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For example, the maximum of n2 elements can be computedin time O(lg lg n) on an n�n mesh with a fully recon�gurablebus, while the same problem requires �(n1=3) steps on a meshwith �xed row and column buses. In the following, we willbrie
y describe some of the main features of the bus systemthat determine the power of the model.(1) Architecture of the bus system: A bus is called global if itis connected to all processors of the network. Otherwise,it is called local.(2) Recon�gurability of the buses: A bus is called recon�g-urable if it can be partitioned into subbuses, such thateach subbus can be used as a separate, independent bus.A bus that is not recon�gurable is called �xed.(3) Con
ict resolution for bus access: Most papers assumethat the buses have broadcast capability, that is, a valuewritten on the bus by one processor can be read by allprocessors connected to the bus in the next step. Anothercommon assumption is that the result is unde�ned if sev-eral processors simultaneously attempt to write on a bus.Using the PRAM terminology, we refer to such a bus asConcurrent Read Exclusive Write, or CREW for short.We also use the term CRCW for buses with broadcastcapability and some form of write con
ict resolution.The model of computation assumed in this paper is amesh with row and column buses. We will consider both �xedand recon�gurable buses. Of course, all algorithms designedfor such a model will also run on more powerful models, suchas the Polymorphic Torus [13] or the PARBUS [21], that canbe recon�gured into a mesh with row and column buses. Un-less explicitely stated otherwise, we assume the buses to beCREW. However, we will also discuss the impact of other con-
ict resolution schemes on the performance of the network.1.1 Related ResultsIn this paper, we consider the problems of permutation rout-ing, sorting, and dynamic routing on meshes with row andcolumn buses. The routing problem is the problem of rear-ranging a set of packets in a network, such that every packetends up at the processor speci�ed in its destination address. Arouting problem in which each processor is the source and des-tination of at most k packets is called a k{k routing problem.The routing problem most extensively studied in the literatureis the 1{1 routing problem, also referred to as the permuta-tion routing problem. In the 1{1 sorting problem, we assumethat each processor initially holds a single packet, where eachpacket contains a key drawn from some totally ordered set.Our goal is to rearrange the packets in such a way that thepacket with the key of rank i is moved to the processor with1



index i, for all i. Finally, in a dynamic routing problem, pack-ets are continuously generated at each processor according tosome random process; the destinations of the generated pack-ets are randomly chosen among the processors of the network.While dynamic routing problems have been studied on severalother classes of networks, including the mesh [10, Section 1.7.2]and the hypercube [18], we are not aware of any previous at-tempt to analyze the performance of meshes with buses onthese problems. In the case of permutation routing and sort-ing, it is easy to see that at least �(n) steps are required onall proposed variants of meshes with buses, due to bisectionwidth. However, the exact complexity of these problems hasonly recently been investigated.The study of permutation routing on meshes with rowand column buses was initiated by Leung and Shende [11].They assume a model of computation, hereafter referred to asthe mesh with �xed buses, that consists of a mesh with non-recon�gurable row and column buses in addition to the stan-dard mesh edges. For the one-dimensional case, they obtaina permutation routing algorithm with running time 2n=3, andalso a matching lower bound. For the two-dimensional case,Leung and Shende show that every permutation can be routedo�-line in n+ 1 steps. They also describe a deterministic on-line algorithm that routes in time (7=6+ �)n+ o(n) and queuesize O(1=�) on the two-dimensional mesh with �xed buses, andin time (7(r � 1)=6 + �)n+ o(n) and queue size O(�1�r) on r-dimensional networks. In a subsequent paper [12], they obtainan improved algorithm for the two-dimensional case, runningin time (1 + �)n+ o(n) with queue size O(1=�).Rajasekaran and McKendall [16] and Rajasekaran [15]describe randomized algorithm for routing and sorting on amesh in which the mesh edges have been replaced by a recon-�gurable bus system. This model, hereafter referred to as themesh with recon�gurable buses, is essentially the same as thePARBUS, but has the additional property that every subbusof length 1 can be used in the same way as a bidirectional edgein a standard mesh. There is an obvious lower bound of n=2steps for permutation routing and sorting on this model, dueto the bisection width of the network. Rajasekaran and Mc-Kendall describe a deterministic algorithm for routing on theone-dimensional mesh with recon�gurable buses with a run-ning time of 3n=4 and constant queue size, and a randomizedalgorithm for the two-dimensional case that achieves a runningtime of (1+�)n and a queue size of O(1=�), with high probabil-ity. They also obtain randomized algorithms for sorting withthe same bounds on running time and queue size.Very recently, Sibeyn, Kaufmann, and Raman [17] haveshown improved lower bounds for routing on the d-dimensionalmesh with �xed buses. In particular, they obtain lowerbounds of 0:69n and 0:72n for the two-dimensional and three-dimensional case, respectively. For large d, their lower boundsare approximately d�1d n. The lower bound for the two-dimensional case was also independently discovered by Cheungand Lau [3]. Sibeyn, Kaufmann, and Raman also give random-ized algorithms for permutation routing on meshes with �xedbuses that are signi�cantly faster than the deterministic algo-rithms of Leung and Shende. For the two-dimensional case,they obtain an algorithm with running time 0:78n. They alsogive an algorithm for d-dimensional networks that achieves arunning time of (2� 1=r)n+ o(n).

