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ABSTRACT
Current search engines use very complex ranking functions
based on hundreds of features. While such functions return
high-quality results, they create efficiency challenges as it is
too costly to fully evaluate them on all documents in the
union, or even intersection, of the query terms. To address
this issue, search engines use a series of cascading rankers,
starting with a very simple ranking function and then ap-
plying increasingly complex and expensive ranking functions
on smaller and smaller sets of candidate results. Researchers
have recently started studying several problems within this
framework of query processing by cascading rankers; see,
e.g., [5, 13, 17, 51].

We focus on one such problem, the design of the initial
cascade. Thus, the goal is to very quickly identify a set of
good candidate documents that should be passed to the sec-
ond and further cascades. Previous work by Asadi and Lin
[3, 5] showed that while a top-k computation on either the
union or intersection gives good results, a further optimiza-
tion using a global document ordering based on spam scores
leads to a significant reduction in quality. Our contribu-
tion is to propose an alternative framework that builds spe-
cialized single-term and pairwise index structures, and then
during query time selectively accesses these structures based
on a cost budget and a set of early termination techniques.
Using an end-to-end evaluation with a complex machine-
learned ranker, we show that our approach finds candidates
about an order of magnitude faster than a conjunctive top-k
computation, while essentially matching the quality.

1. INTRODUCTION
Search engines are continuously optimizing their ranking

functions in order to improve result quality. This is usually
achieved through more and more complex ranking functions
based on large sets of features, including features derived
from text, link structure, past queries, and online or propri-
etary data sets and knowledge bases through various data
extraction and mining techniques. However, these complex

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGIR ’16, July 17-21, 2016, Pisa, Italy
@ 2016 ACM. ISBN 978-1-4503-4069-4/16/07 $15.00
DOI: http://dx.doi.org/10.1145/2911451.2911515.

ranking functions create significant performance challenges
for the engines, as evaluating them on large numbers of doc-
uments is very expensive. Given the billions of queries that
have to be processed each day, it would not be feasible to
apply such functions directly on all documents passing the
initial Boolean filter, even in the conjunctive case.

To address this challenge, all current major engines appear
to be using a cascading approach to query processing that
approximates the results of such ranking functions through a
series of increasingly more complex intermediate functions.
Thus, after query analysis and rewriting, the search engine
first applies a very simple ranking function, similar to BM25
or a Cosine measure, that only uses a few features and can
be very efficiently applied on large numbers of candidates.
We refer to this process as the first cascade. Next, in the sec-
ond cascade, a somewhat more complex function based on a
larger set of features is applied to, say, the top few thousand
results from the first cascade. In the third and further cas-
cades, even more complex functions are applied to smaller
and smaller sets of surviving candidates of the previous cas-
cades. This approach was described and formalized in [51].

Thus, the goal of the cascading approach is to return (al-
most) the same results as we would get from applying the
complex function on all candidates, at a fraction of the com-
putational cost. Its proper implementation, however, poses
several challenges that have recently received some atten-
tion in the literature [5, 13, 17, 32, 40, 51]. In particular,
work has focused on four distinct challenges: (1) How to
design good sequences of increasingly complex ranking func-
tions and associated cutoffs (number of results kept for the
next cascade) [51]; (2) how to efficiently apply a complex
ranking function to candidates by using early-exit strategies
[13]; (3) how to design ranking functions for the first cas-
cades that preserve many good candidates for subsequent
cascades, as opposed to focusing on how to order a few
top results [17]; (4) how to implement the first cascade ef-
ficiently through an optimal choice of Boolean filters and
various early-termination techniques [3, 5].

We focus on the last challenge, which is important as the
first cascade is executed on large numbers of candidates.
The results in [3, 5] indicated that for the first cascade, a
conjunctive filter does essentially as well as a disjunctive one,
while saving a lot of time. However, a naive attempt to use
a global document ordering to avoid a complete conjunctive
traversal of the index structures resulted in significant losses
in end-to-end result quality.

In this paper, we propose an approach that runs about an
order of magnitude faster than even highly optimized con-



junctive and disjunctive top-k computations, while achieving
essentially the same end-to-end result quality. More pre-
cisely, given a complex ranking function that needs to be
approximated by a cascading approach, an inverted index
structure for a document collection, and a training query
trace, we show how to build an auxiliary layer of index struc-
tures, and how to select which parts of this layer to consult
on a submitted query, in order to obtain high-quality candi-
dates with a limited computational and space budget.

In particular, our contributions are as follows:

1. We design a framework that builds specialized single-
term and pairwise index structures subject to a given
space constraint. It uses limited size query traces to
train query term language models and posting quality
models.

2. We propose an online selection algorithm based on a
cost budget that, for a given query, decides the ac-
cess depth for each available structure according to
the posting quality model, and present query process-
ing and lookup strategies that further improve perfor-
mance.

3. We provide an end-to-end evaluation of our proposed
architecture on ClueWeb09B, and show that our ap-
proach can identify candidates about an order of mag-
nitude faster than previous published results, with neg-
ligible quality loss.

The remainder of the paper is organized as follows: Sec-
tion 2 presents some background and discusses related work.
In Section 3 we give a high-level overview of our approach,
and present our solutions for several components. Next,
Section 4 outlines the experimental setup, and Section 5
presents the experimental evaluation of the proposed frame-
work. Finally, Section 6 provides some concluding remarks.

2. BACKGROUND AND RELATED WORK
In this section, we provide some background on inverted

indexes, query processing and early termination techniques,
and cascade ranking architectures, and discuss related work.

