
Parallel Processing Lettersc
 World Scienti�c Publishing CompanyPERMUTATION ROUTING AND SORTING ON MESHESWITH ROW AND COLUMN BUSES�TORSTEN SUELyDepartment of Computer ScienceUniversity of Texas at AustinAustin, TX 78712Received July 6, 1994Revised November 15, 1994Communicated by A. SchusterABSTRACTWe study the problems of permutation routing and sorting on several models ofmeshes with �xed and recon�gurable row and column buses. We describe two fastand fairly simple deterministic algorithms for permutation routing on two-dimensionalnetworks, and a more complicated algorithm for multi-dimensional networks. The algo-rithms are obtained by converting two known o�-line routing schemes into deterministicrouting algorithms, and they can be implemented on a variety of di�erent models ofmeshes with buses. We also give a deterministic algorithm for 1{1 sorting whose run-ning time matches that for permutation routing, and another algorithm that matchesthe bisection lower bound on recon�gurable networks of arbitrary constant dimension.Keywords: Parallel Algorithms, Routing, Sorting, Recon�gurable Mesh, Mesh, Buses.1. IntroductionThe mesh-connected array of processors is one of the most thoroughly inves-tigated interconnection schemes for parallel processing. It is of great importancedue to its simple structure and its good performance in practice. Consequently, avariety of algorithmic problems have been analyzed as to their complexity on the-oretical models of the mesh; probably the two most extensively studied problemsare those of routing and sorting. One of the main drawbacks of the mesh is itslarge diameter in comparison to many other networks, such as the hypercube andits bounded-degree variants [1]. An n � n mesh has a radius of n � 1, and henceeven computations that require only a very limited amount of communication, forexample pre�x computations, still require at least n� 1 communication steps.�A preliminary version of this paper was presented at the 8th International Parallel ProcessingSymposium, April 1994.y Supported by the Texas Advanced Research Program under Grant Nos. #003658{480 and#003658{461, and by a Schlumberger Graduate Fellowship.

To remedy this situation, several authors [2, 3, 4] have proposed to augment themesh architecture with high-speed buses that allow fast communication betweenprocessors located in di�erent areas of the mesh. This has resulted in a large bodyof literature on various models of meshes with bus connections, and many importantalgorithmic problems have been studied under these models. Among the mostfrequently studied problems are Maximum [3, 5, 6, 7], Pre�x Sums [4, 6, 8, 9, 10, 11],Selection [4, 11, 12, 13], as well as some problems in image processing and graphtheory [7, 14, 15, 16, 17]. Additional literature can be found in [18].Due to the low communication requirements of the above problems, signi�cantspeed-ups over the standard mesh can be achieved; the exact time complexitiesdepend heavily on the properties of the bus system. For example, the maximumof n2 elements can be computed in time O(lg lgn) on an n � n mesh with a fullyrecon�gurable bus, while the same problem requires �(n1=3) steps on a mesh with�xed row and column buses. In the following, we brie
y describe some of the mainfeatures of the bus system that determine the power of the model.(1) Architecture of the bus system: A bus is called global if it is connected toall processors in the network. A bus that is connected to only a subset ofthe processors is called local. Examples of meshes with one or several globalbuses are given in [3, 4, 5, 7]. Most of the work on local buses has focused onmeshes with row and column buses [6, 11, 17], although other architectureshave been proposed [17, 19].(2) Recon�gurability of the buses: A bus is called recon�gurable if it can bepartitioned into subbuses, such that each subbus can be used as a separate,independent bus. A bus that is not recon�gurable is called �xed.(3) Con
ict resolution for bus access: Most papers assume that the buses havebroadcast capability, that is, a value written on the bus by one processor canbe read by all other processors connected to the bus in the next step. An-other common assumption is that the result is unde�ned if several processorsattempt to write on the same bus in a single step of the computation. Usingthe PRAM terminology, we refer to such a bus as being Concurrent ReadExclusive Write, or CREW for short. There is a close relationship between ashared memory cell in a CREW PRAM and a global bus of the same type [19].Additional features that have been studied include buses with non-unit delay [7, 18],and buses that allow pipelining of messages under certain conditions [20]. Finally,the concept of a mesh with a recon�gurable bus system can also be generalized torecon�gurable networks of arbitrary topology [21].The model of computation assumed in this paper is a mesh with row and columnbuses. We consider both �xed and recon�gurable buses. Of course, all algorithmsdesigned for such a model also run on more powerful models, such as the Poly-morphic Torus [18], the RMESH [7], or the PARBUS [22], whose bus systems canbe recon�gured into row and column buses. On the other hand, it does not seemthat these more powerful models o�er any advantages with respect to permutation

