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ABSTRACT

We study the problems of permutation routing and sorting on several models of
meshes with fixed and reconfigurable row and column buses. We describe two fast
and fairly simple deterministic algorithms for permutation routing on two-dimensional
networks, and a more complicated algorithm for multi-dimensional networks. The algo-
rithms are obtained by converting two known off-line routing schemes into deterministic
routing algorithms, and they can be implemented on a variety of different models of
meshes with buses. We also give a deterministic algorithm for 1-1 sorting whose run-
ning time matches that for permutation routing, and another algorithm that matches
the bisection lower bound on reconfigurable networks of arbitrary constant dimension.
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1. Introduction

The mesh-connected array of processors i1s one of the most thoroughly inves-
tigated interconnection schemes for parallel processing. It is of great importance
due to its simple structure and its good performance in practice. Consequently, a
variety of algorithmic problems have been analyzed as to their complexity on the-
oretical models of the mesh; probably the two most extensively studied problems
are those of routing and sorting. One of the main drawbacks of the mesh is its
large diameter in comparison to many other networks, such as the hypercube and
its bounded-degree variants [1]. An n x n mesh has a radius of n — 1, and hence
even computations that require only a very limited amount of communication, for
example prefix computations, still require at least n — 1 communication steps.

*A preliminary version of this paper was presented at the 8th International Parallel Processing
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To remedy this situation, several authors [2, 3, 4] have proposed to augment the
mesh architecture with high-speed buses that allow fast communication between
processors located in different areas of the mesh. This has resulted in a large body
of literature on various models of meshes with bus connections, and many important
algorithmic problems have been studied under these models. Among the most
frequently studied problems are Maximum [3, 5, 6, 7], Prefix Sums [4, 6, 8, 9, 10, 11],
Selection [4, 11, 12, 13], as well as some problems in image processing and graph
theory [7, 14, 15, 16, 17]. Additional literature can be found in [18].

Due to the low communication requirements of the above problems, significant
speed-ups over the standard mesh can be achieved; the exact time complexities
depend heavily on the properties of the bus system. For example, the maximum
of n? elements can be computed in time O(lglgn) on an n x n mesh with a fully
reconfigurable bus, while the same problem requires @(nl/?’) steps on a mesh with
fixed row and column buses. In the following, we briefly describe some of the main
features of the bus system that determine the power of the model.

(1) Architecture of the bus system: A bus is called global if it is connected to
all processors in the network. A bus that is connected to only a subset of
the processors is called local. Examples of meshes with one or several global
buses are given in [3, 4, 5, 7]. Most of the work on local buses has focused on
meshes with row and column buses [6, 11, 17], although other architectures
have been proposed [17, 19].

(2) Reconfigurability of the buses: A bus is called reconfigurable if it can be
partitioned into subbuses, such that each subbus can be used as a separate,
independent bus. A bus that i1s not reconfigurable is called fized.

(3) Conflict resolution for bus access: Most papers assume that the buses have
broadcast capability, that is, a value written on the bus by one processor can
be read by all other processors connected to the bus in the next step. An-
other common assumption is that the result is undefined if several processors
attempt to write on the same bus in a single step of the computation. Using
the PRAM terminology, we refer to such a bus as being Concurrent Read
FEzclusive Write, oo CREW for short. There is a close relationship between a
shared memory cell in a CREW PRAM and a global bus of the same type [19].

Additional features that have been studied include buses with non-unit delay [7, 18],
and buses that allow pipelining of messages under certain conditions [20]. Finally,
the concept of a mesh with a reconfigurable bus system can also be generalized to
reconfigurable networks of arbitrary topology [21].

The model of computation assumed in this paper is a mesh with row and column
buses. We consider both fixed and reconfigurable buses. Of course, all algorithms
designed for such a model also run on more powerful models, such as the Poly-
morphic Torus [18], the RMESH [7], or the PARBUS [22], whose bus systems can
be reconfigured into row and column buses. On the other hand, it does not seem
that these more powerful models offer any advantages with respect to permutation



routing and 1-1 sorting, which are primarily restricted by the bisection width of
the network. Unless explicitly stated otherwise, we assume the buses to be CREW.

An alternative way to overcome the diameter restriction of the standard mesh is
to augment the network with a sparse system of bidirectional communication links
connecting processors in different areas of the mesh. Examples for this approach
are the Mesh of Trees [1], or the Packed Exponential Connections [23]. Tt turns out
that many of the algorithms and techniques described in this paper can be adapted
to these classes of networks, and we will point this out in a few instances.

1.1. Related Results

In this paper, we study the problems of permutation routing and 1-1 sorting
on meshes with buses. The routing problem is the problem of rearranging a set of
packets in a network, such that every packet ends up at the processor specified in
its destination address. A routing problem in which each processor is the source
and destination of at most k packets is called a k—k routing problem. The routing
problem most extensively studied in the literature is the 1-1 routing problem, also
called the permutation routing problem. In the 1-1 sorting problem, we assume
that each processor initially holds a single packet, where each packet contains a key
drawn from some totally ordered set. Our goal is to rearrange the packets such that
the packet with the key of rank ¢ is moved to the processor with index 7, for all 4.
For both permutation routing and 1-1 sorting, at least ©(n) steps are required on
all proposed variants of meshes with buses, due to bisection width. However, the
exact complexity of these problems has only recently been investigated.

