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ABSTRACT

Query processing is a major cost factor in operating large
web search engines. In this paper, we study query result
caching, one of the main techniques used to optimize query
processing performance. Our first contribution is a study of
result caching as a weighted caching problem. Most previous
work has focused on optimizing cache hit ratios, but given
that processing costs of queries can vary very significantly we
argue that total cost savings also need to be considered. We
describe and evaluate several algorithms for weighted result
caching, and study the impact of Zipf-based query distribu-
tions on result caching. Our second and main contribution is
a new set of feature-based cache eviction policies that achieve
significant improvements over all previous methods, substan-
tially narrowing the existing performance gap to the theoret-
ically optimal (clairvoyant) method. Finally, using the same
approach, we also obtain performance gains for the related
problem of inverted list caching.

Categories and Subject Descriptors

H.3.3 INFORMATION STORAGE AND RETRIE-
VAL]: Information Search and Retrieval.

General Terms

Algorithms, Performance

Keywords

Search Engines, Result Caching, Index Caching, Weighted
Caching

1. INTRODUCTION

Large web search engines need to be able to process thou-
sands of queries per second on collections of billions of web
pages. As a result, query processing is a major performance
bottleneck and cost factor in current search engines, and a
number of techniques are employed to increase query through-
put, including massively parallel processing, index compres-
sion, early termination, and caching. In particular, each
query is routed to a large number of machines, say a few
hundred or thousand, that process it in parallel. Index com-
pression is used to decrease the sizes of the index structures,
thus significantly reducing data transfers between disks, main
memory, and CPU. Various early termination techniques are
used to identify the best results without traversing the full
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index structure of each term in the query. Finally, caching is
employed at several levels to reduce system load.

In this paper, we focus on the last technique, caching, and
in particular the caching of query results. Caching is a com-
mon performance optimization technique in many scenarios
including operating systems, databases, and web servers. In
the case of web search engines, caching happens at several
levels. At the lower level of the system, index structures of
frequently used query terms are cached in main memory to
save on disk transfers [16, 3, 1]. At the higher level, results
of frequently asked queries are cached so that results can be
returned without executing the same queries over and over
again [15, 18, 12, 3, 7, 1, 2]. In addition, there may be other
intermediate levels of caching that store partially computed
results, say for common combinations of words [13].

Our contribution in this paper can be split into two parts,
focusing on weighted caching and on feature-based caching.
In the first part, we consider result caching as a weighted
caching problem. Previous work has looked at result caching
as an unweighted problem, where each query has the same
cost and the goal is to maximize the number of queries that
are served directly from cache. However, real query process-
ing costs in search engines vary significantly among queries.
For example, queries with very common terms or with many
terms can be much more expensive than other queries. Thus,
while optimizing hit ratio may be useful to minimize end
user latency, it does not maximize query throughput. Thus,
to minimize overall query processing costs, a good caching
mechanism needs to also take the actual costs of the queries
into account.

We discuss and evaluate several weighted caching algo-
rithms for result caching, including weighted counterparts of
LFU, LRU, and the state-of-the-art (unweighted) SDC pol-
icy in [7], as well as several new hybrid algorithms. In this
context, we also address an interesting problem arising in
connection with Zipf-based query distributions, or in general
with distributions where large numbers of (potential) queries
occur very rarely or not at all. In a nutshell, in such cases
naive approaches may overestimate the frequencies of rare
queries that just happened to occur by chance. As a result,
we may end up caching too many items with high potential
benefit (cost savings) that never occur again. We discuss
several possible ways to address this problem.

Our second contribution is a new set of feature-based cache
eviction policies that achieve significant improvements in hit
ratio, and moderate improvements in cost, over existing meth-
ods. In particular, these policies significantly narrow the
gap between the best known algorithm and the upper bound
given by the clairvoyant algorithm. We also show that the
same approach can be used to obtain improvements over cur-
rent list caching policies.

These new policies are based on two observations. First,



query traces have a lot of interesting application-specific struc-
ture that is not exploited by existing cache eviction policies
that only rely on past occurrences of the same query. We can
expose some of this structure to the caching mechanism via
new features such as query lengths or the frequencies of in-
dividual query terms in the query log or collection. We note
that a similar approach was also recently proposed in [2] in
the context of a cache admission policy, and that researchers,
e.g., in computer architecture have used application specific
features for similar tasks such as branch prediction and data
prefetching. We show here that in the case of eviction poli-
cies for search engine result caching, adding such features
can make a significant difference in cache performance. Sec-
ond, instead of making explicit use of such features inside
new specially designed algorithms, it is probably smarter to
rely on general statistical or machine learning techniques to
make eviction decisions. This is particularly the case given
the very large amount of query log data available to current
search engines, and given that the cost of even fairly compli-
cated eviction policies is small compared to that of executing
a query. In our case, we utilize a very naive statistical ap-
proach that nonetheless gives significant benefits.

The remainder of this paper is organized as follows. Next,
we provide some background on search engine architecture
and discuss relevant previous work. In Section 3 we describe
our experimental setup. Section 4 contains our results for
weighted caching. Section 5 presents and evaluates feature-
based eviction policies, and finally Section 6 provides con-
cluding remarks.