Inverted Indexes: Commercial search engines perform
query processing based on the widely used inverted index
[58]. Given a collection of N documents, each document is
assigned a unique identifier (docID) from 0 to N -1. The
inverted index consists of a set of inverted lists and a lexi-
con. In particular, for each distinct term t in the collection,
there is an inverted list Lt. Each Lt is a list of postings
specifying the documents that t appears in. Typically, each
posting contains the docID of a document containing t and
the frequency of t in the document; however, there may also
be other information, such as the positions of the term oc-
currences in the document, or a precomputed impact score.
The lexicon contains for each unique term in the collection
a pointer to the corresponding inverted list. Inverted index
compression is crucial for search engine performance and
many techniques have been proposed [6, 45].

Index Layout: There are many ways to organize the in-
verted lists. In document-sorted indexes, each list is sorted
by docID, resulting in small delta gaps (d-gaps) between
consecutive docIDs that lead to a smaller compressed size
[45]. Impact-sorted indexes sort the postings in each list in
decreasing order of impact scores. Thus, high-scoring query
results tend to be located near the front of the lists, poten-
tially enabling a smart query processing algorithm to skip

most of the rest of the list. However, this approach leads to
poor compressibility compared to document-sorted indexes,
and may require random lookups into lists for docIDs that
score high on one query term but low on others. Finally,
impact-layered indexes split each inverted list into a small
number of layers based on impact scores. Our approach uses
two layers, where the first layer of high-impact postings is
sorted by impact, and the second layer by docID to allow
for efficient random lookups.

Index Traversal: During query processing, index struc-
tures can be traversed in different ways [50]. In Document-
at-a-time (DAAT), each list has a pointer to a current post-
ing and one document is processed at a time; then pointers
are moved forward in docID space. The top results are usu-
ally maintained in a min-heap structure. In Term-at-a-time
(TAAT) traversal, a list is fully traversed before accessing
the next one. Partially scored documents are kept as accu-
mulators in a hash table or other structure; this structure
can be a bottleneck if it grows beyond the CPU caches.
Lastly, there are hybrids between DAAT and TAAT. Note
that DAAT is mainly suitable for document-sorted indexes,
while TAAT works well with impact-sorted ones.

2.1 Query Processing and Early Termination
The simplest form of query processing applies a Boolean

filter (AND/OR) on the inverted lists of the query terms,
and then ranks all documents passing the filter. A good
ranking function should (a) provide a good approximation of
the relevance of a document with respect to a query and (b)
be efficiently computable using the information stored in the
index. Well-known examples include Cosine measures and
BM25 [6]. Most of these simple ranking schemes have the
property that the score of a document d for the full query q
is the sum (or other simple combination) of per-term scores;
i.e., score(q, d) =

∑
t∈q s(t, d), where s(t, d) is the impact

score of term t in d.
Early Termination: A näıve query processing approach

is inefficient, and ends up decompressing and accessing large
parts of the inverted lists. To improve on this, researchers
have proposed many early termination (ET) algorithms that
try to find good results while accessing and scoring only
a small part of the relevant inverted lists. ET algorithms
are called safe if they always return the same results as an
exhaustive algorithm, and unsafe otherwise [48]. ET tech-
niques are widely used in commercial engines and academic
systems, and include the following approaches:

• Index Tiering: A collection is partitioned into, say, 2
or 3, disjoint subsets of documents called tiers, where
the first tier contains the highest-quality documents;
queries are executed on the first tier and only selec-
tively routed to other tiers [41, 42].

• Pruning: In static pruning, postings considered un-
likely to ever be useful are deleted from the index [8,
12, 24, 37]. In dynamic pruning, inverted lists are
typically organized in impact-sorted or impact-layered
form, and algorithms focus on high-impact postings
and only selectively access lower-impact postings for
promising documents. One very widely studied exam-
ple are the FA, TA, and NRA algorithms in [23].

• Skipping: For document-sorted indexes, there are
various techniques for skipping unimportant parts of
the inverted lists [10, 14, 19, 20, 21].



Our approach here is unsafe, and based on dynamic prun-
ing with impact-layered structures for both terms and term
pairs (intersections of two terms), as described later.

2.2 Cascading Ranking Architectures
In modern commercial engines, query processing is based

on cascading ranking schemes [10, 13, 51], where each cas-
cade includes a ranker that provides candidate documents
to subsequent cascades. The first cascade is usually based
on a very simple ranking function that is evaluated on large
parts of the index structure to get an initial set of candi-
dates. Thus, this function must be very fast, while providing
a reasonably high-quality set of candidates. Subsequent cas-
cades are executed on fewer candidates using more complex
and expensive ranking functions. The challenge in designing
such cascading architectures is to select a set of cascades and
associated ranking functions that achieves high end-to-end
quality at low cost.

Cascading setups are crucial for the performance and qual-
ity of modern commercial engines, and a number of papers
have recently focused on this setup [4, 5, 13, 17, 32, 40, 51].
We focus on optimizing the efficiency of the first cascade in
such architectures, a problem recently studied in [4, 5].

2.3 Comparison to Previous Work
We now discuss the relationship of our approach to pre-

vious work. The particular problem we consider is based
on the setup in [5, 4, 17]. Thus, we have a two-phase cas-
cading architecture, where the first phase obtains an initial
candidate set of, say, several hundred or thousand docu-
ments, while the second phase reranks these candidates us-
ing a more sophisticated ranker based on dozens or hundreds
of features. Our goal is to design very fast ET algorithms
for the first phase that achieve end-to-end quality compara-
ble to more exhaustive approaches. This is essentially the
problem addressed by Asadi and Lin in [4, 5].

In particular, [5] investigates the efficiency/effectiveness
trade-off for various first-phase candidates generation ap-
proaches. They experiment with conjunctive WAND [10],
disjunctive WAND, and two conjunctive algorithms that
first obtain the intersection and then rerank results based on
BM25 or spam score, and conclude that conjunctive WAND
provides the best trade-off. Work in [4] shows how to accel-
erate the intersection-based approaches using Bloom Filters.
Our contribution here is to provide a method that achieves
quality comparable to their best methods at lower cost.

