
Improved Techniques for Result Caching
in Web Search Engines

Qingqing Gan
CSE Department

Polytechnic Institute of NYU
Brooklyn, NY 11201, USA
qq_gan@cis.poly.edu

Torsten Suel
�

Yahoo! Research
701 1st Avenue

Sunnyvale, CA 94089
suel@poly.edu

ABSTRACTQuery pro
essing is a major
ost fa
tor in operating largeweb sear
h engines. In this paper, we study query result
a
hing, one of the main te
hniques used to optimize querypro
essing performan
e. Our �rst
ontribution is a study ofresult
a
hing as a weighted
a
hing problem. Most previouswork has fo
used on optimizing
a
he hit ratios, but giventhat pro
essing
osts of queries
an vary very signi�
antly weargue that total
ost savings also need to be
onsidered. Wedes
ribe and evaluate several algorithms for weighted result
a
hing, and study the impa
t of Zipf-based query distribu-tions on result
a
hing. Our se
ond and main
ontribution isa new set of feature-based
a
he evi
tion poli
ies that a
hievesigni�
ant improvements over all previous methods, substan-tially narrowing the existing performan
e gap to the theoret-i
ally optimal (
lairvoyant) method. Finally, using the sameapproa
h, we also obtain performan
e gains for the relatedproblem of inverted list
a
hing.
Categories and Subject DescriptorsH.3.3 [INFORMATION STORAGE AND RETRIE-VAL℄: Information Sear
h and Retrieval.
General TermsAlgorithms, Performan
e
KeywordsSear
h Engines, Result Ca
hing, Index Ca
hing, WeightedCa
hing
1. INTRODUCTIONLarge web sear
h engines need to be able to pro
ess thou-sands of queries per se
ond on
olle
tions of billions of webpages. As a result, query pro
essing is a major performan
ebottlene
k and
ost fa
tor in
urrent sear
h engines, and anumber of te
hniques are employed to in
rease query through-put, in
luding massively parallel pro
essing, index
ompres-sion, early termination, and
a
hing. In parti
ular, ea
hquery is routed to a large number of ma
hines, say a fewhundred or thousand, that pro
ess it in parallel. Index
om-pression is used to de
rease the sizes of the index stru
tures,thus signi�
antly redu
ing data transfers between disks, mainmemory, and CPU. Various early termination te
hniques areused to identify the best results without traversing the full�Current AÆliation: CSE Dept., Polyte
hni
 Inst. of NYU
Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

index stru
ture of ea
h term in the query. Finally,
a
hing isemployed at several levels to redu
e system load.In this paper, we fo
us on the last te
hnique,
a
hing, andin parti
ular the
a
hing of query results. Ca
hing is a
om-mon performan
e optimization te
hnique in many s
enariosin
luding operating systems, databases, and web servers. Inthe
ase of web sear
h engines,
a
hing happens at severallevels. At the lower level of the system, index stru
tures offrequently used query terms are
a
hed in main memory tosave on disk transfers [16, 3, 1℄. At the higher level, resultsof frequently asked queries are
a
hed so that results
an bereturned without exe
uting the same queries over and overagain [15, 18, 12, 3, 7, 1, 2℄. In addition, there may be otherintermediate levels of
a
hing that store partially
omputedresults, say for
ommon
ombinations of words [13℄.Our
ontribution in this paper
an be split into two parts,fo
using on weighted
a
hing and on feature-based
a
hing.In the �rst part, we
onsider result
a
hing as a weighted
a
hing problem. Previous work has looked at result
a
hingas an unweighted problem, where ea
h query has the same
ost and the goal is to maximize the number of queries thatare served dire
tly from
a
he. However, real query pro
ess-ing
osts in sear
h engines vary signi�
antly among queries.For example, queries with very
ommon terms or with manyterms
an be mu
h more expensive than other queries. Thus,while optimizing hit ratio may be useful to minimize enduser laten
y, it does not maximize query throughput. Thus,to minimize overall query pro
essing
osts, a good
a
hingme
hanism needs to also take the a
tual
osts of the queriesinto a

ount.We dis
uss and evaluate several weighted
a
hing algo-rithms for result
a
hing, in
luding weighted
ounterparts ofLFU, LRU, and the state-of-the-art (unweighted) SDC pol-i
y in [7℄, as well as several new hybrid algorithms. In this
ontext, we also address an interesting problem arising in
onne
tion with Zipf-based query distributions, or in generalwith distributions where large numbers of (potential) querieso

ur very rarely or not at all. In a nutshell, in su
h
asesnaive approa
hes may overestimate the frequen
ies of rarequeries that just happened to o

ur by
han
e. As a result,we may end up
a
hing too many items with high potentialbene�t (
ost savings) that never o

ur again. We dis
ussseveral possible ways to address this problem.Our se
ond
ontribution is a new set of feature-based
a
heevi
tion poli
ies that a
hieve signi�
ant improvements in hitratio, and moderate improvements in
ost, over existing meth-ods. In parti
ular, these poli
ies signi�
antly narrow thegap between the best known algorithm and the upper boundgiven by the
lairvoyant algorithm. We also show that thesame approa
h
an be used to obtain improvements over
ur-rent list
a
hing poli
ies.These new poli
ies are based on two observations. First,

query tra
es have a lot of interesting appli
ation-spe
i�
 stru
-ture that is not exploited by existing
a
he evi
tion poli
iesthat only rely on past o

urren
es of the same query. We
anexpose some of this stru
ture to the
a
hing me
hanism vianew features su
h as query lengths or the frequen
ies of in-dividual query terms in the query log or
olle
tion. We notethat a similar approa
h was also re
ently proposed in [2℄ inthe
ontext of a
a
he admission poli
y, and that resear
hers,e.g., in
omputer ar
hite
ture have used appli
ation spe
i�
features for similar tasks su
h as bran
h predi
tion and dataprefet
hing. We show here that in the
ase of evi
tion poli-
ies for sear
h engine result
a
hing, adding su
h features
an make a signi�
ant di�eren
e in
a
he performan
e. Se
-ond, instead of making expli
it use of su
h features insidenew spe
ially designed algorithms, it is probably smarter torely on general statisti
al or ma
hine learning te
hniques tomake evi
tion de
isions. This is parti
ularly the
ase giventhe very large amount of query log data available to
urrentsear
h engines, and given that the
ost of even fairly
ompli-
ated evi
tion poli
ies is small
ompared to that of exe
utinga query. In our
ase, we utilize a very naive statisti
al ap-proa
h that nonetheless gives signi�
ant bene�ts.The remainder of this paper is organized as follows. Next,we provide some ba
kground on sear
h engine ar
hite
tureand dis
uss relevant previous work. In Se
tion 3 we des
ribeour experimental setup. Se
tion 4
ontains our results forweighted
a
hing. Se
tion 5 presents and evaluates feature-based evi
tion poli
ies, and �nally Se
tion 6 provides
on-
luding remarks.
2. BACKGROUND AND PREVIOUS WORKBa
kground on Sear
h Engines: The basi
 fun
tionsof a
rawl-based web sear
h engine
an be divided into fourstages: data a
quisition (or
rawling), data mining and pre-pro
essing, index
onstru
tion, and query pro
essing. During
rawling, pages are fet
hed from the web at high speed, either
ontinuously or through a set of dis
rete
rawls. Then vari-ous data mining and prepro
essing operations are performedon the data, e.g., dete
tion of web spam or dupli
ates, orlink analysis based on PageRank [4℄. Third, a text indexstru
ture is built on the prepro
essed data to support fastquery pro
essing. Finally, when a user issues a query, thetop results for the query are retrieved by a