For the problem of k{k routing on r-dimensional net-works, r � 1, there are obvious lower bounds of kn=3 andkn=2 for meshes with �xed and recon�gurable buses, respec-tively, due to bisection width. For the mesh with �xed buses,Rajasekaran [15] and Sibeyn, Kaufmann, and Raman [17] de-scribe randomized algorithms that asymptotically match thislower bound. An optimal deterministic algorithm for k{k sort-ing on the mesh with recon�gurable buses can be obtained bya straightforward implementation of the optimal algorithmsfor the standard mesh in [8, 9].1.2 Overview of the PaperIn this paper, we study the complexity of permutation rout-ing, sorting, and dynamic routing on meshes with �xed andrecon�gurable row and column buses.We give a fairly simple deterministic algorithm for per-mutation routing on the n� n mesh with buses that achievesa running time of n+ o(n) and a queue size of 2. We also givean algorithm for d-dimensional meshes, d � 3, with a runningtime of (2 � 1=r)n + o(n) and a queue size of 2, and showhow to obtain algorithms for 1{1 sorting that match those forpermutation routing. An interesting feature of all our algo-rithms is that they can be e�ciently implemented on a varietyof di�erent classes of networks, including the PARBUS and theMesh of Trees [10]. For the mesh with �xed buses, our algo-rithms o�er a signi�cant improvement over the best previouslyknown deterministic algorithms [11, 12] with respect to bothrunning time and queue size. For the mesh with recon�gurablebuses, our algorithms even improve over the best known ran-domized algorithms [15]. Our algorithms are obtained with anovel technique that allows us to convert certain o�-line rout-ing schemes into deterministic on-line algorithms. We believethat this technique may have further applications.In the second part of the paper, we study dynamic rout-ing problems on meshes with buses. In the case of permutationrouting, we cannot hope to get a speed-up of more than a con-stant factor over the standard mesh, with any system of busesthat can be laid out in O(n2) area. However, the situation iscompletely di�erent in the case of dynamic routing. We willshow an algorithm for the mesh with �xed buses that routesevery packet in time O(n1=3), with high probability. For themesh with recon�gurable buses, we propose a very simple rout-ing scheme that routes each packet in O(lg n) steps. For themesh with �xed CRCW buses, a delivery time of O(lg n lg lg n)can be achieved. In contrast, the expected time for the com-pletion of a routing request on the standard mesh is �(n).Due to space constraints, we can only give a brief descrip-tion of the main results. A more detailed presentation can befound in [20].The remainder of the paper is organized as follows. Sec-tion 2 describes our algorithms for permutation routing andsorting. Section 3 contains the analysis of dynamic routing onvarious models of meshes with buses. Finally, Section 4 listssome open questions for future research.2 Permutation Routing and SortingIn this section, we introduce a new technique that allows us toconvert certain o�-line routing schemes into deterministic rout-ing algorithms. We then use this technique to design improvedalgorithms for permutation routing and sorting on meshes with2



buses. We begin by giving a description of a simple n+1 stepo�-line routing scheme proposed by Leung and Shende [11, 12].In Subsection 2.2 we show how this o�-line routing scheme canbe converted into a fast and fairly simple deterministic rout-ing algorithm. In Subsection 2.3 we apply our technique tomulti-dimensional meshes with buses. Finally, Subsection 2.4contains our algorithms for 1{1 sorting.2.1 O�-line RoutingIn the o�-line routing scheme of Leung and Shende [11, 12],every packet is �rst routed on a column bus to its destina-tion row, and then routed on a row bus to its destination inthe following step. Leung and Shende show that for any in-put permutation, a schedule for the above routing scheme canbe computed in time O(n3:5), by computing a sequence of nmaximum matchings. Once the schedule has been computed,it can be executed in n+ 1 steps.Now consider the following interpretation of the abovescheduling problem. The columns of the bused mesh are in-terpreted as processes P0; : : : ; Pn�1. Every process Pi has ex-clusive ownership of its column bus, and has to transmit the npackets in its column to their destinations. To do so, a processneeds to send packets on the row buses, which are interpretedas resources R0; : : : ;Rn�1. Before a packet can be transmittedacross a row bus to its �nal destination, it has to be routedwithin its column to the correct row; this can be done in thepreceding