Algorithmsfor Delta Compression and Remote File
Synchronization*

Torsten Suel Nasir Memon

CIS Department
Polytechnic University
Brooklyn, NY 11201

{suel , menon}@ol y. edu

Abstract

Delta compression and remote file synchronization techniques are concerned with efficient
file transfer over a slow communication link in the case where the receiving party already has
a similar file (or files). This problem arises naturally, e.g., when distributing updated versions
of software over a network or synchronizing personal files between different accounts and
devices. More generally, the problem is becoming increasingly common in many network-
based applications where files and content are widely replicated, frequently modified, and cut
and reassembled in different contexts and packagings.

In this chapter, we survey techniques, software tools, and applications for delta compres-
sion, remote file synchronization, and closely related problems. We first focus on delta com-
pression, where the sender knows all the similar files that are held by the receiver. In the second
part, we survey work on the related, but in many ways quite different, problem of remote file
synchronization, where the sender does not have a copy of the files held by the receiver.

*Work supported by NSF CAREER Award NSF CCR-0093400 and by Intel Corporation.

1

1 Introduction

Compression techniques are widely used in computer networks and data storage systems to in-
crease the efficiency of data transfers and reduce space requirements on the receiving device. Most
techniques focus on the problem of compressing individual files or data streams of a certain type
(text, images, audio). However, in today’s network-based environment it is often the case that
files and content are widely replicated, frequently modified, and cut and reassembled in different
contexts and packagings.

Thus, there are many scenarios where the receiver in a data transfer already has an earlier
version of the transmitted file or some other file that is similar, or where several similar files are
transmitted together. Examples are the distribution of software packages when the receiver already
has an earlier version, the transmission of a set of related documents that share structure or content
(e.g., pages from the same web site), or the remote synchronization of a database. In these cases,
we should be able to achieve better compression than that obtained by individually compressing
each file. This is the goal of the delta compression and remote file synchronization techniques
described in this chapter.

Consider the case of a server distributing a software package. If the client already has an
older version of the software, then an efficient distribution scheme would only send a patch to the
client that describes the differences between the old and the new version. In particular, the client
would send a request to the server that specifies the version number of the outdated version at the
client. The server then looks at the new version of the software, and at the outdated version that
we assume is available to the server, and computes and sends out a ”patch” that the client can use
to update its version. The process of computing such a “patch” of minimal size between two files
is called delta compression, or sometimes also delta encoding or differential compression.

Of course, in the case of software updates these patches are usually computed offline using
well-known tools such as bdiff, and the client can then choose the right patch from a list of files.
However, bdiff is not a very good delta compressor, and there are other techniques that can result
in significantly smaller patch size.

When distributing popular software that is only updated periodically, it seems realistic to
assume that the server has copies of the previous versions of the software which it can use to
compute a delta of minimal size. However, in other scenarios, the server may only have the new
version, due to the overhead of maintaining all outdated versions or due to client-side or third-party
changes to the file. The remote file synchronization problem is the problem of designing a protocol
between the two parties for this case that allows the client to update its version to the current one
while minimizing communication between the two parties.

1.1 Problem Definition

More formally, we have two strings (files) frew, foq € 2* Over some alphabet 3 (most methods
are character/byte oriented), and two computers C' (the client) and S (the server) connected by a
communication link.

e In the delta compression problem, C' has a copy of f,, and S has copies of both f,., and
fo1q, and the goal for S is to compute a file f5 of minimum size, such that C' can reconstruct
Tnew from f,5 and f5. We also refer to f; as a delta of f,,.,, and fy4.

e In the remote file synchronization problem, C' has a copy of f,; and S only has a copy of

2

frnew, @nd the goal is to design a protocol between the two parties that results in C' holding a
copy of f,.c.,, while minimizing the communication cost.

We also refer to f,4 as a reference file and to f,.,, as the current file. For afile f, we use f[i] to
denote the sth symbol of f, 0 < i < |f|, and f[s, j] to denote the block of symbols from 7 until (and
including) j. We note that while we introduce the delta compression problem here in a networking
context, another important application area is in the space-efficient storage of similar files, e.g.,
multiple versions of a document or a software source — in fact, delta compression techniques were
first introduced in the context of software revision control systems. We discuss such applications
in Subsection 2.1, and it should be obvious how to adapt the definitions to such a scenario. Also,
while our definition assumes a single reference file f,4, there could be several similar files that
might be helpful in communicating the contents of f,,.,, to the client, as discussed later.

In the case of the file synchronization problem, many currently known protocols [49, 16, 35]
consist of a single round of communication, where the client first sends a request with a limited
amount of information about f,;, to the server, and the server then sends an encoding of the current
file to the client. In the case of a multi-round protocol, a standard model for communication costs
based on latency and bandwidth can be employed to measure the cost of the protocol. A simple
model commonly used in distributed computing defines the cost (time) for sending a message of
length m as L + m/B, where L is the latency (delay) and B the bandwidth of the connection.

There are several other interesting algorithmic problems arising in the context of delta com-
pression and remote file synchronization that we also address. For example, it some cases there
is no obvious similar file, and we may have to select the most appropriate reference file(s) from a
collection of files. In the case of remote file synchronization, we would often like to estimate file
similarity efficiently over a network. Finally, the data to be synchronized may consist of a large
number of small records, rather than a few large files, necessitating a somewhat different approach.

1.2 Content of this Chapter

In this chapter, we survey techniques, software tools, and applications for delta compression and
remote file synchronization. We consider scenarios in networking as well as storage. For simplic-
ity, most of the time, we consider the case of a single reference file, though the case of more than
one file is also discussed. We also discuss related problem such as how to select appropriate refer-
ence files for delta compression, how to estimate the similarity of two files, and how to reconcile
large collections of record-based data.

In Section 2, we focus on delta compression, where the sender knows all the similar files that
are held by the receiver. In Section 3, we survey work on the related, but in many ways quite
different, problem of remote file synchronization, where the sender does not have a copy of the
files held by the receiver. Finally, Section 4 offers some concluding remarks.

2 Delta Compression

We now focus on the delta compression problem. We first describe some important application
scenarios that benefit from delta compression. In Subsection 2.2 we give an overview of delta
compression approaches, and Subsection 2.3 describes in more detail a delta compressor based
on the LZ compression algorithm. Experimental results for a few delta compressors are given in
Subsection 2.4. Finally, we discuss the problems of space-constrained delta compression and of
choosing good reference files in Subsections 2.5 and 2.6, respectively.