essing the indexstru
ture. We fo
us on this last stage.Current sear
h engines are based on an index stru
ture
alled an inverted index that allows us to eÆ
iently identifydo
uments that
ontain a parti
ular term or set of terms [21℄.To do so, an inverted index
ontains an inverted list for ea
hdistin
t term w that o

urs somewhere in the
olle
tion; thisis basi
ally a list of the IDs of those pages in the
olle
tionthat
ontain w, often together with other data su
h as thenumber of o

urren
es in the page and their lo
ations. Aquery is pro
essed by fet
hing and traversing the invertedlists of the sear
h terms, and then ranking the en
ounteredpages a

ording to relevan
e. Note that the length of an in-verted list in
reases with the size of the
olle
tion, and
aneasily rea
h hundreds of MB or several GB even in highly
ompressed form. Thus, for ea
h query a signi�
ant amountof data may have to be fet
hed and pro
essed. This is themain performan
e
hallenge in sear
h engine query pro
ess-ing, and it has motivated various performan
e optimizations.Ca
hing in Sear
h Engines: One su
h optimization isthe use of
a
hing, whi
h o

urs in sear
h engines on two

levels. A query enters the sear
h engine via a query integra-tor node that is in
harge of forwarding it to a number ofma
hines and then
ombining the results returned by thosema
hines. Before this is done, however, a lookup is per-formed into a
a
he of previously issued queries and theirresults. Thus, if the same query has been re
ently issued,by the same or another user, then we do not have to re-
ompute the entire query but
an simply return the
a
hedresult. This approa
h,
alled result
a
hing, is widely usedin
urrent engines, and has also been studied by a number ofresear
hers [15, 18, 12, 3, 7, 1, 2℄. A se
ond form of
a
hing,
alled index
a
hing or list
a
hing, is used on a lower levelin ea
h parti
ipating ma
hine to keep the inverted lists offrequently used sear
h terms in main memory [9, 16, 3, 20℄.Our main fo
us is on result
a
hing. This approa
h hasbeen shown to a
hieve signi�
ant performan
e bene�ts ontypi
al sear
h engine tra
es. Note that the performan
e de-pends on the
hara
teristi
s of the queries posed by the users,the poli
ies used by the sear
h engine to pro
ess queries (e.g.,whether the order of terms in the query matter, or whetherusers from di�erent lo
ations re
eive di�erent results), andthe
a
hing poli
ies that are used. Our goal is to design
a
hing poli
ies that best exploit the properties of typi
alsear
h engine query logs to a
hieve a high
a
he hit ratioand large
ost savings. Earlier work on sear
h engine querylogs and result
a
hing (see, e.g., [17, 15, 18, 3℄ has shownthat su
h logs have several interesting properties:� Query frequen
ies follow a Zipf distribution.� While a few queries are quite frequent, a signi�
antfra
tion of all queries o

ur only on
e or a few times.� Query tra
es exhibit some amount of burstiness, i.e.,o

urren
es of queries are often
lustered in a few timeintervals.� A signi�
ant part of this burstiness is due to the sameuser reissuing a query to the engine.Previous Work on Result Ca
hing: The �rst pub-lished work on result
a
hing in sear
h engines appears to bethe work of Markatos in [15℄, whi
h studies query log distribu-tions and
ompares several basi

a
hing algorithms. Workin [18℄ looks at various forms of lo
ality in query logs andproposes to
a
he results
loser to the user. Work by Lem-pel and Moran [12℄ proposes improved
a
hing s
hemes fordealing with requests for additional result pages (i.e., whena user requests a se
ond or third page of results). Severalauthors [16, 3, 1, 8℄ have
onsidered the impa
t of
ombiningresult
a
hing and list
a
hing; in parti
ular, re
ent work in[1℄ studies how to best share a limited amount of memorybetween these two forms of
a
hing. In [8℄, Gar
ia examines
a
hes for the query evaluation pro
ess as a whole. Finally,work in [7, 2℄
onsiders hybrid methods for result
a
hingthat
ombine a dynami

a
he that exploits bursty querieswith a more stati

a
he for queries that stay popular over alonger period of time. We dis
uss related work in more detaillater as ne
essary in the
ontext of our own results.Weighted Ca
hing: Previous work on result
a
hing [15,18, 12, 3, 7, 1, 2℄ has fo
used on maximizing the hit ratio ofthe
a
he, that is, the per
entage of queries that
an be an-swered dire
tly from
a
he. We note here that
a
hing hastwo possible obje
tives: (a) redu
ing the delay experien
edby the user by keeping
a
hed results
loser to the user (ei-ther in terms of network distan
e or memory hierar
hy), and(b) redu
ing the load on the underlying system by avoidingunne
essary
omputations (whi
h may in turn also redu
e

delays seen by the user). Maximizing the hit ratio fo
useson the delay, whi
h is an important obje
tive parti
ularlyfor forward result
a
hes that are deployed outside the mainsear
h engine
luster and
loser to the user.However, we argue that the se
ond obje
tive is also veryimportant in
urrent sear
h engines, whi
h have investedhundreds of millions of dollars in hardware for query pro
ess-ing. We note that sear
h queries vary dramati
ally in termsof their
omputational
ost depending, e.g., on the numberof sear
h terms and their frequen
y in the underlying
olle
-tion and in other sear
h queries. (The latter determines howlikely the
orresponding inverted lists are to already be inmain memory.) The exa
t
osts for a query of
ourse dependon the internal design of the engine. But it seems realisti
to assume that when a query is
omputed, some measure ofthe overall
omputational
ost is
ommuni
ated to the re-sult
a
hing me
hanism, whi
h should then use this
ost inits evi
tion poli
y to give preferen
e to retaining results ofexpensive queries.We
onsider both obje
tives in this paper. Ea
h queryresult has the same size (maybe a few KB for storing theresult URLs and result snippets), but queries
an have verydi�erent bene�ts (
ost savings when reused) asso
iated withthem, and our goal is to maximize the total bene�t that isa
hieved. This is an instan
e of a weighted
a
hing problemstudied, e.g., in [5, 19℄. We note that standard algorithms for
a
hing su
h as LRU (Least Re
ently Used) or LFU (LeastFrequently Used) do not take bene�ts into a