Another relevant recent work [52] proposes a document
prioritization method for selective evaluation of documents
that achieves a better efficiency/effectiveness balance in the
first cascade. The running times reported in [52] are sig-
nificantly slower than ours, though some of the ideas could
potentially be used to further optimize the lookup phase of
our approach.

Our algorithm is based on a layered index organization
and performs a limited-depth access to impact-sorted single-
term and term-pair structures, followed by random lookups.
As such, it is closely related to the well-know FA algo-
rithm proposed by Fagin [23], and also to ET algorithms for
impact-layered indexes introduced in [39]. There are many
subsequent papers that further developed and often com-
bined these approaches to solve various IR ranking problems,
including, e.g., [2, 7, 9, 33, 47, 48].

We note that [28, 29] describe a number of access and

lookup strategies for top-k query processing in database ap-
plications. One algorithm that is somewhat similar to our
approach is the MPro algorithm in [28], which seeks to min-
imize lookup costs through sorted access. Work in [48] sug-
gested methods for selecting the access depth into the avail-
able single-term impact-sorted lists. However, [48] focused
only on single-term impact-sorted lists and did not provide
cost-based query processing algorithms in the context of cas-
cading rankers. Our approach is different from both of the
above as we are proposing a framework for constructing ad-
ditional impact-sorted index structures, including pairwise
structures, based on query term distributions and posting
quality models and subject to space constraints, plus an on-
line depth selection algorithm and lookup strategies.

Our approach relies heavily on term-pair index structures,
introduced in [34] and subsequently studied in a number of
papers such as [11, 15, 26, 30, 44, 54, 56, 57]. Our work is
most closely related to [30], which also applies the approach
in [23] to pairwise structures. The main difference is our
focus on cascading ranking schemes, and our framework for
optimizing index structures and index traversals based on a
limited space and access cost budget.

Also related is the work in [11], which proposes building
single and pairwise impact-sorted lists that are then com-
pletely accessed during query processing. Though related,
our work is different in two ways: While [11] and earlier work
in [44, 54, 56, 57] assume a ranking function that directly
takes proximity into account, we assume a more complex
function in a cascading setup. Also, the resulting auxiliary
structures in [11] are much larger than the basic index size;
in contrast, our query language and posting quality models
allow us to achieve high speed with only a limited increase in
size. We note that our results could potentially be improved
by adding special pairwise structures for terms occurring
close to each other in a document, as done in [11, 54].

Finally, [1, 27] study techniques for learning better index
structures given a set of documents and queries. In par-
ticular, [27] can be seen as essentially learning an ordering
of index postings that is better than the “natural” impact-
based ordering used, e.g., in [23]. We note that this issue is
orthogonal to our approach, and could be combined to possi-
bly yield additional benefits. Lastly, while we construct our
first-layer structures using off-line preprocessing, one could
also approach this via a suitable caching mechanism, such
as those in [25, 38, 46] for other types of structures. Finally,
our improvements are in addition to any speedups achieved
through result caching, since our query traces do not have
significant numbers of repeated queries.

3. PROBLEM SETUP AND APPROACH
We now define and discuss our problem setup, give a high-

level description of our approach, and then provide more
details about the various steps that are involved.

3.1 Problem Setup
We are given a complex ranking function CF , a simple

ranking function SF used as the first cascade, and a rank
cutoff c for the first cascade, meaning that only c results from
the first cascade will be evaluated by the complex ranking
function, which will then return the top k, k ≤ c, results to
the user. Our goal is to implement the first cascade to run as
fast as possible without significantly decreasing end-to-end
result quality. In our implementation, we allow unsafe early



termination techniques, that is, the c results we give to CF
may be different than those obtained from an exhaustive
top-c computation using SF .

We measure quality in two ways: (i) Overlap@(k,c), mean-
ing how many of the top-k results that would be returned
by an exhaustive application of CF (i.e., ccf =∞ or at least
fairly large) are returned with our first cascade implemen-
tation that evaluates c candidates and (ii) NDCG@k, which
is the normalized discounted cumulative gain that considers
the order of the results.

Problem Discussion: Note that while the above defini-
tion assumes only two cascades, SF and CF , this does not
really limit our approach as long as any additional interme-
diate cascades do a good job at approximating CF , i.e., do
not lose too many good results among those nominated by
SF for further processing. We believe this is a reasonable
assumption in practice, and assume that subdividing the
second cascade into further cascades is a separate problem.
For the same reason, the reported running times are only for
the first cascade, as the cost of the second cascade should
only depend on c.

While an unsafe implementation of the first cascade could
in principle achieve better quality than a safe disjunctive or
conjunctive top-c computation using SF , this is not really
expected. Thus, our goal is to do (almost) as well as these
two choices, shown to be good in [3, 5], while being much
faster than these and other non-safe competitors.

3.2 Our Overall Approach
We now describe our approach, which starts with an ex-

isting inverted index for the collection that could be used to
run queries using SF . We then create additional auxiliary
index structures to quickly identify promising candidates.
We create two kinds of structures, single-term structures,
and term-pair, or pairwise, structures, which together make
up the first layer of the index, while the complete inverted
index1 makes up the second layer. For the single-term struc-
tures in the first layer, we choose, for each inverted list, some
number of high-scoring postings, and arrange them by im-
pact score in decreasing order. The pairwise structures are
obtained by intersecting two inverted lists, and keeping a
certain number of high-scoring two-term postings, where the
score of such a posting is the sum of the impact scores of the
two constituent postings. These structures are also sorted
in decreasing order of impact score. We later discuss how
to select which postings to put into the first layer, based on
query traces and impact scores.

