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Abstract

Delta compression techniques are commonly used to
succinctly represent an updated version of a file with re-
spect to an earlier one. In this paper, we study the use of
delta compression in a somewhat different scenario, where
we wish to compress a large collection of (more or less) re-
lated files by performing a sequence of pairwise delta com-
pressions. The problem of finding an optimal delta encod-
ing for a collection of files by taking pairwise deltas can be
reduced to the problem of computing a branching of maxi-
mum weight in a weighted directed graph, but this solution
is inefficient and thus does not scale to larger file collec-
tions. This motivates us to propose a framework for cluster-
based delta compression that uses text clustering techniques
to prune the graph of possible pairwise delta encodings. To
demonstrate the efficacy of our approach, we present ex-
perimental results on collections of web pages. Our exper-
iments show that cluster-based delta compression of col-
lections provides significant improvements in compression
ratio as compared to individually compressing each file or
using tar+gzip, at a moderate cost in efficiency.

1 Introduction

Delta compressors are software tools for compactly en-
coding the differences between two files or strings in or-
der to reduce communication or storage costs. Examples of
such tools are the diff and bdiff utilities for comput-
ing edit sequences between two files, and the more recent
xdelta [16], vdelta [12], vcdiff [15], and zdelta
[26] tools that compute highly compressed representations
of file differences. These tools have a number of applica-
tions in various networking and storage scenarios; see [21]
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for a more detailed discussion. In a communication sce-
nario, they typically exploit the fact that the sender and
receiver both possess a reference file that is similar to the
transmitted file; thus transmitting only the difference (or
delta) between the two files requires a significantly smaller
number of bits. In storage applications such as version con-
trol systems, deltas are often orders of magnitude smaller
than the compressed target file.

Delta compression techniques have also been studied in
detail in the context of the World Wide Web, where con-
secutive versions of a web page often differ only slightly
[8, 19] and pages on the same site share a lot of common
HTML structure [5]. In particular, work in [2, 5, 7, 11, 18]
considers possible improvements to HTTP caching based
on sending a delta with respect to a previous version of the
page, or another similar page, that is already located in a
client or proxy cache.

In this paper, we study the use of delta compression in
a slightly different scenario. While in most other applica-
tions, delta compression is performed with respect to a pre-
vious version of the same file, or some other easy to identify
reference file, we are interested in using delta compression
to better compress large collections of files where it is not
obvious at all how to efficiently identify appropriate refer-
ence and target files. Our approach is based on a reduction
to the optimum branching problem in graph theory and the
use of recently proposed clustering techniques for finding
similar files.

We focus on collections of web pages from several
sites. Applications that we have in mind are efficient
downloading and storage of collection of web pages for
off-line browsing, and improved archiving of massive ter-
abyte web collections such as the Internet Archive (see
http://archive.org). However, the techniques we
study are applicable to other scenarios as well, and might
lead to new general-purpose tools for exchanging collec-
tions of files that improve over the currently used zip and
tar/gzip tools.
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1.1 Contributions of this Paper

In this paper, we study the problem of compressing col-
lections of files, with focus on collections of web pages,
with varying degrees of similarity among the files. Our ap-
proach is based on using an efficient delta compressor, in
particular the zdelta compressor [26], to achieve signif-
icantly better compression than that obtained by compress-
ing each file individually or by using tools such as tar and
gzip on the collection. Our main contributions are:

� The problem of obtaining optimal compression of a
collection of � files, given a specific delta compres-
sor, can be solved by finding an optimal branching on
a directed graph with � nodes and �

�
edges. We im-

plement this algorithm and show that it can achieve
significantly better compression than current tools. On
the other hand, the algorithm quickly becomes ineffi-
cient as the collection size grows beyond a few hun-
dred files, due to its quadratic complexity.

� We present a general framework, called cluster-based
delta compression, for efficiently computing near-
optimal delta encoding schemes on large collections
of files. The framework combines the branching ap-
proach with two recently proposed hash-based tech-
niques for clustering files by similarity [3, 10, 14, 17].