ount and thusdo not perform well on su
h problems. The work in [5, 19℄proposes a
a
hing algorithm
alled Landlord that is essen-tially a generalization of LRU; this algorithm assigns leasesto items based on their sizes and bene�ts and evi
ts the ob-je
t with the earliest expiring lease. The Landlord algorithmwas re
ently adapted to another
a
hing problem in sear
hengines in [13℄.Ca
he Admission Poli
ies: Resear
hers in several areashave re
ently proposed
a
he admission poli
ies that prevent
ertain items from even being inserted into the
a
he [14, 13,2℄. In the
ontext of web sear
h engines,
a
he admission wasused in [13℄ in a s
enario where
a
he insertion itself has asigni�
ant
ost that would be wasted if the item is evi
tedsoon afterwards without having been reused. In [2℄ a
a
headmission poli
y is used to predi
t and eliminate query re-sults that are unlikely to o

ur again. We note that in thislatter
ase,
a
he admission is really used as a me
hanismfor improving a non-optimal evi
tion poli
y (sin
e an inser-tion followed by immediate evi
tion from a
a
he with oneadditional slot would have the same e�e
t, as opposed to [13℄where insertion in
urs a signi�
ant
ost). The work in [2℄ isthe previous work most
losely related to our feature-basedevi
tion poli
y in that it also suggests the use of appli
ation-spe
i�
 features. One di�eren
e to our work is that [2℄ usesthese features to make a 0/1 de
ision about admission of anitem, while we use them to predi
t a probability of reo
-
urren
e that is used by the
a
he evi
tion poli
y. We also
onsider a wider range of features in our experiments.
3. DATA AND EXPERIMENTAL SETUPGiven that sear
h query logs have a very long tail of queriesthat o

ur only on
e or twi
e, it is important to use a fairlylarge query log to evaluate result
a
hing poli
ies. For our ex-periments, we used a log of 36; 389; 567 queries submitted tothe AOL Sear
h servi
e between Mar
h 1 and May 31, 2006.

We prepro
essed the query log by removing stopwords, and
ompletely removed any queries
onsisting only of stopwords.For all the results presented in this submission, we also re-moved requests for further result pages; su
h requests forthe se
ond, third, et
., page of results are best handled withother te
hniques as shown in [12℄, and most previous workdoes not spell out if su
h requests were retained or not. Weassume that term order in queries is important, and that twoqueries are identi
al only if they
ontain the same words inthe same order. However, for these last two
hoi
es, we alsoran experiments that make the opposite
hoi
e; the resultswere overall fairly similar (in terms of the relative orderingof the methods) and are omitted from this paper.The resulting query tra
e had 17; 448; 985 queries, in
lud-ing 10; 087; 344 distin
t queries. Of these queries, 5; 605; 830o

urred only on
e, and 1; 005; 241 o

urred exa
tly twi
e.In Figure 1 we plot the query frequen
ies using a double-logarithmi
 s
ale, where queries are ordered along the x-axisfrom most frequent to least frequent, and the frequen
y ofthe query is shown on the y-axis. We obtain a slope
orre-sponding to z = 0:82, whi
h
ompares to numbers betweenz = 0:59 [16℄ and z = 0:86 in the literature.

Figure 1: Query frequen
y distribution of the AOLdata set.In our experiments, we assume that every query has a
om-putational
ost that is taken into a

ount by the weighted
a
hing poli
ies. This
ost of
ourse depend on details of ea
hparti
ular sear
h engine's query pro
essing system, whi
h are
onsidered proprietary. We experimented with several possi-ble
ost fun
tions that de�ne the
ost of a query as follows:(i) the sum of the lengths of the inverted lists of the queryterms,Pki=0 Li, (ii) the length of the shortest list L0, and (iii)the produ
t of L0 and log2(L1=L0) where L1 is the se
ondshortest list. These
hoi
es represent di�erent bottlene
ksin query exe
ution: (i) when the
ost of fet
hing lists fromdisk is dominant and the entire list has to be fet
hed, and(ii) and (iii) when index data is mostly in main memory and
ost is dominated by the CPU
ost of traversing the shortestlist and looking up its elements in the next larger list. Weobtained the lengths of inverted lists by running all queriesagainst a subset of 7:5 million pages taken at random from alarge web
rawl.We note that real
ost fun
tions will be more
ompli
atedand may have to take into a

ount the impa
t of te
hniquessu
h as index
a
hing and early termination at the lowerlevel. However, the
a
hing algorithm does not need to knowthe fun
tion, as long as some
ost estimate is returned bythe query pro
essor upon
omputing a query. We tried all

three
ost fun
tions and did not observe major
hanges in therelative performan
e of our algorithms. All results presentedin this paper use
ost fun
tion (i) above.
4. WEIGHTED RESULT CACHINGIn this se
tion, we investigate algorithms for weighted re-sult
a
hing. As mentioned before, weighted
a
hing algo-rithms assume that di�erent obje
ts have di�erent weights(in our
ase,
osts of re
omputing a query) that need tobe taken into a

ount in the evi
tion poli
y. We will
on-sider both hit ratio and
ost savings in the evaluation of ouralgorithms. We �rst introdu
e a few unweighted baselinealgorithms, followed by their weighted
ounterparts. Afterthat we introdu
e some improvements to these baseline al-gorithms by integrating additional ideas. In parti
ular, wedesign hybrid algorithms that take advantage of burstiness inthe query stream, and we study
a
hing under Zip�an querydistributions.
4.1 Baseline MethodsBefore explaining our baseline
a
hing methods, we de-s
ribe two o�ine algorithms that
an be used as upper boundson the performan
e of the online algorithms. Our o�ine al-gorithm for hit ratio is the well-known
lairvoyant algorithmthat always evi
ts the obje
t whose next a

ess is farthestin the future, and it is known to a
hieve the best possiblehit ratio. For the weighted
ase, however, we are not awareof any polynomial-time o�ine algorithm that guarantees thehighest possible
ost savings. Instead, we design a heuristi
,
alled \Future Known", that we hope will approa
h the opti-mal solution in most
ases. In this algorithm we
ompute thepriority s
ore of a query by dividing the
ost of a query bythe distan
e from the
urrent to the next o

urren
e of thisquery. Then, at ea
h step, the query with minimum s
ore isevi
ted from the
a
he.The following evi
tion poli
ies have been extensively stud-ied in the
ontext of result
a
hing:� LRU (Least Re
ently Used): When the
a
he isfull, we always evi
t the least re
ently seen query. LRUis one of the most
ommon
a
he evi
tion poli
ies in
omputer s
ien
e.� LFU (Least Frequently Used): LFU evi
ts the leastpopular query. In our implementation, in addition tothe frequen
y s
ores stored in the
a
he, we also keepsome limited history of frequen
ies for queries that havebeen evi
ted from
a
he. In pra
ti
e, setting this his-tory to two or three times the number of items in
a
hea
hieves most of the available bene�t.� SDC (Stati
 and Dynami

a
hing): As a hybridalgorithms, SDC [7℄ splits the
a
he into two parts, withone
ontaining a stati
 set of results for the most fre-quent queries, and the other using LRU for dynami