3

2.1 Applications

As mentioned above, most of the applications of delta compression are aimed at reducing network-
ing or storage costs. We now describe a few of them in more detail.

e Software Revision Control Systems: As mentioned in the introduction, delta compression
techniques were pioneered in the context of systems used for maintaining the revision history
of software projects and other documents [8, 40, 45]. In these systems, multiple, often almost
identical, versions of each object have to be stored in order to allow the users to retrieve past
versions. For example, the RCS (Revision Control System) package [45] uses the diff delta
compressor to reduce storage requirements. For more discussion on delta compression in the
context of such systems, and an evaluation of different compressors, see the work of Hunt,
Vo, and Tichy [25].

e Delta Compression at the File System Level: The Xdelta File System (XDFS) of MacDon-
ald [29] aims to provide efficient support for delta compression at the file system level using
a delta compressor called xdelta. This allows the efficient implementation of revision control
systems, as well as some other applications listed here, on top of XDFS.

e Software Distribution: As described in the example in the introduction, delta compression
techniques are used to generate software patches that can be efficiently transmitted over a
network in order to update installed software packages.

e Exploring File Differences: Techniques from delta compression can be used to vizualize
differences between different documents. For example, the well-known diff utility displays
the differences between two files as a set of edit commands, while the HtmIDiff and topblend
tools of Douglis et al. [14] visualize the difference between two HTML documents.

e Improving HTTP performance: Several approaches have been proposed that employ delta
compression to improve the latency for web accesses, by exploiting the similarity between
current and outdated versions of a web page, and between different pages on the same web
site. In particular, [6, 34] propose a scheme called optimistic delta in which a caching proxy
attempts to hide the latency of server replies by first sending a potentially outdated cached
version of a page to the client, and then if necessary a small corrective patch once the server
replies. In another approach, a client that already has an old version of a page in his cache
sends a tag identifying this version to a proxy (or server) as part of the HTTP request; the
proxy then sends the delta between the old and the current version to the client [24, 18]. This
can significantly decrease the amount of data sent to the client, and is thus more appropriate
for clients connected via low-bandwidth links such as cellular modems.

It has also been observed that web pages on the same server often have a high degree of
similarity (due to common layout and menu structure) that could be exploited with delta
compression techniques. In particular, [13] proposes to identify candidate pages that are
likely to be good reference files for delta compression by looking for URLSs that share a long
common prefix with the requested one. Other work [19] proposes a similar idea for dynamic
pages, e.g., different stock quotes from a financial site, that share a lot of content.

e Efficient Web Page Storage: The similarities between different versions of the same page
or different pages on the same web site could also be used for increased storage efficiency

4

in large-scale web repositories such as the Internet Archive! or the Stanford WebBase [23].
In particular, the Internet Archive aims to preserve multiple versions of each page, but these
pages are currently stored without use of delta compression techniques. A delta-compressed
archive could be implemented on top of XDFS [29], but a specialized implementation with a
more optimized delta compressor might be preferable in this case. If we also plan to exploit
similarities between different pages, then the problem of selecting appropriate reference
pages arises. While the general formulation of this problem, discussed further below, is
quite challenging, specialized techniques based on URL prefix matching [13] plus separate
detection of mirrors [9] and replicated collections [15] may suffice in practice.

2.2 Fundamentals

Recall that in the delta compression problem, we have two files, f,4 and f,..,, and the goal is to
compute a file f; of minimum size, such that one can reconstruct f,.,, from f,; and f5. Early
work on this problem was done within the framework of the string to string correction problem,
defined in [50] as the problem of finding the best sequence of insert, delete, and update operations
that transform one string to another. Approaches for solving this problem were based on finding
the largest common subsequence of the two strings using dynamic programming and adding all
remaining characters to f,.,, explicitly. However, the string-to-string correction problem does
not capture the full generality of the delta compression problem as illustrated in the examples
given in the previous sub-section. For example, in the string-to-string correction problem, it is
implicitly assumed that the data common to f,., and f,; appear in the same order in the two
files. Furthermore, the string-to-string correction approach does not account for substrings in f4
appearing in f,.,, several times.

To resolve these limitations, Tichy [44] defined the string to string correction problem with
block moves. A block move is a triple (p, q,1) such that foa(p, ..., p+1—1] = frewle, - - -, q+1—1].
It represents a nonempty common substring of f,; and f,.., which is of length /. Given f,4 and
fnew, the file fs can then be constructed as a minimal covering set of such block moves such that
every element f,.,[¢] that also appears in f, is included in exactly one block move. It can be
further argued that an f; constructed from the longest common subsequence approach mentioned
earlier is just a special case of a covering set of block moves. The minimality condition then ensures
the superiority of the block-moves approach to the longest common subsequence approach.

The question the arises - how does one construct an optimal fs given f,4 and f,..,? Tichy
[44] also showed that a greedy algorithm results in a minimal cover set and that an fs based on a
minimal cover set of block moves can be constructed in linear space and time using suffix trees.
Unfortunately, the multiplicative constant in the space complexity makes the approach impracti-
cal. A more practical approach uses hash tables with linear space but quadratic time worst case
complexity [44].

The block-moves framework described above represented a fundamental shift in the develop-
ment of delta compression algorithms. While earlier approaches used an edit-based approach - i.e.,
construct an optimal sequence of edit operations that transform f,,4 into f,..,, the block-moves al-
gorithms use a copy-based approach - i.e., express f,.., as an optimal sequence of copy operations
from fy4.

The Lempel-Ziv string compression algorithms [52, 53] popularized in the 1980°s yield an-

http://wwm. archi ve. org

other natural framework for realizing delta compression techniques based on the copy-based ap-
proach. In particularly, the LZ77 algorithm can be viewed as a sequence of operations that involve
replacing a prefix of the string being encoded by a reference to an identical previously encoded sub-
string. In most practical implementation of LZ77, a greedy approach is used whereby the longest
matching prefix found in the previously encoded text is replaced by a copy operation.

Thus, delta compression can be viewed as simply performing LZ77 compression with the
file f,;4 representing “previously encoded” text. In fact, nothing prevents us from also including
the part of f,.., which has already been encoded in the search for a longest matching prefix. A
few additional changes are required to get a really practical implementation of a LZ77-based delta
compression technique. Several such implementations have been designed over the past decade
but the basic framework is the same. They difference mostly lies in the encoding and updating
mechanisms employed by each. In the next subsection we describe one such technique in more
detail.

2.3 LZ77-Based Delta Compressors

The best general-purpose delta compression tools are currently copy-based algorithms based on
the Lempel-Ziv [52] approach. Example of such tools are vdelta and its newer variant vcdiff [25],
the xdelta compressor used in XDFS [29], and the zdelta tool [47].

We now describe the implementation of such a compressor in more detail, using the example
of zdelta. The zdelta tool is based on a modification of the zlib compression library of Gailly
[21], with some additional ideas inspired by vdelta, and anyone familiar with zlib, gzip and other
Lempel-Ziv based algorithms should be able to easily follow the description. Essentially, the idea
in zdelta, also taken in the vcdiff (vdelta) and xdelta algorithms, is to encode the current file by
pointing to substrings in the reference file as well as in the already encoded part of the current file.

To identify suitable matches during coding, we maintain two hash tables, one for the reference
file, T,,4, and one for the already coded part of the current file, 7,..,. The table 7,,.,, is essentially
handled the same way as the hash table in gzip, where we insert new entries as we traverse and
encode f,..,. The table T, is built beforehand by scanning f,4, assuming f,, is not too large.
When looking for matches, we search in both tables to find the best one. Hashing of a substring is
done based on its first 3 characters, with chaining inside each hash bucket.

Lets assume for the moment that both reference and current file fit into main memory. Both
hash tables are initially empty. The basic steps during encoding are as follows. (Decoding is fairly
straightforward given the encoding.)

1. Preprocessing the Reference File:

Fori = 0tolen(fyuq) — 3:

(@) Compute h; = h(fuali,i + 2]), the hash value of the first three characters starting from
position 7 in fy4.

(b) Insert a pointer to position 7 into hash bucket h; of 7,,,.

2. Encoding the Current File:

Initialize pointers pq, . .., py to zero, say for £ = 2

Setj =0
While j < len(frew):

(a) Compute h; = A(fnewls, 7 + 2]), the hash value of the first three characters starting from
position j in f,e..