step using the column bus. If k packets in column ihave a destination in row j, then process Pi will need resourceRj for k time steps. These k steps can be scheduled in anyarbitrary order, provided that in any given step, each resourceis accessed by at most one process, and each process uses atmost one resource. The problem of �nding a minimum timeschedule that satis�es all of these demands is known as theOpen Shop Scheduling Problem, and was solved by Gonzalezand Sahni [5].For 0 � i; j < n, let Di;j, the demand of process Pi forresource Rj, be the number of packets in column i that havea destination in row j. Note thatn�1Xi=0 Di;j = n and n�1Xj=0 Di;j = n (1)holds, since every row is the destination, and every columnthe origin, of exactly n packets. A simple algorithm for �nd-ing a minimum time schedule computes a sequence of max-imum matchings in the bipartite graph G = (U;V; E) de-�ned by U = fP0; : : : ; Pn�1g, V = fR0; : : : ;Rn�1g, andE = f(Pi;Rj) j Di;j > 0g. More precisely, the algorithm�rst computes a maximum matching M of G, and scheduleseach process with its matched resource for Dmin time steps,where Dmin = minfDi;j j (Pi;Rj) 2 Mg. Next, we subtractDmin from all Di;j with (Pi;Rj) 2 M , construct a new bi-partite graph G0 corresponding to the new values of the Di;j,and compute a new maximum matching M 0. This procedure isrepeated until all demands Di;j have been reduced to zero. Us-ing Hall's Matching Theorem, it can be shown that the aboveequation (1) guarantee that the resulting schedule has a lengthof at most n. This in turn implies that at most n matchingshave to be computed, since for every matching the length ofthe schedule is increased by at least one step.

A maximum matching on a bipartite graph with 2n ver-tices can be computed in time O(n2:5) using the algorithm ofHopcroft and Karp [6]. Thus, the entire schedule can be com-puted in time O(n3:5). Of course, this makes the algorithminappropriate for use as an on-line algorithm.2.2 Two-Dimensional RoutingIn order to get a running time of n+ o(n), we will modify theabove algorithm in such a way that the routing schedule canbe computed on-line in time o(n). Executing the computedschedule will then take another n+ o(n) steps. The key ideain our construction is a technique to reduce the size of thescheduling problem that has to be solved, and thus the size andnumber of the matchings that have to be computed. Informallyspeaking, this can be done by partitioning the mesh into asmaller number of processes and resources, and by treatingsets of packets with similar sources and destinations as if theywere a single packet.We partition the bused mesh into blocks Bi, 0 � i <n2�2�, of size n��n�, where � is some constant that is smaller,but su�ciently close to 1 (for example, � = 0:9). We as-sume that the blocks Bi are indexed in row-major order (thus,B0 and Bn2�2��1 are the blocks in the upper left and lowerright corner, respectively). We now interpret each of the n1��columns of blocks as a process, and each of the n1�� rows ofblocks as a resource. Each process Pi has exclusive ownershipof its n� column buses, while each resource Rj consists of n�row buses. At most one process will be allowed to access asingle resource at any point in time. Thus, a process that hasexclusive access to a resource can transmit up to n� packetsacross the row buses of the resource in a single step.We now show how to arrange the packets inside the pro-cesses in such a way that we can make optimal use of this newcon�guration. To do so we have to slightly relax the goal of therouting schedule that will be computed. Rather than requiringeach packet to be at its �nal destination after execution of theschedule, we will be content with routing each packet to someposition in the n� � n� block that contains its destination.We can then bring the packets to their �nal destinations byrouting locally inside each block.To arrange the packets for the routing schedule, we sortthe blocks into row-major order, where the packets are sortedby the index of their destination block. We say that a row ofa block Bi is clean if all its packets have the same destinationblock. Otherwise, we say that the row is dirty. All n� packetsin a clean row of a block will be transmitted across the rowbuses to their common destination block in a single step, af-ter they have been routed to the correct row of blocks in thepreceding step. If a row of a block is dirty, then the packets inthe row will be transmitted across the row buses to their re-spective destination blocks in d separate steps, where d is thenumber of distinct destination blocks that occur among thepackets in the row. In other words, such a row will be treatedin the same way as d separate rows; this increases the numberof steps required to route this row by d�1. Since there are onlyn2�2� blocks, this will increase the number of steps requiredto route the elements of a single block across the row buses byat most n2�2��1. Consequently, the number of steps requiredto route all the elements of a process Pi across the row buseswill be increased by less than n3�3�. Hence, if Di;j denotes3