a
hing. In pra
ti
e, we use 20% of the total
a
he sizefor LRU, whi
h gave the best results.The above methods are geared towards optimizing the hitratio, i.e., the per
entage of queries that
an be served from
a
he. However, given the large variations in query pro
ess-ing
osts between di�erent queries, a more meaningful mea-surement should look at the hit ratio as well as the
ostof pro
essing a parti
ular query. We
an model this
ostby a weighted
a
hing problem. The following are natural

weighted
ounterparts of the above unweighted algorithmsthat are frequently studied:� Landlord: In the Landlord algorithm [5, 19℄, wheneveran obje
t is inserted into the
a
he, it is assigned adeadline given by its
ost. We always evi
t the elementwith the smallest deadline, and dedu
t this deadlinefrom the deadlines of all other elements
urrently in the
a
he. (Instead of a
tually dedu
ting from all entries,the algorithm is best implemented by summing up allvalues of deadlines that should have been dedu
ted sofar, and taking this sum properly into a

ount.)� LFU w: The only di�eren
e to LFU is that the prioritys
ore is now the produ
t of frequen
y and
ost.� SDC w: This method is motivated by SDC. The dif-feren
e is that we use LFU w for the stati
 part andLandlord for the dynami
 part of the
a
he.We studied the performan
e of the above baseline algo-rithms using
a
he sizes ranging from 25k to 800k items. InFigure 2, we
ompare the algorithms by measuring their hitratios. In addition, we also plot the result of the Clairvoyantalgorithm for
omparison. As expe
ted, for the unweightedversions, SDC performs better than LRU, and they both winover LFU. The ordering is the same for the weighted versionsof these three algorithms, but of
ourse these algorithms per-form worse than their unweighted versions when looking athit ratio. In Figure 3, we plot the results when the samealgorithms are evaluated a

ording to
ost savings. As ex-pe
ted, the weighted algorithms now perform better thanthe unweighted ones, but the order within versions is stillthe same. Overall, SDC is the best algorithm for hit ratio,and SDC w the best algorithm for
ost savings.

Figure 2: Performan
e of baseline
a
hing algorithms(hit ratio). From top to bottom, the seven linesshown are for Clairvoyant, SDC, SDC w, LRU, LFU,Landlord, and LFU w.
4.2 Generalized Hybrid AlgorithmsAs mentioned, query logs are known to be very bursty[17℄. Thus, queries are more likely to reo

ur shortly afteranother o

urren
e. The sour
es of query burstiness
ouldbe due to two reasons: The same query is repeatedly issuedby the same user, or there is a burst of global popularityfor a parti
ular query. In this se
tion, we �rst look at the

Figure 3: Performan
e of baseline
a
hing algorithms(
ost savings). From top to bottom, the seven linesshown are for Future Known, SDC w, SDC, Land-lord, LRU, LFU w, and LFU.amount of burstiness in the AOL tra
e, and then proposehybrid algorithms that exploit it.If the
a
he size is small, only queries that have o

urred alarge number of times will be pla
ed into a stati
 LFU
a
hebefore the testing queries arrive. For example, for a
a
hesize of 10k items, only queries that have o

urred more than81 times will be in
a
he. Even for a
a
he size of 100kitems, only queries that o

ur at least 19 times are in
a
he.However, queries that o

ur no more than twi
e a

ount for43:4% of all queries issued. Thus, queries that o

ur very fewtimes are of parti
ular
on
ern as they are not likely to be ina stati

a
he but make up a large portion of the total queryload. Consequently, any
a
hing algorithm fo
using only onfrequen
y is likely to not do very well.Clearly, queries that o

ur only on
e
annot be
a
hed,but queries o

urring 2, 3, or a small number of times
ouldbe amenable to
a
hing even with very limited
a
he sizesif their o

urren
es are very bursty. To
he
k this, we now
onsider those queries that o

ur exa
tly twi
e. In Figure4, the x-axis shows the number of other queries between the�rst and se
ond o

urren
e of the same query, while the y-axis shows the number of queries falling into ea
h
lass onthe x-axis. For ea
h
lass, we show two bars, one for queriesissued twi
e by the same user, and one for queries issuedby two di�erent users. We observe that there is signi�
antburstiness, and that most of it arises from the same userreissuing a query. In parti
ular, assuming an arrival rate of132 queries per minute (the average rate over the tra
e), we
an see that most queries are reissued within a few minutesto at most an hour. Also, almost all queries reissued withinabout a day in our query log are by the same user.Thus, if we
ould add a small
a
he to temporarily holdquery results for at least a few minutes, this would allow usto
apture many repeats of queries that o

ur only a fewtimes. A
tually, this was one of the main motivations for theSDC algorithm in [7℄. In the following, we present anothervariation of this idea that results in additional bene�ts overSDC and its weighted variant from the previous subse
tion.The basi
 idea underlying hybrid algorithms
an be de-s
ribed as follows. The
a
he spa
e is partitioned and ea
hpartition is administered by a di�erent
a
hing poli
y. Forexample, in SDC, a small fra
tion of the spa
e, usually 10%

0

50000

100000

150000

200000

250000

300000

350000

400000

1-100 100-1000 1000-10K 10K-100K 100K-1M 1M-10M >10M

Diff_user
Same_user

Figure 4: Burstiness in the AOL query log for querieso

urring exa
tly twi
e.to 30%, is ruled a

ording to LRU, while the rest is used tostati
ally store the most frequent queries. In this way, theburstiness is
aptured by the LRU part of the
a
he. The re-sults in [7℄ showed that SDC outperforms other pure (singlepoli
y)
a
hing algorithms in terms of hit ratio. (Note that ahybrid algorithm
ould also dynami
ally
hange the divisionof spa
e between poli
ies, but we did not �nd any bene�t inthis for result
a
hing.)We now further generalize SDC for the weighted
ase asfollows: Assume two
a
hing poli
ies A and B are available,and that the total spa
e is divided between A and B in a�xed way. Ea
h poli
y assigns a s
ore to ea
h query (e.g.,time sin
e last o

urren
e for LRU); this means that ea
h
a
hed query is asso
iated with two s
ores, one for ea
h pol-i
y. After exe
uting a query, we attempt to insert it intoeither
a
he. When we evi
t an item from one
a
he, say the
a
he asso
iated with A, we sele
t the lowest s
oring item a
-
ording to poli
y A. However, before throwing the item out,we �rst attempt to insert it into the other
a
he. If the itemhas a high enough s
ore a

ording to poli
y B, this will resultin the evi
tion of another item from
a
he B. In prin
iple,this
ould
ontinue for a number of steps, but eventually anitem is evi
ted, and this usually happens after at most a fewsteps.We now evaluate the performan
e of two hybrid approa
hes,one
ombining LRU with LFU w (Hybrid1), and one
ombin-ing Landlord and LFU w (Hybrid2), under this framework.We found that using about 80% of the spa
e for LFU w gavethe best results overall. In Figure 5, we show the results for
ost saving. We observe visible improvements over SDC w,the weighted version of SDC from the previous subse
tion,with Hybrid2 obtaining the best performan
e. We note herethat the two new hybrids are more dynami
 in that queries
an enter the (usually fairly stati
) LFU w
a
he after spend-ing some time in the other
a
he, and that
he
king itemsagainst both poli
ies appears to have bene�ts over runningtwo
ompletely independent
a
hes.
4.3 Estimation CorrectorRe
all the setup of the result
a
hing problem: Givenour observation of past query o