(b) Search hash bucket & ; in both T;,;; and T),.,, to find a “good match”, i.e., a substring in f,q
or the already encoded part of f,.,, that has a common prefix of maximum length with the
string starting at position j of f;,...

(c) Insert a pointer to position j into hash bucket ; of T,y

(d) If the match is of length at least 3, encode the position of the match relative to j if the match
isin f,.., and relative to one of the pointers p; if the match is in f,4. If several such matches
of the same length were found in (b), choose the one that has the smallest relative distance
to position j in f,., or to one of the pointers into f,4. Also encode the length of the match
and which pointer was used as reference. Increase j by the length of the match, and possibly
update some of the pointers p;.

(e) If there is no match of length at least 3, write out character f,.,,[j] and increase j by 1.

There are a number of additional details to the implementation. Firstly, we can choose a
variety of policies for updating the pointers p;. The motivation for these pointers, as used in vdelta,
is that in many cases the location of the next match from f,;, is a short distance after the location
of the previous one, especially when the files are very similar. Thus, by updating one of the
pointers to point to the end of the previous match, we hope to very succinctly encode the location
of the next match. In general, smart pointer movement policies might lead to additional moderate
improvements over the existing tools.

Another important detail concerns the method used to encode the distances, match lengths,
pointer information, and characters. Here, zdelta uses the Huffman coding facilities provided by
zlib, while vdelta uses a byte-based encoding that is faster but less compact. In contrast, xdelta
does not try any clever encoding at all, but leaves it up to the user to apply a separate compression
tool on the output.

A very important issue is what to do if the hash tables develop very long chains. For T,.,, this
can be handled by simply evicting the oldest entries whenever a bucket grows beyond a certain size
(as done in gzip), but for 7,4 things are more complicated. Note that full buckets can happen due to
two causes. Firstly, if f,4 is very large, then all buckets of 7,,, may become large. This is handled
in vdelta and zdelta by maintaining a “window” of fixed size (say, 32 or 64 KB) into f,4. Initially,
the window is at the start of the file, and as the encoding proceeds we slide this window through
foia according to the positions where the best matches were recently found. A simple heuristic,
employed by zdelta, uses a weighted average of the most recently used matches to determine when
it is time to slide the window by half the window size. In that case, we remove all entries that are
outside the new window from 7,4, and add the new entries that are now inside the window. A more
sophisticated scheme, used in vcdiff, computes fingerprints on blocks of a certain size (e.g., 1024
bytes) and then chooses a window position in f,;; that maximizes the similarity with the currently
considered area of f,,.,. In general, the problem of how to best move the window though f,4 is
difficult and not really resolved, and the best movement may not be sequentially from start to end.

7

| | gec size | gec time | emacs size | emacs time |

uncompressed | 27288 - 27326 -
gzip 7479 24/30 8191 26/35
xdelta 461 20 2131 29
vediff 289 33 1821 36
zdelta 250 26/32 1465 35/42

Table 2.1: Compression results for gcc and emacs data sets (sizes in KB and times in seconds)

Secondly, even if f,, is small, or during one window position, some buckets can become
very large due to a frequently occurring substring. In this case, it is not clear which entries should
be evicted, those at the beginning or at the end of the file or current window. This issue is again
related to the problem of finding and exploiting the pattern of matches in the reference file, which
depends on the relation between reference and current file, and a good solution is not yet apparent.

2.4 Some Experimental Results

We now show a few experimental results to give the user a feel for the compression performance
of the available tools. In these results, we compare xdelta, vcdiff, and zdelta on two different sets
of files:

1. The gcc and emacs data sets used in the performance study in [25], consisting of versions
2.7.0 and 2.7.1 of gcc, and 19.28 and 19.29 of emacs. The newer versions of gcc and emacs
consist of 1002 and 1286 files, respectively.

2. A set of artificially created files that model the degree of similarity between two files. In
particular, we created two completely random files f, and f; of fixed length, and then per-
formed delta compression between f, and another file f,,, created by a “blending” procedure
that copies text from either f, and f; according to a simple Markov process. By varying the
parameters of the process, we can create a sequence of files f,,, with similarity ranging from
0(fm = f1)to 1 (fm = fo) on a nonlinear scale?.

All runs were performed on a Sun E450 server with 2 400M hz UltraSparc Ile processors and 4
GB of main memory, with the data stored on a 10000 RPM SCSI disk. We note that only one CPU
was used during the runs, and that memory consumption was not significant. (We also did multiple
runs for each file in the collections and discarded the first one - the main result of this setup is to
minimize disk access costs, thus focusing on the CPU costs of the different methods.)

For the gcc and emacs data sets, the uncompressed and gzip numbers are with respect to the
newer releases. We see from the results that delta compression achieves significant improvements
over gzip on these files, especially for the very similar gcc files. Among the delta compressors,
zdelta gets the best compression ratio, mainly due to use of Huffman coding instead of byte-based

2More precisely, our process has two states, so, where we copy a character from fo, and s;, where we copy a
character from f1, and two parameters, p, the probability of staying in sg, and ¢, the probability of staying in s;. In
the experiments, we set ¢ = 0.5 and vary p from 0 to 1. Clearly, a complete evaluation would have to look at several
settings of ¢ to capture different granularities of file changes.

8

compressed size

time (sec)

1200000

=
]

=
om

0.4

0z

q=0.5

. \\\ 1‘\
500000

600000 \\ \

400000 \\

200000

0 0.1 0.z 03 0.4 0.8 0.6 07 0.8 0

file similarity

Figure 2.1: Compression versus file similarity (in KB)

compression speed

Jifalt

.—VV-""--._.I \\

M

MG Wl o s S e e o

e N ONSNA N
T AR

0.1 0z 0.3 0.4 0.5 0.6 07 0.8 0 1

file similarity

Figure 2.2: Running time versus file similarity (in seconds)

——qzip_size
—m— xdelta

—i— vediff

—n— zdelta

——yzip time
——xdelta time
——vediff time
—=— zdelta time

coding. The xdelta compressor performs worst in these experiments. As described in [29], xdelta
aims to separate differencing and compression, and thus a standard compressor such as gzip can be
applied to the output of xdelta. However, in our experiments, subsequent application of gzip did
not result in any significant improvement on these data sets.

Concerning running times, all three delta compressors are only slightly slower than gzip, with
xdelta coming closest. Note that for gzip and zdelta we report two different numbers that reflect
the impact of the input/output method on performance. The first, lower number gives performance
using direct access to files, while the second number is measured using Standard 1/O. The number
for vediff is measured using Standard 1/0, while xdelta uses direct file access. Taking these differ-
ences into account, all delta compressors are within at most 20% of the time for gzip, even though
they have to process two sets of files instead of just one as gzip.

Looking at the results for different file similarity, we see the same ordering. Not surprisingly,
when files are very different delta compression does not help at all, while for almost identical files
all methods do quite well. However, we see that vcdiff and zdelta give benefits even for only
slightly similar files for which xdelta does not improve over gzip. (Note that gzip itself does not
provide any benefits here due to the incompressibility of the files.) We also see that the running
times for the delta compressors decrease as file similarity increases; this is due to the increasing
lengths of the matches found in the reference files (which decrease the number of searches in the
hash tables). This effect largely explains why the delta compressors are almost as fast as gzip on
collections with large similarity such as gcc and emacs; for files with low degrees of similarity, the
three delta compressors take about 60% to 100% longer than gzip.