the number of steps that process Pi needs resource Rj, thenn�1Xj=0 Di;j � n+ n3�3� and n�1Xi=0 Di;j � n+ n3�3� (2)hold for all i; j. Here, the second inequality holds since for anytwo blocks Bk;Bl, there can be at most two dirty rows in Bkthat contain packets destined for Bl. Equation (2) guaranteesthe existence of a schedule of length n+n3�3� = n+o(n) thatroutes every packet to its destination block.It remains to show that such a schedule can be computedin time o(n). Since we only have n1�� processes and resources,the graph G that is used in the construction of the schedulewill have only 2n1�� vertices. Hence, a maximum matching inthis graph can be computed in time O �n2:5(1��)�. For eachmatching that is computed, at least one edge will be removedfrom the graph. This implies that at most n2�2� matchingshave to be computed, and the total time to compute the sched-ule sequentially is bounded by O �n4:5(1��)� = o(n). In orderto implement this computation on a bused mesh, all the dataneeded to construct the graph G is routed to a small area,say, in the center of the mesh, where the schedule is computedand then broadcast to all blocks. It su�ces if each block con-tributes the numbersmi, 0 � i < n2�2�, wheremi is de�ned asthe number of elements in the block that are destined to blockBi. This can clearly be done in time o(n), since not a lot ofinformation has to be transmitted. We will not elaborate onthe implementation of the maximum matching algorithm onthe mesh. Since we do not need an algorithm that is fasterthan the sequential one, this is an easy task. Altogether, weobtain the following algorithm:(1) Partition the mesh into blocks of size n� � n�. Sort thepackets in each block into row-major order by destinationblocks. This takes O(n�) = o(n) steps.(2) In each block, use pre�x computations to compute themi,0 � i < n2�2� (mi was de�ned as the number of packetswith destination block Bi). Send the mi to a small areain the center of the mesh. This takes o(n) steps.(3) Compute the schedule and broadcast it to all blocks ofthe mesh. This can be done in time o(n), assuming thatthe constant � is chosen close enough to 1.(4) Execute the computed schedule of length n+ o(n).(5) Use local routing inside each block to bring the packetsto their �nal destinations. This takes time O(n�) = o(n)It remains to show that the above algorithm can be im-plemented with a small, constant queue size. Consider anydestination block Bi inside the mesh, and recall that up to n�packets enter Bi across the row buses in a single step. Dueto the sorting in Step (1) of the algorithm, every block in themesh can have at most two dirty rows that contain elementswith destination block Bi. This implies that Bi will only re-ceive packets in at most n� + 2n2�2� steps of the schedule. Ifwe require that the packets arriving in the ith such step arestored by the processors in the (i mod n�)th column of Bi,then most processors in Bi will only get a single packet, whileup to 2n2�� processors will receive two packets. In addition,every processors can still contain one packet that originatedfrom Bi and has not been sent out yet. Finally, some of the

processors in Bi will also have to store the n� packets that canenter the block across the column buses in each step, and thatare then routed across the row buses in the following step. Thisgives a total queue size of 4. Using a slightly more complicatedimplementation [20], the following result can be stablished.Theorem 2.1 There exists a deterministic algorithm for per-mutation routing on the n � n mesh with buses that runs intime n+ o(n) with a queue size of 2.Note that the above algorithm does not assume any par-ticular model of the mesh with row and column buses. Infact, the algorithm can be implemented on a variety of dif-ferent models within the same bounds on running time andqueue size. For the mesh with �xed buses, this improves uponthe best previously known deterministic algorithm [11] in bothrunning time and queue size (as an example, that algorithmrequired a queue size of more than 200 to obtain a runningtime of 1:2n). On the mesh with recon�gurable buses, ouralgorithm even improves upon the best previously known ran-domized algorithms of Rajasekaran and