The study of permutation routing on meshes with buses was initiated by Leung
and Shende [24]. They assume a model of computation, hereinafter referred to as
the mesh with fired buses, that consists of a mesh with fixed row and column buses
in addition to the mesh edges. For the one-dimensional case, they obtain a routing
algorithm running in 2n/3 steps, and show a matching lower bound that also extends
to multi-dimensional networks. For the two-dimensional case, Leung and Shende
show that every permutation can be routed off-line in n+1 steps. They also describe
deterministic algorithms that run in time (1 4 ¢)n + o(n) and queue size O(1/¢) on
the two-dimensional mesh with fixed buses, and in time (7(d—1)/6 4+ €)n+o(n) and

1_d) on d-dimensional networks. (The queue size is the maximum

queue size O(e
number of packets any node has to store during the algorithms.)

Rajasekaran and McKendall [25, 26] describe randomized algorithms for routing
and sorting on a network in which the mesh edges have been replaced by a global
reconfigurable bus. This model is essentially the same as the PARBUS, but has
the additional property that every subbus of length one can be used in the same
way as a bidirectional edge in a standard mesh (that is, a message can be trans-
mitted in either direction in a single step). There is an obvious lower bound of n/2
steps for permutation routing and sorting in this model, due to bisection width.
Rajasekaran and McKendall describe a 3n/4 time deterministic algorithm for per-
mutation routing in the one-dimensional case, and a randomized algorithm for the
two-dimensional case that achieves a running time of (1 4 ¢)n and a queue size of



O(1/€), with high probability. They also give randomized algorithms for sorting
with the same bounds on running time and queue size.

While this assumption of bidirectional communication in subbuses of length one
may be technologically feasible, it can also be seen as somewhat unsatisfactory from
a theoretical point of view, since it adversely affects the simplicity of the model. In
this context, we point out that many of their algorithms, including the (14 ¢€)n time
routing algorithm, do not make use of this assumption. Similarly, their algorithms
do not use any bus connections other than those along a single row or column. Thus,
in the present paper, we consider a model with reconfigurable row and column buses,
and we assume that only one processor can write on a subbus in any single step,
regardless of the length of that subbus. In this model, hereinafter referred to as
the mesh with reconfigurable buses, there is a trivial lower bound of n steps for
permutation routing and sorting due to bisection width.

Comparing the two different models of meshes with buses described above, we
observe that the mesh with reconfigurable buses can emulate the standard mesh with
constant slowdown by partitioning the buses appropriately. In the case of the mesh
with fixed buses, on the other hand, we cannot remove the standard mesh edges
without losing the capability of efficiently performing local communication among
groups of adjacent processors. In fact, several routing algorithms for such a network
with fixed buses and no local connections have been proposed by Iwama, Miyano,
and Kambayashi [27]. Due to the impossibility of efficient local communication,
their algorithms have a queue size of ©(n) in the worst case.

Very recently, and independent of our work, Sibeyn, Kaufmann, and Raman [28]
have obtained a randomized routing algorithm for the two-dimensional mesh with
fixed buses that runs in time 0.78n, and an algorithm for d-dimensional networks
that runs in time (2 — 1/d)n + o(n). (The exact running time is actually slightly
better than this bound.) By applying a new “derandomization technique” (in an
informal sense) for routing and sorting on meshes recently described in [29], it is
possible to obtain deterministic algorithms that match the running times of these
randomized algorithms.

Sibeyn, Kaufmann, and Raman also show improved lower bounds for routing
on meshes with fixed buses. In particular, they show lower bounds of 0.69n and
0.72n for the two-dimensional and three-dimensional cases, respectively, and a lower
bound of approximately d?Tln for d-dimensional networks. (The lower bound for
the two-dimensional case was also discovered by Cheung and Lau [30].)

In other independent work, Cogolludo and Rajasekaran [31] have given a % +
o(n) time randomized routing algorithm for the two-dimensional mesh with recon-
figurable buses, under the assumption that subbuses of length one can be used as
bidirectional edges. They also give an algorithm with running time %" — &7 +o(n)
for a model with two unidirectional reconfigurable buses in each row and column.

For k—k routing and sorting on d-dimensional networks, there are lower bounds
of kn/3 and kn for the mesh with fixed and reconfigurable buses, respectively, due
to bisection width. For the mesh with fixed buses, Rajasekaran [25] and Sibeyn,
Kaufmann, and Raman [28] describe randomized algorithms that match the lower



bound, within a lower order additive term. An optimal randomized algorithm for £—
k sorting on the mesh with reconfigurable buses can be obtained by a straightforward
implementation of the algorithm for the standard mesh given in [32]. Very recent
work by Kaufmann, Sibeyn, and Suel [29] and Kunde [33] implies that this bound
can also be matched deterministically.

