidate. On the receipt of the “candidacy” messages from
all of the neighbors, a node determines its support. The fi-
nal dominator selection step can then be implemented by
having each node send its support to each of the neighbor-
ing candidates, and then each candidate selects itself with
the appropriate probability. Once a node w and all of the
neighbors of u are covered, u need not participate further
in the algorithm (other than as an intermediate node for
routing messages) and can thus detect termination.

3. ANALYSIS

In this section, we show that LRG terminates in O(log nlog A)
rounds whp and yields a dominating set of expected size
O(log A) times the optimal, where A is the maximum span.
Section 3.1 analyzes the running time of the algorithm and
Section 3.2 analyzes the approximation ratio of the algo-
rithm. Finally, in Section 3.3, we establish the tightness of
our analysis of the algorithm.

3.1 Time complexity

We place a bound on the time complexity by analyzing the
progress of the algorithm in any given round. Fix a round
and let H = (V', E’) be the subgraph of G where V' is the
union of the set of all candidates in the round and the set of
nodes covered by the candidates, and E’ is the set of edges
(v,w) where v is a candidate in the round and w € C(v).
We first show that any two candidates in the same connected
component of H have the same rounded span.

LEMMA 3.1. Ifv1 and v2 are two candidates in any con-

~

nected component of H, then d(vi) = (;i\(vz).

Proof: Consider any path p connecting v; and vy. From
the definition of subgraph H, at least every alternate node
on p is a candidate. From the definition of a candidate, two
candidates within distance 2 have the same rounded span.
Hence, the desired claim holds. [

We establish the progress of the algorithm by a potential
function argument similar to the one used in [28]. Let m de-
note the maximum rounded span of any node at the start of
a round. We define the potential ® to be 3°, 7., . |C(v)|-
The following main lemma establishes a bound on the ex-
pected decrease in the potential in any round.

LEMMA 3.2. If ® and ®' are the potentials at the start
and end of a round, then E[®'] < d® for some positive con-
stant d < 1.

To prove Lemma 3.2, we first introduce some definitions. For
each candidate v, we sort C'(v) according to the supports of
the nodes in C'(v) in nonincreasing order. Let 7'(v) and B(v)
denote the set of the first [d(v)/2] (resp., last [d(v)/2])

nodes in C(v) in this sorted order. (Note that if d(v) is
odd, then T'(v) and B(v) share a common element.) For a
candidate v and a node u, we say that v is good for w if u €
T(v). We say that a given node u is nice if at least s(u)/4
candidates covering u are good for u. Let Ps(v) denote the
probability that candidate v will be added to D at the end
of the round, and P.(u) denote the probability that node
w will be covered at the end of the round. The following
lemma places a lower bound on P (u) for any nice node u.

LEMMA 3.3. If u is nice, then Pe(u) > 1 — %

Proof: For any candidate v that is good for u, we have
Ps(v) = 1/med(v) > 1/s(u). Then, for a nice node u, we
have

P = 1- [] (0-P@)

uw€C(v)

> 1-  J] (-P@)
v is good for u
1\ sw/4
> 1—<1——>
s(u)
1
> 1——=.
e

O

We refer to each element in C(v), for any v with rounded
span m, as an entry. Thus, ® is simply the total number of
entries (where a node may have entries in several sets C(v)).
Any entry that occurs in 7'(v), for some v, is referred to as
a top entry. Finally, any occurrence of a nice node in a T'(v)
is referred to as a nice top entry.

LEMMA 3.4. At least one-third of the total entries are nice
top entries.

Proof: Fix a connected component S in which the maxi-
mum rounded span is m. By Lemma 3.1, all candidates in S
have the same rounded span. Let z (resp., y) denote the to-
tal number of entries (resp., number of non-nice top entries)
in S. By the definition of nice nodes, each nice node u has
at least s(u)/4 entries in T'(v), for each candidate v. There-
fore, there exist at least 3y non-nice node entries in B(v).
Clearly, x/2—3y > 0, from which we get y < /6. Thus, the
total number of nice node entries in 7'(v) is /2 —y > z/3.
Adding over all connected components with rounded span
m, we obtain the desired claim. [

Proof of Lemma 3.2: Let v be any candidate in S and
let y denote the number of nice top entries in C'(v) at the
start of the round and let z denote the number of nice top
entries covered in the round. By Lemma 3.3, we have

=)
7e)
Adding over all components with rounded span m and in-
voking Lemma 3.4, we obtain that

@) < a1 — 3(1- ),

Elz] > y(1—



which completes the proof of the desired claim. [

We are now ready to establish the bound on the running
time of the algorithm.