2. BACKGROUND AND PREVIOUSWORK

Background on Search Engines: The basic functions
of a crawl-based web search engine can be divided into four
stages: data acquisition (or crawling), data mining and pre-
processing, index construction, and query processing. During
crawling, pages are fetched from the web at high speed, either
continuously or through a set of discrete crawls. Then vari-
ous data mining and preprocessing operations are performed
on the data, e.g., detection of web spam or duplicates, or
link analysis based on PageRank [4]. Third, a text index
structure is built on the preprocessed data to support fast
query processing. Finally, when a user issues a query, the
top results for the query are retrieved by accessing the index
structure. We focus on this last stage.

Current search engines are based on an index structure
called an inverted indez that allows us to efficiently identify
documents that contain a particular term or set of terms [21].
To do so, an inverted index contains an inverted list for each
distinct term w that occurs somewhere in the collection; this
is basically a list of the IDs of those pages in the collection
that contain w, often together with other data such as the
number of occurrences in the page and their locations. A
query is processed by fetching and traversing the inverted
lists of the search terms, and then ranking the encountered
pages according to relevance. Note that the length of an in-
verted list increases with the size of the collection, and can
easily reach hundreds of MB or several GB even in highly
compressed form. Thus, for each query a significant amount
of data may have to be fetched and processed. This is the
main performance challenge in search engine query process-
ing, and it has motivated various performance optimizations.

Caching in Search Engines: One such optimization is
the use of caching, which occurs in search engines on two

levels. A query enters the search engine via a query integra-
tor node that is in charge of forwarding it to a number of
machines and then combining the results returned by those
machines. Before this is done, however, a lookup is per-
formed into a cache of previously issued queries and their
results. Thus, if the same query has been recently issued,
by the same or another user, then we do not have to re-
compute the entire query but can simply return the cached
result. This approach, called result caching, is widely used
in current engines, and has also been studied by a number of
researchers [15, 18, 12, 3, 7, 1, 2]. A second form of caching,
called index caching or list caching, is used on a lower level
in each participating machine to keep the inverted lists of
frequently used search terms in main memory [9, 16, 3, 20].

Our main focus is on result caching. This approach has
been shown to achieve significant performance benefits on
typical search engine traces. Note that the performance de-
pends on the characteristics of the queries posed by the users,
the policies used by the search engine to process queries (e.g.,
whether the order of terms in the query matter, or whether
users from different locations receive different results), and
the caching policies that are used. Our goal is to design
caching policies that best exploit the properties of typical
search engine query logs to achieve a high cache hit ratio
and large cost savings. Earlier work on search engine query
logs and result caching (see, e.g., [17, 15, 18, 3] has shown
that such logs have several interesting properties:

e Query frequencies follow a Zipf distribution.

e While a few queries are quite frequent, a significant
fraction of all queries occur only once or a few times.

e Query traces exhibit some amount of burstiness, i.e.,
occurrences of queries are often clustered in a few time
intervals.

e A significant part of this burstiness is due to the same
user reissuing a query to the engine.

Previous Work on Result Caching: The first pub-
lished work on result caching in search engines appears to be
the work of Markatos in [15], which studies query log distribu-
tions and compares several basic caching algorithms. Work
in [18] looks at various forms of locality in query logs and
proposes to cache results closer to the user. Work by Lem-
pel and Moran [12] proposes improved caching schemes for
dealing with requests for additional result pages (i.e., when
a user requests a second or third page of results). Several
authors [16, 3, 1, 8] have considered the impact of combining
result caching and list caching; in particular, recent work in
[1] studies how to best share a limited amount of memory
between these two forms of caching. In [8], Garcia examines
caches for the query evaluation process as a whole. Finally,
work in [7, 2] considers hybrid methods for result caching
that combine a dynamic cache that exploits bursty queries
with a more static cache for queries that stay popular over a
longer period of time. We discuss related work in more detail
later as necessary in the context of our own results.

Weighted Caching: Previous work on result caching [15,
18, 12, 3, 7, 1, 2] has focused on maximizing the hit ratio of
the cache, that is, the percentage of queries that can be an-
swered directly from cache. We note here that caching has
two possible objectives: (a) reducing the delay experienced
by the user by keeping cached results closer to the user (ei-
ther in terms of network distance or memory hierarchy), and
(b) reducing the load on the underlying system by avoiding
unnecessary computations (which may in turn also reduce



delays seen by the user). Maximizing the hit ratio focuses
on the delay, which is an important objective particularly
for forward result caches that are deployed outside the main
search engine cluster and closer to the user.

However, we argue that the second objective is also very
important in current search engines, which have invested
hundreds of millions of dollars in hardware for query process-
ing. We note that search queries vary dramatically in terms
of their computational cost depending, e.g., on the number
of search terms and their frequency in the underlying collec-
tion and in other search queries. (The latter determines how
likely the corresponding inverted lists are to already be in
main memory.) The exact costs for a query of course depend
on the internal design of the engine. But it seems realistic
to assume that when a query is computed, some measure of
the overall computational cost is communicated to the re-
sult caching mechanism, which should then use this cost in
its eviction policy to give preference to retaining results of
expensive queries.

We consider both objectives in this paper. Each query
result has the same size (maybe a few KB for storing the
result URLs and result snippets), but queries can have very
different benefits (cost savings when reused) associated with
them, and our goal is to maximize the total benefit that is
achieved. This is an instance of a weighted caching problem
studied, e.g., in [5, 19]. We note that standard algorithms for
caching such as LRU (Least Recently Used) or LFU (Least
Frequently Used) do not take benefits into account and thus
do not perform well on such problems. The work in [5, 19]
proposes a caching algorithm called Landlord that is essen-
tially a generalization of LRU; this algorithm assigns leases
to items based on their sizes and benefits and evicts the ob-
ject with the earliest expiring lease. The Landlord algorithm
was recently adapted to another caching problem in search
engines in [13].