routing and 1{1 sorting, which are primarily restricted by the bisection width ofthe network. Unless explicitly stated otherwise, we assume the buses to be CREW.An alternative way to overcome the diameter restriction of the standard mesh isto augment the network with a sparse system of bidirectional communication linksconnecting processors in di�erent areas of the mesh. Examples for this approachare the Mesh of Trees [1], or the Packed Exponential Connections [23]. It turns outthat many of the algorithms and techniques described in this paper can be adaptedto these classes of networks, and we will point this out in a few instances.1.1. Related ResultsIn this paper, we study the problems of permutation routing and 1{1 sortingon meshes with buses. The routing problem is the problem of rearranging a set ofpackets in a network, such that every packet ends up at the processor speci�ed inits destination address. A routing problem in which each processor is the sourceand destination of at most k packets is called a k{k routing problem. The routingproblem most extensively studied in the literature is the 1{1 routing problem, alsocalled the permutation routing problem. In the 1{1 sorting problem, we assumethat each processor initially holds a single packet, where each packet contains a keydrawn from some totally ordered set. Our goal is to rearrange the packets such thatthe packet with the key of rank i is moved to the processor with index i, for all i.For both permutation routing and 1{1 sorting, at least �(n) steps are required onall proposed variants of meshes with buses, due to bisection width. However, theexact complexity of these problems has only recently been investigated.The study of permutation routing on meshes with buses was initiated by Leungand Shende [24]. They assume a model of computation, hereinafter referred to asthe mesh with �xed buses, that consists of a mesh with �xed row and column busesin addition to the mesh edges. For the one-dimensional case, they obtain a routingalgorithm running in 2n=3 steps, and show a matching lower bound that also extendsto multi-dimensional networks. For the two-dimensional case, Leung and Shendeshow that every permutation can be routed o�-line in n+1 steps. They also describedeterministic algorithms that run in time (1 + �)n+ o(n) and queue size O(1=�) onthe two-dimensional mesh with �xed buses, and in time (7(d�1)=6+�)n+o(n) andqueue size O(�1�d) on d-dimensional networks. (The queue size is the maximumnumber of packets any node has to store during the algorithms.)Rajasekaran and McKendall [25, 26] describe randomized algorithms for routingand sorting on a network in which the mesh edges have been replaced by a globalrecon�gurable bus. This model is essentially the same as the PARBUS, but hasthe additional property that every subbus of length one can be used in the sameway as a bidirectional edge in a standard mesh (that is, a message can be trans-mitted in either direction in a single step). There is an obvious lower bound of n=2steps for permutation routing and sorting in this model, due to bisection width.Rajasekaran and McKendall describe a 3n=4 time deterministic algorithm for per-mutation routing in the one-dimensional case, and a randomized algorithm for thetwo-dimensional case that achieves a running time of (1 + �)n and a queue size of

O(1=�), with high probability. They also give randomized algorithms for sortingwith the same bounds on running time and queue size.While this assumption of bidirectional communication in subbuses of length onemay be technologically feasible, it can also be seen as somewhat unsatisfactory froma theoretical point of view, since it adversely a�ects the simplicity of the model. Inthis context, we point out that many of their algorithms, including the (1+�)n timerouting algorithm, do not make use of this assumption. Similarly, their algorithmsdo not use any bus connections other than those along a single row or column. Thus,in the present paper, we consider a model with recon�gurable row and column buses,and we assume that only one processor can write on a subbus in any single step,regardless of the length of that subbus. In this model, hereinafter referred to asthe mesh with recon�gurable buses, there is a trivial lower bound of n steps forpermutation routing and sorting due to bisection width.Comparing the two di�erent models of meshes with buses described above, weobserve that the mesh with recon�gurable buses can emulate the standard mesh withconstant slowdown by partitioning the buses appropriately. In the case of the meshwith �xed buses, on the other hand, we cannot remove the standard mesh edgeswithout losing the capability of e�ciently performing local communication amonggroups of adjacent processors. In fact, several routing algorithms for such a networkwith �xed buses and no local connections have been proposed by Iwama, Miyano,and Kambayashi [27]. Due to the impossibility of e�cient local communication,their algorithms have a queue size of �(n) in the worst case.Very recently, and independent of our work, Sibeyn, Kaufmann, and Raman [28]have obtained a randomized routing algorithm for the two-dimensional mesh with�xed buses that runs in time 0:78n, and an algorithm for d-dimensional networksthat runs in time (2 � 1=d)n+ o(n). (The exact running time is actually slightlybetter than this bound.) By applying a new \derandomization technique" (in aninformal sense) for routing and sorting on meshes recently described in [29], it ispossible to obtain deterministic algorithms that match the running times of theserandomized algorithms.Sibeyn, Kaufmann, and Raman also show improved lower bounds for routingon meshes with �xed buses. In particular, they show lower bounds of 0:69n and0:72n for the two-dimensional and three-dimensional cases, respectively, and a lowerbound of approximately d�1d n for d-dimensional networks. (The lower bound forthe two-dimensional case was also discovered by Cheung and Lau [30].)In other independent work, Cogolludo and Rajasekaran [31] have given a 17n18 +o(n) time randomized routing algorithm for the two-dimensional mesh with recon-�gurable buses, under the assumption that subbuses of length one can be used asbidirectional edges. They also give an algorithm with running time 2n3 � n64 + o(n)for a model with two unidirectional recon�gurable buses in each row and column.For k{k routing and sorting on d-dimensional networks, there are lower boundsof kn=3 and kn for the mesh with �xed and recon�gurable buses, respectively, dueto bisection width. For the mesh with �xed buses, Rajasekaran [25] and Sibeyn,Kaufmann, and Raman [28] describe randomized algorithms that match the lower

bound, within a lower order additive term. An optimal randomized algorithm for k{k sorting on the mesh with recon�gurable buses can be obtained by a straightforwardimplementation of the algorithm for the standard mesh given in [32]. Very recentwork by Kaufmann, Sibeyn, and Suel [29] and Kunde [33] implies that this boundcan also be matched deterministically.1.2. Overview of the PaperIn this paper, we study the problems of permutation routing and 1{1 sortingon meshes with row and column buses. We consider several variants of this model,with both �xed and recon�gurable buses.In the �rst part of the paper, we describe deterministic algorithms for permu-tation routing. We give two fairly simple algorithms for the two-dimensional casethat achieve a running time of n+o(n) and very small queue size, and an algorithmfor d-dimensional networks, d � 3, with a running time of (2 � 1=d)n + o(n) anda queue size of two. An interesting feature of our algorithms is that they can bee�ciently implemented on a variety of di�erent classes of networks. The algorithmsare obtained with a new technique that allows us to convert certain o�-line routingschemes into deterministic on-line algorithms. We believe that this technique mayhave further applications.In the second part of the paper, we present two algorithms for 1{1 sorting. The�rst algorithm is based on a deterministic sampling technique, and its running timematches that for permutation routing, within a lower order additive term. Thesecond algorithm is based on a variation of Leighton's Columnsort [34], and runs intime n+ o(n) on meshes with recon�gurable buses of arbitrary constant dimension,thus nearly matching the bisection lower bound of n steps.2. Permutation RoutingIn this section, we describe a technique that allows us to convert certain o�-linerouting schemes into deterministic routing algorithms. We then use this techniqueto design new algorithms for permutation routing on meshes with buses. We beginby giving an alternative description of a simple n + 1 step o�-line routing schemeproposed by Leung and Shende [24]. In Subsection 2.2 we show how this o�-linerouting scheme can be used to obtain a fast and fairly simple deterministic rout-ing algorithm for two-dimensional meshes with buses. Subsection 2.3 applies thetechnique to multi-dimensional networks. Finally, Subsection 2.4 gives another al-gorithm for the two-dimensional case.2.1. O�-line RoutingIn the o�-line routing scheme of Leung and Shende [24], every packet is routedto its destination by �rst routing it on a column bus to its destination row, andthen routing it on a row bus to its destination column in the following step. Thus,the algorithm does not use the mesh edges at all. Leung and Shende show that, forany input permutation, a schedule for the above routing scheme can be computed