1.2. Overview of the Paper

In this paper, we study the problems of permutation routing and 1-1 sorting
on meshes with row and column buses. We consider several variants of this model,
with both fixed and reconfigurable buses.

In the first part of the paper, we describe deterministic algorithms for permu-
tation routing. We give two fairly simple algorithms for the two-dimensional case
that achieve a running time of n+o(n) and very small queue size, and an algorithm
for d-dimensional networks, d > 3, with a running time of (2 — 1/d)n + o(n) and
a queue size of two. An interesting feature of our algorithms is that they can be
efficiently implemented on a variety of different classes of networks. The algorithms
are obtained with a new technique that allows us to convert certain off-line routing
schemes into deterministic on-line algorithms. We believe that this technique may
have further applications.

In the second part of the paper, we present two algorithms for 1-1 sorting. The
first algorithm is based on a deterministic sampling technique, and its running time
matches that for permutation routing, within a lower order additive term. The
second algorithm is based on a variation of Leighton’s Columnsort [34], and runs in
time n + o(n) on meshes with reconfigurable buses of arbitrary constant dimension,
thus nearly matching the bisection lower bound of n steps.

2. Permutation Routing

In this section, we describe a technique that allows us to convert certain off-line
routing schemes into deterministic routing algorithms. We then use this technique
to design new algorithms for permutation routing on meshes with buses. We begin
by giving an alternative description of a simple n + 1 step off-line routing scheme
proposed by Leung and Shende [24]. In Subsection 2.2 we show how this off-line
routing scheme can be used to obtain a fast and fairly simple deterministic rout-
ing algorithm for two-dimensional meshes with buses. Subsection 2.3 applies the
technique to multi-dimensional networks. Finally, Subsection 2.4 gives another al-
gorithm for the two-dimensional case.

2.1. Off-line Routing

In the off-line routing scheme of Leung and Shende [24], every packet is routed
to its destination by first routing it on a column bus to its destination row, and
then routing it on a row bus to its destination column in the following step. Thus,
the algorithm does not use the mesh edges at all. Leung and Shende show that, for
any input permutation, a schedule for the above routing scheme can be computed



in time O(n7/2) by computing a sequence of n maximum matchings. Once the
schedule has been computed, it can be executed in n + 1 steps.

Now consider the following interpretation of the above scheduling problem. The
columns of the mesh are interpreted as processes Py, ..., P,_1. Every process P;
has exclusive ownership of its column bus, and has to route the n packets initially
located in 1ts column. To do so, a process needs to use the row buses, which are
interpreted as resources Ry,..., R,_1. Before a packet can be transmitted on a
row bus to its final destination, it has to be routed within its column to the correct
row; this can be done in the preceding step using the column bus. If £ packets in
column ¢ have a destination in row j, then process F; needs to access resource R;
for k time steps. These k steps can be scheduled in any arbitrary order, provided
that in any step, each resource is accessed by at most one process, and each process
uses at most one resource. The problem of finding a minimum time schedule that
satisfies these demands is known as the Open Shop Scheduling Problem [35].

For 0 < 4,7 < n, let D;;, the demand of process F; for resource R;, be the
number of packets in column ¢ that have a destination in row j. Note that

n—1
Y Dij=n (1)
i=0

holds for all 7, since every row is the destination of n packets, and

n—1
ZDZ'J' =n (2)
j=0

holds for all i, since every column is the origin of n packets. A simple algorithm for
finding a minimum time schedule computes a sequence of maximum matchingsin the
bipartite graph G = (U, V, E) defined by U = { Py, ..., Po—1}, V={Ro, ..., Rn-1},
and E = {(P;, R;) | D;; > 0}. More precisely, the algorithm first computes a max-
imum matching M of (G, and schedules each process with its matched resource for
Drin time steps, where Dpin = min{D; ; | (P;, R;) € M }. Next, we subtract Dmin
from all D; ; with (P;, R;) € M, construct a new bipartite graph G’ corresponding
to the new values of the D, ;, and compute a new matching M’. This procedure
is repeated until all D); ; are equal to zero. Using Hall’s Matching Theorem, it can
be shown that Equations (1) and (2) guarantee that the resulting schedule has a
length of n. This implies that at most n matchings have to be computed, since
every matching increases the length of the schedule by at least one.

A maximum matching on a bipartite graph with 2n vertices can be computed
in time O(n®/?) using the algorithm of Hopcroft and Karp [36]. Thus, the entire
schedule can be computed in time O(n7/2). In the following, we show how to convert
this off-line algorithm into an on-line algorithm that runs in time n 4 o(n).

2.2. Routing on Two-Dimenstonal Networks

In order to get a running time of n + o(n), we modify the above algorithm such
that the routing schedule can be computed in time o(n). Executing the computed



schedule then takes another n + o(n) steps. The key idea in our construction is
to reduce the size of the scheduling problem, and thus the size and number of
the matchings that have to be computed. Informally speaking, this is done by
partitioning the mesh into a smaller number of processes and resources, and by
treating sets of packets with similar sources and destinations as if they were a
single packet. This is described more formally in the following.