Cache Admission Policies: Researchers in several areas
have recently proposed cache admission policies that prevent
certain items from even being inserted into the cache [14, 13,
2]. In the context of web search engines, cache admission was
used in [13] in a scenario where cache insertion itself has a
significant cost that would be wasted if the item is evicted
soon afterwards without having been reused. In [2] a cache
admission policy is used to predict and eliminate query re-
sults that are unlikely to occur again. We note that in this
latter case, cache admission is really used as a mechanism
for improving a non-optimal eviction policy (since an inser-
tion followed by immediate eviction from a cache with one
additional slot would have the same effect, as opposed to [13]
where insertion incurs a significant cost). The work in [2] is
the previous work most closely related to our feature-based
eviction policy in that it also suggests the use of application-
specific features. One difference to our work is that [2] uses
these features to make a 0/1 decision about admission of an
item, while we use them to predict a probability of reoc-
currence that is used by the cache eviction policy. We also
consider a wider range of features in our experiments.

3. DATA AND EXPERIMENTAL SETUP

Given that search query logs have a very long tail of queries
that occur only once or twice, it is important to use a fairly
large query log to evaluate result caching policies. For our ex-
periments, we used a log of 36, 389, 567 queries submitted to
the AOL Search service between March 1 and May 31, 2006.

We preprocessed the query log by removing stopwords, and
completely removed any queries consisting only of stopwords.
For all the results presented in this submission, we also re-
moved requests for further result pages; such requests for
the second, third, etc., page of results are best handled with
other techniques as shown in [12], and most previous work
does not spell out if such requests were retained or not. We
assume that term order in queries is important, and that two
queries are identical only if they contain the same words in
the same order. However, for these last two choices, we also
ran experiments that make the opposite choice; the results
were overall fairly similar (in terms of the relative ordering
of the methods) and are omitted from this paper.

The resulting query trace had 17,448, 985 queries, includ-
ing 10,087, 344 distinct queries. Of these queries, 5,605, 830
occurred only once, and 1,005,241 occurred exactly twice.
In Figure 1 we plot the query frequencies using a double-
logarithmic scale, where queries are ordered along the z-axis
from most frequent to least frequent, and the frequency of
the query is shown on the y-axis. We obtain a slope corre-
sponding to z = 0.82, which compares to numbers between
z = 0.59 [16] and z = 0.86 in the literature.
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Figure 1: Query frequency distribution of the AOL
data set.

In our experiments, we assume that every query has a com-
putational cost that is taken into account by the weighted
caching policies. This cost of course depend on details of each
particular search engine’s query processing system, which are
considered proprietary. We experimented with several possi-
ble cost functions that define the cost of a query as follows:
(i) the sum of the lengths of the inverted lists of the query
terms, ZLO L;, (ii) the length of the shortest list Lo, and (iii)
the product of Lo and log,(L1/Lo) where L; is the second
shortest list. These choices represent different bottlenecks
in query execution: (i) when the cost of fetching lists from
disk is dominant and the entire list has to be fetched, and
(ii) and (iii) when index data is mostly in main memory and
cost is dominated by the CPU cost of traversing the shortest
list and looking up its elements in the next larger list. We
obtained the lengths of inverted lists by running all queries
against a subset of 7.5 million pages taken at random from a
large web crawl.

We note that real cost functions will be more complicated
and may have to take into account the impact of techniques
such as index caching and early termination at the lower
level. However, the caching algorithm does not need to know
the function, as long as some cost estimate is returned by
the query processor upon computing a query. We tried all



three cost functions and did not observe major changes in the
relative performance of our algorithms. All results presented
in this paper use cost function (i) above.

4. WEIGHTED RESULT CACHING

In this section, we investigate algorithms for weighted re-
sult caching. As mentioned before, weighted caching algo-
rithms assume that different objects have different weights
(in our case, costs of recomputing a query) that need to
be taken into account in the eviction policy. We will con-
sider both hit ratio and cost savings in the evaluation of our
algorithms.  We first introduce a few unweighted baseline
algorithms, followed by their weighted counterparts. After
that we introduce some improvements to these baseline al-
gorithms by integrating additional ideas. In particular, we
design hybrid algorithms that take advantage of burstiness in
the query stream, and we study caching under Zipfian query
distributions.

4.1 Basdine Methods

Before explaining our baseline caching methods, we de-
scribe two offline algorithms that can be used as upper bounds
on the performance of the online algorithms. Our offline al-
gorithm for hit ratio is the well-known clairvoyant algorithm
that always evicts the object whose next access is farthest
in the future, and it is known to achieve the best possible
hit ratio. For the weighted case, however, we are not aware
of any polynomial-time offline algorithm that guarantees the
highest possible cost savings. Instead, we design a heuristic,
called “Future_Known”, that we hope will approach the opti-
mal solution in most cases. In this algorithm we compute the
priority score of a query by dividing the cost of a query by
the distance from the current to the next occurrence of this
query. Then, at each step, the query with minimum score is
evicted from the cache.