� Within this framework, we evaluate a number of differ-
ent algorithms and heuristics in terms of compression
and running time. Our results show that compression
very close to that achieved by the optimal branching al-
gorithm can be achieved in time that is within a small
multiplicative factor of the time needed by tools such
as gzip.

We also note three limitations of our study: First, our re-
sults are still preliminary and we expect additional improve-
ments in running time and compression over the results in
this paper. In particular, we believe we can narrow the gap
between the speed of gzip and our best algorithms. Sec-
ondly, we restrict ourselves to the case where each target
file is compressed with respect to a single reference file.
Additional significant improvements in compression might
be achievable by using more than one reference file, at the
cost of additional algorithmic complexity. Finally, we only
consider the problem of compressing and uncompressing
an entire collection, and do not allow individual files to be
added to or retrieved from the collection.

The rest of this paper is organized as follows. The
next subsection lists related work. In Section 2 we dis-
cuss the problem of compressing a collection of files using
delta compression, and describe an optimal algorithm based
on computing a maximum weight branching in a directed

graph. Section 3 provides our framework called cluster-
based delta compression and outlines several approaches
under this framework. In Section 4, we present our ex-
perimental results. Finally, Section 5 provides some open
questions and concluding remarks.

1.2 Related Work

For an overview of delta compression techniques and ap-
plications, see [21]. Delta compression techniques were
originally introduced in the context of version control sys-
tems; see [12, 25] for a discussion. Among the main
delta compression algorithms in use today are diff and
vdelta [12]. Using diff to find the difference between
two files and then applying gzip to compress the differ-
ence is a simple and widely used way to perform delta com-
pression, but it does not provide good compression on files
that are only slightly similar. vdelta, on the other hand,
is a relatively new technique that integrates both data com-
pression and data differencing. It is a refinement of Tichy’s
block-move algorithm [24] that generalizes the well known
Lempel-Ziv technique [27] to delta compression. In our
work, we use the zdelta compressor, which was shown
to achieve good compression and running time in [26].

The issue of appropriate distance measures between files
and strings has been studied extensively, and many different
measures have been proposed. We note that diff is related
to the symmetric edit distance measure, while vdelta
and other recent Lempel-Ziv type delta compressors such
as xdelta [16], vcdiff [15], and zdelta [26] are re-
lated to the copy distance between two files. Recent work
in [6] studies a measure called LZ distance that is closely
related to the performance of Lempel-Ziv type compress-
ing schemes. We also refer to [6] and the references therein
for work on protocols for estimating file similarities over a
communication link.

Fast algorithms for the optimum branching problem are
described in [4, 22]. While we are not aware of previous
work that uses optimum branchings to compress collections
of files, there are two previous applications that are quite
similar. In particular, Tate [23] uses optimum branchings
to find an optimal scheme for compressing multispectral
images, while Adler and Mitzenmacher [1] use it to com-
press the graph structure of the World Wide Web. Adler
and Mitzenmacher [1] also show that a natural extension of
the branching problem to hypergraphs that can be used to
model delta compression with two or more reference files is
NP Complete, indicating that an efficient optimal solution
is unlikely.

We use two types of hash-based clustering techniques
in our work, a technique with quadratic complexity called
min-wise independent hashing proposed by Broder in [3]
(see also Manber and Wu [17] for a similar technique), and
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a very recent nearly linear time technique called locality-
sensitive hashing proposed by Indyk and Motwani in [14]
and applied to web documents in [10].

2 Delta Compression Based on Optimum
Branchings

Delta compressors such as vcdiff or zdelta provide
an efficient way to encode the difference between two sim-
ilar files. However, given a collection of files, we are faced
with the problem of succinctly representing the entire col-
lection through appropriate delta encodings between target
and reference files. We observe that the problem of finding
an optimal encoding scheme for a collection of files through
pairwise deltas can be reduced to that of computing an opti-
mum branching

�
of an appropriately constructed weighted

directed graph � .