in time O(n7=2) by computing a sequence of n maximum matchings. Once theschedule has been computed, it can be executed in n+ 1 steps.Now consider the following interpretation of the above scheduling problem. Thecolumns of the mesh are interpreted as processes P0; : : : ; Pn�1. Every process Pihas exclusive ownership of its column bus, and has to route the n packets initiallylocated in its column. To do so, a process needs to use the row buses, which areinterpreted as resources R0; : : : ; Rn�1. Before a packet can be transmitted on arow bus to its �nal destination, it has to be routed within its column to the correctrow; this can be done in the preceding step using the column bus. If k packets incolumn i have a destination in row j, then process Pi needs to access resource Rjfor k time steps. These k steps can be scheduled in any arbitrary order, providedthat in any step, each resource is accessed by at most one process, and each processuses at most one resource. The problem of �nding a minimum time schedule thatsatis�es these demands is known as the Open Shop Scheduling Problem [35].For 0 � i; j < n, let Di;j, the demand of process Pi for resource Rj, be thenumber of packets in column i that have a destination in row j. Note thatn�1Xi=0 Di;j = n (1)holds for all j, since every row is the destination of n packets, andn�1Xj=0Di;j = n (2)holds for all i, since every column is the origin of n packets. A simple algorithm for�nding a minimumtime schedule computes a sequence of maximummatchings in thebipartite graph G = (U; V;E) de�ned by U = fP0; : : : ; Pn�1g, V = fR0; : : : ; Rn�1g,and E = f(Pi; Rj) j Di;j > 0g. More precisely, the algorithm �rst computes a max-imum matching M of G, and schedules each process with its matched resource forDmin time steps, where Dmin = minfDi;j j (Pi; Rj) 2Mg. Next, we subtract Dminfrom all Di;j with (Pi; Rj) 2M , construct a new bipartite graph G0 correspondingto the new values of the Di;j , and compute a new matching M 0. This procedureis repeated until all Di;j are equal to zero. Using Hall's Matching Theorem, it canbe shown that Equations (1) and (2) guarantee that the resulting schedule has alength of n. This implies that at most n matchings have to be computed, sinceevery matching increases the length of the schedule by at least one.A maximum matching on a bipartite graph with 2n vertices can be computedin time O(n5=2) using the algorithm of Hopcroft and Karp [36]. Thus, the entireschedule can be computed in timeO(n7=2). In the following, we show how to convertthis o�-line algorithm into an on-line algorithm that runs in time n+ o(n).2.2. Routing on Two-Dimensional NetworksIn order to get a running time of n+ o(n), we modify the above algorithm suchthat the routing schedule can be computed in time o(n). Executing the computed

schedule then takes another n + o(n) steps. The key idea in our construction isto reduce the size of the scheduling problem, and thus the size and number ofthe matchings that have to be computed. Informally speaking, this is done bypartitioning the mesh into a smaller number of processes and resources, and bytreating sets of packets with similar sources and destinations as if they were asingle packet. This is described more formally in the following.We partition the network into blocks Bi, 0 � i < n2�2�, of size n� � n�, where� is some constant that is smaller, but su�ciently close to 1 (for example, � = 0:9).We now interpret each of the n1�� columns of blocks as a process, and each of then1�� rows of blocks as a resource. Each process Pi, 0 � i < n1��, has exclusiveownership of its n� column buses, while each resource Rj, 0 � j < n1��, consistsof n� row buses. At most one process is allowed to access a single resource at anytime. Thus, a process that has exclusive access to a resource can transmit up to n�packets across the row buses of the resource in a single step.We now have to arrange the packets inside the processes in such a way that wecan make optimal use of this new con�guration. To do so we have to slightly relaxthe goal of the routing schedule that has to be computed. Rather than requiring eachpacket to be at its �nal destination after execution of the schedule, we are contentwith routing each packet to some position in the n� � n� block that contains itsdestination. After completion of the schedule, we can then bring the packets totheir �nal destinations by routing locally inside each block.To arrange the packets for the routing schedule, we sort the blocks into row-major order, where the packets are sorted by their destination blocks. We say thata row of a block Bi is clean if all its packets have the same destination block.Otherwise, we say that the row is dirty. All n� packets in a clean row of a block aretransmitted across the row buses to their common destination block in a single step,after they have been routed to the correct row of blocks in the preceding step. If arow of a block is dirty, then the packets in the row are transmitted across the rowbuses in r separate steps, where r is the number of distinct destination blocks thatoccur among the packets in the row. In other words, such a row is treated in thesame way as r separate rows; this increases the number of steps required to routethis row by r � 1. Since there are only n2�2� blocks, this increases the number ofsteps required to route the packets of a single block across the row buses by at mostn2�2� � 1. Thus, the number of steps required to route all packets of a process Piacross the row buses is increased by less than n3�3�. Hence, if Di;j denotes thenumber of steps that process Pi needs resource Rj, thenn1���1Xj=0 Di;j < n+ n3�3� (3)holds for all processes Pi. Correspondingly, it can shown thatn1���1Xi=0 Di;j < n+ n3�3� (4)