McKendall [16]. Onthe PARBUS model, which does not allow bidirectional com-munication in subbuses of length one, our algorithm is optimalwithin an additive lower order term. For another example,consider a model of the bused mesh in which the buses havea non-unit propagation delay �(n). It was observed by Che-ung and Lau [3] that, for any nonconstant delay function �,routing will take time 2n� o(n) in this model, assuming thatno pipelining is allowed on the buses. However, if we lift thisrestriction and allow a processor that sends a packet on thebus to send another packet in the next step, then we can routein time n + o(n), for any � = o(n), using a variant of theabove algorithm. As an interesting corollary, this implies ann + o(n) algorithm for permutation routing on the Mesh ofTrees [10]. Finally, our algorithm can be easily adapted to thePolymorphic Torus network described in [13] (this network isessentially a mesh with recon�gurable row and column busesand additional wrap-around connections). The resulting algo-rithm routes any permutation in time n=2 + o(n), and thusnearly matches the bisection lower bound of n=2.The above result shows that for the problem of permuta-tion routing, even a fairly simple algorithm on the mesh withbuses can achieve a speed-up by a factor of 2 over mesheswithout buses. For partial permutations with fewer pack-ets, an even greater speed-up over the standard mesh can beachieved [20]. Moreover, our algorithm achieves a queue sizeof 2. In this context, we point out that the 3n � 3 step o�-line scheme for routing on the standard mesh described byAnnexstein and Baumslag [1] achieves a queue size of 1 onlybecause in the standard mesh model two packets can be ex-changed across an edge in a single step. Since we do not allowtwo arbitrary processors that are connected to a common busto exchange two packets in a single step, it seems unlikely thatany algorithm that uses buses to transmit packets can achievea queue size of 1.2.3 Multi-Dimensional RoutingIn this subsection, we apply the ideas from the previous subsec-tion to obtain an improved deterministic algorithm for routingon multi-dimensional meshes with buses. On an r-dimensionalnetwork with side length n, our algorithm achieves a running4



time of (2� 1r )n+o(n) and a queue size of 2. This bound evenholds if the dimension of the mesh is non-constant, providedthat the side length n is su�ciently larger than the dimensionr. In the following, we will only give a very brief descriptionof the main ideas underlying our algorithm; more details canbe found in [20].The algorithm is based on a well-known scheme for o�-linerouting on r-dimensional meshes described by Annexstein andBaumslag [1]. The routing scheme consists of 2r�1 phases. Inphase i, 1 � i � r� 1, each packet is routed along dimension ito an appropriately chosen intermediate location. In phase i,r � i � 2r� 1, each packet is greedily routed along dimension2r� i. Each phase of the routing scheme involves a collectionof routing problems on linear arrays of length n, and will thustake at most n steps on the standard mesh. Hence, the entirerouting will be completed after (2r � 1)n steps. Clearly, thisbound can also be achieved on meshes with buses.In order to route a given permutation with the above rout-ing scheme, it is necessary to determine appropriate choices forthe intermediate locations assumed by the packets in the �rstr � 1 phases. This can again be done by constructing a se-quence of perfect matchings in a graph. The running timeof these matching computations is polynomial in the numberof packets in the network nr . To convert this o�-line routingscheme into a fast on-line algorithm, we introduce the notionof a super-packet. Informally speaking, a super-packet consistsof a collection of packets that have similar sources and des-tinations, and that move in lock step. By combining a largenumber of packets into a single super-packet, we can decreasethe number of packets in the network in such a way that theintermediate locations can be computed in time o(n).The resulting on-line algorithm with running time (2r �1)n + o(n) is uni-axial, that is, the algorithm communicatesonly across a single dimension in any given step of the compu-tation. Thus, we could simultaneously run up to r \copies" ofthe algorithm without any contention for the buses. To makeuse of this observation, we partition the set of packets into rsets of equal size, such that the sources and destinations ofthe packets in each set are approximately evenly distributedover the entire network. As each set contains only a 1r fractionof all packets, it can be routed in time (2 � 1r )n + o(n) bythe above algorithm. By