THEOREM 1. LRG terminates in O(log nlog A) rounds whp.

Proof: From Lemma 3.2, there exists a constant d < 1
such that E[®'] < d®. By Markov’s inequality, we have
Pr[®’ > a®] < d/a, for some constant « such that d < a <
1. With probability p > 1 —d/«, the potential will decrease
by a constant factor of at least a. Any round in which the
potential decreases by at least a factor of « is refered to as
successful round. Let X (resp., Z) denote the total num-
ber of rounds (resp., successful rounds) that have maximum
rounded span m, and call these X rounds a phase. Since
Z is equivalent to the number of successes in a sequence of
Bernoulli trials, we invoke the Chernoff bound [8] to obtain

2
Pr[Z < (1 —€¢)E[Z]] < e TP
Since E[Z] > pX, we have

Pr[Z < (1—¢)pX] < e~ T PX (1)

Note that there are at most [log, ,, (bn)] successful rounds
in a phase. Substituting e =1/2 and X = 2log; ,, (bn)/p in
Equation 1, we have

e—i log1/q bn

1

(br)1/Gin(1/a))
1

(br) 1/ In(1/d) °

Pr[Z <log;,,(bn)] <

A

Sinced = 1—%
3. Since the total number of distinct values for the rounded
span is at most log, A, we have

Pr[LRG terminates in 2log, Alogl (bn)/p rounds]
> (1— L)l > 1 — g

>1__2'7

for a sufficiently large n. This yields the desired high prob-
ability bound on the running time of LrRG. [

3.2 Approximation ratio

In this section, we place a bound on the size of the dominat-
ing set constructed by the algorithm. Let OPT denote the
minimum dominating set for the given instance. The main
result of this section is the following.

THEOREM 2. LRG yields a dominating set of expected size
4bHp - |OPT) and size O(|OPT) - log n) whp.

We estimate the size of the dominating set by associating
a cost with each node covered in a given round, and then
placing a bound (in Lemma 3.6) on the expected number of
dominators selected in any round in terms of the expected
cost of the nodes covered. For node w, the cost cost(u)
is determined in the round when u is covered. Consider

(1—%) by Lemma 3.2, we have 1/(4In(1/d)) >

a round when w is covered and let v be a dominator that
covers u in that round and is also selected in that round.
We set cost(u) to be 1/d(v). Recall that, due to Lemma 3.1,
all candidates that cover u in a given round have the same
rounded span, so the particular choice of v is immaterial.
Furthermore, u is covered in exactly one round; thus, cost(u)
is well-defined. The sum of cost(u), taken over all the nodes
u, is closely tied to the performance of the greedy algorithm,
and the following lemma, which is based on the well-known
analysis of the greedy algorithm [17, 22], places an upper
bound on this sum.

LeEmMA 3.5. Y oy cost(u) < Ha - |OPT].

Proof: Consider any v € OPT, and let £ denote |C'(v)|.
We sort all u € C(v) to obtain the sequence u1, uz, ...,ug
such that for any 1 <1¢ < j < ¢, u; is assigned a cost before
u;j. Then we have cost(u;) < 7=77. Consequently,

1 1 1
z cost(u Zcostuz SZ+€——1+'"+I=HA'
u€C(v)
Thus,
Z cost(u) < Z Z cost(u) < Ha - |OPT).
weV veOPT v€C(v)
O

LEMMA 3.6. If S is the set of candidates added to D in
any round and Z is the total cost assigned in the round, then
E[IS]] < 46E[2].