holds for all resources Rj, since for any two blocks Bk; Bl, there can be at mosttwo dirty rows in Bk that contain packets destined for Bl. Equations (3) and (4)guarantee the existence of a schedule of length at most n+ n3�3� = n + o(n) thatroutes every packet to its destination block.It remains to show that such a schedule can be computed in time o(n). Since weonly have n1�� processes and resources, the graph G that is used in the constructionof the schedule has only 2n1�� vertices. Hence, a maximummatching in this graphcan be computed in time O ��n1���5=2�. For each matching that is computed, atleast one edge is removed from the graph. This implies that at most n2�2� matchingshave to be computed, and the total time to compute the schedule sequentially isbounded by O ��n1���9=2� = o(n). In order to implement this computation on amesh with buses, all the data needed to construct the graph G is routed on thebuses to a small area, say in the center of the mesh, where the schedule is computedand then broadcast to all blocks. It su�ces if each block contributes the numbersmi, 0 � i < n2�2�, where mi is de�ned as the number of elements in the block thatare destined to block Bi; this can be done in time o(n). We do not elaborate anyfurther on the implementation of the maximum matching algorithm on the mesh.Since we do not need an algorithm that is faster than the sequential one, this is aneasy task. (In fact, we could even a�ord a straightforward simulation of a turingmachine algorithm on the mesh; this could be done with a queue size of one.) Allin all, we obtain the following algorithm:(1) Partition the mesh into blocks of size n��n�. Sort the packets in each blockinto row-major order by destination blocks. This takes O(n�) steps.(2) In each block, compute the mi, 0 � i < n2�2� (mi was de�ned as the numberof packets with destination block Bi). Send the mi to a block of side lengthn2�2� in the center of the mesh. This takes O(n2�2�) steps.(3) Compute the schedule and broadcast it to all blocks of the mesh. This takesO �(n1��)9=2� steps.(4) Execute the computed schedule of length n+ n3�3�.(5) Perform local routing inside each block to bring the packets to their �naldestinations. This takes time O(n�).It remains to show that the algorithm can be implemented with a small queuesize. Consider any destination block Bi, and recall that up to n� packets enterBi across the row buses in a single step. Due to the sorting in Step (1) of thealgorithm, every block in the mesh can have at most two dirty rows that containelements with destination block Bi. This implies that Bi only receives packets inat most n� + 2n2�2� steps of the schedule. If we require that the packets arrivingin the ith such step are stored by the processors in the (i mod n�)th column of Bi,then most processors in Bi only get a single packet, while up to 2n2�� processorsreceive two packets. In addition, every processor in Bi can contain one packet with

source in Bi that has not been sent out yet. Finally, some of the processors in Bi,say those on the diagonal of the block, also have to store the packets that can enterthe block across the column buses in each step, and that are then routed on therow buses in the following step. This gives a total queue size of four.We can decrease the queue size to three by assuming that the elements in thediagonal of Bi do not receive any of the packets entering the block across the rowbuses. To get a queue size of two, we require that every destination block stopsaccepting new packets from the row buses after it has received n� � 1 batches ofpackets. It can be shown that every block is still able to deliver the vast majorityof its packets to their destination blocks. We can now rearrange the packets in eachblock, and then deliver the remaining packets; the details of this construction areomitted. This establishes the following result.Theorem 1 There exists a deterministic algorithm for permutation routing on then� n mesh with buses that runs in time n+ o(n) with a queue size of two.The above algorithm does not assume any particular model of the mesh withrow and column buses, and it can be e�ciently implemented on a variety of dif-ferent classes of networks. For the mesh with �xed buses, this improves upon thebest previously known deterministic algorithm [24] in both running time and queuesize. As an example, the algorithm in [24] requires a queue size of more than 200to obtain a running time of 1:2n. (However, the algorithm is not as fast as the in-dependently discovered algorithms of Sibeyn, Kaufmann, and Raman [28].) On themesh with recon�gurable buses, our algorithm improves upon the best previouslyknown randomized algorithm of Rajasekaran and McKendall [26], and matches thebisection lower bound, within a lower order additive term.The algorithm can also be easily adapted to the Polymorphic Torus describedin [18]. (This network is essentially a mesh with recon�gurable row and columnbuses and wrap-around connections.) The resulting algorithm routes any permuta-tion in time n=2 + o(n), and thus nearly matches the lower bound of n=2.For another example, consider a model of the mesh with �xed buses in whichthe buses have a non-unit propagation delay �(n). It was observed by Cheung andLau [30] that, for any non-constant delay function �, routing takes time 2n�o(n) inthis model, assuming that no pipelining is allowed on the buses. However, if we liftthis restriction and allow a processor that sends a packet on the bus to send anotherpacket in the next step, then we can route in time n+o(n), for any � = o(n), using avariant of the above algorithm. (As a corollary, this also gives an n+o(n) algorithmfor permutation routing on the Mesh of Trees [1].)The above result shows that even a fairly simple algorithm on the mesh withbuses can achieve a speed-up by a factor of two over meshes without buses. More-over, our algorithm has a queue size of two. In this context, we point out thatthe 3n� 3 step o�-line scheme for routing on the standard mesh described by An-nexstein and Baumslag [37], as well as the 3n+ o(n) sorting algorithm of Schnorrand Shamir [38], achieve a queue size of one because two packets can be exchangedacross an edge in a single step. Since we do not allow two arbitrary processors con-nected to a common bus to exchange two packets in a single step, it seems di�cult