We partition the network into blocks B;, 0 < i < n272%, of size n® x n®, where
« is some constant that is smaller, but sufficiently close to 1 (for example, &« = 0.9).

l—a

We now interpret each of the n columns of blocks as a process, and each of the

n'~% rows of blocks as a resource. Each process P, 0 < ¢ < n'~% has exclusive
ownership of its n® column buses, while each resource R;, 0 < j < nl=% consists
of n® row buses. At most one process is allowed to access a single resource at any
time. Thus, a process that has exclusive access to a resource can transmit up to n®
packets across the row buses of the resource in a single step.

We now have to arrange the packets inside the processes in such a way that we
can make optimal use of this new configuration. To do so we have to slightly relax
the goal of the routing schedule that has to be computed. Rather than requiring each
packet to be at its final destination after execution of the schedule, we are content
with routing each packet to some position in the n® x n® block that contains its
destination. After completion of the schedule, we can then bring the packets to
their final destinations by routing locally inside each block.

To arrange the packets for the routing schedule, we sort the blocks into row-
major order, where the packets are sorted by their destination blocks. We say that
a row of a block B; is clean if all its packets have the same destination block.
Otherwise, we say that the row is dirty. All n® packets in a clean row of a block are
transmitted across the row buses to their common destination block in a single step,
after they have been routed to the correct row of blocks in the preceding step. If a
row of a block is dirty, then the packets in the row are transmitted across the row
buses in r separate steps, where r is the number of distinct destination blocks that
occur among the packets in the row. In other words, such a row is treated in the
same way as r separate rows; this increases the number of steps required to route
this row by r — 1. Since there are only n?>~2¢ blocks, this increases the number of
steps required to route the packets of a single block across the row buses by at most
n?~2% — 1. Thus, the number of steps required to route all packets of a process P
across the row buses is increased by less than n®=3%. Hence, if D;; denotes the
number of steps that process F; needs resource R;, then

nt=o_1

Z Di,j <n-+ n3_3a (3)

j=0
holds for all processes P;. Correspondingly, it can shown that

nl=o—1

Y. Dij<n+n®T (4)

i=0



holds for all resources R;, since for any two blocks By, B, there can be at most
two dirty rows in By that contain packets destined for B;. Equations (3) and (4)
guarantee the existence of a schedule of length at most n + n373% = n 4 o(n) that
routes every packet to its destination block.

It remains to show that such a schedule can be computed in time o(n). Since we

1=a processes and resources, the graph G that is used in the construction

only have n
of the schedule has only 2n' =% vertices. Hence, a maximum matching in this graph
can be computed in time O ((nl_“)s/z). For each matching that is computed, at

2=2% matchings

least one edge is removed from the graph. This implies that at most n
have to be computed, and the total time to compute the schedule sequentially 1s
bounded by O ((nl_a)g/z) = o(n). In order to implement this computation on a
mesh with buses, all the data needed to construct the graph G is routed on the
buses to a small area, say in the center of the mesh, where the schedule is computed
and then broadcast to all blocks. It suffices if each block contributes the numbers
m;, 0 <4< n? 2
are destined to block Bj;; this can be done in time o(n). We do not elaborate any

, Where m; 1s defined as the number of elements in the block that

further on the implementation of the maximum matching algorithm on the mesh.
Since we do not need an algorithm that is faster than the sequential one, this is an
easy task. (In fact, we could even afford a straightforward simulation of a turing
machine algorithm on the mesh; this could be done with a queue size of one.) All
in all, we obtain the following algorithm:

(1) Partition the mesh into blocks of size n® x n®. Sort the packets in each block
into row-major order by destination blocks. This takes O(n®) steps.

(2) In each block, compute the m;, 0 < i < n?=2% (m; was defined as the number
of packets with destination block B;). Send the m; to a block of side length
n?=2% in the center of the mesh. This takes O(n?~2%) steps.

(3) Compute the schedule and broadcast it to all blocks of the mesh. This takes
O ((n'=*)°/2) steps.

(4) Execute the computed schedule of length n + n3=3<.

(5) Perform local routing inside each block to bring the packets to their final
destinations. This takes time O(n®).

It remains to show that the algorithm can be implemented with a small queue
size. Consider any destination block B;, and recall that up to n® packets enter
B; across the row buses in a single step. Due to the sorting in Step (1) of the
algorithm, every block in the mesh can have at most two dirty rows that contain
elements with destination block B;. This implies that B; only receives packets in

2-2a gsteps of the schedule. If we require that the packets arriving

at most n® + 2n
in the ith such step are stored by the processors in the (¢ mod n®)th column of B;,
then most processors in B; only get a single packet, while up to 2n%~% processors

receive two packets. In addition, every processor in B; can contain one packet with



source in B; that has not been sent out yet. Finally, some of the processors in B;,
say those on the diagonal of the block, also have to store the packets that can enter
the block across the column buses in each step, and that are then routed on the
row buses in the following step. This gives a total queue size of four.