2.1 Problem Reduction

Formally, a branching
�

of a directed graph � is defined
as a set of edges such that (1)

�
contains at most one incom-

ing edge for each node, and (2)
�

does not contain a cycle.
Given a weighted directed graph, a maximum branching is a
branching of maximum edge weight. Given a collection of

� files we construct a complete directed graph �������	��

�
where each node corresponds to a file and each directed
edge ��������� has a corresponding weight ����� � that represents
the reduction (in bytes) obtained by delta-compressing file �
with respect to file � . In addition to these � nodes, the graph
� includes an extra null node corresponding to the empty
file that is used to model the compression savings if a file is
compressed by itself (using, e.g., zlib, or zdelta with
an empty reference file).

Given the above formulation it is not difficult to see that
a maximum branching of the graph � gives us an optimal
delta encoding scheme for a collection of files. Condition
(1) in the definition of a branching expresses the constraint
that each file is compressed with respect to only one other
file. The second condition ensures that there are no cycli-
cal dependencies that would prevent us from decompress-
ing the collection. Finally, given the manner in which the
weights have been assigned, a maximum branching results
in a compression scheme with optimal benefit over the un-
compressed case.

Figure 1 shows the weighted directed graph formed by a
collection of four files. In the example, node � is the null
node, while nodes � , � , � , and � represent the four files.
The weights on the edges from node � to nodes � , � , � ,
and � are the compression savings obtained when the tar-
get files are compressed by themselves. The weights for all
other edges ��������� represent compression savings when file
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Figure 1. Example of a directed and weighted
complete graph. The optimal branching for
the graph consists of the edges ��� �!�"� , �#�$���%� ,
�&�$���'� , and ���(�#���

data set pages average cat+gzip optimal
data set size ratio branch

CBC 530 23 KB 5.83 10.01
CBSNews 218 44 KB 5.06 15.42
USAToday 344 25 KB 6.30 18.64
CSmonitor 388 43 KB 5.06 17.31

Ebay 100 23 KB 6.78 10.90
Thomas-dist 105 27 KB 6.39 9.73

all sites 1685 29 KB 5.53 12.36

Table 1. Compression ratios for some collec-
tions of files.

� is compressed using � as a reference file. The optimal se-
quence for compression is ��� �!�"� , �#�$���'� , �&�%�)�'� , and ��� �)�*� ,
i.e., file � is compressed by itself, files � and � are com-
pressed by computing a delta with respect to file � , and file
� is compressed by computing a delta with respect to file � .

2.2 Experimental Results

We implemented delta compression based on the optimal
branching algorithm described in [4, 22], which for dense
graphs takes time proportional to the number of edges. Ta-
ble 1 shows compression results and times on several col-
lections of web pages that we collected by crawling a lim-
ited number of pages from each site using a breadth-first
crawler.

The results indicate that the optimum branching ap-
proach can give significant improvements in compression
over using cat or tar followed by gzip, outperforming
them by a factor of � to � . However, the major problem
with the optimum branching approach is that it becomes
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very inefficient as soon as the number of files grows beyond
a few dozens. For the cbc.ca data set with

� �$� pages, it
took more than an hour ( � �!�$��� ) to perform the computa-
tion, while multiple hours were needed for the set with all
sites.

Figure 2 plots the running time in seconds of the opti-
mal branching algorithm for different numbers of files, us-
ing a set of files from the gcc software distribution also
used in [12, 26]. Time is plotted on a logarithmic scale to
accomodate two curves: the time spent on computing the
edge weights (upper curve), and the time spent on the ac-
tual branching computation after the weights of the graph
have been determined using calls to zdelta (lower curve).
While both curves grow quadratically, the vast majority of
the time is spent on computing appropriate edge weights for
the graph � , and only a tiny amount is spent on the actual
branching computation afterwards.
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Figure 2. Running time of the optimal branch-
ing algorithm

Thus, in order to compress larger collections of pages,
we need to find techniques that avoid computing the ex-
act weights of all edges in the complete graph � . In the
next sections, we study such techniques based on cluster-
ing of pages and pruning and approximation of edges. We
note that another limitation of the branching approach is that
it does not support the efficient retrieval of individual files
from a compressed collection, or the addition of new files to
the collection. This is a problem in some applications that
require interactive access, and we do not address it in this
paper.