to design any algorithm with queue size one that uses the buses to transmit packets.An even greater speed-up over the standard mesh can be achieved for certainrestricted classes of permutations. Consider a partial permutation with only a smallnumber of packets (say, at most �n2). In the case of the standard mesh, this problemstill requires a running time of 2n� 2 in the worst case. On the mesh with buses,our only restriction is the bisection bound, and hence we could hope for a speed-upof up to 1=� over full permutation routing. The above algorithm can be adapted insuch a way that it achieves this bound for any constant �, provided that the sourcesand destinations of the packets are approximately evenly distributed over the mesh.In the following, a partial permutation with no more than �n2 packets is calledan �-permutation. We say that an �-permutation is �-approximate if every m �mblock of the mesh is the source and destination of at most �m2 + � packets, for allm with 1 � m � n. Then the following holds for any constant � > 0.Theorem 2 For any � = o(n), there exists a deterministic algorithm that routesevery �-approximate �-permutation in time �n+ o(n) with a queue size of 2.2.3. Routing on Multi-Dimensional NetworksThe ideas from the previous subsection can also be applied to multi-dimensionalnetworks. In this subsection, we outline an algorithm for d-dimensionalmeshes withbuses that runs in time (2 � 1=d)n + o(n) with queue size two. A more detaileddescription of the algorithm can be found in [39].Our algorithm is based on a well-known scheme for o�-line routing on d-di-mensional meshes described in [37]. The routing scheme consists of 2d� 1 phases.In phase i, 1 � i � d�1, each packet is routed along dimension i to an appropriatelychosen intermediate location. In phase i, d � i � 2d � 1, each packet is greedilyrouted along dimension 2d� i. Each phase involves a collection of routing problemson linear arrays of length n, and thus takes at most n steps. Hence, the entirerouting takes (2d� 1)n steps on the standard mesh.To route a given permutation with the above routing scheme, it is necessary todetermine appropriate choices for the intermediate locations assumed by the packetsin the �rst d� 1 phases. The existence of such intermediate locations is implied byHall's Matching Theorem, and they can be computed by constructing a sequenceof perfect matchings in a graph; the details of this construction can be derivedfrom Section 1.7.5 of [1]. Faster algorithms for computing appropriate intermediatelocations are described in [40]. For our purposes, it su�ces that the running timeof these computations is polynomial in nd, the number of packets in the network.To convert the above o�-line routing scheme into an on-line algorithm, we intro-duce the notion of a super-packet. Informally speaking, a super-packet consists of acollection of packets that have similar sources and destinations, and that move inlock step. By combining a large number of packets into a single super-packet, we candecrease the number of packets in the network in such a way that the intermediatelocations can be computed in time o(n).The resulting on-line algorithm with running time (2d� 1)n+ o(n) is uni-axial,that is, the algorithm communicates only across a single dimension in any given

step of the computation. Thus, we can simultaneously run up to d \copies" of thealgorithm without any contention for the buses. We now partition the set of packetsinto d sets of equal size, such that the sources and destinations of the packets ineach set are approximately evenly distributed over the entire network. As each setcontains only a 1=d fraction of all packets, it can be routed in time (2�1=d)n+o(n)by the above algorithm. Altogether, we can show the following result.Theorem 3 There exists a deterministic algorithm for routing on d-dimensionalmeshes with buses that runs in time (2� 1=d)n+ o(n) with a queue size of two.The exact lower order term depends on the algorithm used in the computa-tion of the intermediate locations of the packets. The algorithm can be e�cientlyimplemented on a variety of multi-dimensional networks. A faster algorithm forrecon�gurable networks is presented in the next section in the context of sorting.2.4. Fast Routing without MatchingWhile the routing algorithms described in the previous subsections are fast froma theoretical point of view, they are certainly not e�cient in practice. One sourceof this ine�ciency are the fairly large lower order terms in the running times. Asan example, choosing � = 9=11 results in a lower order term of O(n9=11) in the caseof the two-dimensional algorithm. As the constant hidden by the big-Oh notationis su�ciently large, this term would dominate the running time of the algorithm onnetworks of realistic size. Another source of ine�ciency is the complicated controlstructure of the algorithm, especially in the computation of the matchings, whichmakes the algorithm unsuitable for any implementation in hardware.In the following, we describe an n+O(n2=3) time algorithm for two-dimensionalnetworks that does not require any computation of matchings, and that uses onlypre�x computations and local sorting as subroutines. Like the algorithm in Sub-section 2.2, it is based on the o�-line algorithm of Leung and Shende, and assumesthat the network is partitioned into blocks of side length n�, for some �. However,instead of computing an optimal schedule for the usage of the buses, the algorithmcomputes an assignment of the row buses to the columns of blocks (and of thecolumn buses to the rows of blocks) that stays �xed throughout most of the algo-rithm. In this assignment, each column of blocks receives in each row of blocks anumber of row buses that is proportional to the number of its packets that have adestination in this row of blocks. (Alternatively, the algorithm can also be seen asan approximate solution for a special case of the Open Shop Scheduling Problem.)Let � = 2=3, let si;j denote the number of packets in the ith column of blockswith destination in the jth row of blocks, and let bi;j = bsi;j=nc. We now assign bi;jrow buses in the jth row of blocks to the ith column of blocks, and bi;j column busesin the ith column of blocks to the jth row of blocks. Note thatPn1=3�1i=0 bi;j � n2=3holds for all j, 0 � j < n1=3, and Pn1=3�1j=0 bi;j � n2=3 holds for all i, 0 � i < n1=3.This assures that the total number of buses assigned in each row of blocks and eachcolumn of blocks does not exceed n2=3. Such an assignment of the row buses tothe columns of blocks, and of the column buses to the rows of blocks, can be easily