running r \copies" of the algorithmsimultaneously, we obtain the following result.Theorem 2.2 There exists a deterministic algorithm forrouting on r-dimensional meshes with buses that runs in time(2� 1r )n+ o(n) with a queue size of 2.Like the algorithm in the previous subsection, this algo-rithm can be implemented on a variety of di�erent models ofmeshes with buses. For the mesh with �xed buses, we obtaina signi�cant improvement over the best previously known de-terministic algorithm [11] with respect to both running timeand queue size. Our algorithm matches the running time of therandomized algorithms of Sibeyn, Kaufmann, and Raman [17],while achieving a slightly better queue size. The algorithmcan easily be adapted to the multi-dimensional variants of theother networks mentioned in the previous subsection.2.4 Sorting on Meshes with BusesThe routing algorithms presented in the previous subsectionscan also be used to design fast deterministic algorithms for

sorting on meshes with buses. The idea for the algorithms isvery simple. First, we use a deterministic sampling techniqueto compute a set of splitters. After the splitter set has beenbroadcast throughout the network, each element can computeits approximate rank, and hence its approximate �nal locationin the sorted order. Next, we use a routing algorithm to moveeach element to this location. Finally, local sorting can be usedto bring each element to its �nal destination. A more detaileddescription of the algorithm and the deterministic samplingtechnique can be found in [20]. Ee get the following result.Theorem 2.3 Deterministic sorting can be performed in timen+ o(n) on the two-dimensional mesh with buses, and in time(2� 1r )n+ o(n) on the r-dimensional mesh with buses.3 Dynamic Routing ProblemsPrevious work on routing algorithms for meshes with buseswas restricted to the case of routing problems in which ev-ery packet is already present at the beginning of the routing,and the algorithm terminates after all packets have been deliv-ered. However, in many real applications new packet routingrequests are constantly generated by the processors through-out an ongoing computation. In this section, we study theperformance of di�erent models of meshes with buses on suchdynamic routing problems.Following the framework given by Leighton [10, Sec-tion 1.7.2], we assume that in a dynamic routing problem, eachprocessor generates a new packet at each step with some �xedprobability �, also called the arrival rate. The destination ad-dresses of these newly generated packets are chosen randomlyfrom among the processors of the network. Our goal is to de-sign routing algorithms that deliver each generated packet toits destination within some number � of steps, with probabil-ity at least 1 � O(1=n2) (in the following referred to as highprobability). We will assume that the performance of an algo-rithm on a dynamic routing problem is characterized by thistime bound � , and by the network capacity �0, that is, themaximal arrival rate � that can be handled by the algorithm.Note that for two-dimensional meshes and related net-works, including the networks considered in this paper, thereis an upper bound of O(1=n) on the capacity of the network.The exact bound on the capacity depends on the speci�c prop-erties of the network. As an example, on the standard mesh themaximal arrival rate is bounded by 4=n [10], while on mesheswith �xed buses, � can be at most 1=n if we want to make useof the buses for routing packets over long distances.In [10, Section 1.7.2], Leighton investigates the dynamicrouting problem on the standard mesh under the greedy rout-ing scheme, in which each packet is �rst routed along the rowto the correct column, and then along the column to its des-tination, and priority is given to the packet with the farthestdistance to travel. It is shown that in any time interval oflength T and for any arrival rate less than 4=n, no packet isdelayed by more than O(lg T +lg n) steps, and no queue growsbeyond size O(1+ lg Tlg n ), with high probability. While this resultshows that greedy algorithms perform well on dynamic routingproblems, the expected time for the completion of a routingrequest is, of course, still �(n), due to distance arguments.In the following, we will show that the maximal delivery timefor a dynamic routing request can be signi�cantly reduced byadding buses to the network.5