We can decrease the queue size to three by assuming that the elements in the
diagonal of B; do not receive any of the packets entering the block across the row
buses. To get a queue size of two, we require that every destination block stops
accepting new packets from the row buses after it has received n® — 1 batches of
packets. It can be shown that every block is still able to deliver the vast majority
of its packets to their destination blocks. We can now rearrange the packets in each
block, and then deliver the remaining packets; the details of this construction are
omitted. This establishes the following result.

Theorem 1 There exists a deterministic algorithm for permutation routing on the
n x n mesh with buses that runs in time n+ o(n) with a queue size of two.

The above algorithm does not assume any particular model of the mesh with
row and column buses, and it can be efficiently implemented on a variety of dif-
ferent classes of networks. For the mesh with fixed buses, this improves upon the
best previously known deterministic algorithm [24] in both running time and queue
size. As an example, the algorithm in [24] requires a queue size of more than 200
to obtain a running time of 1.2n. (However, the algorithm is not as fast as the in-
dependently discovered algorithms of Sibeyn, Kaufmann, and Raman [28].) On the
mesh with reconfigurable buses, our algorithm improves upon the best previously
known randomized algorithm of Rajasekaran and McKendall [26], and matches the
bisection lower bound, within a lower order additive term.

The algorithm can also be easily adapted to the Polymorphic Torus described
in [18]. (This network is essentially a mesh with reconfigurable row and column
buses and wrap-around connections.) The resulting algorithm routes any permuta-
tion in time n/2 4 o(n), and thus nearly matches the lower bound of n/2.

For another example, consider a model of the mesh with fixed buses in which
the buses have a non-unit propagation delay p(n). It was observed by Cheung and
Lau [30] that, for any non-constant delay function p, routing takes time 2n—o(n) in
this model, assuming that no pipelining is allowed on the buses. However, if we lift
this restriction and allow a processor that sends a packet on the bus to send another
packet in the next step, then we can route in time n+o(n), for any p = o(n), using a
variant of the above algorithm. (As a corollary, this also gives an n+o(n) algorithm
for permutation routing on the Mesh of Trees [1].)

The above result shows that even a fairly simple algorithm on the mesh with
buses can achieve a speed-up by a factor of two over meshes without buses. More-
over, our algorithm has a queue size of two. In this context, we point out that
the 3n — 3 step off-line scheme for routing on the standard mesh described by An-
nexstein and Baumslag [37], as well as the 3n + o(n) sorting algorithm of Schnorr
and Shamir [38], achieve a queue size of one because two packets can be exchanged
across an edge in a single step. Since we do not allow two arbitrary processors con-
nected to a common bus to exchange two packets in a single step, it seems difficult



to design any algorithm with queue size one that uses the buses to transmit packets.
An even greater speed-up over the standard mesh can be achieved for certain
restricted classes of permutations. Consider a partial permutation with only a small
number of packets (say, at most en?). In the case of the standard mesh, this problem
still requires a running time of 2n — 2 in the worst case. On the mesh with buses,
our only restriction is the bisection bound, and hence we could hope for a speed-up
of up to 1/¢ over full permutation routing. The above algorithm can be adapted in
such a way that 1t achieves this bound for any constant ¢, provided that the sources
and destinations of the packets are approximately evenly distributed over the mesh.
In the following, a partial permutation with no more than en? packets is called
an e-permutation. We say that an e-permutation is é-approximate if every m x m
block of the mesh is the source and destination of at most em? 4 § packets, for all
m with 1 < m < n. Then the following holds for any constant ¢ > 0.
Theorem 2 For any 6 = o(n), there exists a deterministic algorithm that routes
every d-approrimate e-permutation in time en + o(n) with a queue size of 2.

2.8. Routing on Multi-Dimensional Networks

The ideas from the previous subsection can also be applied to multi-dimensional
networks. In this subsection, we outline an algorithm for d-dimensional meshes with
buses that runs in time (2 — 1/d)n 4 o(n) with queue size two. A more detailed
description of the algorithm can be found in [39].

Our algorithm is based on a well-known scheme for off-line routing on d-di-
mensional meshes described in [37]. The routing scheme consists of 2d — 1 phases.
In phase i, 1 <17 < d—1, each packet is routed along dimension ¢ to an appropriately
chosen intermediate location. In phase i, d < ¢ < 2d — 1, each packet is greedily
routed along dimension 2d —¢. Each phase involves a collection of routing problems
on linear arrays of length n, and thus takes at most n steps. Hence, the entire
routing takes (2d — 1)n steps on the standard mesh.

To route a given permutation with the above routing scheme, it is necessary to
determine appropriate choices for the intermediate locations assumed by the packets
in the first d — 1 phases. The existence of such intermediate locations is implied by
Hall’s Matching Theorem, and they can be computed by constructing a sequence
of perfect matchings in a graph; the details of this construction can be derived
from Section 1.7.5 of [1]. Faster algorithms for computing appropriate intermediate
locations are described in [40]. For our purposes, it suffices that the running time
of these computations is polynomial in n?, the number of packets in the network.