urren
es, how do we de-

Figure 5: Cost redu
tion for hybrid algorithms.From top to bottom, the four lines shown are for Fu-ture Known, Hybrid2 (Landlord+LFU w), Hybrid1(LRU+LFU w), and SDC w.
ide whi
h query result to remove from
a
he? To makethis de
ision, we need a good estimate of the probability ofreo

urren
e of a query x,
alled Pr(x). Assuming stableprobabilities, a simple estimate is to take the
urrent valueof the frequen
y of a parti
ular query divided by the totalnumber of queries seen so far. In fa
t, this is the underlyingidea of LFU. As we will argue, for
ertain
ases, this is not agood estimate. In the following we dis
uss the problem of es-timating probabilities of query reo

urren
es given a typi
alhighly skewed query distribution.As shown in Se
tion 3, the query log is following a Zipf-based distribution where a small portion of queries have ahigh frequen
y but most queries have a fairly small probabil-ity of o

urring. In su
h a
ase the frequen
y of past o

ur-ren
es by itself does not provide the best estimate for futureo

urren
es. In parti
ular, one o

urren
e of a query maymean mu
h less than two o

urren
es. For example, supposelottery ti
kets are sold a

ording to a Zip�an distributionsu
h that a few people buy a lot of ti
kets but many peoplebuy only one or two ti
kets. Ea
h player buys the same num-ber of ti
kets ea
h week, and ea
h week there is one winner.We observe the winners of the lottery over many weeks, andhave to guess how many ti
kets they bought (whi
h is propor-tional to the probability of them winning in future rounds).People who buy few ti
kets may win on
e (be
ause say 50%of ti
kets are sold to people who buy only one ti
ket) butwill very rarely win twi
e. So if we observe the same personwinning twi
e, this would indi
ate they likely bought morethan twi
e as many ti
kets as a person winning on
e. Toapply a similar idea to our
ase, if a query o

urs only on
e,it is often a very rare query from the long tail of the querydistribution. It
ould be due to a typo by a user, or due to a
ombination of rare query terms. When a query o

urs twi
e,on the other hand, its
han
e of reo

urren
e might be morethan twi
e as high. This idea is of
ourse
losely related tosmoothing te
hniques in language modeling, see, e.g., [6℄.We
onsider three di�erent ways to get a more pre
ise es-timate of the probability of a query reo

urring in the fu-ture given its past o

urren
es: (1) an approa
h based onthe Good-Turing method, (2) an approa
h based on a formalanalysis of Zip�an distributions, and (3) a heuristi
 approa
h

that simply applies a set of weights derived from an a
tualquery tra
e (but whi
h subsumes the other approa
hes).Our �rst method is motivated by the Good-Turing estima-tor [6℄, often used in the
ontext of smoothing te
hniques forlanguage modeling, but applied here to result
a
hing. Thebasi
 Good-Turing estimator for the likelihood of an o

ur-ren
e in the next step
an be stated as:Prx = Nx + 1T � E(Nx + 1)E(Nx) ;where, in our
ase, x is the query and Nx is the number oftimes query x has o

urred so far. T is the number of queriesobserved thusfar, and E(n) is the number of di�erent queriesthat have o

urred exa
tly n times.Our se
ond method is based on the analysis of a Zip�anprobability distribution to estimate the likelihood of a queryreo

urring. We assume a sequen
e of events fu1; :::; udgthat is generated following a Zip�an distribution. Given thatquery x has o

urred k times in the past, Prx
an be esti-mated as: Prx = dXi=1 pi � B(pi; h; k)dXj=1B(pj ; h; k)!; (1)where pi is the probability of
hoosing ui, and B(pi; h; k) =� hk �pki � (1� pi)h�k. For more details, see the Appendix.An alternative to the above two approa
hes is to derive apenalty fun
tion g(fx) experimentally from a query log usedas a training set. This penalty fun
tion is then multipliedwith the naive estimate (number of past o

urren
es overthe number of observed queries) to get a better estimate. Infa
t, for larger values of fx, say fx > 20, g() is very
lose to1:0 sin
e the naive estimate is quite pre
ise. Thus, we onlyneed to determine a small table of penalty values for at most20 values of fx. To do this, we performed a simple sear
hpro
edure using a query tra
e to derive the optimal settingof the values g(fx), using the formally derived numbers fromthe se
ond method as starting points. In fa
t, we found thisapproa
h to be more
exible in pra
ti
e, as real query logs arenot a

urately modeled by a
lean mathemati
al distribution.It also slightly outperformed the other two methods and isthus used in our experiments.We note that the dis
ussion in this subse
tion is only rele-vant for the
ase of weighted
a
hing. For unweighted
a
hingproblems, adding any of the above
orre
tion me
hanismswould have no impa
t on
a
he behavior, as long as the prob-ability of a reo

urren
e is monotoni
ally in
reasing with thenumber of past

urren
es. However, this is di�erent forweighted
a
hing problems, e.g., when de
iding whether to
a
he a frequently seen query with low
ost, or a rarely seenquery with high
ost.In Figure 6, we show results
omparing the best of theprevious algorithms to versions that apply experimentallydetermined penalty fa
tors g(). Overall, the new versionsoutperform the previous best versions by a moderate butvisible amount.
5. FEATURE-BASED CACHINGIn this se
tion, we introdu
e feature-based
a
he evi
tionpoli
ies for result
a
hing, and also for the related problem oflist
a
hing. The basi
 idea is that sear
h engine query logs
ontain a lot of features beyond the previous o

urren
es of

Figure 6: Cost redu
tion of the
a
hing algorithmsby adding a penalty fa
tor g. From top to bot-tom, the �ve lines shown are for Future Known, Hy-brid2 g, Hybrid2, Hybrid1 g, and Hybrid1.a query that
an be used to make
a
hing de
isions, and thatsu
h features are best in
orporated into evi
tion poli
ies viadata analysis and ma
hine-learning te
hniques rather thanthe design of expli
it algorithms. This se
tion
onsists ofthree parts. First, we dis
uss the basi
 idea and de�ne tenfeatures that we
onsidered for result
a
hing. Then we de-s
ribe the approa
h that we used to derive evi
tion poli
iesfrom these features. Finally, Subse
tion 5.3.1 presents ex-perimental results for result
a
hing, and Subse
tion 5.3.2presents results for list
a
hing.
5.1 FeaturesIn mu
h of the
a
hing literature, in
luding previous workon result
a
hing in sear
h engines, a workload is modeledas a sequen
e of integers where ea
h integer identi�es anobje
t that is a

essed in a given step. This gives a sim-ple framework in whi
h to design and analyze
a
hing al-gorithms su
h as LRU or LFU, but it also obs
ures manyappli
ation-dependent properties of the workload that mightlead to better
a
hing de
isions. For example, simply rep-resenting ea
h query in a sear
h query log as an ID meansthat we
an look at previous o