The following eviction policies have been extensively stud-
ied in the context of result caching:

e LRU (Least Recently Used): When the cache is
full, we always evict the least recently seen query. LRU
is one of the most common cache eviction policies in
computer science.

e LFU (Least Frequently Used): LFU evicts the least
popular query. In our implementation, in addition to
the frequency scores stored in the cache, we also keep
some limited history of frequencies for queries that have
been evicted from cache. In practice, setting this his-
tory to two or three times the number of items in cache
achieves most of the available benefit.

e SDC (Static and Dynamic caching): As a hybrid
algorithms, SDC [7] splits the cache into two parts, with
one containing a static set of results for the most fre-
quent queries, and the other using LRU for dynamic
caching. Tn practice, we use 20% of the total cache size
for LRU, which gave the best results.

The above methods are geared towards optimizing the hit
ratio, i.e., the percentage of queries that can be served from
cache. However, given the large variations in query process-
ing costs between different queries, a more meaningful mea-
surement should look at the hit ratio as well as the cost
of processing a particular query. We can model this cost
by a weighted caching problem. The following are natural

weighted counterparts of the above unweighted algorithms
that are frequently studied:

e Landlord: In the Landlord algorithm [5, 19], whenever
an object is inserted into the cache, it is assigned a
deadline given by its cost. We always evict the element
with the smallest deadline, and deduct this deadline
from the deadlines of all other elements currently in the
cache. (Instead of actually deducting from all entries,
the algorithm is best implemented by summing up all
values of deadlines that should have been deducted so
far, and taking this sum properly into account.)

e LFU_w: The only difference to LF'U is that the priority
score is now the product of frequency and cost.

e SDC_w: This method is motivated by SDC. The dif-
ference is that we use LFU_w for the static part and
Landlord for the dynamic part of the cache.

We studied the performance of the above baseline algo-
rithms using cache sizes ranging from 25k to 800k items. In
Figure 2, we compare the algorithms by measuring their hit
ratios. In addition, we also plot the result of the Clairvoyant
algorithm for comparison. As expected, for the unweighted
versions, SDC performs better than LRU, and they both win
over LFU. The ordering is the same for the weighted versions
of these three algorithms, but of course these algorithms per-
form worse than their unweighted versions when looking at
hit ratio. In Figure 3, we plot the results when the same
algorithms are evaluated according to cost savings. As ex-
pected, the weighted algorithms now perform better than
the unweighted ones, but the order within versions is still
the same. Overall, SDC is the best algorithm for hit ratio,
and SDC_w the best algorithm for cost savings.
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Figure 2: Performance of baseline caching algorithms
(hit ratio). From top to bottom, the seven lines
shown are for Clairvoyant, SDC, SDC_w, LRU, LFU,
Landlord, and LFU_w.

4.2 Generalized Hybrid Algorithms

As mentioned, query logs are known to be very bursty
[17]. Thus, queries are more likely to reoccur shortly after
another occurrence. The sources of query burstiness could
be due to two reasons: The same query is repeatedly issued
by the same user, or there is a burst of global popularity
for a particular query. In this section, we first look at the
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Figure 3: Performance of baseline caching algorithms
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amount of burstiness in the AOL trace, and then propose
hybrid algorithms that exploit it.

If the cache size is small, only queries that have occurred a
large number of times will be placed into a static LFU cache
before the testing queries arrive. For example, for a cache
size of 10k items, only queries that have occurred more than
81 times will be in cache. Even for a cache size of 100k
items, only queries that occur at least 19 times are in cache.
However, queries that occur no more than twice account for
43.4% of all queries issued. Thus, queries that occur very few
times are of particular concern as they are not likely to be in
a static cache but make up a large portion of the total query
load. Consequently, any caching algorithm focusing only on
frequency is likely to not do very well.

Clearly, queries that occur only once cannot be cached,
but queries occurring 2, 3, or a small number of times could
be amenable to caching even with very limited cache sizes
if their occurrences are very bursty. To check this, we now
consider those queries that occur exactly twice. In Figure
4, the x-axis shows the number of other queries between the
first and second occurrence of the same query, while the y-
axis shows the number of queries falling into each class on
the x-axis. For each class, we show two bars, one for queries
issued twice by the same user, and one for queries issued
by two different users. We observe that there is significant
burstiness, and that most of it arises from the same user
reissuing a query. In particular, assuming an arrival rate of
132 queries per minute (the average rate over the trace), we
can see that most queries are reissued within a few minutes
to at most an hour. Also, almost all queries reissued within
about a day in our query log are by the same user.

Thus, if we could add a small cache to temporarily hold
query results for at least a few minutes, this would allow us
to capture many repeats of queries that occur only a few
times. Actually, this was one of the main motivations for the
SDC algorithm in [7]. In the following, we present another
variation of this idea that results in additional benefits over
SDC and its weighted variant from the previous subsection.

The basic idea underlying hybrid algorithms can be de-
scribed as follows. The cache space is partitioned and each
partition is administered by a different caching policy. For
example, in SDC,; a small fraction of the space, usually 10%
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Figure 4: Burstiness in the AOL query log for queries
occurring exactly twice.

to 30%, is ruled according to LRU, while the rest is used to
statically store the most frequent queries. In this way, the
burstiness is captured by the LRU part of the cache. The re-
sults in [7] showed that SDC outperforms other pure (single
policy) caching algorithms in terms of hit ratio. (Note that a
hybrid algorithm could also dynamically change the division
of space between policies, but we did not find any benefit in
this for result caching.)