When a query enters, the first cascade is now executed by
first selecting and accessing some prefix of the much smaller
relevant structures in the first layer of the index. After-
wards, we perform a limited number of lookups into the
second layer, to obtain additional scores for some promising
documents for which we have found partial scores in the first
layer. Finally, we identify c documents for further evalua-
tion by CF . We show the overall index structure in Figure
1, where a query “dog cat mouse” is processed.

For our problem setup, there are various technical prob-
lems to address. In particular, when building the first layer,
we need to decide how deep we should build the single-term
structures, and for which pairs of terms we should build a
pairwise structure and up to what depth. The goal is for
the structures to be deep enough to find most good results,

1Except for short lists that are completely in the first layer.

Figure 1: Our index structure, with first layer on the
left and second layer on the right. In the top left are
single-term structures, and in the bottom left are
pairwise structures, each sorted by decreasing im-
pact score. For a query “dog cat mouse” our method
might decide to access a certain prefix (shown in red)
of each relevant single-term list, and of one of the
available pairwise structures (in this case, for “cat”
and “mouse”), based on some access budget.

but not so deep that there is a large increase in overall index
size. When a query enters, we need to decide which of the
applicable index structures to consult and up to what depth
– always using all potentially relevant structures in the first
layer up to their full depth would not be efficient. We also
need to decide what lookups into the second layer should be
performed to identify the c results to be forwarded to the
complex ranker for full evaluation. We later propose and
evaluate solutions for all these problems.

Overall, our approach has the following steps that need to
be implemented. During indexing, we have two steps:

• Modeling: We build two types of models by perform-
ing training on a query trace of limited size, (a) a lan-
guage model for the queries that allows us to predict
how frequent certain terms and combinations of terms
are in the query trace, and (b) a quality model relat-
ing the rank of a posting in a first-layer structure to
its likelihood of being a top result under CF .

• Index Building: We build the first layer based on
the constructed models, by carefully choosing which
structures to build and up to what depth, subject to a
maximum space budget.

Later, when a query enters the system, we execute the
following sequence of steps:

• Online Greedy Depth Selection: We consider the
list of relevant structures, and decide which of them
should be accessed and to what depth, based on the
quality model and based on a simple model for query
processing costs. In fact, costs will be modeled based
on the aggregate access depth into the first-layer struc-
tures and the number of lookups into the second layer,
with a certain budget available for a query.

• Query Processing: We throw the accessed struc-
tures and their corresponding access depths, as se-
lected in the previous step, into a simple but fast in-
memory query processor.



• Second-Layer Lookups: We decide for which can-
didate documents we should perform lookups into the
second layer to get more precise scores.

• Final Selection: We choose the c results that should
be evaluated by the complex ranker.

3.3 Index Construction
We now describe the two steps in the index construction

in more detail. First, we build two models, one for query and
query term distribution, and one to model the quality con-
tributions of different parts of the index structures. These
models are then stored for later use during index building
and query processing.

Modeling: For the first model, we use standard Lan-
guage Modeling tools, in particular the MIT Language Mod-
eling (MITLM) toolkit2, based on Kneser-Ney smoothing.
We train these models on part of our query trace (distinct
from any queries used in the evaluation), to obtain estimates
of two probabilities, p(t), the probability that term t occurs
in a random incoming query, and p(t1, t2), the probability
that both t1 and t2 occur in such a query. We refer to these
as our query language models.

For the second model, given a posting p for a term t that
has rank r in its list (i.e., has the r-th highest impact score in
its list), we want a rough estimate of the likelihood that the
posting belongs to a top-k result under the complex ranker
CF , given a random query containing t. This is done by
issuing training queries and, for each posting in one of the
query term lists, storing its rank, the length of its inverted
list, and whether it is part of a top-k result for the query.
We bucketize the list lengths and relative ranks within lists
into dozens of ranges (classes) each. Then we aggregate our
data into a two-dimensional table A where A[i, j] estimates
the probability that a posting belonging to list length class
i and relative rank class j (which might, say, correspond
to a list length between 1000 and 1500 and rank between
120 and 160) leads to a top-k result. This approach gives
sufficiently accurate predictions, while allowing extremely
fast lookups during index building and query processing to
get an estimate of p(top-k|t), the likelihood that a posting is
part of a top-k result given that its term t is part of a query.

We then repeat the process for term intersections, where
we create a table where for each posting in the intersection
of two terms t1 and t2, we use the length of the intersection,
and the rank of the posting in the intersection, to estimate
p(top-k|t1, t2), the likelihood that a pairwise posting is part
of a top-k result given that both t1 and t2 occur in a query.
We refer to these models for single lists and term intersec-
tions as posting quality models.

Index Building: Given a space budget, our next goal is
to build a first layer containing term and term-pair postings
that are likely to lead to top-k results under random queries.
To do this, we allocate separate space budgets to the single-
term and pairwise structures in the first layer. For single-
term lists, we greedily pick postings from the highest ranks
of the inverted lists to add to the first layer. That is, we try
to pick postings with the highest value of p(t) · p(top-k|t).
Since our estimate for this value based on the models is
expected to be a monotonically decreasing step function in
each list, we can sort each list by increasing rank, and select
chunks of postings with equal value from the beginning of

2Available at https://code.google.com/p/mitlm/

the lists until the budget is exhausted using a heap to decide
from which list to pick.

We repeat this greedy selection process for pairwise post-
ings. Since there is a huge number of term pairs, we first
restrict the space by only considering intersections for terms
t1 and t2 with p(t1, t2) ≥ θ for some small θ. Then these
intersections are created and sorted by impact, and we again
select chunks of postings from the beginning of the intersec-
tions based on our estimates of p(t1, t2) ·p(top-k|t1, t2), until
the budget is exhausted.