Proof: Let V' denote the set of nodes that are uncovered
at the start of the round. For any u € V', let c(u) = 1/d(v),

where v € C'(v). For any v € S, we have |C(v)| > c’l\(v)/b
We thus obtain

15| <> ICw) ﬁ_bz Soew<nd Y e

vES vES ueC(v) vES ueB(v)

since |C'(v)| < 2|B(v)| for all v. For any u € V', let t(u)
denote the number of candidates v that are added to D at
the end of this round such that v € B(v). Note that ¢(u) =0
if w is not covered or v € B(v) for all v € S that cover w.
Thus, we have

ISI<26> > e(u)=2b Y c(u)t(u).
vES ueB(v) wev!

Since c(u) is fixed for a given u and E[t(u)] equals Pr[t(u) >
0] - Et(u) | t(w) > 0], we obtain

E[SI<2b ) o

ueV’

w) Prt(u) > 0] - E[t(u)|t(u) > 0] (2)

Now consider t(u). Let W = {v : u € B(v)} and let p(v
denote the probability that v is added to D for a given

)
v e
W. For v € W, since u € B(v), we have p(v) < 1/med(v) <



1/s(u) < 1/|W|. Thus,

Eft(u)|t(u) > 0] Z Pr[v is added to D|t(u) > 1]
vEW
_ Z Pr[v is added to D]

Prt(u) > 1]
EvEW p(”)
T=Tlew (@ =p(v))
> vew P(V)

Z’UEW p(’U) - Zw,yew,w#y p(w)p(y)
< 2.

vEW

INA

(In the fourth step, we use the inequality [], .y (1 —p(v)) <

1= ewp) + Zm’yew’m#yp(m)p(y). In the final step,
we use the inequality >°, ey oz, P(2)P(Y) < 30, cp P(v)/2
since ),y P(v) < 1.)

Substituting the bound on E[t(u)|t(u) > 0] in Equation 2,
we get

E[S|] <4b Y c(u) Pr[t(u) > 0] < 4bE[Z],
ueV’

which completes the proof of Lemma 3.6. [

Proof of Theorem 2: Let S; denote the set of candidates
added to the dominating set in round ¢, and let Z; denote
the cost assigned in round i. Then the expected size of the
dominating set computed by LRG is

ZEHSZH < 4bZ E[Z;] = 4b Z Elcost(u)]

u€EV
< 4bHa - |OPT|,

where the last step follows from Lemma 3.5. This completes
the bound on the expected size of the dominating set.

For a high probability bound, we note that each round can
be viewed as a set of independent coin tosses, one for each
node in the network. Let p;(v) denote the probability as-
sociated with a given node in round ¢. Note that p;(v) is
a random variable and may be dependent on the outcome
of earlier rounds. For instance, if a node v is selected in
the dominating set in round 4, then p;(v) is 0 for j > 4.
Therefore, the overall sequence of coin tosses does not cor-
respond to a set of independent Bernoulli trials. However,
since we have shown that ). E[|S;|] is upper bounded by
437, oy Eleost(u)], and Y~ o\ cost(u) is always bounded
by Ha - |OPT|, it follows that if we consider any particular
execution of the random experiment, the sum of the proba-
bilities of the coin tosses is upper bounded by Ha - |OPT].
We can now invoke a Chernoff-type argument to establish
that the size of the dominating set is O(log n - |OPT|) whp.
We refer to the full version of this paper [16] for a more
detailed argument. []

We now consider a tradeoff between the time complexity
and the expected approximation ratio achieved by the al-
gorithm. Theorems 1 and 2 show that LRG achieves an ex-
pected 4bH a-approximation and terminates in O(log nlog A)
rounds whp. A slight variant of LRG yields an approximation
arbitrarily close to Ha by giving up an appropriate constant
factor in the number of rounds. Let ¢ be any positive real

constant. We modify the candidate selection phase of LRG as
follows. Instead of selecting a candidate v with probability
1/med(v), we select a candidate with probability €/(yrs(v)),
where 7 (v) is the support of rank [ed(v)] among the sup-
ports of all nodes in C'(v), and v > 1 is an appropriately
chosen constant (recall that d(v) is the span of v). Finally,
we set b to 1+ &/2. In the full version of this paper [16],
we show that the new algorithm achieves an approximation
ratio of (1 +¢&)Ha in time O(log nlog A), where the hidden