computed from the bi;j using pre�x computations.After the assignment of the buses has been computed, we run the followingprotocol for n+1 steps. In each step, bi;j column buses in the ith column of blocksare used to transmit bi;j packets (with destination in the jth row of blocks) to thejth row of blocks. Also, in each step, bi;j row buses in the jth row of blocks areused to transmit bi;j packets to their destination blocks. Thus, all packets routedalong the columns in step k are routed along the rows to their destination blocksin step k + 1.After n + 1 steps of the above protocol, there are at most si;j � n � bi;j < nuntransmitted packets in the ith column of blocks that have a destination in the jthrow of blocks. We can now transmit these remaining packets by setting bi;j = n1=3for all i; j, and running the above protocol for another n2=3+1 steps. Finally, localrouting inside each block can be used to bring every element to its �nal destination.Altogether, we obtain the following algorithm.(1) Partition the mesh into blocks of side length n2=3. Use local sorting and pre�xcomputations to compute the assignment of the buses in time O(n2=3).(2) Run the protocol described above for n + 1 steps.(3) Set bi;j = n1=3 for all i; j, and run the protocol for another n2=3 + 1 steps.(4) Perform local routing inside each block to bring the packets to their �naldestinations. This takes time O(n2=3).Some details have been omitted from this description. Before running the proto-col in Steps (2) and (3), we have to arrange the packets inside the blocks such that,for all i; j, all bi;j row and column buses can be used in each step, and such thatno write con
icts occur. This can be done in time O(n2=3) using local sorting andpre�x computations. In order to achieve a small, constant queue size, we also haveto arrange the packets appropriately upon entering their destination block. Thealgorithm can again be implemented on a variety of di�erent models of meshes withbuses. Of course, it is still too complicated to be of immediate practical interest.However, we believe that the result is interesting in that it indicates that simpleglobal operations such as pre�x computations might be useful in the design of ef-�cient routing algorithms on meshes with buses. In contrast, previously describedalgorithms for these networks use the buses only for the transmission of the packets,and not for the computation of the routing schedule. While a restriction to localcontrol is appropriate for networks that do not provide any fast global communi-cation, it may be that some amount of global control is useful on networks thatsupport fast (but low bandwidth) global primitives such as pre�x computations.3. SortingIn this section we describe two algorithms for sorting on meshes with buses.The �rst algorithm makes use of the routing algorithms from the previous section,and its running time (nearly) matches that for permutation routing. The second

algorithm assumes a mesh with recon�gurable buses, and its running time matchesthe bisection bound for networks of any dimension d = o(n1=3). Thus, this algorithmalso implies an improved bound for routing on recon�gurable networks with d � 3.Recall that in the sorting problem we have to move the element of rank i to theprocessor with index i, for all i. Sorting algorithms on meshes and related networksare usually designed with a particular indexing of the processors in mind. In thefollowing we assume a blocked indexing scheme, in which the network is partitionedinto blocks of side length n�, 2=3 � � < 1, and the processors in each block haveconsecutive indices, while the blocks are indexed in snake-like row-major order.3.1. Sorting by Deterministic SamplingThe �rst algorithm uses a deterministic sampling technique that computes a setof splitters whose ranks are determined to within an additive lower order term. Thisreduces the problem of sorting to that of routing an appropriate permutation, plussome local operations. The structure of the algorithm is as follows.(1) Sort each block of side length n� into row-major order. This takes timeO(n�).(2) Route copies of the elements in the �rst column of each block to a block B ofside length n1��=2 in the center of the mesh. This takes time O(n1��=2).(3) Sort the elements in B and select n� elements of equidistant ranks as splitterelements. This takes time O(n1��=2).(4) Use pre�x computations to compute the exact ranks of the splitters, andbroadcast them to all blocks. This takes time O(n�).(5) It can be shown that the ith splitter element has a rank between (i�1) �n2��and i�n2��. Hence, every element can now determine its rank to within n2�� =O(n2�). Using pre�x computations, we can assign each element a preliminarydestination that is at most one block away from its �nal destination.(6) Route every element to its preliminary destination using the routing algorithmin Subsection 2.2 (or any other routing algorithm).(7) Perform local sorting between consecutive blocks. This takes time O(n�).The computation of the splitters in Steps (1) to (3) is essentially a simpli�edversion of a more sophisticated sampling technique used in the parallel selectionalgorithm of Cole and Yap [41] (see [39] for a more detailed description). Apartfrom Step (6), all steps take time o(n). For � = 2=3, we get the following result.Theorem 4 For all models of meshes with buses, there exists a sorting algorithmwhose running time matches that for permutation routing, within O(n2=3) steps.3.2. Sorting on Meshes with Recon�gurable BusesOur second algorithm is based on a variation of Leighton's Columnsort algo-rithm [34], similar to that described in [29, 33]. The algorithm can be e�ciently

implemented on several classes of meshes with recon�gurable buses, and also on theMesh of Trees [1] and the Packed Exponential Connections [23], but it does not giveimproved bounds on meshes with �xed buses.We start out by describing how a particular class of routing problems, called�-way unshu�e permutations, can be e�ciently solved on a linear array with arecon�gurable bus. We then give the sorting algorithm for networks of arbitrarydimension, and explain how it can be implemented through a sequence of �-wayunshu�e permutations on linear arrays.Formally, for any n; � > 0 with n mod � = 0, the �-way unshu�e permutationon n elements is de�ned as the permutation �� that moves the element in positioni to position �(i) = (i mod �) � n=� + bi=�c, for all i in [n]. We observe that if� = n1�� for some � � 1=2, then a �-way unshu�e permutation on a linear arrayof length n has the e�ect of distributing the elements of each block of length n�evenly over all n1�� blocks of length n�.Due to bisection arguments, at least n=2 steps are required to route an n1��-wayunshu�e permutation on a linear array with a recon�gurable bus. The followingrouting scheme matches this bound, within a lower order term. The routing schemeconsists of two parts. In the �rst part, we route all packets that have to move to theright; in the second part, we route all packets that have to move to the left. Sincethe two parts are symmetric, we only describe how to route the rightgoing packets.The schedule for the rightgoing packets is divided into n1��=2 phases Pi, 0 �i < n1��=2. Phase Pi of the schedule consists of n1�� � 2i subphases Si;j, and eachsubphase takes n2��1 steps. Thus, the entire schedule has a length of(n1��=2)�1Xi=0 �n1�� � 2i� � n2��1 = n2 � 2n2��1 (n1��=2)�1Xi=0 i = n4 + n�2 :Given a partition of the array into n1�� blocks of length n�, we say that blocki sends to block j if all packets in block i that have a destination in block j aretransmitted to this destination. Note that for all i and j, exactly n2��1 packets inblock i have a destination in block j. Under our schedule, the rightgoing packetsare transmitted according to the following rules:(a) In any subphase Si;0, block i sends to block n1�� � i� 1.(b) In any subphase Si;j with 1 � j < n1�� � 2i, block i sends to block i+ j � 1,while block i+ j sends to block n1�� � i � 1.The following sorting algorithm for d-dimensional networks assumes a blockedindexing scheme with blocks of side length n�, � = 2=3. The algorithm alternateslocal sorting and communication steps. Each communication step performs a totalexchange operation among the blocks. The total exchange operation, also oftencalled all-to-all personalized communication, is a well-known communication prob-lem that arises in a number of parallel applications (e.g., see Section 1.3 of [42]).(1) Sort the elements inside each block. This takes time O(d � n�) using, say, thek-k sorting algorithm for the standard mesh described in [29, 33].