All structures in the first layer are kept sorted from highest
to lowest impact score. The single-term postings are of the
form (docID, impact), while the term-pair posting layout
is (docID, impactt1 , impactt2). Note that for single-term
structures, we do not remove the postings in the first layer
from the second layer, but create a copy of the postings, so
this uses extra space. The reason is that we only access a
limited amount of the first-layer structure, and thus we need
to make sure that a lookup into the second layer can retrieve
all postings. An exception are very short lists, of length less
than 100, where we always move the entire list into the first
layer and access it fully on any query containing the term;
thus, these lists do not increase space usage (though their
overall size is small). We also added an additional rule that
limited the depth of any selected single-term and pairwise
structure to the maximum access depth for queries, typically
several thousand postings, as any posting deeper than the
access depth would never be used anyway.

3.4 Query Processing
We now describe the steps involved in query processing:

the online greedy depth selection, the query processor, the
second-layer lookups, and the final selection of candidates.

Online Greedy Depth Selection: Given a query, we
first identify all relevant structures available in the first layer.
This usually includes all single-term structures for the query,
since our language model assigns non-zero probabilities to all
terms and the first postings tend to have very high values
of p(top-k|t), especially for short lists. Only some of the
pairwise structures will typically be available for a query.

For each query, we have a cost budget that determines
how much of the relevant structures we can access. For ex-
ample, we might have a budget b = 1000, meaning that we
can only access a total of b postings from the structures.
Then for each structure we select a (possibly empty) prefix
of postings. This is done greedily using a heap, as during in-
dex building, except that we select chunks of postings based
on p(top-k|t) and p(top-k|t1, t2), respectively, without mul-
tiplying by p(t) and p(t1, t2) (since at this point the query
already contains the terms). We note that we could perform
various refinements to this approach, by charging different
costs for pairwise versus single-term postings, or assigning
different budgets to queries based on their difficulty.

Query Processor: We now run a fast and simple query
processor on the selected structures and their correspond-
ing depths. This processor copies the selected prefixes of
the first-layer structures into an array and then runs a fast
Radix Sort to sort postings by docID. A subsequent scan
then aggregates the impact scores for each docID, and cre-
ates a bit filter for each docID stating which terms may re-
quire lookups into the second layer. During the scan we also
filter redundant lookups as follows: Suppose a posting with
docID 7 and impact 2.9 was found in the prefix of the list



for “cat”, and that we have also accessed all pairwise post-
ings for the pair “cat dog” with score 2.1 or higher. Then
we do not have to perform a lookup into the “dog” list in
the second layer for docID 7 – if such a posting existed we
would have seen it as part of a pairwise posting.

We initially implemented a TAAT query processor using
a hash table for the accumulators. However, we found that
the sorting-based approach was much faster, by a factor of
2 to 3. Such a sorting-based approach is possible because
we fix the access depth for each structure at the start of the
query.

Second Layer Lookups and Final Candidate Selec-
tion: Next, we check the candidates and their accumulated
scores, where most of these scores are partial, and many may
have been only seen for one of the query terms. We now de-
cide for which of these candidates we should perform lookups
into the second layer to complete their scores, subject to a
budget on the number of lookups (say, a few thousand per
query). This is done using the accumulated partial score,
as this provides a strong signal for relevance. We select
the candidates with the highest partial scores, by running a
randomized approximate selection algorithm where we first
draw a sample of the impact scores, sort this sample, pick a
suitable threshold from the sample, and then keep all candi-
dates with impact above this score. Finally, we perform all
necessary lookups for these candidates into the second layer,
and keep the c candidates with highest completed BM25
scores, to be submitted to CF .

4. EXPERIMENTAL SETUP
In this section, we describe the data sets, ranking models,

evaluation metrics, and setup of our experiments.
Datasets: All our experiments were conducted on the

ClueWeb09B collection, which consists of 50, 220, 423 doc-
uments, 86, 532, 822 distinct terms, and 17 billion postings.
For evaluation, we used the TREC 2009 Million Query Track
(40k), which we refer to as Million09. Our training set for
the modeling step includes 30k queries selected at random
from Million09, while the testing set for performance evalu-
ation consists of 3k from the remaining 10k queries. Table
1 shows the query lengths for the testing query set.

Query length 2 3 4 ≥5
# queries 1408 954 517 121

Table 1: Query length distribution for the 3k testing

queries.

The TREC 2010 to 2012 Web Track topics (150) were
used for training the machine-learned complex ranker CF .
For the language models, we used linear interpolation of a
model for the training queries of the query set with a model
for a randomly selected sample of 1.5 million documents,
using the MIT Language Modeling (MITLM) toolkit.

Ranking models: We selected the BM25 ranking scheme
as our first ranker, as it is widely used as a simple ranker
in the literature and satisfies the desired properties of being
both computationally fast and providing a reasonable set of
initial candidates.

Recent studies [31, 51] show that ranking schemes ob-
tained using learning-to-rank methods with dozens or hun-
dreds of features outperform traditional bag-of-words mod-
els in terms of quality. There are a number of learning-
to-rank tools that are available. We decided to use Lamb-
daMart [53] to learn our complex ranker CF , as it is consid-

ered one of the most effective learning-to-rank models [22,
35]. We trained on the 150 queries from TREC 2010 to
2012 based on standard features from the literature [5, 36,
49]. Table 2 lists a subset of these features. The anchor text
features were extracted using the data from [18], while the
spam and pagerank values are from [16]. The distribution
feature refers to the dispersion of term occurrences across a
specific document, when the document is split into pieces of
fixed size, say 100 terms.