To convert the above off-line routing scheme into an on-line algorithm, we intro-
duce the notion of a super-packet. Informally speaking, a super-packet consists of a
collection of packets that have similar sources and destinations, and that move in
lock step. By combining a large number of packets into a single super-packet, we can
decrease the number of packets in the network in such a way that the intermediate
locations can be computed in time o(n).

The resulting on-line algorithm with running time (2d — 1)n + o(n) is uni-azial,
that is, the algorithm communicates only across a single dimension in any given



step of the computation. Thus, we can simultaneously run up to d “copies” of the
algorithm without any contention for the buses. We now partition the set of packets
into d sets of equal size, such that the sources and destinations of the packets in
each set are approximately evenly distributed over the entire network. As each set
contains only a 1/d fraction of all packets, it can be routed in time (2—1/d)n+o(n)
by the above algorithm. Altogether, we can show the following result.
Theorem 3 There exists a deterministic algorithm for routing on d-dimensional
meshes with buses that runs in time (2 — 1/d)n+ o(n) with a queue size of two.
The exact lower order term depends on the algorithm used in the computa-
tion of the intermediate locations of the packets. The algorithm can be efficiently
implemented on a variety of multi-dimensional networks. A faster algorithm for
reconfigurable networks is presented in the next section in the context of sorting.

2.4. Fast Rouling without Matching

While the routing algorithms described in the previous subsections are fast from
a theoretical point of view, they are certainly not efficient in practice. One source
of this inefficiency are the fairly large lower order terms in the running times. As
an example, choosing o = 9/11 results in a lower order term of O(n9/11) in the case
of the two-dimensional algorithm. As the constant hidden by the big-Oh notation
is sufficiently large, this term would dominate the running time of the algorithm on
networks of realistic size. Another source of inefficiency is the complicated control
structure of the algorithm, especially in the computation of the matchings, which
makes the algorithm unsuitable for any implementation in hardware.

In the following, we describe an n + O(n2/3) time algorithm for two-dimensional
networks that does not require any computation of matchings, and that uses only
prefix computations and local sorting as subroutines. Like the algorithm in Sub-
section 2.2, it 1s based on the off-line algorithm of Leung and Shende, and assumes
that the network is partitioned into blocks of side length n®, for some «. However,
instead of computing an optimal schedule for the usage of the buses, the algorithm
computes an assignment of the row buses to the columns of blocks (and of the
column buses to the rows of blocks) that stays fixed throughout most of the algo-
rithm. In this assignment, each column of blocks receives in each row of blocks a
number of row buses that 1s proportional to the number of its packets that have a
destination in this row of blocks. (Alternatively, the algorithm can also be seen as
an approximate solution for a special case of the Open Shop Scheduling Problem.)

Let o = 2/3, let s; ; denote the number of packets in the ith column of blocks
with destination in the jth row of blocks, and let b; ; = |s; j/n|. We now assign b; ;
row buses in the jth row of blocks to the ith column of blocks, and &; ; column buses

1/3
in the ith column of blocks to the jth row of blocks. Note that >\, -t b; ; < n?/3
holds for all j, 0 < j < n'/3, and z;;/j‘l bi; < n2/3 holds for all i, 0 < i < nl/3.
This assures that the total number of buses assigned in each row of blocks and each

2/3.

column of blocks does not exceed n Such an assignment of the row buses to

the columns of blocks, and of the column buses to the rows of blocks, can be easily



computed from the b; ; using prefix computations.

After the assignment of the buses has been computed, we run the following
protocol for n + 1 steps. In each step, b; ; column buses in the 7th column of blocks
are used to transmit b; ; packets (with destination in the jth row of blocks) to the
Jth row of blocks. Also, in each step, b; ; row buses in the jth row of blocks are
used to transmit b; ; packets to their destination blocks. Thus, all packets routed
along the columns in step k are routed along the rows to their destination blocks
in step k + 1.

After n + 1 steps of the above protocol, there are at most s;; —n - b;; < n
untransmitted packets in the ith column of blocks that have a destination in the jth
row of blocks. We can now transmit these remaining packets by setting b; ; = nt/3
for all ¢, j, and running the above protocol for another n?/3 4+ 1 steps. Finally, local
routing inside each block can be used to bring every element to its final destination.
Altogether, we obtain the following algorithm.

(1) Partition the mesh into blocks of side length n?/3. Use local sorting and prefix
computations to compute the assignment of the buses in time O(nz/?’).

(2) Run the protocol described above for n 4 1 steps.
(3) Set b; ; = n'/3 for all 4, j, and run the protocol for another n?/3 + 1 steps.

(4) Perform local routing inside each block to bring the packets to their final
destinations. This takes time O(n?/3).

Some details have been omitted from this description. Before running the proto-
col in Steps (2) and (3), we have to arrange the packets inside the blocks such that,
for all 7, 7, all b; ; row and column buses can be used in each step, and such that
no write conflicts occur. This can be done in time O(n2/3) using local sorting and
prefix computations. In order to achieve a small, constant queue size, we also have
to arrange the packets appropriately upon entering their destination block. The
algorithm can again be implemented on a variety of different models of meshes with
buses. Of course, it is still too complicated to be of immediate practical interest.