2.5 Space-Constrained Delta Compression

As described in Subsection 2.2, the greedy algorithm of Tichy [44] results in an optimal set of block
moves. To show how these block moves are determined and encoded in a practical implementation,
in Subsection 2.3 we discussed an implementation based on an LZ77-like framework. However,
these algorithms can give very poor performance when limited memory resources are available to
the compressor or decompressor. In [3] Ajtai et al. look at the problem of delta compression under
various resource constraints. They first examine delta compression in linear time and constant
space, which is relevant when the files f,4 and f,.., are too large to fit in memory. A simple
solution in this case would be to restrict search for the longest prefix in f,;4 to the forward direction
only. That is, when looking for a match we ignore the part of f,,; that precedes the end of the
substring that was just encoded. However, this results in significantly suboptimal compression
when substrings occur in different order in f,;,; and f,,c..

To alleviate this problem [3] proposes a correcting one-pass algorithm which utilizes a buffer
that holds all copy commands, and performing corrections on these commands later when better
matches are found. There are two types of corrections made. Tail corrections occur when, after
inserting a copy command from a previously unencoded part of f,q4, the algorithm attempts to
extend the matching string backwards in both f,4 and f,... If such matches are found going in
a backward direction, there is potential for replacing the previous copy commands by integrating
them into the current copy command. The second type of correction, called general correction,
occurs if a matching substring M is found that is already encoded in f,... In this case, the algo-
rithm tries to determine if the earlier encoding of M can be further compacted now that M can be
encoded by a single copy command. Further, to limit the space consumed by the hash tables that
store substring locations, they use a technique called checkpointing that restricts the locations of a

10

substring that are inserted into the hash table to a small but carefully selected number. The result
of these extensions is a delta compression technique that is practical in terms of time and space
complexity, works with arbitrary size files, and yields good compression.

2.6 Choosing Reference Files

In some applications, delta compression performance depends heavily on the choice of appropriate
reference files. For example, to compress a set of related files, we need to choose for each file one
or several reference files that have significant similarity with it; each reference file itself can also
be compressed this way provided no cycles are created. In the case of a single reference file per
compressed file, this problem is equivalent to finding an optimum branching in a corresponding
directed graph where each edge (i, j) has a weight equal to size of the delta of i with respect
to reference file j. This problem can be solved in time quadratic in the number of documents
[12, 42], but the approach suffers from two drawbacks: First, the solution may contain very long
chains of documents that have to be accessed in order to uncompress a particular file. Second, for
large collections the quadratic time becomes unacceptable, particularly the cost of computing the
appropriate weights of the edges of the directed graph.

If we impose an upper bound on the length of the reference chains, then finding the optimum
solution becomes NP Complete [43]. If we allow each file to be compressed using more than
one reference file, then this problem can be reduced to a generalization of optimum branching to
hypergraphs, and has been shown NP Complete even with no bound on the length of chains [2].

Some experiments on small web page collections using minimum branching and several faster
heuristics are given in [38], which show significant differences in compression performance be-
tween different approaches. For very large collections, general document clustering techniques
such as [10, 30, 22] could be applied, or specialized heuristics such as [9, 13, 15] for the case of
web documents. In particular, [13] demonstrates that there is significant benefit in choosing more
than one reference page to compress a web page.

One example of long reference chains arises when dealing with many different versions of
the same file, such as in a revision control system. In this case, the choice of the reference file that
minimizes the delta is usually obvious, but this choice would make retrieval of very old versions
quite expensive3. Several techniques have been proposed for dealing with this problem [29, 11, 45],
by creating a limited number of additional “shortcuts” to older versions.

3 Remote File Synchronization

In this section, we focus on the remote file synchronization problem, i.e., the case where the server
does not have access to the reference file. This obviously changes the problem significantly, and
the known algorithms for this problem are quite different from those for delta compression. We
discuss the two main known approaches for file synchronization: (1) a practical approach based
on string fingerprints implemented by the rsync algorithm that does not achieve any provable near-
optimal bounds, and (2) an approach based on colorings of hypergraphs that achieves provable
performance bounds under certain models for file distance, but that seems unsuitable in practice.
We also discuss the closely related problems of how to estimate file similarity and how to reconcile
sets of records in a database.

3Note that these systems often compress older versions with respect to newer ones.

11

We first describe a few application scenarios for file synchronization. In Subsection 3.2 we
describe the rsync algorithms, and Subsection 3.3 gives some experimental results comparing rsync
and delta compressor performance. Subsection 3.4 presents some general theoretical bounds, and
Subsection 3.5 discusses provable results for specific distance measures. Finally, Subsection 3.6
discusses how to estimate the distance between two files, while Subsection 3.7 looks at the problem
of reconciling large sets of data records.

3.1 Applications

The applications for file synchronization are similar to those for delta compression. Synchroniza-
tion is more general in that it does not require knowledge of the reference file; on the other hand,
delta compression tends to significantly outperform synchronization in terms of compression ra-
tio. There are several reasons why the server may not have the reference file, such as the space,
disk access, or software overhead of maintaining and retrieving old versions of files as references,
changes to the file at the client or a third party, or later deletion (eviction) of old versions at the
server. Some typical scenarios are:

e Synchronization of User Files: There are a number of software packages such as rsync
[49, 48], Microsoft’s ActiveSync, Puma Technologies’ IntelliSync, or Palm’s HotSync that
allow “synchronization” between desktops, mobile devices, or web-accessible user accounts.
In this scenario, files or records can be updated by several different parties, and time stamps
may be used to determine which version on which device is the most recent.

We note that there are several challenges for these tools. For data in the form of files, we
have the remote file synchronization problem already defined in the introduction, where
we would like to avoid transfering the entire file. For data consisting of large sets of small
records, e.g., addresses or appointments on a handheld device, the problem is how to identify
those records that have changed without sending an individual fingerprint or time stamp for
each record. This problem, modeled as a set reconciliation problem in [33], is discussed in
Subsection 3.7. Many existing packages transfer the entire item if any change has occurred,
which is reasonable for small record-based data, but not for larger files. In addition, there
is also the general and nontrivial problem of defining the proper semantics for file system
synchronization; see [5] for a detailed discussion.

e Remote Backup of Massive Data Sets: Synchronization can be used for remote backup
of data sets that may have only changed slightly between backups [48]. In this case, the
cost of keeping the old version at the server is usually prohibitive, making delta compression
techniques inefficient. (See also [11] for an approach that adapts delta compression to this
case.)

e \Web Access: File synchronization has also been considered for efficient HTTP transfer be-
tween clients and a server or proxy*. The advantage is that the server does not have to keep
track of the old versions held by the clients, and does not need to fetch such versions from
disk upon a request. However, as shown in Subsection 3.3, file synchronization techniques
achieve significantly worse compression ratios than delta compressors, and thus typically
provide benefits only for files that are “very similar”. (We are not aware of any study quan-
tifying these advantages and disadvantages for HTTP transfer.)

4See, e.g., the rproxy projectat ht t p: / / r pr oxy. samba. or g/ .

12

e Distributed and Peer-to-Peer Systems: Synchronization can be used to update highly dis-
tributed data structures, such as routing tables, name services, indexes, or replication tables.
A significant amount of recent work has looked at highly distributed and peer-to-peer sys-
tems and services. We expect interesting applications of file synchronization and set recon-
ciliation to arise in this context, particularly in peer-to-peer systems where nodes are often
unavailable for significant periods of time, and thus have to update their data structures upon
rejoining the system.