In the greedy routing scheme considered by Leighton, anewly generated packet starts moving towards its destinationas soon as it can do so under the given priority scheme. Wewill call such a routing scheme dynamic. Another possibleway of solving a dynamic routing problem is to partition thecomputation time into intervals [ti; ti+1], i � 0, of length k,and delay all packets generated in the interval [ti; ti+1] untila new round of routing is started at time ti+1. We will callsuch a routing scheme static. It is pointed out in [10, page 173]that such a scheme is not a good choice for networks with largediameter, such as the mesh. Since the delivery time of a packetin these networks is mainly determined by the distance it hasto travel, it is a better idea to move the packet closer to itsdestination whenever this is possible. However, this situationis quite di�erent on meshes with buses, where the deliverytime is not determined by the distance. It will turn out thatthe main issue raised by dynamic routing problems on thesenetworks is that of possible contention for the buses. In thefollowing, we will propose static and dynamic algorithms forseveral di�erent models of meshes with buses.3.1 Meshes with Fixed BusesWe assume that new packets are generated by the processorswith rate � = k=n, for some k < 1. Thus, we expect about knpackets to be generated in any step. However, the generatedpackets will not be completely evenly distributed among therows and columns of the mesh. This raises the problem ofscheduling the buses in such a way that no two processorssimultaneously attempt to write on the same bus.We partition the mesh into blocks of size n1=3 � n1=3,and partition the computation time into intervals of length�(n1=3 lg n). Then in each interval, and in each block, �(lg n)packets will be generated, with high probability. On the otherhand, during each interval, �(n2=3 lg n) bus rides are avail-able on the n1=3 row buses passing through the block. Thus,we could use a �xed schedule that assigns to each of the n2=3blocks in a row �(lg n) bus rides per interval. A newly gen-erated packet can now walk in time O(n1=3) to a unique \busstop" located within its block, where it waits for a slot onthe bus. The process is then repeated for the column buses.The resulting dynamic algorithm routes each packet in timeO(n1=3 lg n), and no packet takes more than O(lg T+n1=3 lg n)steps in any time interval of length T , with high probability.We can improve the running time in the static case by us-ing a pre�x computation to determine the number of packetsgenerated in each block. We can then assign an appropri-ate number of bus rides to each block. Since pre�x computa-tions can be performed in O(n1=3) steps on a mesh with �xedCREW buses, we obtain a static routing algorithm that routesall packets in time O(n1=3), with high probability.3.2 Recon�gurable MeshesWe now consider the dynamic routing problem on meshes withrecon�gurable CREW buses. It turns out that the problem ofscheduling the buses becomes much simpler under this model,since we can avoid write con
icts by recon�guring the busesappropriately. Consider a row of the mesh with a number ofpackets that want to move in a common direction, say towardsthe right. If any processor that contains such a packet discon-nects the row bus between itself and its left neighbor, then no

write con
ict can occur when the packets are broadcast to-wards the right in the following step. This observation leadsto the following simple routing scheme.As before, every packet is �rst routed along the row toits destination column, and then along the column to its �naldestination. We divide the routing into odd and even steps. Inan odd step, we route all packets that have to be moved to theright. To do this, we disconnect the row bus to the left of eachpacket and broadcast the packet to the right. Similarly, weroute all packets that have to move downwards on the columnbuses. In an even step, we route the packets that have to moveupwards or towards the left.The resulting dynamic algorithm routes each packet inO(lg n) steps, and no packet takes more than O(lg T + lg n)steps in any time interval of length T , with high probability.To prove this, observe that in every step, either at least oneelement in each row reaches its destination column, or no ele-ment at all is routed in that row. A corresponding statementholds for the columns.Note that the above scheme is very similar to the greedyrouting scheme on the standard mesh. We can also use thescheme in the case of buses with non-unit delay. Interestingly,as the delay function increases, the number of packets currentlyin the network will increase, and the resulting behavior of thealgorithm will eventually become more and more similar to thegreedy algorithm for the standard mesh.3.3 Meshes with CRCW BusesUp to this point, we have restricted our attention to mesheswith CREW buses. The main reason for this restriction wasthat there was no apparent bene�t in allowing concurrent writeaccess to the buses in permutation routing and sorting. Thissituation appears to be di�erent, however, in the case of dy-namic routing problems on meshes with �xed buses. In thefollowing, we assume that no packet will be transmitted at allif two or more processors try to write to the same bus in asingle step. Instead, the bus will broadcast a special signalindicating that a write con