We now further generalize SDC for the weighted case as
follows: Assume two caching policies A and B are available,
and that the total space is divided between A and B in a
fixed way. Each policy assigns a score to each query (e.g.,
time since last occurrence for LRU); this means that each
cached query is associated with two scores, one for each pol-
icy. After executing a query, we attempt to insert it into
either cache. When we evict an item from one cache, say the
cache associated with A, we select the lowest scoring item ac-
cording to policy A. However, before throwing the item out,
we first attempt to insert it into the other cache. If the item
has a high enough score according to policy B, this will result
in the eviction of another item from cache B. In principle,
this could continue for a number of steps, but eventually an
item is evicted, and this usually happens after at most a few
steps.

We now evaluate the performance of two hybrid approaches,
one combining LRU with LFU_w (Hybrid1), and one combin-
ing Landlord and LFU_w (Hybrid2), under this framework.
We found that using about 80% of the space for LFU_w gave
the best results overall. In Figure 5, we show the results for
cost saving. We observe visible improvements over SDC_w,
the weighted version of SDC from the previous subsection,
with Hybrid2 obtaining the best performance. We note here
that the two new hybrids are more dynamic in that queries
can enter the (usually fairly static) LEU_w cache after spend-
ing some time in the other cache, and that checking items
against both policies appears to have benefits over running
two completely independent caches.

4.3 Estimation Corrector

Recall the setup of the result caching problem: Given
our observation of past query occurrences, how do we de-
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cide which query result to remove from cache? To make
this decision, we need a good estimate of the probability of
reoccurrence of a query z, called Pr(xz). Assuming stable
probabilities, a simple estimate is to take the current value
of the frequency of a particular query divided by the total
number of queries seen so far. In fact, this is the underlying
idea of LFU. As we will argue, for certain cases, this is not a
good estimate. In the following we discuss the problem of es-
timating probabilities of query reoccurrences given a typical
highly skewed query distribution.

As shown in Section 3, the query log is following a Zipf-
based distribution where a small portion of queries have a
high frequency but most queries have a fairly small probabil-
ity of occurring. In such a case the frequency of past occur-
rences by itself does not provide the best estimate for future
occurrences. In particular, one occurrence of a query may
mean much less than two occurrences. For example, suppose
lottery tickets are sold according to a Zipfian distribution
such that a few people buy a lot of tickets but many people
buy only one or two tickets. Kach player buys the same num-
ber of tickets each week, and each week there is one winner.
We observe the winners of the lottery over many weeks, and
have to guess how many tickets they bought (which is propor-
tional to the probability of them winning in future rounds).
People who buy few tickets may win once (because say 50%
of tickets are sold to people who buy only one ticket) but
will very rarely win twice. So if we observe the same person
winning twice, this would indicate they likely bought more
than twice as many tickets as a person winning once. To
apply a similar idea to our case, if a query occurs only once,
it is often a very rare query from the long tail of the query
distribution. It could be due to a typo by a user, or due to a
combination of rare query terms. When a query occurs twice,
on the other hand, its chance of reoccurrence might be more
than twice as high. This idea is of course closely related to
smoothing techniques in language modeling, see, e.g., [6].

We consider three different ways to get a more precise es-
timate of the probability of a query reoccurring in the fu-
ture given its past occurrences: (1) an approach based on
the Good-Turing method, (2) an approach based on a formal
analysis of Zipfian distributions, and (3) a heuristic approach

that simply applies a set of weights derived from an actual
query trace (but which subsumes the other approaches).

Our first method is motivated by the Good-Turing estima-
tor [6], often used in the context of smoothing techniques for
language modeling, but applied here to result caching. The
basic Good-Turing estimator for the likelihood of an occur-
rence in the next step can be stated as:

_Nat+1 E(N:+1)
ST E(N,)

Pry

where, in our case, z is the query and N, is the number of
times query x has occurred so far. 1" is the number of queries
observed thusfar, and F/(n) is the number of different queries
that have occurred exactly n times.

Our second method is based on the analysis of a Zipfian
probability distribution to estimate the likelihood of a query
reoccurring. We assume a sequence of events {ui,...,uq}
that is generated following a Zipfian distribution. Given that
query z has occurred k times in the past, Pr, can be esti-

mated as:
d
Pro=3 (pii; B(p“h”“)), 1)
Y B, k)
1

j=

where p; is the probability of choosing w;, and B(pi, h, k) =
(Z)pf (1 — pi))"=*. For more details, see the Appendix.

An alternative to the above two approaches is to derive a
penalty function g(f.) experimentally from a query log used
as a training set. This penalty function is then multiplied
with the naive estimate (number of past occurrences over
the number of observed queries) to get a better estimate. In
fact, for larger values of fa, say f. > 20, g() is very close to
1.0 since the naive estimate is quite precise. Thus, we only
need to determine a small table of penalty values for at most
20 values of f,. To do this, we performed a simple search
procedure using a query trace to derive the optimal setting
of the values g(f.), using the formally derived numbers from
the second method as starting points. In fact, we found this
approach to be more flexible in practice, as real query logs are
not accurately modeled by a clean mathematical distribution.
It also slightly outperformed the other two methods and is
thus used in our experiments.

We note that the discussion in this subsection is only rele-
vant for the case of weighted caching. For unweighted caching
problems, adding any of the above correction mechanisms
would have no impact on cache behavior, as long as the prob-
ability of a reoccurrence is monotonically increasing with the
number of past ccurrences. However, this is different for
weighted caching problems, e.g., when deciding whether to
cache a frequently seen query with low cost, or a rarely seen
query with high cost.