Evaluation metrics: The main aspects in the design
of a scalable web search architecture include quality, time,
and space. Thus, we evaluated the proposed framework on
these three aspects. We measure the end-to-end quality of
the proposed methods with Overlap@(k,c) and NDCG@k.
In particular, the end-to-end effectiveness evaluation within
the cascading ranker setup is performed as follows. In the
first cascade, the top-c documents are obtained based on our
method and then, in the second cascade, the CF is applied
to these documents in order to return the final top-k.

For the effectiveness of the first cascade, we measure Over-
lap@(k,c) as the fraction of top-k documents obtained when
applying CF to all top 2000 results of a safe disjunctive
BM25, that are also found among the c candidates com-
puted by our algorithm. While it was not feasible to apply
the complex ranker to all documents in the union of query
terms, we found in preliminary experiments that beyond
the top 2000 there was little change in the final top-k. This
choice is also directly supported by the recommendations in
[35]. Thus, an overlap of 1.0 for a query means that all top-k
results were found among the c candidates of our method.
We use k = 10 unless stated otherwise.

We evaluated the speed of our methods using average
query latency (in milliseconds) for generating the candi-
dates. That is, we measure the time elapsed from when
a query arrives until the time when the top-c candidates are
ready to be evaluated by CF . (We do not count the time for
applying CF as it is the same for all methods.) The space
overhead was measured as the percentage of a baseline full
index.

Index: The second layer was indexed and compressed
using a version of PForDelta [59] proposed in [55]. The al-
gorithms were implemented using C++ and compiled using
gcc with -O3 optimization. The experiments were conducted
on a single core of a 2.27Ghz Intel Xeon (E5520) CPU. All
data structures and indexes are memory-resident.

Parameters: Overall, the proposed framework utilizes
the following parameters: (a) the access cost budget, i.e.,
the number of postings to access per query, (b) the num-
ber of documents to perform lookups on, (c) the number of
candidates to forward to CF , c, and (d) the space budget,
i.e., the amount of additional space beyond a standard in-
dex. During selection of the term-pair structures in the first
layer, we considered only pairs with probability (according
to the language model of MITLM) at least 1.99 ∗ 10−16 for
the Million09 query trace. Next, we present the experimen-
tal evaluation of our approach based on these parameters.

5. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation of

our methods in terms of effectiveness, efficiency, and space.

5.1 Without Space Constraints
In the first experiment, we evaluate the proposed candi-



Textual BM25, language model, anchor text language model [36]
Positional absolute first position, relative first position, distribution

Query-based query size, fraction of numbers in query, list length
Dependency Models language model of sequential and full dependent query terms [36]

Document-based document length, document bytes, url length, url nesting, # outlinks, position in alexa, spam and pagerank [16]

Table 2: Categories of features utilized for CF training.

date generation algorithm under the assumption that there
is no space budget; i.e., all possible first layer single-term
and pairwise structures are available at query time. Al-
though this scenario is unrealistic, as the space overhead
of the pairwise structures can be very large, it shows the
potential of the proposed method.

We compare our method against a näıve baseline which,
given a cost budget b, accesses all relevant structures of the
first layer at equal depth. Thus, if there are 5 available
structures for a specific query, and the cost budget is 5k
postings, the baseline would access the first 1k postings in
each structure. Note that this approach is similar to the
Fixed method proposed in [48]. We evaluate three versions
of this näıve approach, for the cases where only single-term,
only pairwise, and both types of structures are available,
to show that both types of structures give benefit. More-
over, we implemented a clairvoyant selection algorithm that
knows apriori which of the docIDs in the postings in the first
layer result in top-k results, and then selects prefixes of the
structures in an optimal way, thus giving an upper bound
on the quality that can be achieved with any depth-limited
access scheme on impact-sorted structures. This algorithm
is included to observe how close to optimal our algorithm is.

Setup: We assume unlimited space budget and use the
following parameter settings and selection strategies: c is
500, the algorithms exhaustively perform lookups on all do-
cIDs seen in the accesses of the first-layer structures (thus
the number of lookups is only bounded by the access depth),
and the c candidates are selected based on highest BM25.

Effectiveness: Figure 2 shows Overlap@(500, 10), i.e.,
the fraction of correct top-10 results preserved within the
c = 500 candidates, as the access cost budget varies from
500 to 20000, and with the first layer consisting of different
structures. Obviously, the clairvoyant algorithm achieves
the best quality for all access budgets, as it is as an up-
per bound of our method. On the other hand, we observe
that for the näıve method, having only pairwise structures
consistently outperforms having only single-term ones, but
having both achieves the best quality, which is 0.8864 when
the cost budget is 2000. The Greedy selection algorithm out-
performs all näıve methods and achieves quality close to the
optimal clairvoyant one, even with moderate access budget.
For instance, the quality is 0.946 for the 2000 access bud-
get. Thus, more than 94% of the same top-10 results are
returned. Finally, as the cost budget increases, quality in-
creases for all algorithms, since we consider more postings
as candidates. In particular, Greedy achieves quality really
close to Clairvoyant for the 5000 access budget.

Efficiency: In Table 3, we report the average query pro-
cessing time in milliseconds of the Greedy algorithm when
the access budget varies from 500 to 20000. We observed
that the access budget is a very good proxy for query pro-
cessing time in the case of unlimited lookups, and thus we
only report the time for Greedy; the numbers for the näıve
and clairvoyant algorithms with the same access budget are
very similar. According to Table 3, we see that it is possible

Figure 2: Effectiveness of the first-phase selection al-

gorithms at various access cost budgets on Million09

queries, assuming no limit on space.

to achieve overlap close to 0.946 for access budget 2000, in
0.51ms. As the access budget increases, query processing
becomes slower, as we process more postings. Thus, both
quality and speed are very good when there is no space con-
straint. Next, we evaluate if comparable numbers can be
obtained with limited space.