However, we believe that the result is interesting in that 1t indicates that simple
global operations such as prefix computations might be useful in the design of ef-
ficient routing algorithms on meshes with buses. In contrast, previously described
algorithms for these networks use the buses only for the transmission of the packets,
and not for the computation of the routing schedule. While a restriction to local
control is appropriate for networks that do not provide any fast global communi-
cation, it may be that some amount of global control is useful on networks that
support fast (but low bandwidth) global primitives such as prefix computations.

3. Sorting

In this section we describe two algorithms for sorting on meshes with buses.
The first algorithm makes use of the routing algorithms from the previous section,
and its running time (nearly) matches that for permutation routing. The second



algorithm assumes a mesh with reconfigurable buses, and its running time matches
the bisection bound for networks of any dimension d = o(nl/?’). Thus, this algorithm
also implies an improved bound for routing on reconfigurable networks with d > 3.
Recall that in the sorting problem we have to move the element of rank ¢ to the
processor with index ¢, for all 7. Sorting algorithms on meshes and related networks
are usually designed with a particular indexing of the processors in mind. In the
following we assume a blocked indexing scheme, in which the network is partitioned
into blocks of side length n’, 2/3 < 6§ < 1, and the processors in each block have
consecutive indices, while the blocks are indexed in snake-like row-major order.

3.1. Sorting by Determuinistic Sampling

The first algorithm uses a deterministic sampling technique that computes a set
of splitters whose ranks are determined to within an additive lower order term. This
reduces the problem of sorting to that of routing an appropriate permutation, plus
some local operations. The structure of the algorithm is as follows.

(1) Sort each block of side length n® into row-major order. This takes time O(n?).

(2) Route copies of the elements in the first column of each block to a block B of
side length n' =%/ in the center of the mesh. This takes time O(n'=%/2).

(3) Sort the elements in B and select n’ elements of equidistant ranks as splitter
elements. This takes time O(n'=%/?).

(4) Use prefix computations to compute the exact ranks of the splitters, and
broadcast them to all blocks. This takes time O(n?).

(5) Tt can be shown that the ith splitter element has a rank between (i —1)-n?~?
and i-n?~?. Hence, every element can now determine its rank to within n>~% =
O(n?%). Using prefix computations, we can assign each element a preliminary

destination that is at most one block away from its final destination.

(6) Route every element to its preliminary destination using the routing algorithm
in Subsection 2.2 (or any other routing algorithm).

(7) Perform local sorting between consecutive blocks. This takes time O(n?).

The computation of the splitters in Steps (1) to (3) is essentially a simplified
version of a more sophisticated sampling technique used in the parallel selection
algorithm of Cole and Yap [41] (see [39] for a more detailed description). Apart
from Step (6), all steps take time o(n). For 6 = 2/3, we get the following result.

Theorem 4 For all models of meshes with buses, there exists a sorting algorithm
whose running time matches that for permutation routing, within O(n2/3) steps.
3.2. Sorting on Meshes with Reconfigurable Buses

Our second algorithm is based on a variation of Leighton’s Columnsort algo-
rithm [34], similar to that described in [29, 33]. The algorithm can be efficiently



implemented on several classes of meshes with reconfigurable buses; and also on the
Mesh of Trees [1] and the Packed Exponential Connections [23], but it does not give
improved bounds on meshes with fixed buses.

We start out by describing how a particular class of routing problems, called
rk-way unshuffle permutations, can be efficiently solved on a linear array with a
reconfigurable bus. We then give the sorting algorithm for networks of arbitrary
dimension, and explain how it can be implemented through a sequence of xk-way
unshuffle permutations on linear arrays.

Formally, for any n,x > 0 with n mod & = 0, the k-way unshuffle permutation
on n elements is defined as the permutation 7, that moves the element in position
i to position w(7) = (i mod &) - n/k + |i/x], for all ¢ in [n]. We observe that if
k& = n~? for some § > 1/2, then a k-way unshuffle permutation on a linear array
of length n has the effect of distributing the elements of each block of length n’
evenly over all n' =% blocks of length n?.

Due to bisection arguments, at least n/2 steps are required to route an n'~°-way
unshuffle permutation on a linear array with a reconfigurable bus. The following
routing scheme matches this bound, within a lower order term. The routing scheme
consists of two parts. In the first part, we route all packets that have to move to the
right; in the second part, we route all packets that have to move to the left. Since
the two parts are symmetric, we only describe how to route the rightgoing packets.