3 Cluster-Based Delta Compression

As shown in the previous section, delta compression
techniques have the potential for significantly improved
compression of collections of files. However, the optimal

algorithm based on maximum branching quickly becomes
a bottleneck as we increase the collection size � , mainly
due to the quadratic number of pairwise delta compression
computations that have to be performed. In this section,
we describe a basic framework, called Cluster-Based Delta
Compression, for efficiently computing near-optimal delta
compression schemes on larger collections of files.

3.1 Basic Framework

We first describe the general approach, which leads to
several different algorithms that we implemented. In a nut-
shell, the basic idea is to prune the complete graph � into
a sparse subgraph ��� , and then find the best delta encoding
scheme within this subgraph. More precisely, we have the
following general steps:

(1) Collection Analysis: Perform a clustering computa-
tion that identifies pairs of files that are very similar
and thus good candidates for delta compression. Build
a sparse directed subgraph ��� containing only edges
between these similar pairs.

(2) Assigning Weights: Compute or estimate appropriate
edge weights for ��� .

(3) Maximum Branching: Perform a maximum branch-
ing computation on ��� to determine a good delta en-
coding.

The assignment of weights in the second step can be done
either precisely, by performing a delta compression across
each remaining edge, or approximately, e.g., by using esti-
mates for file similarity produced during the document anal-
ysis in the first step. Note that if the weights are computed
precisely by a delta compressor and the resulting com-
pressed files are saved, then the actual delta compression
after the last step consists of simply removing files corre-
sponding to unused edges (assuming sufficient disk space).

The primary challenge is Step (1), where we need to ef-
ficiently identify a small subset of file pairs that give good
delta compression. We will solve this problem by using
two sets of known techniques for document clustering, one
set proposed by Broder [3] and Manber and Wu [17], and
one set proposed by Indyk and Motwani [14] and applied to
document clustering by Haveliwala, Gionis, and Indyk [10].
These techniques were developed in the context of identi-
fying near-duplicate web pages and finding closely related
pages on the web. While these problems are clearly closely
related to our scenario, there are also a number of differ-
ences that make it nontrivial to apply the techniques to delta
compression, and in the following we discuss these issues.
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3.2 File Similarity Measures

The compression performance of a delta compressor on
a pair of files depends on many details, such as the precise
locations and lengths of the matches, the internal compress-
ibility of the target file, the windowing mechanism, and
the performance of the internal Huffman coder. A num-
ber of formal measures of file similarity, such as edit dis-
tance (with or without block moves), copy distance, or LZ
distance [6] have been proposed that provide reasonable ap-
proximations; see [6, 21] for a discussion. However, even
these simplified measures are not easy to compute with, and
thus the clustering techniques in [3, 17, 10] that we use are
based on two even simpler similarity measures, which we
refer to as shingle intersection and shingle containment.

Formally, for a file
�

and an integer � , we define the
shingle set (or � -gram set) � � � � of

�
as the multiset of

substrings of length � (called shingles) that occur in
�

.
Given two files

�
and
�
� , we define the shingle intersec-

tion of
�

and
�
� as � � � � � � � ��� ���
	���
����
	������� ���
	��������
	 � ���

. We define the
shingle containment of

�
with respect to

�
� as � � � � � � � �

� ����	���
�����	 � ���� ���
	���� . (Note that shingle containment is not symmet-
ric.)

Thus, both of these measures assign higher similarity
scores to files that share a lot of short substrings, and in-
tuitively we should expect a correlation between the delta
compressibility of two files and these similarity measures.
In fact, the following relationship between shingle intersec-
tion and the edit distance measure can be easily derived:

� Given two files
�

and
�
� within edit distance � ,

and a shingle size � , we have � � � � ����� � � � ��� �!#"%$ �&� � � �'� � �(� �*)+�-, �.,/�10�� .
We refer to [9] for a proof and a similar result for the case
of edit distance with block moves. A similar relationship
can also be derived between shingle containment and copy
distances. Thus, shingle intersection and shingle contain-
ment are related to the edit distance and copy distance mea-
sures, which have been used as models for the correspond-
ing classes of edit-based and copy-based delta compression
schemes.

While the above discussion supports the use of the
shingle-based similarity measures in our scenario, in prac-
tice the relationship between these measures and the
achieved delta compression ratio is quite noisy. Moreover,
for efficiency reasons we will only approximate these mea-
sures, introducing additional potential for error.