(2) Perform a total exchange among the blocks, where block i sends the nd(2��1)elements with a local rank of j mod nd(1��) to block j, for all i; j.(3) Sort the elements inside each block.(4) Perform a total exchange among the blocks, where block i sends the nd(2��1)elements with a local rank between j � nd(2��1) and (j + 1) � nd(2��1) � 1 toblock j, for all i; j.(5) Perform local sorting between consecutive blocks. This takes time O(d � n�).After Step (4) of the algorithm, every element is at most one block away fromits �nal destination (see [29] for a proof of this claim). Thus, the local sorting inStep (5) moves each element to its �nal destination. Steps (2) and (4) can be imple-mented by performing an appropriate local permutation in each block, followed by dconsecutive n1��-way unshu�e permutations, where the ith unshu�e permutationis applied to all linear arrays in direction of the ith dimension. However, using thissimple approach we only get a running time of dn=2+o(n) for each of Steps (2) and(4), since at any point in time only buses along a single dimension are being used.To overcome this problem, we partition the mesh into d subnetworks, wherethe �th subnetwork consists of all processors with coordinates (x0; : : : ; xd�1) suchthatPd�1i=0 xi = � mod d. We also partition the set of elements into d subsets, suchthat each subset contains exactly nd(2��1)=d elements that have to be sent from anyblock i to any block j.Each linear array inside a subnetwork has a length of n=d, and can hence performan unshu�e permutation in time n2d+o(n). We can now implement Steps (2) and (4)in n=2+o(n) steps each, by routing each subset within its corresponding subnetwork,where the ith unshu�e permutation is applied to the elements of the jth subset indirection of dimension (i+ j) mod d. This gives the following result.Theorem 5 For any d = o(n1=3), there exists a sorting algorithm for d-dimensionalmeshes with recon�gurable buses that runs in time n+ o(n) with queue size two.For the Polymorphic Torus, and the mesh with two unidirectional recon�gurablebuses of [31], we can obtain a running time of n=2+o(n), by simultaneously routingthe leftgoing and rightgoing elements in the unshu�e permutation. The same boundcan be achieved on the Mesh of Trees. We can also adapt the algorithm to run intime n2 lgn+o(nlg n) on the Packed Exponential Connections [23] of arbitrary constantdimension. In all of these cases, the algorithm nearly matches the bisection bound.Finally, we point out that it is straightforward to adapt the algorithm to thek{k sorting problem, in which each processor is the source and destination of kpackets. (For k < 1, the k{k sorting problem can be de�ned in a similar wayas the �-approximate �-permutations in Subsection 2.2.) The resulting algorithmmatches the bisection lower bound within an additive lower order term for all kwith k =
(1=n1�c) for some c > 0.Theorem 6 For any constant c > 0, and for any k, d with k =
(1=n1�c) andd = o �(n � k1=d)1=3�, there exists a k{k sorting algorithm for d-dimensional mesheswith recon�gurable buses that runs in time kn+ o(kn) with queue size two.

4. Concluding RemarksIn this paper, we have described deterministic algorithms for permutation rout-ing and sorting on meshes with �xed and recon�gurable buses. While the routingalgorithms in Section 2 are based on fairly simple ideas, they are impractical dueto the large lower order terms in the running times. It is an open question whetherthe ideas of this paper can be used in the design of more practical algorithms.Another possible research direction is to �nd e�cient algorithms for routing withlocality, or for the routing of sparse or irregular communication patterns. In thiscontext, the buses might be helpful in the design of algorithms that adapt to thedegree of locality, sparseness, or irregularity of a problem. One possible approachwould be to �rst design a good o�-line routing scheme, and then try to convert thiso�-line scheme into an on-line algorithm using the ideas of this paper.AcknowledgementsI would like to thank Phil MacKenzie, Greg Plaxton, Rajmohan Rajaraman,and Jop Sibeyn for helpful discussions.References1. F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees,and Hypercubes (Morgan-Kaufmann, San Mateo, CA, 1991).2. H. F. Jordan, A special purpose architecture for �nite element analysis, In Proc.International Conference on Parallel Processing, 1978, 263{266.3. S. H. Bokhari, Finding maximum on an array processor with a global bus, IEEETrans. Comput. 33 (1984) 133{139.4. Q. F. Stout, Mesh-connected computers with broadcasting, IEEE Trans. Comput.32 (1983) 826{830.5. A. Aggarwal, Optimal bounds for �nding maximum on arrays of processors with kglobal buses, IEEE Trans. Comput. 35 (1986) 62{64.6. A. Condon, R. E. Ladner, J. Lampe, and R. Sinha, Complexity of sub-bus meshcomputations, Technical Report # 93{10{02, Department of Computer Science andEngineering, University of Washington, 1993.7. R. Miller, V. K. Prasanna Kumar, D. I. Reisis, and Q. F. Stout, Parallel computa-tions on recon�gurable meshes, IEEE Trans. Comput. 42 (1993) 678{692.8. A. Bar-Noy and D. Peleg, Square meshes are not always optimal, In Proc. 1st AnnualACM Symposium on Parallel Algorithms and Architectures, July 1989, 138{147.9. Y. C. Chen, W. T. Chen, G. H. Chen, and J. P. Sheu, Designing e�cient parallelalgorithms on mesh-connected computers with multiple broadcasting, IEEE Trans.Parallel and Distrib. Systems 1 (1990) 241{245.10. R. E. Ladner, J. Lampe, and R. Rogers, Vector pre�x addition on sub-bus meshcomputers, In Proc. 5th Annual ACM Symposium on Parallel Algorithms and Ar-chitectures, June 1993, 387{396.