3.2 The rsync Algorithm

We now describe the algorithm employed by the widely used rsync file synchronization tool® of
Tridgell and MacKerras [49, 48]. A similar approach was also proposed by Pyne in a US Patent
[39]. For intuition, consider the following simple problem that captures some of the challenges.

Assume that two parties communicate via telephone, with each party holding a copy of a
book. Now suppose that the two copies could differ in a few places. How can the two parties find
out if the two books are identical or not, and if not where and how they exactly differ, without
reading an entire book over the phone? The answer to the first question is simple: by computing
a checksum (e.g., MD5) for each book and comparing the two checksums, it can be decided if the
books are identical or not. The answer to the second question, however, is more difficult. A first
naive approach would partition the book into two blocks, the first and second half of the book,
and then recurse on those blocks where the checksums differ, until the precise locations of the
differences are found. However, this approach fails in the simple case where one book contains
an additional word at the beginning, thus destroying the alignments of all the block boundaries
between the two books. Thus, a more careful approach is needed, although the basic idea of using
checksums on blocks is still relevant®.

We now describe the refined rsync algorithm. Essentially, the idea is to solve the alignment
problem by computing blockwise checksums for the reference file, and comparing these checksums
not just with the “corresponding” blockwise checksums of the current file, but with the checksums
of all possible positions of blocks in the current file. As a result, the server knows which parts of
the current file already exist in the reference file, and which new parts need to be communicated to
the client. For efficiency reasons, two different checksums are communcated to the server, a fast
but unreliable one, and a very reliable one that is more expensive to compute.

1. At the client:

(a) Partition f, into blocks B; = f,4]ib, (i + 1)b — 1] of some size b to be determined later.

(b) Foreach block B;, compute two checksums, u; = h,(B;) and r; = h,(B;), and communicate
them to the server. Here h,, is the unreliable but fast checksum function, and 4, is the reliable
but expensive checksum function.

2. At the server:

5Available atht t p: // rsync. samba. or g/ .

5Note that if the books are divided into natural components such as chapters, sections, and subsection, then the
alignment problem does not arise. This is more similar to the setup described in Subsection 3.7 where both files consist
of individual records with boundaries known to both parties.

13

(a) For each pair of received checksums (u;, r;), insert an entry (u;, 7,) into a dictionary data
structure, using u; as key value.

(b) Perform a pass through f,,..,, starting at position 5 = 0, and involving the following steps:

(i) Compute the unreliable checksum A, (frew|s, 7 + b — 1]) on the block starting at ;.
(i) Check the dictionary for any block with matching unreliable checksum.

(iii) If found, and if the reliable checksums also match, transmit a pointer to the index of
the matching block in f,;, to the client, advance j by b positions, and continue.

(iv) If none found, or if the reliable checksums did not match, transmit the symbol f;,c.[7]
to the client, advance j by one position, and continue.

3. At the client:
(@) Use the incoming stream of data and pointers to blocks in f,;; to reconstruct f;,...

Thus, the fast and unreliable checksum is used to find likely matches, and the reliable check-
sum is then used to verify the validity of the match”. The reliable checksum is implemented using
MD4 (128 bits). The unreliable checksum is implemented as a 32-bit “rolling checksum” that al-
lows efficient sliding of the block boundaries by one character, i.e., the checksum for f[j+1, j +b]
can be computed in constant time from f[j,7 + b — 1].

Clearly, the choice of a good block size is critical to the performance of the algorithm. Un-
fortunately, the best choice is highly dependent on the degree of similarity between the two files —
the more similar the files are, the larger the block size we can choose. Moreover, the location of
changes in the file is also important. If a single character is changed in each block of f,;4, then no
match will be found by the server and rsync will be completely ineffective; on the other hand, if
all changes are clustered in a few areas of the file, rsync will do very well even with a large block
size. Given these observations, some basic performance bounds based on block size and number
and size of file modifications can be shown. However, rsync does not have any good performance
bounds with respect to common file distance metrics such as edit distance [37].

Of course, in general the optimal block size changes even within a file. In practice, rsync
starts out with a block size of several hundred bytes, and uses heuristics to adapt the block size
later. Another optimization in rsync allows the server to compress all transmitted symbols for
unmatched parts of the file using the LZ compression algorithm; this gives significant additional
benefits in many situations as shown in the following.

3.3 Some Experimental Results for rsync

We now provide some experimental results to give the reader an idea about the performance of
rsync in comparison to delta compression techniques. The results use the gcc and emacs datasets
from Subsection 2.4. We report five different numbers for rsync: the amount of data sent from
client to server (request), the amount of data sent from server to client (reply), the amount sent
from server to client with compression option switched on (reply compressed), and the total for
both directions in uncompressed (total) and compressed (total compressed) form.

7In addition, a checksum on the entire file is used to detect the (extremely unlikely) failure of the reliable checksum,
in which case the entire procedure is repeated with a different choice of hash functions.

14

| | gce | emacs |

uncompressed 27288 | 27326
gzip 7479 | 8191
xdelta 461 | 2131
vediff 289 | 1821
zdelta 250 | 1465
rsync request 180 227
rsync reply 2445 | 12528
rsync reply compressed 695 | 4200
rsync total 2626 | 12756
rsync total compressed 876 | 4428

Table 3.1: Compression results for gcc and emacs data sets (in KB)

| [700] 500] 300] 200] 100] 80|

rsync request 227 301 472 686 | 1328 | 1649
rsync reply 12528 | 11673 | 10504 | 9603 | 8433 | 8161
rsync reply compressed | 4201 | 3939 | 3580 | 3283 | 2842 | 2711
rsync total 12756 | 11974 | 10976 | 10290 | 9762 | 9810
rsync total compressed | 4429 | 4241 | 4053 | 3970 | 4170 | 4360

Table 3.2: Compression results for emacs with different block sizes (in KB)

We observe that without compression option, rsync does worse than gzip on the emacs set.
However, once we add compression for the reply message, rsync does significantly better than
gzip, although it is still a factor of 3 to 4 from the best delta compressor. We also compared
rsync on the artificial data sets from Subsection 2.4; due to the fine distribution of file changes for
g = 0.5, rsync only achieves any benefits at all for p very close to 1. We note that rsync is typically
applied in situations where the two files are very similar, and hence these numbers may look overly
pessimistic. Clearly, rsync provides benefits to many people who use it on a daily basis.

In the next table, we see how the performance of rsync varies as we decrease the block size
used. The size of the server reply decreases as smaller block size is used, since this allows a finer
granularity of matches. Of course, the size of the request message increases, since more hash
values need to be transmitted, and eventually this overcomes the savings for the reply (especially
in the compressed case since the hash values in the request are incompressible).

In summary, there still exists a gap between delta compression and remote file synchroniza-
tion techniques in terms of performance; we believe that this indicates room for significant im-
provements. One promising approach uses multiple roundtrips between client and server, e.g., to
determine the best block size or to recursively split blocks; see [16, 20, 37] for such methods. Re-
cent experimental results by Orlitsky and Viswanathan [37] show improvements over rsync using

15

such a multi-round protocol®.

3.4 Theoretical Results

In addition to the heuristic solution given by rsync, a number of theoretical approaches have been
studied that achieve provable bounds with respect to certain formal measures of file similarity.
Many definitions of file similarity have been studied, e.g., Hamming distance, edit distance, or
measures related to the compression performance of the Lempel-Ziv compression algorithm [16].
Results also depend on the number of messages exchanged between the two parties (e.g, in rsync,
two messages are exchanged). In this subsection, we describe the basic ideas underlying these
approaches, and give an overview of known results, with emphasis on a few fundamental bounds
presented by Orlitsky [35]. See [28, 17] and the references in [35] for some earlier results on this
problem. The results in [35] are stated for a very general framework of pairs of random variables;
in the following we give a slightly simplified presentation for the case of correlated (similar) files.