constant in the running time is proportional to /e,

3.3 Tightness of the analysis

We now show that our analysis of LRG is tight to within
constant factors. It is easy to see that LRG can do no better
than the greedy algorithm. Therefore, the approximation
ratio of LRG is at least that of the greedy algorithm, which is
HA (for a lower bound instance, see [17]). In this section, we
present a network for which LRG takes £ (log nlog A) rounds
whp before termination. We assume for simplicity that the
base b in LRG equals 2. However, our lower bound network
can be generalized to any b > 1.

The lower bound network G is illustrated in Figure 3. The
network consists of logm levels labeled from 1 to logm,
where m is a power of 2. In level i, there are 2¢ core nodes,
and those core nodes are divided into 2¢°! pairs. The two
core nodes in each pair have links with a distinct set of 2%
fringe nodes, which we call the pair’s cluster. Besides links
within a certain level, there exist cross-level links. Each core
node in level ¢ — 1 has a link with exactly one fringe node
from each of the clusters in level ¢. The total number of
nodes in this network is n = (4m® — 18)/7 + 2m.

Now consider the running time of LRG for this network. In
level 4, the span of each core node is 2% + 21 if 1 < i <
log m, or 2% if 4 is logm. Since (2% +2%)/(2%~2 +2'"!) and
2% /(2272 1 2°=1) are both at least 2, we know that the core
nodes in level ¢ — 1 will not be selected as candidates until
all fringe nodes in level ¢ have been covered.

Consider any round at the start of which all nodes in levels
i+ 1,...,logm have been covered, and where there exists
at least one uncovered node in level ¢. In this round, all
the candidates are core nodes at level 7, and the support of
each uncovered fringe node is 2. Thus, each candidate adds
itself to the dominating set with probability 1/2. For each
pair, with probability 3/4 at least one of the core nodes is
selected to be a dominator, and with probability 1/4 neither
is selected. Also, if at least one core node in a pair is selected,
then all the fringe nodes in its cluster are covered. If we
number the clusters in level ¢ from 1 to 27!, then we have
the following inequality for ¢ > (logm)/2,

Pr[level 7 is covered in r rounds]
j:2i—1

H (1 — Pr[cluster j is not covered in r rounds])
j=1

j=2i-1 j=vm/2
1 1 1, vVm/2
|| (1—47)S || (1—47)=(1—47) .
i=1 j=1

Thus, the probability that level ¢, for ¢ > (logm)/2, is cov-
ered in r = (logm)/8 rounds is at most (1—1/4(08™)/8)vm/2
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Figure 3: A network for which LRG takes Q(lognlog A) rounds whp.

which is less than 1/e ym/2, Therefore, the probability that
level i takes at least (logm)/8 rounds to be covered is at
least 1 —1/e ym/2, Adding over levels (logm)/2 through
log m, we obtain that the number of rounds LRG takes for
this network is Q(log®> m) whp. Since the total number of
nodes in G is n = O(m®), and A is m?, the running time of
LRG for this network is Q(log nlog A) whp.

4. GENERALIZATIONS

In this section, we extend the analysis of LRG in three di-
rections. We first analyze, in Section 4.1, a natural variant
of LRG that may be of independent interest. Sections 4.2
and 4.3 consider the MMDS problem and MDS with weights,
respectively.

4.1 Avariant of Lrc

In the dominator selection step of each round of LRG, each
candidate v adds itself to the dominating set with probabil-
ity 1/med(v), where med(v) is the median support among all
nodes in C(v). Another, perhaps more natural, choice for
the probability is the average of the inverse of the supports.
We consider a modification of LRG, which we refer to as AVE,
in which the dominator selection step of each round is the
following: each candidate adds itself to the dominating set
with probability (3°,cc(,) 1/5(u))/d(v). Interestingly, the
behavior of AVE is different than that of LRG. A crucial as-
pect of the proof of Theorem 2 is that the expected ratio
of the number of nodes covered to the number of entries in
the dominators selected in any round is constant. This prop-
erty does not hold for AVE. Nevertheless, we can establish an
O(log nlog A) high probability bound on the approximation
ratio of AVE.