In Figure 6, we show results comparing the best of the
previous algorithms to versions that apply experimentally
determined penalty factors g(). Overall, the new versions
outperform the previous best versions by a moderate but
visible amount.

5. FEATURE-BASED CACHING

In this section, we introduce feature-based cache eviction
policies for result caching, and also for the related problem of
list caching. The basic idea is that search engine query logs
contain a lot of features beyond the previous occurrences of
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Figure 6: Cost reduction of the caching algorithms
by adding a penalty factor g. From top to bot-
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a query that can be used to make caching decisions, and that
such features are best incorporated into eviction policies via
data analysis and machine-learning techniques rather than
the design of explicit algorithms. This section consists of
three parts. First, we discuss the basic idea and define ten
features that we considered for result caching. Then we de-
scribe the approach that we used to derive eviction policies
from these features. Finally, Subsection 5.3.1 presents ex-
perimental results for result caching, and Subsection 5.3.2
presents results for list caching.

5.1 Features

In much of the caching literature, including previous work
on result caching in search engines, a workload is modeled
as a sequence of integers where each integer identifies an
object that is accessed in a given step. This gives a sim-
ple framework in which to design and analyze caching al-
gorithms such as LRU or LFU, but it also obscures many
application-dependent properties of the workload that might
lead to better caching decisions. For example, simply rep-
resenting each query in a search query log as an ID means
that we can look at previous occurrences of exactly the same
query to make caching decisions, but we cannot look at other
potentially relevant properties such as occurrences of other
queries that are similar to this query (e.g., queries that are
a superset of our query), whether the query contains a very
rare term, or even just the number of terms in our query.
However, it is known that single-term queries are more likely
to occur again than longer queries [15], and thus to optimize
hit ratio it might be a good idea to give preference to shorter
queries in caching decisions. In general, search engine query
logs have a lot of interesting structure that can be mined for
various purposes such as improved ranking or ad placement,
and it seems reasonable to assume that this structure could
also be exploited for better caching decisions.

To prove this conjecture, we first have to define a set of
suitable features in the query trace that is likely to be use-
ful in caching decisions. The set should certainly contain
standard features such as the number of times a query has
previously occurred and the time since the last occurrence,
but also new features not used by traditional caching algo-
rithms. After some exploration, we focused on the following

ten features F1 to F10 that are considered for each query:

e 1. the number of steps since the last occurrence of
this query. This feature is the basis for LRU.

e '2: the number of steps between the last two occur-
rences of this query, if a query has happened at least
twice. Otherwise, F2 is set to unavailable. (Similarly,
we could also add the number of steps between the
second- and third-last occurrences as another feature.)

F3: the query frequency up to this point. This is the
feature underlying LFU.

F4: the query length, defined as the number of terms
in the query.

F5: the length of the shortest inverted index list of any
term in the query. This tests whether the query has a
term that is rare in the collection.

F6: the frequency of the rarest query term in the log.

e F'7: the number of distinct users who issue this query.
If user 1Ds are not available, IP addresses can be used
instead.

F8: the gap between the last two occurrences of the
query that were issued by the most recently active user.
As we saw in Section 4, a large portion of those queries
that occur only two or three times are issued by the
same user, and those queries are usually very close to
each other in the query log.

e ['9: the average number of clicks for the query. Intu-
itively, queries with more clicks might have a higher
probability of occurring again. This is one but not the
only way to harvest information from user clicks. We
could also model the distribution of clicks in more de-
tail, or use clicks to guess whether a query is naviga-
tional, using the approach in [11].

F10: the frequency of the rarest pair of query terms in
the query log. This measures if the query contains a
pair that is only very rarely used together in queries.

It is easy to think about many additional features, but we
found the above selection to be most promising. The features
can be grouped into two categories: Traditional features (F1
to F3) that are used by many well-known caching algorithms,
and non-traditional features (F4 to F10) that are specific to
our application domain and that would be obscured if we
only treat queries as objects with a unique ID.

In order to understand the usefulness of these features, we
first looked at their information gain, as commonly studied
in machine learning. Essentially, we want to check how useful
each feature is in predicting reoccurrence of a query within a
limited number of steps. The details of this experiment are
a little tricky (and omitted due to space constraints), as we
first had to determine appropriate threshold values to get a
binary classification for each target cache size.

Features F1 F2 F3 F4 F5

Cache Size=100k | 0.247 | 0.029 | 0.114 | 0.017 | 0.001
Cache Size=200k | 0.213 | 0.018 | 0.102 | 0.009 | 0.011
Cache Size=400k | 0.287 | 0.009 | 0.098 | 0.008 [ 0.029

Features F6 K7 F8 F9 F10

Cache Size=100k | 0.093 | 0.192 | 0.023 [ 0.001 | 0.076
Cache Size=200k | 0.056 | 0.101 | 0.003 [ 0.012 | 0.089
Cache Size=400k | 0.078 | 0.106 | 0.009 [ 0.010 | 0.098

Table 1: Information Gain for Different Features and
Cache Sizes.



The measured information gain scores for the features are
shown in Table 1, for three different cache sizes. We can
easily see that, in general, F1, F3, and F7 have the highest
information gain, which means they should be very useful
features when deciding which query should be evicted from
cache. However, the remaining features also offer benefits.
Not surprisingly, some of the features are more promising for
smaller cache sizes, while other are best for larger ones.