Distance Measures: We first discuss the issue of distance measures, which formalize the
notion of file similarity. Note that Hamming distance, one of the most widely studied measures
in coding theory, is not very appropriate in our scenario, since a single insertion of a character at
the beginning of a file would result in a very large distance between the old and new file, while
we expect a reasonable algorithm to be able to synchronize these two files with only a few bytes
of communication. In the edit distance measure, we count the number of single-character change,
insertion and deletion operations needed to transform one file into another, while more general-
ized notions of edit distance also allow for deletions and moves of blocks of data, or may assign
different weights to the operations. Finally, another family of distance measures is based on the
number of operations needed to construct one file by copying blocks over from the other file and by
inserting single characters; an example is the LZ measure proposed in [16]. As already discussed
in Section 2, a realistic measure should allow for moves and copies of large blocks; however, from
a theoretical point of view allowing such powerful operations makes things more complicated.

There are a few properties of distance functions that we need to discuss. A distance measure
is called symmetric if the distance from f, to f; is the same as the distance from f; to fy. This
property is satisfied by Hamming and edit distance, but is not true for certain generalized forms of
edit distance and copy-based measures. A distance measure d is a metric if (a) it is symmetric, (b)
d(xz,y) > 0forall z, y, (c) d(x,y) = 0 iff z = y, and (d) it observes the Triangle Inequality.

Balanced Pairs: Now assume that as part of the input, we are given upper bounds d,,c., >
Ad(fords frew) @nd doig > d(frew, fora) ON the distances between the two files. We define N (f), the
k-neighborhood of a file f, as the set of all files f such that d(f’, f) < k. Thus, given the upper
bounds on the distances, the server holding f.,, knows that f,, is one of the files in NV, . (frew)
while the client holding f,;q knows that f,c,, isin Ny ,, (foa). We refer to the size of Ny, (frew)
(resp. Ng,,,(foa)) as the ambiguity of f,,c,, (resp. fuaq). We assume that both parties know a priori
upper bounds on both ambiguities, referred to as the maximum ambiguity of f,.., (resp. fouq),
written mamb(frew) (resp. mamb(fqq))- (In the presentation in [35], these bounds are implied by
the given random distribution; in our context, we can assume that both parties compute estimates
of their ambiguities beforehand based on file lengths and estimates of file distances®.

8Note that these roundtrips are not incurred on a per-file basis, since we can handle many files at the same time.
Thus, latency due to additional roundtrips is not a problem in many situations.

9Note that explicitly transmitting the precise values of the ambiguities would require about the same amount of
data transfer as the file reconciliation problem itself, as implied by the bounds below.

16

We say that a pair of files f,.,, and f, is balanced if mamb(frew) = mamb(foq). Note
that this property may depend on the choice of the two files as well as the distance measure (and
possibly also the value of k). In the case of Hamming distance, all pairs of equal size are balanced,
while for many edit and copy-based measures this is not true. In general, the more interesting
measures are neither metrics nor generate balanced pairs. However, some results can be shown for
distance measures that can be approximated by metrics, or in cases where the ambiguities are not
too different.

Results: We now describe a few fundamental results given by Orlitsky in [35, 36]. We assume
that both parties a priori have some upper bounds on the distances between the two files. The goal
is to limit the number of bits communicated in the worst case for a given number of roundtrips,
with unbounded computational power available at the two parties (as commonly assumed in the
formal study of communication complexity [27]).

Theorem 1 [36] At least [lg(mamb(f,q))] bits have to be communicated from server to client by
any protocol that works correctly on all pairs fy,e, and foq With d(frew, ford) < doia, independent
of the number of messages exchanged and even if the server knows f ;4.

This first result follows directly from the fact that the client needs to be able to distinguish
between all mamb(f,q) possible files f,.,, that satisfy d(frew, ford) < dora. (NOte that the result is
independent of d,,.,,.) Interestingly, if we only send a single message from server to client, we can
match this result up to a factor of 2 in the case of a balanced pair, as shown in the following result.

Theorem 2 [35] There is a protocol that sends a single message of at most lg(mamb(fua)) +
lg(mamb(frew))+1 bits from server to client and that works on all f,,c,, and foq With d(frew, fora) <

dold and d(folda fnew) S dnew-

The result is obtained by considering the characteristic hypergraph for the problem, first
defined by Witsenhausen [51] and obtained by adding a vertex for each file f,.., € ¥*, and for each
fold €X'a hyperedge E(fold) = {fnew ‘ d(fnewafold) < dold and d(foldafnew) < dnew}- Since
each vertex is adjacent to at most mamb(f,..,) edges and each edge contains at most mamb(fyq)
vertices, the chromatic number of the hypergraph is at most mamb(f,14) -mamb(frew). If the server
sends to the client the color of f,,e.,, USING [lg((mamb(forq) - mamb(frew))] < lg(mamb(foa)) +
lg(mamb(frew)) + 1 bits, then the client can reconstruct f;,e.,.

As shown by Kahn and Orlitsky (see [35]), this result is almost tight for single-message
protocols. However, if we allow more than a single message, much better results can be obtained,
as briefly outlined in the following:

Theorem 3 [35] There exist protocols that work on all f,e., and foq With d(frew, ford) < dog and
A(fords frew) < dnew and that achieve the following bounds:

(@) atmost 21g(mamb(foq))+1glg(maz{mamb(frews), mamb(foq)})+ 4 bits with 2 messages
exchanged between client and server,

(b) at most lg(mamb(fuq)) + 31glg(maz{mamb(frew), mamb(foq)}) + 11 bits with 3 mes-
sages exchanged between client and server, and

17

(c) atmostlg(mamb(foq))+41glg(mamb(f.q)) bits with 4 messages exchanged between client
and server.

The bound for two messages is based on a fairly simple and elegant construction of a family
of perfect hash functions using the Lovasz Local Lemma [4]. The bound itself only improves on
the one-message bound above for very unbalanced pairs, i.e., when mamb(fyq) is much smaller
than mamb(frew), but the result is the main building block for the three-message case. The three-
message result is almost optimal for approximately balanced pairs, but not for very unbalanced
pairs. This problem is resolved by the four-message protocol, which is in fact independent of
mamb(frew) and only depends on mamb(fyq). Thus, at most four messages suffice in principle
to get a bit-optimal protocol, up to lower order terms.

While these results are very important in characterizing the fundamental complexity of the
remote file synchronization problem, they suffer from three main limitations. Firstly, the protocols
do not seem to imply any efficiently implementable algorithms, since the client would have to
check a large number of possible files f,,.., in order to find the one that has the color or hash value
generated by the protocol. Secondly, many of the results rely on the existence of balanced pairs,
and thirdly it is not clear what bounds are implied for interesting distance measures, which as
discussed are rarely balanced or symmetric. This last issue is discussed in the next subsection.

3.5 Results for Particular Distance Measures

We now discuss bounds on communication that can be achieved for particular distance measures,
focusing on results from [35, 37, 16].