Access budget 500 1000 2000 5000 10000 20000
avg qp (ms) 0.22 0.33 0.51 0.95 1.6 2.79

Table 3: Efficiency of the Greedy algorithm with various

access cost budgets on Million09 queries, assuming no

limit on space.

5.2 With Space Constraints
In the next experiment, we drop the assumption of un-

limited space budget and focus on more realistic scenarios.
More specifically, we allow a specific percent of space over-
head for the first-layer structures over the full second-layer
index. Given various space budgets, we evaluate the Greedy
algorithm in terms of quality and speed. In this experiment,
we use the setup and parameters of the previous experiment,
and assume that the first layer consists of both single-term
and pairwise structures. We still do all lookups to complete
the partial scores of all docIDs seen in the first layer.

Effectiveness: In Table 4, we present the effectiveness
of the Greedy algorithm (measured by Overlap@(500, 10))
when a specific percentage of space overhead is allowed for
the first layer structures, and the access cost budget is 2000
and 5000. For the single-term structures, we decided to keep
up to 2000 and 5000 postings of every list, which correspond
to 7.1% and 9.9% of the full index, respectively. On top of
this small fixed space overhead, we have a limited space
budget for pairwise structures that is allocated according
to the Greedy allocation algorithm. The reported space in
Table 4 includes only the pairwise structures in the first
layer. First, we observe that our proposed method works
quite well even with limited space budget, with moderate
quality loss. (We look at NDCG numbers later.) Increasing



the space budget of pairwise structures to more than 50%
does not seem to provide significant quality gains unless a lot
of space is available. When the access cost is larger, again
better quality is achieved as more candidates are considered.

Space 0.1 0.3 0.5 0.7 1 ∞
2000 0.8093 0.8359 0.8412 0.8426 0.8428 0.946
5000 0.8717 0.895 0.9003 0.9028 0.9037 0.9755

Table 4: Effectiveness of the Greedy algorithm

(Overlap@(500, 10)) at various space budget setups, for

2000 and 5000 access budgets on the Million09 query trace.

A space overhead of 57.1% (7.1% singles and 50% pairs)
for 2000 access budget, and 59.9% for 5000 is acceptable
given the significant performance speedup that we achieve.
For example, in the Maguro system [42], a 20x index size
increase is justified for a 3x performance improvement.

Efficiency: Table 5 shows the average query processing
time of the Greedy algorithm for various space budget, when
access budget is 2000 or 5000. As mentioned before, the ac-
cess budget provides a reliable proxy for performance and
this is evident in Table 5. The Greedy algorithm requires
on average 0.551ms and 1.055ms, for 2000 and 5000 access
budget, respectively, still assuming no limit on lookups. As
the space budget increases, the performance for both access
budgets becomes better. The reason is that more high qual-
ity postings appear in the pairwise structures, which results
in fewer lookups for the missing terms.

Space budget 0.1 0.3 0.5 0.7 1 ∞
2000 0.581 0.56 0.558 0.556 0.555 0.5
5000 1.125 1.08 1.065 1.055 1.049 0.957

Table 5: Efficiency of the Greedy algorithm with varying

space budget, for 2000 and 5000 access budgets on the

Million09 query trace, measured in ms.

5.3 Lookup Selection Strategies
In the previous experiments, all algorithms exhaustively

perform lookups in the second layer. However, as we will see,
the lookup selection policy plays an important role in the
performance. Thus, we now look at better lookup strategies.

First, we investigate how query processing costs are dis-
tributed. Table 6 shows the average time overhead of each
part of the query processing cost for 5000 access budget
and 3000 lookups. Recall that query processing includes the
online greedy depth selection, the radix sort, the scan for
aggregating scores and lookup pruning, selection by sam-
pling, lookups into the second layer, and another selection
to get the c candidates. From Table 6, it is obvious that
lookups are a large part of the total cost, as they involve
decompression and access to many random blocks.

Parts of Query Processing time (in ms)

Online greedy depth selection 0.0070
Radix-sort 0.1539

Scan for merge/aggregate/filter 0.1049
Selection 0.0311

Second-layer lookups 0.5394
Second selection 0.0275

Total 0.8638

Table 6: Query processing time breakdown.

Instead of exhaustively performing all lookups, we keep
only a certain number m of candidates for lookups, based
on partial BM25 score. To do this, we perform a randomized
approximate selection as described earlier. We evaluate the

quality and the speed of this lookup strategy for access bud-
gets of 2000 and 5000 and a 0.5 pairwise space budget on top
of the single-term structures of each access budget. Figure 3
presents the Overlap@(500, 10) and the average query pro-
cessing time for several configurations of m lookups, under
both access budgets. More specifically, we allow lookups of
{500, 1k, 2k, 3k, 5k} candidates for access budget 5000, and
{500, 750, 1k, 1.5k, 2k} for access budget 2000 (from left to
right). We see that better performance can be achieved with
the proposed lookup method at the cost of some quality loss,
and thus there is a trade-off between quality and time.

Figure 3: Effectiveness/Efficiency evaluation of our

lookup strategy on Million09 queries.