3.3 Clustering Using Min-Wise Independent
Hashing

We now describe the first set of techniques, called min-
wise independent hashing, that was proposed by Broder in

[3]. (A similar technique is described by Manber and Wu in
[17].) The simple idea in this technique is to approximate
the shingle similarity measures by sampling a small sub-
set of shingles from each file. However, in order to obtain
a good estimate, the samples are not drawn independently
from each file, but they are obtained in a coordinated fash-
ion using a common set of random hash functions that map
shingles of length � to integer values. We then select in each
file the smallest hash values obtained this way.

We refer the reader to [3] for a detailed analysis. Note
that there are a number of different choices that can be made
in implementing these schemes:

� Choice of hash functions: We used a class of simple
linear hash functions analyzed by Indyk in [13] and
also used in [10].

� Sample Sizes: One option is to use a fixed number of
samples, say �!�%� or � �$�%� , from each file, independent
of file size. Alternatively, we could sample at a con-
stant rate, say �'2%3$� or �%2*� �54 , resulting in sample sizes
that are proportional to file sizes.

� One or several hash functions: One way to select �
samples from a file is to use � hash functions, and in-
clude the minimum value under each hash function in
the sample. Alternatively, we could select one random
hash function, and select the � smallest values under
this hash function. We selected the second method as it
is significantly more efficient, requiring only one hash
function computation for each shingle.

� Shingle size: We used a shingle size of � � � bytes in
the results reported here. (We also experimented with
� �64 but achieved slightly worse results.)

After selecting the sample, we estimate the shingle inter-
section or shingle containment measures by intersecting the
samples of every pair of files. Thus, this phase takes time
quadratic in the number of files. Finally, we decide which
edges to include in the sparse graph � � . There are two in-
dependent choices to be made here:

� Similarity measure: We can use either intersection or
containment as our measure.

� Threshold versus 7 best neighbors: We could keep
all edges above a certain similarity threshold, say

� �98 ,
in the graph. Or, for each file, we could keep the 7 most
promising incoming edges, for some constant 7 , i.e.,
the edges coming from the 7 nearest neighbors w.r.t.
the estimated similarity measure.

A detailed discussion of the various implementation choices
outlined here and their impact on running time and com-
pression is given in the experimental section.
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The total running time for the clustering step using min-
wise independent hashing is thus roughly1 � � ��� ) �

� 0 � �
where � is the number of files, � the (average) size of each
file, and � the (average) size of each sample. The main ad-
vantage over the optimal algorithm is that for each edge,
instead of performing a delta compression step between
two files of size � (several kilobyte), we perform a sim-
pler computation between two samples of some small size �
(say, � � � � ). This results in a significant speedup over the
optimal algorithm in practice, although the algorithm will
eventually become inefficient due to the quadratic complex-
ity.

3.4 Clustering Using Locality-Sensitive Hashing

The second set of techniques, proposed by Indyk and
Motwani [14] and applied to document clustering by
Haveliwala, Gionis, and Indyk [10], is an extension of the
first set that results in an almost linear running time. In par-
ticular, these techniques avoid the pairwise comparison be-
tween all � files by performing a number of sorting steps on
specially designed hash signatures that can directly identify
similar files.

The first step of the technique is identical to that of the
min-wise independent hashing technique for fixed sample
size. That is, we select from each file a fixed number of
min-wise independent hash values, using � different random
hash functions. For a file

�
, let � �)� � � be the value selected

by the � th hash function. The main idea, called locality-
sensitive hashing, is to now use these hash values to con-
struct file signatures that consist of the concatenation of �
hash values (e.g., for � � � we concatenate four �%� -bit hash
values into one �"� 4 -bit signature). If two files agree on their
signature, then this is strong evidence that their intersection
is above some threshold. It can be formally shown that by
repeating this process a number of times that depends on �
and the chosen threshold, we will find most pairs of files
with shingle intersection above the threshold, while avoid-
ing most of the pairs below the threshold. For a more formal
description of this technique we refer to [10].