THEOREM 3. AVE computes a dominating set of size within
O(lognlog A) of the optimal in O(log nlog A) rounds whp.

We place a bound on the time complexity by analyzing the
progress of the algorithm in any given round as in the anal-
ysis of LRG. We define the subgraph H of G as before, and
it is easy to see that Lemma 3.1 holds for AVE as well. For
a candidate v and an uncovered node u, we define C(v),
T(v), B(v), Ps(v), Pe(u), and the notions of good and nice
as in Section 3.1. The following lemma is analogous to
Lemma 3.3.

LEMMA 4.1. If u is nice, then P.(u) > 1 — 4=.

e
Proof: For any candidate v that is good for u, we have
P = | Y e > (S ) i)
s(u) - s(u)
w€eC(v) uw€B(v)
St
2med(v) = 2s(u)’
For a nice node u, we thus have
Pw > 1- J[ a-Pw)

v is good for u

s 1 s(u)/4
2s(u)

> 1-—

\Y%

Sl
®

O

We then define the potential function ® as in Section 3.1.
Note that Lemma 3.4 holds for AVE; thus, by invoking an
argument similar to the one in the proof of Lemma 3.2, we
have E[®'] < ®(1 — 1(1 — %)), which justifies Lemma 3.2
for AVE.



Now we are ready to establish the bound on the running
time and approximation ratio of AVE.

Proof of Theorem 3: Given the validity of Lemma 3.2 for
AVE, it follows that AVE terminates in O(log nlog A) rounds
whp, in the same manner as LRG.

We now consider the approximation ratio. Fix one round
and let S1, S, ..., Sk be the connected components in H with
corresponding rounded spans mi, ma,...my. Let OPT de-
note the minimum dominating set for the given instance,
and let v1,vs, ..., vj0pT| denote the dominators in OPT.

Consider any component S; for 1 < ¢ < k. By the definition
of AVE, candidate v adds itself to the dominating set with
probability (3°,cc(,y 1/s(u))/d(v). We thus obtain that the
expected number of candidates in S; added to the dominat-
ing set at the end of the round is

> (X sm)w

candidate v € S; uw€C(v)

Oy s )

candidate v € S; ueC(v)

= mi Z s(u)sl—u)
1“651'
.1

m;

IN

We now show that the expected number of dominators se-
lected in any round is O(|OPT|). For 1 < i < k, we asso-
ciate a cost 1/m; with each element in S;, and let W;; =
EuESj,(u,Ui)EE 1/m; denote the total cost of all nodes in
S; that have a link with dominator v; in OPT. We have
2a<icjopt) Wii 2 |Sj|/m;, because OPT is a dominating
set.” Since the span of v;, i.e., the number of uncovered
nodes it covers at the beginning of this round, is at most
the rounded span of any candidate that overlaps with the
coverage of v;, we have Zl<j<k W;; < 1. Thus, we obtain
E1§i§k |Sil/mi < EISiS\OPT\,ISjSk Wi; < |OPT|, which
gives an upper bound of b - |OPT| on the expected num-
ber of candidates added to the dominating set at the end
of any round. Since the number of rounds taken by AVE is
O(lognlog A) whp, it follows that the approximation ratio
is O(blognlog A) = O(lognlog A) whp. [

We note that the lower bound argument on the time com-
plexity of LRG established in Section 3.3 also applies to AVE.
A tight bound on the approximation ratio of AVE, however,
is still open.

4.2 Dominating sets with multiple coverage

A dominating set of G guarantees that each node in G is
covered by at least one node in the dominating set. Certain
application domains that are prone to faults and dynamic
changes may demand a degree of fault-tolerance by requir-
ing each node to be covered by multiple dominators. Such
a requirement can be modeled by the MMDS problem, in
which we are given a coverage requirement r(u) for each
node u, and the goal is to select a subset D of V such
that each node w is covered by r(u) distinct nodes in D.
We refer to the desired set D as a multi-dominating set.