In general, protocols for a distance measure typically consist of a first phase that uses a dis-
tance estimation technique to get an upper bound on the distances between the two files (discussed
in the next subsection), and a second phase based, e.g., on one of the protocols of Orlitsky [35],
that synchronizes the two files. In order to show bounds for the second phase relative to the file
distance under a particular metric, we need to (i) investigate whether the files can be assumed to
be balanced or not under the distance measure, and select the appropiate protocol, and (ii) bound
the maximum ambiguities based on the properties of the distance measures, the upper bounds on
the distances, and the lengths of the files.

This approach is taken in [35, 16] to show bounds for a few distance measures. In particular,
[16] derives the following bounds based on file lengths and distances:

o O(g(] frew |)-d(frew, foia)) bits under the Hamming distance measure, with two roundtrips,

e OUg%(| fnew |) - d(fnew fora)) bits under the edit distance measure and the LZ measure
introduced in [16], with two roundtrips, and

o O(g(] frew |) - A(frew, fora)) bits under the edit distance measure and the LZ measure, with
1%(| frew |) + 1 roundtrips.

In these results, all except the last roundtrip are used for distance estimation; the last bound is
based on a more precise distance estimation. With the exception of the Hamming distance, where
efficient coding techniques are known [1], these results are not practical due to the beforementioned
problem of efficiently decoding at the recipient.

18

Some more practical protocols are also given in [16, 37, 41]. The protocols in [16, 37] use
a hierarchical partitioning approach, resulting in a logarithmic number of roundtrips but avoiding
the decoding problems of the other approaches. Some experimental results in [37] show significant
improvements for some data sets as compared to rsync, with a protocol that gives provable bounds
for a variant of edit distance.

3.6 Estimating File Distances

As mentioned, many protocols require a priori knowledge of upper bounds on the distances be-
tween the two files. We now discuss protocols for estimating these distances. We note that we
could apply the sampling techniques in [10, 30] to construct fingerprints of the files that could be
efficiently transmitted (see also [22] for the problem of finding similar files in larger collections).
While these techniques may work well in practice to decide how similar two files are, they are not
designed with any of the common distance measures in mind, but based on the idea of estimating
the number of common substrings of a given length.

Good distance estimation techniques for some specific metrics are described in [16]. These
techniques consist of a single roundtrip in which a total of O(lgn) bits are sent to exchange finger-
prints obtained by appropriate sampling techniques. In particular, [16] shows that the LZ measure,
which for the purpose of compression captures a lot of the notion of file similarity, as well as the
edit distance, can be approximated through a slightly modified LZ-like measure that is in fact a
metric, and that this metric itself can be converted into Hamming distance.

3.7 Reconciling Database Records and File Systems

In the remote file synchronization problem, we assume that we have already identified two corre-
sponding files f,.., and f,;4 that need to be synchronized, and we would like to avoid transmitting
an entire file to do so. However, in many scenarios we have a large number of items (files in a file
system or records in a database), only a few of which have been changed. In this case, we would
like to identify those items that have been changed without transmitting a separate fingerprint or
time stamp for each one. Once we have identified these items, we can then synchronize them using
either the remote file synchronization techniques presented earlier, or by transmitting the entire
item in the case of small database records. In the following, we discuss the problems arising in
this scenario, with emphasis on a recent approach described in [26, 33, 46]. Some earlier work on
reconciliation of record-based data appeared in [7, 1, 31, 32].

Consider the case, assumed in [46], of a handheld device using the Palm Hotsync program
to synchronize its database of addresses or appointments with a desktop device. If the handheld
was last synchronized with the same desktop, then the Palm Hotsync software can use auxiliary
logging information to efficiently identify items that need to be synchronized. However, in the
general case where the two parties have not recently synchronized and where both may have added
or deleted data, simple logging information will not help, and the software transmits all records.

Assume that we compute a fingerprint of small, fixed size (e.g., MD4 with 128 bits) for each
object, and that S,,.,, is the set of fingerprints (integers) held by the server, and S, is the set of
fingerprints held by the client'®. Then the set reconciliation problem is the problem of determining
the differences S,iq — Spew aNd Sy, — So1q OF the two sets at the client. This then allows the client

10Note that if the records are very short, e.g., a few bytes, then we can directly perform reconciliation on the data
without using fingerprints.

19

to decide which records it needs to request from and upload to the server. (Of course, in other
cases, each party might want to obtain one of the differences.)

The reader might already observe that this scenario is now quite similar to that encountered
in the context of error correcting codes (erasure codes), and this observation is used by Minsky,
Trachtenberg, and Zippel [33] to apply techniques from coding theory to the problem. In particular,
one solution based on Reed-Solomon codes comes within a factor 2 of the information-theoretic
lower bound, while a solution based on the interpolation of characteristic polynomials comes very
close to optimal. The protocols in [33, 46] assume that an upper bound on the number of differences
between the two sets is known, which can be obtained either by guessing as described in [46], or
possibly by using known techniques for estimating set intersection sizes in [10, 30].

Experiments in [46] on a Palm OS handheld device demonstrate significant benefits over
the Palm Hotsync approach in many cases. One critical issue is still the amount of computation
required, which depends heavily on the number of differences between the two sets.

We note that we could also place S,,.., into afile f,..,, and S,;4 into a file f,4, in sorted order,
and then apply rsync to these files (or even to a concatenation of the original files or records).
However, this would not achieve the best possible bounds since set reconciliation is really an easier
problem than file synchronization due to the assumption of sets with known record boundaries.

4 Conclusions and Open Problems

In this chapter, we have described techniques, tools, and applications for delta compression and re-
mote file synchronization problems. We believe that the importance of these problems will increase
as computing becomes more and more network-centric, with millions of applications distributing,
sharing, and modifying files on a global basis.

In the case of delta compression, existing tools already achieve fairly good compression ra-
tios, and it will be difficult to significantly improve upon these results, although more modest
improvements in terms of speed and compression are still possible. Recall that the best delta
algorithms are currently based on Lempel-Ziv type algorithms. In the context of (non-delta) com-
pression, such algorithms, while not providing the absolutely best compression for particular types
of data, are still considered competitive for general-purpose compression. We would expect a sim-
ilar situation for delta compression, with major improvements only possible for special types of
data. On the the other hand, a lot of work still remains to be done on how to best use delta com-
pression techniques, e.g., how to cluster files and identify good reference files, and what additional
applications might benefit from delta compression techniques.

For remote file synchronization techniques, on the other hand, there still seems to be a sig-
nificant gap in compression performance between the currently available tools and the theoretical
limits. It is an important question whether we can modify the theoretical approaches from commu-
nication complexity into efficiently implementable algorithms with provably good performance.
A more realistic goal would be to engineer the approach in rsync in order to narrow the gap in
performance between remote file synchronization and delta compression.

Acknowledgements

Thanks to Dimitre Trendafilov for his work on implementing the zdelta compressor, and to Dimitre
Trendafilov and Patrick Noel for providing the experimental data.

20

References

[1] K. Abdel-Ghaffar and A. El Abbadi. An optimal strategy for comparing file copies. IEEE
Transactions on Parallel and Distributed Systems, 5(1):87-93, January 1994.

[2] M. Adler and M. Mitzenmacher. Towards compressing web graphs. In Proc. of the IEEE
Data Compression Conference (DCC), March 2001.

[3] M. Ajtai et. al. Compactly encoding unstructured inputs with differential compression. IBM
Research Report RJ 10187, September 2000.

[4] N. Alon and J. Spencer. The Probabilistic method.

[5] S. Balasubramaniam and B. Pierce. What is a File Synchronizer?. In Proc. of the ACM/IEEE
MOBICOM’98 Conference, pages 98—-108, October 1998.