urren
es of exa
tly the samequery to make
a
hing de
isions, but we
annot look at otherpotentially relevant properties su
h as o

urren
es of otherqueries that are similar to this query (e.g., queries that area superset of our query), whether the query
ontains a veryrare term, or even just the number of terms in our query.However, it is known that single-term queries are more likelyto o

ur again than longer queries [15℄, and thus to optimizehit ratio it might be a good idea to give preferen
e to shorterqueries in
a
hing de
isions. In general, sear
h engine querylogs have a lot of interesting stru
ture that
an be mined forvarious purposes su
h as improved ranking or ad pla
ement,and it seems reasonable to assume that this stru
ture
ouldalso be exploited for better
a
hing de
isions.To prove this
onje
ture, we �rst have to de�ne a set ofsuitable features in the query tra
e that is likely to be use-ful in
a
hing de
isions. The set should
ertainly
ontainstandard features su
h as the number of times a query haspreviously o

urred and the time sin
e the last o

urren
e,but also new features not used by traditional
a
hing algo-rithms. After some exploration, we fo
used on the following

ten features F1 to F10 that are
onsidered for ea
h query:� F1: the number of steps sin
e the last o

urren
e ofthis query. This feature is the basis for LRU.� F2: the number of steps between the last two o

ur-ren
es of this query, if a query has happened at leasttwi
e. Otherwise, F2 is set to unavailable. (Similarly,we
ould also add the number of steps between these
ond- and third-last o

urren
es as another feature.)� F3: the query frequen
y up to this point. This is thefeature underlying LFU.� F4: the query length, de�ned as the number of termsin the query.� F5: the length of the shortest inverted index list of anyterm in the query. This tests whether the query has aterm that is rare in the
olle
tion.� F6: the frequen
y of the rarest query term in the log.� F7: the number of distin
t users who issue this query.If user IDs are not available, IP addresses
an be usedinstead.� F8: the gap between the last two o

urren
es of thequery that were issued by the most re
ently a
tive user.As we saw in Se
tion 4, a large portion of those queriesthat o

ur only two or three times are issued by thesame user, and those queries are usually very
lose toea
h other in the query log.� F9: the average number of
li
ks for the query. Intu-itively, queries with more
li
ks might have a higherprobability of o

urring again. This is one but not theonly way to harvest information from user
li
ks. We
ould also model the distribution of
li
ks in more de-tail, or use
li
ks to guess whether a query is naviga-tional, using the approa
h in [11℄.� F10: the frequen
y of the rarest pair of query terms inthe query log. This measures if the query
ontains apair that is only very rarely used together in queries.It is easy to think about many additional features, but wefound the above sele
tion to be most promising. The features
an be grouped into two
ategories: Traditional features (F1to F3) that are used by many well-known
a
hing algorithms,and non-traditional features (F4 to F10) that are spe
i�
 toour appli
ation domain and that would be obs
ured if weonly treat queries as obje
ts with a unique ID.In order to understand the usefulness of these features, we�rst looked at their information gain, as
ommonly studiedin ma
hine learning. Essentially, we want to
he
k how usefulea
h feature is in predi
ting reo

urren
e of a query within alimited number of steps. The details of this experiment area little tri
ky (and omitted due to spa
e
onstraints), as we�rst had to determine appropriate threshold values to get abinary
lassi�
ation for ea
h target
a
he size.Features F1 F2 F3 F4 F5Ca
he Size=100k 0.247 0.029 0.114 0.017 0.001Ca
he Size=200k 0.213 0.018 0.102 0.009 0.011Ca
he Size=400k 0.287 0.009 0.098 0.008 0.029Features F6 F7 F8 F9 F10Ca
he Size=100k 0.093 0.192 0.023 0.001 0.076Ca
he Size=200k 0.056 0.101 0.003 0.012 0.089Ca
he Size=400k 0.078 0.106 0.009 0.010 0.098Table 1: Information Gain for Di�erent Features andCa
he Sizes.

The measured information gain s
ores for the features areshown in Table 1, for three di�erent
a
he sizes. We
aneasily see that, in general, F1, F3, and F7 have the highestinformation gain, whi
h means they should be very usefulfeatures when de
iding whi
h query should be evi
ted from
a
he. However, the remaining features also o�er bene�ts.Not surprisingly, some of the features are more promising forsmaller
a
he sizes, while other are best for larger ones.
5.2 Caching MechanismWe now des
ribe how to implement a
a
he evi
tion poli
ybased on the above features. There are two aspe
ts to thisproblem: How to use the features to predi
t the likelihood ofa reo

urren
e of a query, and how to eÆ
iently identify thequery with the smallest su
h likelihood.For the �rst aspe
t, we started out with what may looklike a very
rude approa
h: We split the range of ea
h of thefeatures into a number of bins, in our
ase 8, so that ea
hpossible value falls into one of the bins. (For example, for F3,the number of previous o

urren
es of the query, we mighthave bins for F3 = 1, F3 = 2, F3 = 3; 4, F3 = 5; 6; 7; 8,et
.) Thus, at any point of time, any query in the
a
hebelongs to one of 810 bu
kets based on its
urrent featurevalues. For ea
h bu
ket, we also keep some histori
al statis-ti
s, in parti
ular the total number of query instan
es thatwe have observed in this bu
ket, and how often these queriesthen reo

urred within a short period of time in the inputsequen
e. Thus, for ea
h bu
ket we essentially maintain asimple estimate of the likelihood of reo

urren
e for queriesthat fall into the bu
ket; we then evi
t a query in the
a
hethat has the lowest su
h likelihood (i.e., that belongs to thebu
ket with the lowest su
h likelihood).A few more remarks about this approa
h, whi
h may seemextremely naive from a ma
hine-learning perspe
tive. First,many of the bu
kets are empty and in fa
t we get by withfar fewer than 810 bu
kets, requiring only a few MB of to-tal memory. (If spa
e be
omes a problem, we
an use fewerbu
kets in areas with sparse data.) In
ontrast, ea
h
a
hedquery result has a size of a few KB, and thus a
a
he for100000 queries takes a few hundred MB. Se
ond, we triedemploying smarter approa
hes for exploiting the features, in-
luding interpolation between bu
kets and logisti
 regressionon the feature values, but we observed at most very minoradditional gains. Thus, we de
ided to stay with the simplebu
ket approa
h in our implementation. (In fa
t, this maybe another example where data size beats algorithmi
 te
h-nique { for smaller query tra
es we would expe
t to see moreimprovements by using smarter te
hniques.)Given this stru
ture, we now have to implement an eÆ-
ient me
hanism for
a
he evi
tion. First, we note that anystatisti
s needed in features F5, F6, and F10 are pre
omputedbased on a sample of data; thus, e.g., the frequen
ies of dif-ferent terms in the query tra
e used in F6 are pre
omputedfrom a sample of queries. In general, the features
an be splitinto three
lasses: (1) Features su
h as F2, F3, F7, F8, andF9 that
an only
hange their values when a query reo