We now describe a distributed algorithm that computes a
multi-dominating set of expected size within O(Ha) of the
optimal in O(log nlog Rlog A) rounds whp, where R equals
max, 7(u). Our result also extends to a slight generalization
of MDs that is equivalent to the Set Multicover problem [28].

The algorithm for MMDs follows the framework of LRG and
proceeds in rounds. Let ¢(u) denote the coverage require-
ment at the start of a given round, i.e., ¢(u) equals r(u) mi-
nus the number of dominators selected thus far that cover
u. We say that a node v is uncovered at the start of a round
if ¢(u) > 0. In each round, each node v first calculates its
span d(v), where d(v) is defined, as in LRG, as the number of
uncovered nodes adjacent to v. The candidate selection step
is identical to LRG. We next calculate the normalized sup-
port $(u) for each node u: s(u) equals s(u)/q(u). Finally,
we select a candidaﬁe\ v to be a dgrginator independently
with probability 1/med(v), where med(v) is the median of
the normalized support among the nodes in C(v).

THEOREM 4. There exists a randomized distributed al-
gorithm for MMDS that achieves an approzimation ratio of
O(log A) in expectation and O(logn) whp and a time com-
plexity of O(log nlog Alog R) whp.

‘We define the notions of good nodes and nice nodes as in the
analysis of LRG, and also define C(v), T'(v), and B(v) as be-
fore. Let q(u) (resp., ¢’ (u)) denote the coverage requirement
at the beginning (resp., end) of a round.

LEMMA 4.2. If u is nice, then E[q' (u)] < 3 - q(u)/4.

Proof: For any candidate v that is good for w, we have
Ps(v) = 1/med(v) > 1/5(u). Thus, for a nice node u, we
have

Eld(W)] = qw— Y P)

uw€C(v)

< gqw)— D P(v)
v is good for u

< qw- Y 1/8w
v is good for u

< q(u) —s(u)/(4-5(u))

= 3-q(u)/4.
O

Let the potential ® be the sum of the terms } -, log(q(u)),
taken over all candidates v with rounded span m, where m is
the maximum rounded span. We use the definitions of entry,
top entry and nice top entry as in Section 3.1. Lemma 3.4
applies to MMDS in a straightforward manner. We now an-
alyze the progress in any round.

LEMMA 4.3. If ® and ®' are the potentials at the start
and end of a round, then E[®'] < (1 — Q(1/log R)) - ®.

Proof: Since 0 < ¢'(u) < q(u) for all u, by using Markov’s
inequality we can derive from Lemma 4.2 that for any nice



top entry u, E[logq (u)] < logg(u) — ¢ holds for some con-
stant ¢ > 0. Combined with Lemma 3.4, we obtain that
the expected decrease in ® is at least ¢X/3, where X is the
total number of entries. Thus, we expect a decrease in ®
by a factor of at least ¢X/(3X log R) = ¢/(31log R), where R
is the maximum coverage requirement. This completes the
proof. [

We are now ready to establish the bound on the running
time and approximation ratio of the algorithm.

Proof of Theorem 4: Let m denote the maximum
rounded span. The potential ® is at most n-A log R. Lemma
4.3 and a Chernoff bound argument along the lines of the
proof of Theorem 1 imply that the number of rounds it takes
for the maximum rounded span to decrease from m to m /b is
O(log Rlog(n - Alog R)) = O(log Rlogn) whp. Since there
are at most log, A distinct values for the rounded span, we
obtain that the algorithm terminates in O(logn log Rlog A)
rounds whp.

We now consider the approximation ratio. As in Section 3.2,
we assign a cost to a node u every time u gets covered, as
long as the coverage requirement is unfulfilled. (If node w is
covered more than r(u) times, then an arbitrary r(u) of them
are assigned costs.) Let costi(u), 1 < ¢ < r(u), denote the
cost assigned to u each time v is covered. Following a gener-
alization of the argument used in the proof of Lemma 3.5, it
can be shown that Lemma 3.5 holds for MMDS, which means
that 32, oy S costi(u) < Ha - |OPT].