The resulting algorithm consists of the following steps:

(1) Sampling: Extract a fixed number � of hash values
�(�)� � � from each file

�
in the collection, using � dif-

ferent hash functions.

(2) Locality-sensitive hashing: Repeat the following �
times:

(a) Randomly select � indexes ��� to ���
	�� from
 � ������� � �., ��� .

1If � different hash functions are used, then an additional factor of �
has to be added to the first term.

(b) For each file
�

construct a signature by concate-
nating hash values � ��� � � � to �(������� � � � .

(c) Sort all resulting signatures, and scan the sorted
list to find all pairs of files whose signature is
identical.

(d) For each such pair, add edges in both directions
to � � .

Thus, the running time of this method is given by
� � ��� � )

��� � 0���� ��� � �)� , where � , � , and � are constants in the range
from � to at most � �$� depending on the choice of parame-
ters. We discuss parameter settings and their consequences
in detail in the experimental section.

We note two limitations. First, the above implementation
only identifies the pairs that are above a given fixed similar-
ity threshold. Thus, it does not allow us to determine the 7
best neighbors for each node, and it does not provide a good
estimate of the precise similarity of a pair (i.e., whether it is
significantly or only slightly above the threshold). Second,
the method is based on shingle intersection, and not shingle
containment. Addressing these limitations is an issue for
future work.

4 Experimental Evaluation

In this section, we perform an experimental evaluation
of several cluster-based compression schemes that we im-
plemented based on the framework from the previous sec-
tion. We first introduce the algorithm and the experimen-
tal setup. In Subsection 4.2 we show that naive methods
based on thresholds to do not give good results. The next
three subsections look at different techniques that resolve
this problem, and finally Subsection 4.6 presents results for
our best two algorithms on a larger data set. Due to space
constraints and the large number of options, we can only
give a selection of our results. We refer the reader to [20]
for a more complete evaluation.

4.1 Algorithms

We implemented a number of different algorithms and
variants. In particular, we have the following options:

� Basic scheme: MH vs. LSH.

� Number of hash function: single hash vs. multiple
hash.

� Sample size: fixed size vs. fixed rate.

� Similarity measure: intersection vs. containment.

� Edge pruning rule: threshold vs. best neighbors vs.
heuristics.
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� Edge weight: exact vs. estimated.

We note that not every combination of these choices make
sense. For example, our LSH implementations do not sup-
port containment or best neighbors, and require a fixed sam-
ple size. On the other hand, we did not observe any benefit
in using multiple hash functions in the MH scheme, and
thus assume a single hash function for this case. We note
that in our implementations, all samples were treated as
sets, rather than multi-sets, so a frequently occurring string
is presented at most once.2

All algorithms were implemented in C and compiled us-
ing gcc 2.95.2 under Solaris 7. Experiments were run
on a E450 Sun Enterprise server, with two UltraSparc �9� �
CPUs at 400MHz and � GB of RAM. Only one CPU was
used in the experiments, and data was read from a single
�!� ���$�%����� � SCSI disk. We note that the large amount of
memory and fast disk minimize the impact of I/O on the
running times. We used two data sets:

� The medium data set consists of the union of the six
web page collections from Section 2, with ��3 354 files
and a total size of �94������ �

.

� The large data set consists of � � ��4$� HTML pages
crawled from the poly.edu domain, with a total size
of � � � � 4	� �

. The pages were crawled in a breadth-
first crawl that attempted to fetch all pages reachable
from the www.poly.edu homepage, subject to cer-
tain pruning rules to avoid dynamically generated con-
tent and cgi scripts.

4.2 Threshold-Based Methods

The first experiments that we present look at the perfor-
mance of MH and LSH techniques that try to identify and
retain all edges that are above a certain similarity threshold.