5.2 Caching Mechanism

We now describe how to implement a cache eviction policy
based on the above features. There are two aspects to this
problem: How to use the features to predict the likelihood of
a reoccurrence of a query, and how to efficiently identify the
query with the smallest such likelihood.

For the first aspect, we started out with what may look
like a very crude approach: We split the range of each of the
features into a number of bins, in our case 8, so that each
possible value falls into one of the bins. (For example, for F'3,
the number of previous occurrences of the query, we might
have bins for '3 =1, F'3 = 2, F3 = 3,4, F3 =5,6,7,8,
etc.) Thus, at any point of time, any query in the cache
belongs to one of 8'° buckets based on its current feature
values. For each bucket, we also keep some historical statis-
tics, in particular the total number of query instances that
we have observed in this bucket, and how often these queries
then reoccurred within a short period of time in the input
sequence. Thus, for each bucket we essentially maintain a
simple estimate of the likelihood of reoccurrence for queries
that fall into the bucket; we then evict a query in the cache
that has the lowest such likelihood (i.e., that belongs to the
bucket with the lowest such likelihood).

A few more remarks about this approach, which may seem
extremely naive from a machine-learning perspective. First,
many of the buckets are empty and in fact we get by with
far fewer than 8'° buckets, requiring only a few MB of to-
tal memory. (If space becomes a problem, we can use fewer
buckets in areas with sparse data.) In contrast, each cached
query result has a size of a few KB, and thus a cache for
100000 queries takes a few hundred MB. Second, we tried
employing smarter approaches for exploiting the features, in-
cluding interpolation between buckets and logistic regression
on the feature values, but we observed at most very minor
additional gains. Thus, we decided to stay with the simple
bucket approach in our implementation. (In fact, this may
be another example where data size beats algorithmic tech-
nique — for smaller query traces we would expect to see more
improvements by using smarter techniques.)

Given this structure, we now have to implement an effi-
cient mechanism for cache eviction. First, we note that any
statistics needed in features F'5, 6, and F'10 are precomputed
based on a sample of data; thus, e.g., the frequencies of dif-
ferent terms in the query trace used in F6 are precomputed
from a sample of queries. In general, the features can be split
into three classes: (1) Features such as F2, F3, F7, F8, and
F9 that can only change their values when a query reoccurs;
in that case, we can update the feature values of a query in
the cache when it reoccurs and then move the query to its
new bucket. (2) Features that are determined by the query
itself based on a precomputation and that never change dur-
ing the algorithm, e.g., F4, F5, F6, and F10. (3) Features,
in our case only F1, that change as time proceeds. We can
efficiently deal with F'1 by maintaining a data structure on
the time of last occurrence of a query, and moving queries to

new buckets whenever they would have to move to a new bin
according to F1. This means that apart from movements to
new buckets that are triggered by reoccurrences of a query,
a query can be moved at most 7 times to a new bucket along
the F1 axis. Overall, this eviction mechanism can be imple-
mented to run in O(log(n)) steps per query in the workload
using standard data structure, and is highly efficient in terms
of actual processing overhead.

5.3 Experimental Results

In this section, we present experimental results for our
feature-based caching approach, and compare it to existing
algorithms. We first consider result caching in Section 5.3.1,
and later extend the approach to list caching in Section 5.3.2.
We first consider hit ratio, and then further below we look
at cost savings in the weighted case. In all experiments, we
used the first 10 million queries to initialize the statistics for
each bucket. Then the following 5 million queries are used
to warm up the cache, and the remaining 2.7 million queries
are used to evaluate the actual caching performance. In gen-
eral, of course, our feature-based approach benefits from the
availability of sufficiently large query logs that can be used
to derive statistics.

5.3.1 Result caching

In our first experiment, we compare a feature-based ap-
proach using only F1, F2, and F3 with existing algorithms,
in particular SDC, LRU, LFU, and a variant of LFU that
keeps a complete history of query occurrences. (This variant
of LFU is used since basic LFU is at a disadvantage compared
to SDC and our feature-based methods, which use larger ta-
bles of statistics). For the non-feature based algorithms, we
used the first 15 million queries to initialize the cache, and
then compared results on the remaining 2.7 million queries.
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Figure 7: Hit ratios for feature-based caching with
F1, F2, and F3, and for four existing algorithms.
From top to bottom, the six lines shown are the
hit ratios for the optimal clairvoyant algorithm, the
feature-based method, SDC, LFU with complete his-
tory and LRU (overlapping), and basic LFU.

From the results in Figure 7 we see that the feature-based
approach using only F1, F2, and F3 already slightly but con-
sistently outperforms SDC, the best previous method for hit
ratio. Note that F1, F2, and F3 are all traditional features,
but there is no reason to believe that any of the previously
known algorithms (such as SDC) exploits these features in



the best possible way. So even for this limited set of fea-
tures, the results suggest that maybe learning from statistics
is preferable to trying to design better explicit algorithms.

Next, we ran experiments with all ten features. The results
are shown in Figure 8. We see that by using all ten features,
we now get very substantial improvements over SDC, and are
in fact able to significantly narrow the gap to the optimal off-
line method. The best method on average outperforms SDC
by about 4%, which is a fairly significant improvement given
the amount of previous work on result caching.
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Figure 8: Hit ratios for feature-based caching with
different combinations of features. From top to bot-
tom, the five lines shown are the optimal clairvoyant
algorithm, F1-F10, F1-F5, F1-F3, and SDC.