urs;in that
ase, we
an update the feature values of a query inthe
a
he when it reo

urs and then move the query to itsnew bu
ket. (2) Features that are determined by the queryitself based on a pre
omputation and that never
hange dur-ing the algorithm, e.g., F4, F5, F6, and F10. (3) Features,in our
ase only F1, that
hange as time pro
eeds. We
aneÆ
iently deal with F1 by maintaining a data stru
ture onthe time of last o

urren
e of a query, and moving queries to

new bu
kets whenever they would have to move to a new bina

ording to F1. This means that apart from movements tonew bu
kets that are triggered by reo

urren
es of a query,a query
an be moved at most 7 times to a new bu
ket alongthe F1 axis. Overall, this evi
tion me
hanism
an be imple-mented to run in O(log(n)) steps per query in the workloadusing standard data stru
ture, and is highly eÆ
ient in termsof a
tual pro
essing overhead.
5.3 Experimental ResultsIn this se
tion, we present experimental results for ourfeature-based
a
hing approa
h, and
ompare it to existingalgorithms. We �rst
onsider result
a
hing in Se
tion 5.3.1,and later extend the approa
h to list
a
hing in Se
tion 5.3.2.We �rst
onsider hit ratio, and then further below we lookat
ost savings in the weighted
ase. In all experiments, weused the �rst 10 million queries to initialize the statisti
s forea
h bu
ket. Then the following 5 million queries are usedto warm up the
a
he, and the remaining 2:7 million queriesare used to evaluate the a
tual
a
hing performan
e. In gen-eral, of
ourse, our feature-based approa
h bene�ts from theavailability of suÆ
iently large query logs that
an be usedto derive statisti
s.
5.3.1 Result cachingIn our �rst experiment, we
ompare a feature-based ap-proa
h using only F1, F2, and F3 with existing algorithms,in parti
ular SDC, LRU, LFU, and a variant of LFU thatkeeps a
omplete history of query o

urren
es. (This variantof LFU is used sin
e basi
 LFU is at a disadvantage
omparedto SDC and our feature-based methods, whi
h use larger ta-bles of statisti
s). For the non-feature based algorithms, weused the �rst 15 million queries to initialize the
a
he, andthen
ompared results on the remaining 2:7 million queries.

Figure 7: Hit ratios for feature-based
a
hing withF1, F2, and F3, and for four existing algorithms.From top to bottom, the six lines shown are thehit ratios for the optimal
lairvoyant algorithm, thefeature-based method, SDC, LFU with
omplete his-tory and LRU (overlapping), and basi
 LFU.From the results in Figure 7 we see that the feature-basedapproa
h using only F1, F2, and F3 already slightly but
on-sistently outperforms SDC, the best previous method for hitratio. Note that F1, F2, and F3 are all traditional features,but there is no reason to believe that any of the previouslyknown algorithms (su
h as SDC) exploits these features in

the best possible way. So even for this limited set of fea-tures, the results suggest that maybe learning from statisti
sis preferable to trying to design better expli
it algorithms.Next, we ran experiments with all ten features. The resultsare shown in Figure 8. We see that by using all ten features,we now get very substantial improvements over SDC, and arein fa
t able to signi�
antly narrow the gap to the optimal o�-line method. The best method on average outperforms SDCby about 4%, whi
h is a fairly signi�
ant improvement giventhe amount of previous work on result
a
hing.

Figure 8: Hit ratios for feature-based
a
hing withdi�erent
ombinations of features. From top to bot-tom, the �ve lines shown are the optimal
lairvoyantalgorithm, F1-F10, F1-F5, F1-F3, and SDC.Next, we
onsider the weighted
ase, where the goal is tomaximize the
ost savings. To get a weighted algorithm usingfeatures, we simple multiply the
ost of the query with ourestimate of its likelihood of reo

urren
e in the near future.As shown in Figure 9, our weighted feature-based methodagain outperforms all other methods, though by a smalleramount than in the
ase of hit ratio. Some improvementson this might be possible in future work, by introdu
ing newfeatures that are more relevant to the weighted
ase.

Figure 9: Results for weighted
a
hing. From topto bottom, the six lines shown are the hit ratios forour best o�-line algorithm, F1-F10, the best hybridfrom Se
tion 4.3 and F1-F3 (overlapping), SDC w,and Landlord.

5.3.2 List CachingMotivated by the su

ess of our approa
h for result
a
hing,we de
ided to also look at the related problem of list
a
hing,i.e., the
a
hing of inverted lists in main memory that is doneat a lower level in the sear
h engine. In previous work [1, 20℄,the best results for list
a
hing were obtained by using eithera �xed assignment of lists to the
a
he, or versions of LFUwith additional memory. (In pra
ti
e, the LFU version re-sults in an almost stati
 assignment, as lists tend to stay inthe
a
he forever after being inserted.) However, there is stilla signi�
ant performan
e gap between these methods and theupper bound given by the optimal o�-line approa
h.We note here that list
a
hing is performed after doingresult
a
hing on the query log; this removes most of theshort-term burstiness from the query stream. Also, we
au-tion that a stati
 or LFU method may not be appropriatefor global sear
h engines that observe a di�erent mix of lan-guages during di�erent times of the day { in this
ase, adynami
 approa
h that
hanges the mix of
a
hed lists dur-ing the day may be better. However, most publi
ly availabletra
es are fo
used on a single sear
h market. (The AOL tra
eused here is limited to the US market.) We de�ned the fol-lowing features for ea
h inverted list (and asso
iated term)in the index:� F1-F3: same as before, but de�ned on a per-term ratherthan per-query basis.� F4: the number of distin
t queries
ontaining this term,divided by the total number of queries
ontaining it.� F5: the frequen
y of the most popular query
ontainingthis term.� F6: the number of times this term has o

urred as asingle-term query.� F7: the number of times this term has o

urred as partof a two-term query.� F8: the number of distin
t users (or IP addresses) thathave issued queries
ontaining this term.In Figure 10 we show the results for feature-based list
a
hing. The obje
tive in this
ase is to maximize the amountof data that is served from
a
he rather than disk. (Alterna-tively, we
ould also model disk
ost savings more pre
iselyby taking seek times into a

ount; the results are very sim-ilar on our data.) We see that the feature-based approa
houtperforms all other methods by several per
ent, resultingin signi�
ant savings in disk traÆ
.
6. CONCLUDING REMARKSIn this paper, we have proposed and evaluated improvedte
hniques for result
a
hing in web sear
h engines. In the�rst part of our work, we studied the weighted
ase, whereour goal is to maximize
ost savings instead of hit ratio. Wedes
ribed improved hybrid algorithms for this
ase that areparti
ularly suitable for Zipf-based query distributions. Inthe se
ond part of our work we proposed a feature-basedapproa
h to
a
hing that a
hieves very signi�
ant improve-ments in hit ratios. Interestingly, the approa
h also providesimproved results for the related problem of list
a
hing.Several interesting open problems remain. We plan to ex-periment with other features in query logs that might behelpful in predi
ting the likelihood of reo

urren
e of a query,and that
ould lead to additional gains in hit ratio. A moreformal analysis of burstiness in query logs, maybe starting