In Table 2 we look at the optimum branching method
and at three different algorithms that use a fixed thresh-
old to select edges that are considered similar, for differ-
ent thresholds. For each method, we show the number
of similar edges, the number of edges included in the fi-
nal branching, and the total improvement obtained by the
method as compared to compressing each file individually
using zlib. The results demonstrate a fundamental prob-
lem that arises in these threshold-based methods: for high
thresholds, the vast majority of edges is eliminated, but the
resulting branching is of poor quality compared to the opti-
mal one. For low thresholds, we obtain compression close
to the optimal, but the number of similar edges is very high;
this is a problem since the number of edges included in � �

2Intuitively, this seems appropriate given our goal of modeling delta
compression performance.

alg. smp thr remaining br benefit
size edges size over zlib

optimal 2,782,224 1667 6980935
MH 100 20% 357,961 1616 6953569
intersect 40% 154,533 1434 6601218

60% 43,289 988 5326760
80% 2,629 265 1372123

MH �� ��
 20% 391,682 1641 6961645
intersect 40% 165,563 1481 6665907

60% 42,474 1060 5450312
80% 4,022 368 1621910

MH �� ��
 20% 1,258,272 1658 6977748
contain 40% 463,213 1638 6943999

60% 225,675 1550 6724167
80% 79,404 1074 5016699

Table 2. Number of remaining edges, number
of edges in the final branching, and compres-
sion benefit for threshold-based clustering
schemes for different sampling techniques
and threshold values (column 3).

determines the cost of the subsequent computation.3 Unfor-
tunately, these numbers indicate that there is no real “sweet
spot” for the threshold that gives both a small number of
similar edges and good compression on this data set.

We note that this result is not due to the precision of the
sampling-based methods, and it also holds for threshold-
based LSH algorithms. A simplified explanation for this is
that data sets contain different clusters of various similar-
ity, and a low threshold will keep these clusters intact as
dense graphs with many edges, while a high threshold will
disconnect too many of these clusters, resulting in inferior
compression. This leads us to study several techniques for
overcoming this problem:

� Best neighbors: By retaining only the best 7 incoming
edges for each node according to the MH algorithm,
we can keep the number of edges in � � bounded by
7 � .

� Estimating weights: Another way to improve the ef-
ficiency of threshold-based MH algorithms is to di-
rectly use the similarity estimate provided by the MH
schemes as the edge weight in the subsequent branch-
ing.

� Pruning heuristics: We have also experimented with
heuristics for decreasing the number of edges in LSH
algorithms, described further below.

3For example, if we compute the exact weight of each edge above a�
���
threshold, then we have to perform over � �
�
�
�
� calls to zdelta at

a cost of about � ��� � each.
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sample k cluster weighing br. benefit
size time time time over zlib

1/2 1 1198.25 51.44 0.02 6137816
2 1201.27 84.17 0.02 6693921
4 1198.00 149.99 0.04 6879510
8 1198.91 287.31 0.09 6937119

1/128 1 40.52 47.77 0.02 6124913
2 40.65 82.88 0.03 6604095
4 40.57 149.06 0.03 6774854
8 40.82 283.57 0.09 6883487

Table 3. Running time and compression ben-
efit for 7 -neighbor schemes.

In summary, using a fixed threshold followed by an optimal
branching on the remaining edges does not result in a very
good trade-off between compression and running time.

4.3 Using Best Neighbors

We now look at the case where we limit the number of
remaining edges in the MH algorithm by keeping only the
7 most similar edges into each node, as proposed above.
Clearly, this limits the total number of edges in � � to 7 � ,
thus reducing the cost of the subsequent computations.

Table 3 shows the running times of the various phases
and the compression benefit as a function of the number
of neighbors 7 and the sampling rate. The clustering time
of course depends heavily on the sampling rate; thus one
should use the smallest sampling rate that gives reasonable
compression, and we do not observe any significant impact
on compression up to a rate of �%2*�"� 4 for the file sizes we
have. The time for computing the weights of the graph � �
grows (approximately) linear with 7 . The compression rate
grows with 7 , but even for very small 7 , such as 7 � � , we
get results that are within

� 8 of the maximum benefit. As in
all our results, the time for the actual branching computation
on � � is negligible.