[6] G. Banga, F. Douglis, and M. Rabinovich. Optimistic deltas for WWW latency reduction. In
1997 USENIX Annual Technical Conference, Anaheim, CA, pages 289-303, January 1997.

[7] D. Barbara and R. Lipton. A class of randomized strategies for low-cost comparison of file
copies. IEEE Transactions on Parallel and Distributed Systems, 2(2):160-170, April 1991.

[8] B. Berliner. CVS II: Parallelizing software development. In Proc. of the Winter 1990 USENIX
Conference, pages 341-352, January 1990.

[9] K. Bharat and A. Broder. Mirror, mirror on the web: A study of host pairs with replicated
content. In Proc. of the 8th Int. World Wide Web Conference, May 1999.

[10] A. Broder. On the resemblance and containment of documents. In Compression and Com-
plexity of Sequences (SEQUENCES’97), pages 21-29. IEEE Computer Society, 1997.

[11] R. Burns and D. Long. Efficient distributed backup with delta compression. In Proc. of the
Fifth Workshop on 1/0 in Parallel and Distributed Systems (IOPADS), 1997.

[12] P. Camerini, L. Fratta, and F. Maffioli. A note on finding optimum branchings. Networks,
9:309-312, 1979.

[13] M. Chanand T. Woo. Cache-based compaction: A new technique for optimizing web transfer.
In Proc. of INFOCOM’99, March 1999.

[14] Y. Chen, F. Douglis, H. Huang, and K. Vo. Topblend: An efficient implementation of HtmID-
iff in Java. In Proc. of the WebNet2000 Conference, October 2000.

[15] J. Cho, N. Shivakumar, and H. Garcia-Molina. Finding replicated web collections. In Proc.
of the ACM SIGMOD Int. Conf. on Management of Data, pages 355-366, May 2000.

[16] G. Cormode, M. Paterson, S. Sahinalp, and U. Vishkin. Communication complexity of doc-
ument exchange. In Proc. of the ACM-SIAM Symp. on Discrete Algorithms, January 2000.

[17] M. Costa. Writing on dirty paper. IEEE Transactions on Information Theory, pages 439-441,
May 1983.

21

[18] M. Delco and M. lonescu. xProxy: A transparent caching and delta transfer system for web
objects. May 2000. unpublished manuscript.

[19] F. Douglis, A. Haro, and M. Rabinovich. HPP: HTML macro-preprocessing to support dy-
namic document caching. In Proc. of the USENIX Symposium on Internet Technologies and
Systems (USITS), December 1997.

[20] A. Evfimievski. A probabilistic algorithm for updating files over a communication link. In
Proc. of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 300-305,
January 1998.

[21] J. Gailly. zlib compression library. Availableathtt p: // www. gzi p. org/ zl i b/.

[22] T.H. Haveliwala, A. Gionis, and P. Indyk. Scalable techniques for clustering the web. In
Proc. of the WebDB Workshop, Dallas, TX, May 2000.

[23] J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke. WebBase : A repository of web
pages. In Proc. of the 9th Int. World Wide Web Conference, May 2000.

[24] B. Housel and D. Lindquist. WebExpress: A system for optimizaing web browsing in a
wireless environment. In Proc. of the 2nd ACM Conf. on Mobile Computing and Networking,
pages 108-116, November 1996.

[25] J. Hunt, K. P. Vo, and W. Tichy. Delta algorithms: An empirical analysis. ACM Transactions
on Software Engineering and Methodology, 7, 1998.

[26] M. Karpovsky, L. Levitin, and A. Trachtenberg. Data verification and reconciliation with
generalized error-control codes. In 39th Annual Allerton Conf. on Communication, Control,
and Computing, 2001.

[27] E. Kushilevitzand N. Nisan. Communication Complexity. Cambridge University Press, 1997.

[28] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.
Soviet Physics Doklady. 10(8):707-710. February 1966.

[29] J. MacDonald. File system support for delta compression. MS Thesis, UC Berkeley, May
2000.

[30] U. Manber and S. Wu. GLIMPSE: A tool to search through entire file systems. In Proc. of
the 1994 Winter USENIX Conference, pages 23-32, January 1994.

[31] J. Metzner. A parity structure for large remotely located replicated data files. IEEE Transac-
tions on Computers, 32(8):727-730, August 1983.

[32] J. Metzner. Efficient replicated remote file comparison. IEEE Transactions on Computers,
40(5):651-659, May 1991.

[33] Y. Minsky, A. Trachtenberg, and R. Zippel. Set reconciliation with almost optimal commu-
nication complexity. Technical Report TR2000-1813, Cornell University, 2000.

22

[34] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy. Potential benefits of delta-
encoding and data compression for HTTP. In Proc. of the ACM SIGCOMM Conference,
pages 181-196, 1997.

[35] A. Orlitsky. Interactive communication of balanced distributions and of correlated files. SIAM
Journal of Discrete Math, 6(4):548-564, 1993.

[36] A. Orlitsky. Worst-case interactive communication Il: Two messages are not optimal. IEEE
Transactions on Information Theory, 37(4):995-1005. July 1991.

[37] A. Orlitsky and K. Viswanathan. Practical algorithms for interactive communication. In IEEE
Int. Symp. on Information Theory, June 2001.

[38] Z. Ouyang, N. Memon, and T. Suel. Delta encoding of related web pages. In Proc. of the
IEEE Data Compression Conference (DCC), March 2001.

[39] C. Pyne. Remote file transfer method and apparatus, 1995. US Patent Number 5446888.

[40] M. Rochkind. The source code control system. IEEE Transactions on Software Engineering,
1:364-370, December 1975.

[41] T. Schwarz, R. Bowdidge, and W. Burkhard. Low cost comparison of file copies. In Proc. of
the 10th Int. Conf. on Distributed Computing Systems, pages 196-202, 1990.

[42] R. Tarjan. Finding optimum branchings. Networks, 7:25-35, 1977.

[43] S. Tate. Band ordering in lossless compression of multispectral images. IEEE Transactions
on Computers, 46(45):211-320, 1997.

[44] W. Tichy. The string-to-string correction problem with block moves. ACM Transactions on
Computer Systems, 2(4):309-321, November 1984.

[45] W. Tichy. RCS: A system for version control. Software - Practice and Experience, 15, July
1985.

[46] A. Trachtenberg, D. Starobinski, and S. Agarwal. Fast PDA synchronization using character-
istic polynomial interpolation. Technical Report BU-2001-03, Boston University, Department
of Electrical and Computer Engineering, 2001.

[47] D. Trendafilov, N. Memon, and T. Suel. zdelta: a simple delta compression tool. Technical
Report, Polytechnic University, CIS Department, April 2002.

[48] A. Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD thesis, Australian
National University, April 2000.

[49] A. Tridgell and P. MacKerras. The rsync algorithm. Technical Report TR-CS-96-05, Aus-
tralian National University, June 1996.

[50] R. A. Wagner and M. J. Fisher. The string-to-string correction problem. J. ACM, 21(1):168-
173, January 1973.

23

[51] H. Witsenhausen. The zero-error side information problem and chromatic numbers. IEEE
Transactions on Information Theory, 22(5):592-593, September 1976.

[52] J. Ziv and A. Lempel. A universal algorithm for data compression. IEEE Transactions on
Information Theory, 23(3):337-343, 1977.

[53] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5):530-536, 1978.

24