11. V. K. Prasanna Kumar and C. S. Raghavendra, Array processors with multiplebroadcasting, J. Parallel and Distrib. Comput. 4 (1987) 173{190.12. Y. C. Chen, W. T. Chen, and G. H. Chen, E�cient median �nding and its ap-plication to two-variable linear programming on mesh-connected computers withmultiple broadcasting, J. Parallel and Distrib. Comput. 15 (1992) 79{84.13. E. Hao, P. D. MacKenzie, and Q. F. Stout, Selection on the recon�gurable mesh,In Proc. 4th IEEE Symposium on the Frontiers of Massively Parallel Computations,1992, 38{45.14. K. Iwama and Y. Kambayashi, An O(lgn) parallel connectivity algorithm on themesh, In Information Processing 89, 1989, 305{310.15. J. Jang, H. Park, and V. K. Prasanna-Kumar, A fast algorithm for computinghistogram on recon�gurable mesh, Technical Report IRIS 290, Institute for Roboticsand Intelligent Systems, University of Southern California, 1992.16. V. K. Prasanna Kumar and C. S. Raghavendra, Image processing on enhanced meshconnected computers, In Computer Architecture for Pattern Analysis and ImageDatabase Management, 1985, 243{247.17. Q. F. Stout, Meshes with multiple buses, In Proc. 27th Annual IEEE Symposiumon Foundations of Computer Science, 1986, 264{273.18. H. Li and Q. F. Stout, Recon�gurable Massively Parallel Computers (Prentice Hall,Englewood Cli�s, NJ, 1991).19. F. Meyer auf der Heide and H. T. Pham, On the performance of networks with mul-tiple busses, In Proc. 9th Symposium on Theoretical Aspects of Computer Science,1992, 98{108.20. Z. Guo, R. G. Melhem, R. W. Hall, D. M. Chiarulli, and S. P. Levitan, Array pro-cessors with pipelined optical buses, In Proc. 3rd IEEE Symposium on the Frontiersof Massively Parallel Computations, 1990, 333{342.21. Y. Ben-Asher, D. Peleg, R. Ramaswami, and A. Schuster, The power of recon�gu-ration, J. Parallel and Distrib. Comput. 13 (1991) 139{153.22. B. Wang and G. Chen, Constant time algorithms for the transitive closure andsome related graph problems on processor arrays with recon�gurable bus systems,IEEE Trans. Parallel and Distrib. Systems 1 (1990) 500{507.23. W. W. Kirkman and D. Quammen, Packed exponential connections - a hierarchyof 2-D meshes, In Proc. 5th International Parallel Processing Symposium, 1991,464{470.24. J. Y. Leung and S. M. Shende, On multidimensional packet routing for mesheswith buses, J. Parallel and Distrib. Comput. 20 (1994) 187{197.25. S. Rajasekaran, Mesh-connected computers with �xed and recon�gurable buses:Packet routing, sorting, and selection, In Proc. 1st Annual European Symposium onAlgorithms, September 1993, 309{320.26. S. Rajasekaran and T. McKendall, Permutation routing and sorting on the re-con�gurable mesh, Technical Report MS-CIS-92-36, Department of Computer and

Information Science, University of Pennsylvania, May 1992.27. K. Iwama, E. Miyano, and Y. Kambayashi, Routing problems on the mesh of buses,In Proc. 3rd International Symposium on Algorithms and Computation, 1992, 155{164.28. J. F. Sibeyn, M. Kaufmann, and R. Raman, Randomized routing on meshes withbuses, In Proc. 1st Annual European Symposium on Algorithms, September 1993,333{344.29. M. Kaufmann, J. Sibeyn, and T. Suel, Derandomizing algorithms for routing andsorting on meshes, In Proc. 5th Annual ACM-SIAM Symposium on Discrete Algo-rithms, January 1994, 669{679.30. S. Cheung and F. C. M. Lau, A lower bound for permutation routing on two-dimensional bused meshes, IPL 45 (1993) 225{228.31. J. C. Cogolludo and S. Rajasekaran, Permutation routing on recon�gurable meshes,In Proc. 4th International Symposium on Algorithms and Computation, 1993, 157{166.32. M. Kaufmann, S. Rajasekaran, and J. F. Sibeyn, Matching the bisection bound forrouting and sorting on the mesh, In Proc. 4th Annual ACM Symposium on ParallelAlgorithms and Architectures, July 1992, 31{40.33. M. Kunde, Block gossiping on grids and tori: Deterministic sorting and routingmatch the bisection bound, In Proc. 1st Annual European Symposium on Algo-rithms, September 1993, 272{283.34. F. T. Leighton, Tight bounds on the complexity of parallel sorting, IEEE Trans.Comput. 34 (1985) 344{354.35. T. Gonzalez and S. Sahni, Open shop scheduling to minimize �nish time, J. ACM23 (1976) 665{679.36. J. E. Hopcroft and R. M. Karp, An n5=2 algorithm for maximum matchings inbipartite graphs, SIAM J. Comput. 2 (1973) 225{231.37. F. Annexstein and M. Baumslag, A uni�ed approach to o�-line permutation routingon parallel networks, In Proc. 2nd Annual ACM Symposium on Parallel Algorithmsand Architectures, July 1990, 398{406.38. C. P. Schnorr and A. Shamir, An optimal sorting algorithm for mesh-connectedcomputers, In Proc. 18th ACM Symposium on Theory of Computing, May 1986,255{263.39. T. Suel, Routing and sorting on meshes with row and column buses, TechnicalReport TR{94{09, University of Texas at Austin, Department of Computer Science,April 1994.40. G. F. Lev and N. Pippenger and L. G. Valiant, A Fast Parallel Algorithm forRouting in Permutation Networks, IEEE Trans. Comput. 30 (1981) 93{100.41. R. Cole and C. K. Yap, A parallel median algorithm, IPL 20 (1985) 137{139.42. D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Nu-merical Methods (Prentice-Hall, Englewood Cli�s, NJ, 1989).