The schedule for the rightgoing packets is divided into n'~%/2 phases P;, 0 <
i < n'~%/2. Phase P; of the schedule consists of n' =% — 27 subphases S; ;, and each

subphase takes n?’~1 steps. Thus, the entire schedule has a length of
(n'=?/2)-1 n (n'=%/2)-1 n  nb
1—6 . 26-1 _ 5 25-1 . _noon
ZE_O (n — 22) ‘n =3 2n ZE_O T = 1 + 7

Given a partition of the array into n'~% blocks of length n’, we say that block
¢ sends to block j if all packets in block ¢ that have a destination in block j are

28-1 packets in

transmitted to this destination. Note that for all ¢ and j, exactly n
block ¢ have a destination in block j. Under our schedule, the rightgoing packets

are transmitted according to the following rules:
(a) In any subphase S; o, block i sends to block n!=% — i — 1.

(b) In any subphase S; ; with 1 < j < n'=% — 2{, block i sends to block i +j — 1,
while block 7 + j sends to block n'=% — i — 1.

The following sorting algorithm for d-dimensional networks assumes a blocked
indexing scheme with blocks of side length n’, § = 2/3. The algorithm alternates
local sorting and communication steps. Each communication step performs a total
exchange operation among the blocks. The total exzchange operation, also often
called all-to-all personalized communication, is a well-known communication prob-
lem that arises in a number of parallel applications (e.g., see Section 1.3 of [42]).

(1) Sort the elements inside each block. This takes time O(d - n®) using, say, the
k-k sorting algorithm for the standard mesh described in [29, 33].



(2) Perform a total exchange among the blocks, where block ¢ sends the nd(26=1)

elements with a local rank of j mod n¥1=% to block j, for all i, j.

(3) Sort the elements inside each block.

(4) Perform a total exchange among the blocks, where block ¢ sends the nd(26=1)

elements with a local rank between j - n?=1) and (j 4+ 1) - n%**=1 — 1 to
block j, for all 7, j.

(5) Perform local sorting between consecutive blocks. This takes time O(d - n?).

After Step (4) of the algorithm, every element is at most one block away from
its final destination (see [29] for a proof of this claim). Thus, the local sorting in
Step (b) moves each element to its final destination. Steps (2) and (4) can be imple-
mented by performing an appropriate local permutation in each block, followed by d

consecutive nt=?¢

-way unshuffle permutations, where the ith unshuffle permutation
is applied to all linear arrays in direction of the ¢th dimension. However, using this
simple approach we only get a running time of dn/2+ o(n) for each of Steps (2) and
(4), since at any point in time only buses along a single dimension are being used.
To overcome this problem, we partition the mesh into d subnetworks, where
the vth subnetwork consists of all processors with coordinates (xg,...,z4-1) such
that Zldz_ol z; = v mod d. We also partition the set of elements into d subsets, such
that each subset contains exactly nd(%_l)/d elements that have to be sent from any
block ¢ to any block j.
Each linear array inside a subnetwork has a length of n/d, and can hence perform
an unshuffle permutation in time 75 +o(n). We can now implement Steps (2) and (4)
in n/2-+o0(n) steps each, by routing each subset within its corresponding subnetwork,
where the ith unshuffle permutation is applied to the elements of the jth subset in
direction of dimension (i 4+ j) mod d. This gives the following result.
Theorem 5 For anyd = o(nl/?’), there exists a sorting algorithm for d-dimensional
meshes with reconfigurable buses that runs in time n + o(n) with queue size two.
For the Polymorphic Torus, and the mesh with two unidirectional reconfigurable
buses of [31], we can obtain a running time of n/2+o(n), by simultaneously routing
the leftgoing and rightgoing elements in the unshuffle permutation. The same bound
can be achieved on the Mesh of Trees. We can also adapt the algorithm to run in
time ﬁ—i—o(lgin) on the Packed Exponential Connections [23] of arbitrary constant
dimension. In all of these cases, the algorithm nearly matches the bisection bound.
Finally, we point out that it is straightforward to adapt the algorithm to the
k—k sorting problem, in which each processor is the source and destination of &
packets. (For k& < 1, the k—k sorting problem can be defined in a similar way
as the é-approximate e-permutations in Subsection 2.2.) The resulting algorithm
matches the bisection lower bound within an additive lower order term for all %
with k& = Q(1/n'=¢) for some ¢ > 0.
Theorem 6 For any constant ¢ > 0, and for any k, d with k = Q(1/n'=°) and
d=o ((n . kl/d)l/?’), there exists a k—k sorting algorithm for d-dimensional meshes
with reconfigurable buses that runs in time kn 4 o(kn) with queune size two.



4. Concluding Remarks

In this paper, we have described deterministic algorithms for permutation rout-
ing and sorting on meshes with fixed and reconfigurable buses. While the routing
algorithms in Section 2 are based on fairly simple ideas, they are impractical due
to the large lower order terms in the running times. It is an open question whether
the ideas of this paper can be used in the design of more practical algorithms.

Another possible research direction is to find efficient algorithms for routing with
locality, or for the routing of sparse or irregular communication patterns. In this
context, the buses might be helpful in the design of algorithms that adapt to the
degree of locality, sparseness, or irregularity of a problem. One possible approach
would be to first design a good off-line routing scheme, and then try to convert this
off-line scheme into an on-line algorithm using the ideas of this paper.
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