Next, we consider the weighted case, where the goal is to
maximize the cost savings. To get a weighted algorithm using
features, we simple multiply the cost of the query with our
estimate of its likelihood of reoccurrence in the near future.
As shown in Figure 9, our weighted feature-based method
again outperforms all other methods, though by a smaller
amount than in the case of hit ratio. Some improvements
on this might be possible in future work, by introducing new
features that are more relevant to the weighted case.
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Figure 9: Results for weighted caching. From top
to bottom, the six lines shown are the hit ratios for
our best off-line algorithm, F1-F10, the best hybrid
from Section 4.3 and F1-F3 (overlapping), SDC_w,
and Landlord.

5.3.2 List Caching

Motivated by the success of our approach for result caching,
we decided to also look at the related problem of list caching,
i.e., the caching of inverted lists in main memory that is done
at a lower level in the search engine. In previous work [1, 20],
the best results for list caching were obtained by using either
a fixed assignment of lists to the cache, or versions of LFU
with additional memory. (In practice, the LFU version re-
sults in an almost static assignment, as lists tend to stay in
the cache forever after being inserted.) However, there is still
a significant performance gap between these methods and the
upper bound given by the optimal off-line approach.

We note here that list caching is performed after doing
result caching on the query log; this removes most of the
short-term burstiness from the query stream. Also, we cau-
tion that a static or LFU method may not be appropriate
for global search engines that observe a different mix of lan-
guages during different times of the day — in this case, a
dynamic approach that changes the mix of cached lists dur-
ing the day may be better. However, most publicly available
traces are focused on a single search market. (The AOL trace
used here is limited to the US market.) We defined the fol-
lowing features for each inverted list (and associated term)
in the index:

e ['1-F3: same as before, but defined on a per-term rather
than per-query basis.

e ['4: the number of distinct queries containing this term,
divided by the total number of queries containing it.

e ['5: the frequency of the most popular query containing
this term.

e ['6: the number of times this term has occurred as a
single-term query.

e ['7: the number of times this term has occurred as part
of a two-term query.

e F'8: the number of distinct users (or IP addresses) that
have issued queries containing this term.

In Figure 10 we show the results for feature-based list
caching. The objective in this case is to maximize the amount
of data that is served from cache rather than disk. (Alterna-
tively, we could also model disk cost savings more precisely
by taking seek times into account; the results are very sim-
ilar on our data.) We see that the feature-based approach
outperforms all other methods by several percent, resulting
in significant savings in disk traffic.

6. CONCLUDING REMARKS

In this paper, we have proposed and evaluated improved
techniques for result caching in web search engines. In the
first part of our work, we studied the weighted case, where
our goal is to maximize cost savings instead of hit ratio. We
described improved hybrid algorithms for this case that are
particularly suitable for Zipf-based query distributions. In
the second part of our work we proposed a feature-based
approach to caching that achieves very significant improve-
ments in hit ratios. Interestingly, the approach also provides
improved results for the related problem of list caching.

Several interesting open problems remain. We plan to ex-
periment with other features in query logs that might be
helpful in predicting the likelihood of reoccurrence of a query,
and that could lead to additional gains in hit ratio. A more
formal analysis of burstiness in query logs, maybe starting
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Figure 10: Byte hit ratios for the feature-based list
caching algorithm. From top to bottom, the four
lines shown are the hit ratios for our best off-line
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from Kleinberg’s model in [10], would also be of interest. Fi-
nally, future work on result caching should also look at the
need for periodically refreshing cached results. It can be ar-
gued that in currently deployed search engines, hit ratios are
limited much more by the need for fresh query results than
by cache size constraints. To our knowledge, this issue has
not been addressed by any published work.
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APPENDI X
Zipf-based Probability Analysis

We now show our derivation of Equation (1) in Section 4.3. We assume
a sequence of events {u1, ..., uq} that is generated following a Zipfian
distribution of probabilities. (Note that this is a simplification as this
is not necessarily the same as the observed distribution.) Let p; be
the probability of choosing u;, i.e., p; = i~ °/T where T is > i~ ~
when ¢ = 1,2...,d. We assume that we know the size of the underlying
universe U and the Zipf parameter z. Let X denote the fact that =
has occurred k times. We estimate the probability that an item we
have observed a certain number of times k will reoccur in the next
step:

d
Pr[z occurs in the next step| X.] = Zp,' CPriz = u; | Xi]  (2)
i=1

Using Bayes’ Theorem, we get

Prz = u;]

Priz =wu;| X,] = Brix

Priz— > k|z = u]

(3)

If we pick an item z uniformly at random from all d possible items,

we have Pr[z = u;] = 1/d. Furthermore, using B(pi, h, k) = (k)pf .

(1—pi)" ™" we get:

d
PT[Xk]:%'ZB(p“hﬂk) (4)
i=1

and

Pr(X |z =u;] = B(pi, h, k) (5)

Putting this all together, we get

d
i - B(pi, h, k
Pr [z occurs in the next step | X;,] = Z (%) (6)
i=1
> " B(p;, h. k)
i=1

Thus, if we have observed that an item z has occurred k£ times
in h steps, and knowing d and z but not taking into account any
observations about how many times other items have occurred in these
h steps, the above estimates the likelihood the item will occur again
in the next step, or in any other step.