Let c(u) = 1/(3\(1;), where u € C(v). Let t(u) denote the
number of candidates v that are added to D at the end of this
round such that u € B(v), and let Z denote the total cost
assigned in the round. Following the proof of Lemma 3.6,
we obtain that

E[S]<2b ) o

ueV!

w) Pr[t(u) > 0] - E[t(w)[t(u) > 0].

Consequently, we have

q(u)—1

E[S] < 23 (Z Prlt(u) =

uev’ i=1

+Pr{t(u) > g(w)] - E(w)[t(u) > q(w)])-

i - E[t(u)|t(u) = 1]

The dominator selection can be viewed as a sequence of
Bernoulli trials, one trial for each candidate; the probability
associated with the Bernoulli trial for candidate v is sim-
ply 1/med(v). Using elementary probability theory, one can
show that if X is the number of successes in a sequence of
Bernoulli trials, then E[X|X > ¢] is at most £ + E[X]. We
thus obtain

q(u)—1
E[S] < 263 (Z Prit(u) = 1] - Eft (w)|t(u) = 1]
ueVv’
+Pr[t(u) > q(u)] - (¢(u) + E[t(U)])) (3)

For E[t(u)], we have

Y Rw= Y ——

uw€B(v) uw€B(v) med(v)

szq

uw€B(v)

Elt(u)]

Substituting the bound on E[t(u)] in Equation 3, we have
q(u)-1

EIS) < 46> ew)( Y Prit(w) =] BR)lt(w) =]

ueVv/! i=1

+Prit(u) > q(w)] - q(u)
< 4b- E[Z).

With an argument similar to that in the proof of Theorem 2,
Theorem 4 follows. [

4.3 Weights on the nodes

A natural and useful generalization of MDs associates a weight
w(wu) with every node u and seeks a dominating set of mini-
mum total weight. LRG generalizes to this weighted version
of MDs using the same technique used in the greedy algo-
rithm for the weighted set cover problem. Instead of com-
paring the rounded span of the nodes, we compare the ratio
of the span to the weight of the node. We again round
this value, which we refer to as the normalized span, to
a nearest power of 2 (allowing negative powers). In the
candidate selection phase, a node selects itself as a can-
didate only if the rounded normalized span is the maxi-
mum among all the nodes within distance 2. The remain-
ing phases in each round are identical to LRG. The same
analysis shows that the expected approximation ratio of the
algorithm is still O(log A). Since the number of different
values for the rounded normalized span is log(W A), where
W is the ratio of the maximum weight to the minimum
weight, we obtain that the time complexity of the algorithm
is O(log(W A)logn) whp.

5. CONCLUDING REMARKS

In this paper, we have studied simple local algorithms for
constructing small dominating sets that we hope will have
applications in practical network scenarios. In ongoing ex-
perimental work, we are evaluating different dominating set
algorithms for the particular application of locating centers
in mobile ad-hoc networks. We plan to explore the impact
of mobility on the quality of the dominating sets, and to
consider algorithms for updating these sets in response to
changes in the network.

There are several interesting directions for future theoreti-
cal research. In Section 3.3, we have established a bound of
Q(lognlog A) on the number of rounds taken by LRG, and
this bound also extends to other variants such as AVE. An
important open problem is whether there exists a distributed
O(log n)-time O(log A)-approximation algorithm for MDs.
It will also be interesting to determine the best approximation-
time tradeoff achieveable by a deterministic distributed al-
gorithm. More specific to our results, we would also like to
resolve the asymptotic performance of algorithm AVE.



The dominating set problem and its variants, most notably,
the k-dominating set problem, are closely related to facility
location problems such as the k-median [24] and k-center [14]
problems, which also consider the task of locating nodes
within a network. The constraints and the associated ob-
jective functions are different, and these problems appear

to require more global coordination.

We plan to explore

the distributed complexity of facility location problems. In
this regard, a recent primal-dual approximation algorithm
of [15] may provide some leads for an efficient parallel or
distributed implementation.
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