4.4 Estimated Weights

By using the containment measure values computed by
the MH clustering as the weights of the remaining edges
in � � , we can further decrease the running time, as shown
in Table 4. The time for building the weighted graph is
now essentially reduced to zero. However, we have an extra
step at the end where we perform the actual compression
across edges, which is independent of 7 and has the same
cost as computing the exact weights for 7 � � . Looking
at the achieved benefit we see that for 7 ��4 we are within
about � 8 of the optimum, at a total cost of less than

� �

k cluster branching zdelta benefit
time time time over zlib

1 39.26 0.02 45.63 6115888
2 39.35 0.02 48.49 6408702
4 39.35 0.02 48.14 6464221
8 39.40 0.06 49.63 6503158

Table 4. Running time and compression bene-
fit for 7 -neighbor schemes with sampling rate
�'2*�"� 4 and estimated edge weights.

threshold edges branching benefit
size over zlib

20% 28,866 1640 6689872
40% 8,421 1612 6242688
60% 6,316 1538 5426000
80% 2,527 1483 4945364

Table 5. Number of remaining edges and com-
pression benefit for LSH scheme with pruning
heuristic.

seconds (versus about ��3 seconds for standard zlib and
several hours for the optimum branching).

4.5 LSH Pruning Heuristic

For LSH algorithms, we experimented with a sim-
ple heuristic for reducing the number of remaining edges
where, after the sorting of the file signatures, we only keep
a subset of the edges in the case where more than � files
have identical signatures. In particular, instead of building
a complete graph on these files, we connect these files by a
simple linear chain of directed edges. This somewhat arbi-
trary heuristic (which actually started out as a bug) results in
significantly decreased running time at only a slight cost in
compression, as shown in Table 5. We are currently looking
at other more principled approaches to thinning out tightly
connected clusters of edges.

4.6 Best Results for Large Data Set

Finally, we present the results of the best schemes iden-
tified above on the large data set of �$� ��4$� pages from
the poly.edu domain. We note that our results are still
somewhat preliminary and can probably be significantly im-
proved by some optimizations. We were unable to compute
the optimum branching on this set due to its size.

The MH algorithm used 7 � 4 neighbors and estimated
edge weights, while the LSH algorithm used a threshold of

8



algorithm running time size

uncompressed 257.8 MB
zlib 73.9 42.3 MB

cat+gzip 79.5 30.5 MB
best MH 996.3 23.7 MB

best LSH 800.0 21.7 MB

Table 6. Comparison of best MH and LSH
schemes to zlib and cat+gzip.

� �98 and the pruning heuristic from the previous subsec-
tion. For MH, about � � 8 of the running time is spent on
the clustering, which scales as

� � �
� � and thus eventually

becomes a bottleneck, and � � 8 on the final compression
step. For LSH, more than � � 8 is spent on computing the
exact weights of remaining edges, while the rest is spent on
the clustering.

5 Concluding Remarks

In this paper, we have investigated the problem of using
delta compression to obtain a compact representation of a
cluster of files. As described, the problem of optimally en-
coding a collection using delta compression based on a sin-
gle file can be reduced to the problem of computing a maxi-
mum weight branching. However, while providing superior
compression, this algorithm does not scale to larger collec-
tions, motivating us to propose a faster cluster-based delta
compression framework. We studied several file clustering
heuristics and performed extensive experimental compar-
isons. Our preliminary results show that significant com-
pression improvements can be obtained over tar+gzip at
moderate additional computational costs.

Many open questions remain. First, some additional op-
timizations are possible that should lead to improvements
in compression and running time, including faster sampling
and better pruning heuristics for LSH methods. Second, the
cluster-based framework we have proposed uses only pair-
wise deltas, that is, each file is compressed with respect to
only a single reference file. It has been shown [5] that multi-
ple reference files can result in significant improvements in
compression, and in fact this is already partially exploited
by tar+gzip with its �%��� �

window on small files. As
discussed, a polynomial-time optimal solution for multiple
reference files is unlikely, and even finding schemes that
work well in practice is challenging. Our final goal is to
create general purpose tools for distributing file collections
that improve significantly over tar+gzip.

In related work, we are also studying how to apply delta
compression techniques to a large web repository4 that can

4Similar to the Internet Archive at http://www.archive.org.

store billions of pages on a network of workstations. Note
that in this scenario, fast insertions and lookups are crucial,
and significant changes in the approach are necessary. An
early prototype of the system is currently being evaluated.
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