Figure 10: Byte hit ratios for the feature-based list
a
hing algorithm. From top to bottom, the fourlines shown are the hit ratios for our best o�-linealgorithm, F1-F8, and LFU and the stati
 algorithm(overlapping).from Kleinberg's model in [10℄, would also be of interest. Fi-nally, future work on result
a
hing should also look at theneed for periodi
ally refreshing
a
hed results. It
an be ar-gued that in
urrently deployed sear
h engines, hit ratios arelimited mu
h more by the need for fresh query results thanby
a
he size
onstraints. To our knowledge, this issue hasnot been addressed by any published work.A
knowledgements: We thanks Xiaojun Hei for
ollab-oration in the early stages of this work, and Keith Ross andDan Rubenstein for valuable dis
ussions of
a
hing underZip�an distributions. This resear
h was partly supported byNSF ITR Award CNS-0325777.
7. REFERENCES[1℄ R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdo
k,V. Pla
houras, and F. Silvestri. The impa
t of
a
hing on sear
hengines. In Pro
. of the 30th Annual SIGIR Conf. on Resear
hand Development in Information Retrieval, July 2007.[2℄ R. Baeza-Yates, F. Junqueira, V. Pla
houras, and H. Wits
hel.Admission poli
ies for
a
hes of sear
h engine results. In Pro
.of the 14th String Pro
essing and Information RetrievalSymposium, Sept. 2007.[3℄ R. Baeza-Yates and F. Saint-Jean. A three-level sear
h-engineindex based in query log distribution. In Pro
. of the 10thString Pro
essing and Information Retrieval Symposium, Sept.2003.[4℄ S. Brin and L. Page. The anatomy of a large-s
ale hypertextualweb sear
h engine. In Pro
. of the Seventh World Wide WebConferen
e, 1998.[5℄ P. Cao and S. Irani. Cost-aware WWW proxy
a
hingalgorithms. In USENIX Symp. on Internet Te
hnologies andSystems (USITS), 1997.[6℄ S. F. Chen and J. Goodman. An empiri
al study of smoothingte
hniques for language modeling, 1996.[7℄ T. Fagni, R. Perego, F. Silvestri, and S. Orlando. Boosting theperforman
e of web sear
h engines: Ca
hing and prefet
hingquery results by exploiting histori
al usage data. ACM Trans.on Information Systems, 24, 2006.[8℄ S. Gar
ia. Sear
h Engine Optimisation Using Past Queries.Ph.D Thesis, Department of Computer S
ien
e and InformationTe
hnology, RMIT University, 2007.[9℄ B. Jonsson, M. Franklin, and D. Srivastava. Intera
tion of queryevaluation and bu�er management for information retrieval. InPro
. of the ACM SIGMOD Int. Conf. on Management ofData, pages 118{129, June 1998.

[10℄ J. Kleinberg. Bursty and hierar
hi
al stru
ture in streams. InACM SIGKDD, pages 91{101, 2002.[11℄ U. Lee, Z. Liu, and J. Cho. Automati
 identi�
ation of usergoals in Web sear
h. In Pro
. of the 14th Int. World Wide WebConferen
e, pages 391{400, 2005.[12℄ R. Lempel and S. Moran. Predi
tive
a
hing and prefet
hing ofquery results in sear
h engines. In Pro
. of the 12th Int. WorldWide Web Conferen
e, pages 19{28, 2003.[13℄ X. Long and T. Suel. Three-level
a
hing for eÆ
ient querypro
essing in large web sear
h engines. In Pro
. of the 14th Int.World Wide Web Conferen
e, May 2005.[14℄ T. Malik, R. C. Burns, and A. Chaudhary. Bypass
a
hing:making s
ienti�
 databases good network
itizens. In Pro
. ofthe 21st Int. Conf. on Data Engineering, 2005.[15℄ E. Markatos. On
a
hing sear
h engine query results. In 5thInternational Web Ca
hing and Content Delivery Workshop,May 2000.[16℄ P. Saraiva, E. de Moura, N. Ziviani, W. Meira, R. Fonse
a, andB. Ribeiro-Neto. Rank-preserving two-level
a
hing for s
alablesear
h engines. In Pro
. of the 24th Annual SIGIR Conf. onResear
h and Development in Information Retrieval, pages51{58, Sept. 2001.[17℄ C. Silverstein, M. Henzinger, H. Marais, and M. Mori
z.Analysis of a Very Large AltaVista Query Log. Te
hni
al Report014, SRC (Digital, Palo Alto), O
t. 1998.[18℄ Y. Xie and D. O'Hallaron. Lo
ality in sear
h engine queries andits impli
ations for
a
hing. In Pro
. IEEE Info
om, 2002.[19℄ N. Young. On-line �le
a
hing. In Pro
. of the 9th AnnualACM-SIAM Symp. on Dis
rete algorithms, 1998.[20℄ J. Zhang, X. Long, and T. Suel. Performan
e of
ompressedinverted list
a
hing in sear
h engines. In Pro
. of the 17th Int.World Wide Web Conferen
e, April 2008.[21℄ J. Zobel and A. Mo�at. Inverted �les for text sear
h engines.ACM Computing Surveys, 38(2), July 2006.
APPENDIX
Zipf-based Probability AnalysisWe now show our derivation of Equation (1) in Se
tion 4.3. We assumea sequen
e of events fu1; :::; udg that is generated following a Zip�andistribution of probabilities. (Note that this is a simpli�
ation as thisis not ne
essarily the same as the observed distribution.) Let pi bethe probability of
hoosing ui, i.e., pi = i�z=T where T is P i�zwhen i = 1; 2:::; d. We assume that we know the size of the underlyinguniverse U and the Zipf parameter z. Let Xk denote the fa
t that xhas o

urred k times. We estimate the probability that an item wehave observed a
ertain number of times k will reo

ur in the nextstep:Pr[x o

urs in the next step jXk ℄ = dXi=1 pi � Pr[x = ui jXk ℄ (2)Using Bayes' Theorem, we getPr [x = ui jXk℄ = Pr [x� > k jx = ui℄ � Pr [x = ui℄Pr [Xk℄ (3)If we pi
k an item x uniformly at random from all d possible items,we have Pr [x = ui℄ = 1=d. Furthermore, using B(pi; h; k) = � hk �pki �(1� pi)h�k we get: Pr [Xk℄ = 1d � dXi=1B(pi; h; k) (4)and Pr [Xk jx = ui℄ = B(pi; h; k) (5). Putting this all together, we getPr [x o

urs in the next step jXk ℄ = dXi=1 pi �B(pi; h; k)dXj=1B(pj ; h; k)! (6)Thus, if we have observed that an item x has o

urred k timesin h steps, and knowing d and z but not taking into a

ount anyobservations about how many times other items have o

urred in theseh steps, the above estimates the likelihood the item will o

ur againin the next step, or in any other step.