Next, we compare the speed of our approach with other
recently published methods. While top-10 query process-
ing can be done in a few milliseconds [19], selecting the top
500 is much more expensive for most methods. Table 7
presents running times for different top-500 candidate gen-
eration methods. We implemented all methods in C++ and
ran them on the ClueWeb09B data set. For safe methods, we
pick BMW-LB, the fastest disjunctive method to our knowl-
edge from [19], and BMA, the fastest conjunctive method
from [21]. For unsafe methods, we implemented the best
approach from [52], which is the tree-based Priority with
pruning, and the best method from [43], BMW-CS, which
uses 10% of the index as first layer. Our method with 5k-
3k setup is much faster, since it only evaluates at most 5k
postings, which means that less than 5k documents for each
query are evaluated, while other methods usually evaluate
many more documents. Both our online and offline post-
ing selection mechanism contributes significantly to its good
performance. BMA has the second fastest speed, since it is
a conjunctive algorithm that only evaluates a limited num-
ber of documents. BMW-CS performs BMW on the first
layer, which is the top 10 percent of the full index based
on impact score. BMW-CS is different from our approach
as we use pairwise structures in addition to singles in the
first layer, and they do not have a fixed access budget per
query or the greedy depth selection techniques. Their speed
is much slower than ours, while still faster than BMW-LB.
Priority is slower than BMW-LB, for top-500. For space
overhead, BMA and BMW-CS both use less than 5% of the
index size to store the Max-Block index. The two tiers in
BMW-CS are disjoint, so the first tier takes no extra space.
BMW-LB takes about 25% to cache the LB index, while
priority takes no extra space. Our method with 5k-3k setup
takes 59.9% extra space. Note that commercial search en-
gines are often willing to accept significant space overheads
for relatively small improvements in speed[42].

We now evaluate the effectiveness of our methods. Table
8 shows the Overlap@(500, 10) for all the methods, and for



Method BMW-LB BMA BMW-CS Priority 5k-3k
Paper [19] [21] [43] [52] Our

Time (ms) 26.74 15.12 19.31 51.24 0.863
Space ∼ 25% <5% <5% 0% 59.9%

Table 7: Running times and space overhead of different

approaches for top-500 documents retrieval.

our approach with three different setups. BMW-LB has the
best result, and BMA is almost as good, but slightly worse.
This means that conjunctive query processing is almost as
good as disjunctive in terms of quality, which was also shown
in [5]. In Table 9, we rerank the results of all the methods
according to the complex ranker. BMW-LB+CF is much
better than BMW-LB, which means that the complex ranker
performs well on identifying more relevant results. The 5k-
3k setup achieves consistently the best quality among our
methods at all cutoff levels, and it’s also slightly better than
the other two unsafe methods for both Overlap and NDCG.
Overall, we see that under NDCG, our approach can very
quickly, in less than a millisecond, identify results that are
almost as good as a safe disjunctive approach (BMW-LB).

BMW-LB BMA BMW-CS Priority 5k-3k 2k-2k 2k-500
0.985 0.934 0.879 0.826 0.881 0.841 0.729

Table 8: Overlap@(500,10) for different methods.

Method / cutoff 1 5 10 20 100 200
BMW-LB+CF 0.267 0.253 0.259 0.252 0.275 0.292

BMA+CF 0.261 0.253 0.253 0.247 0.270 0.290
BMW-CS+CF 0.249 0.241 0.236 0.222 0.245 0.270
Priority+CF 0.261 0.242 0.239 0.243 0.252 0.269

BMW-LB 0.143 0.162 0.161 0.174 0.225 0.256
5k-3k+CF 0.266 0.256 0.256 0.246 0.269 0.289
2k-2k+CF 0.266 0.249 0.245 0.238 0.260 0.284
2k-5k+CF 0.254 0.250 0.241 0.228 0.242 0.261

Table 9: NDCG at various cutoff levels on Million09.

5.4 Varying Query Length and Candidates
Next, we test the impact of query length on speed and

quality, using various configurations of our methods. Table
10 presents the average query processing time (ms) when
varying the query length, whereas Table 11 reports the cor-
responding Overlap@(500, 10) for each configuration. As
query length increases, the query processing time also in-
creases, since more lookups into more structures are per-
formed. On the other hand, quality decreases, because top
results in longer queries tend to be deeper inside the impact-
sorted list (a basic fact in top-k query processing shown in
Fagin’s theoretical analysis of his algorithms [23]).

Setup 2 3 4 5 ≥ 6 avg
2k-500 0.178 0.297 0.477 0.732 0.965 0.295
2k-2k 0.321 0.573 0.914 1.349 1.809 0.558
5k-3k 0.531 0.929 1.461 2.115 2.878 0.863

Table 10: Efficiency when varying query length on the

Million09 queries with various setups, measured in ms.

Table 12 shows the impact of the number of candidates
returned by our candidate generation algorithm (cutoff c)
on Overlap@(c, 10) for the 5000-3000 setup. As the cutoff c
increases, the quality increases, untill flattening around 500.
This justifies our choice of c = 500 throughout the paper.

Setup 2 3 4 5 ≥ 6
2k-500 0.803 0.702 0.632 0.589 0.612
2k-2k 0.885 0.832 0.737 0.726 0.729
5k-3k 0.908 0.883 0.824 0.835 0.81

Table 11: Effectiveness in Overlap@(500, 10) when we

vary query length on Million09 queries in various setups.

c 100 200 300 400 500 800 1200
Overlap@(c, 10) 0.539 0.696 0.791 0.856 0.881 0.883 0.885

Table 12: Effectiveness when we vary candidates c.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a fast first-phase can-

didate generation approach for cascading ranking architec-
tures. Our framework builds an auxiliary layer of index
structures (single-term and pairwise structures) based on
models for query term frequency and posting quality, which
is then selectively accessed at query time based on a cost
budget and using early termination techniques. The exper-
imental evaluation shows that the proposed framework can
find candidates about an order of magnitude faster than con-
junctive or disjunctive top-k computations, with little loss
in quality.

Future work includes the addition of specialized structures
for phrases and proximity into our framework. We also ex-
pect some improvements from further optimization of the
query processor and lookup mechanism, e.g., by adding bit
vectors, or Bloom filters as in [4], or by using more complex
rules to decide which lookups to perform (possibly based on
ideas similar to [52]).
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