ict has occurred.A naive routing scheme would require every packet to 
ipa coin before each step, and attempt to write on the bus if andonly if the outcome of the coin 
ip is a \1". If every row andevery column contains only a constant number of packets, thenthis scheme will route a packet across each bus in a constantfraction of the steps. However, if a row or column receives alarger number of packets, then this routing scheme will verylikely result in a write con
ict in any given step, and eventu-ally in a large backlog of undelivered packets. To avoid thisproblem, a more intricate coin-
ipping strategy is needed.We partition the computation time into intervals of lengthO(lg n lg lg n). Then in every such interval �(lg n lg lg n) pack-ets will be generated in each row. To route these packets acrossthe row buses to their destination column, we can use an al-gorithm recently analyzed by Ger�eb-Graus and Tsantilas [4]in the context of routing h-relations on an optical computermodel. The algorithm uses appropriately biased coin-
ips toroute O(lg n lg lg n) packets in time O(lg n lg lg n), with highprobability. For a description of the algorithm, we refer thereader to the cited paper. The algorithm is then repeated forthe routing across the columns.The above algorithm can be implemented both as a static6



and as a dynamic scheme. However, it seems to have one seri-ous drawback. In the unlikely event that too many packets aregenerated in the same row over some su�ciently long periodof time, the network will not return to its \normal" state evenafter the arrival rate has gone back to normal.3.4 DiscussionWe have observed in this section that the delivery time fora dynamic routing request is considerably smaller on mesheswith buses than on the standard mesh. Of course, it needs tobe pointed out that an improvement in the expected routingtime from �(n) to, say, O(lg n) will in general not result ina proportional speed-up of the underlying computation per-formed by the network. The maximal speed-up that can beachieved by adding a bus system will depend on the propertiesof the particular application. If on average only a small num-ber of routing requests are generated in a single step, then asigni�cant speed-up is possible. For larger arrival rates, someconstant speed-up can still be obtained in many cases.If most of the generated packets only have to travel a shortdistance, then the performance of a network with �xed busescan be improved by reserving the buses for the few packetsthat have to travel over a long distance, and routing the otherpackets on the mesh edges. Of course, this is already done inmany algorithms, such as the O(n1=3) pre�x sums algorithm,but it might be interesting to investigate this idea under themore general framework of dynamic routing.4 Summary and Open ProblemsIn this paper, we have given improved deterministic algorithmsfor routing and sorting on meshes with row and column buses.The algorithms can be implemented on a variety of di�erentmodels of meshes with buses, and are based on a new tech-nique that seems especially suitable for networks with a largediameter that have been augmented with a bus system or asmall-bandwidth interconnection network. We have also in-vestigated the performance of various models of meshes withbuses on dynamic routing problems.While our algorithms for permutation routing and sortingare optimal for some models of meshes with buses, for exam-ple the PARBUS or the Polymorphic Torus, there is still agap between the best upper and lower bounds on the meshwith �xed and recon�gurable buses. It would certainly bean interesting improvement to close these gaps. For the two-dimensional mesh with recon�gurable buses, it is yet unclearwhether routing can be done in less than n steps. For the meshwith �xed buses, there remains a small gap between the bestlower bounds and the running times of the randomized algo-rithms of Sibeyn, Kaufmann, and Raman [17]. By applying anew and fairly general derandomization technique for routingand sorting on meshes [8], we have very recently obtained de-terministic routing algorithms that match the running timesof their randomized algorithms. The resulting algorithms willbe described in a subsequent paper.While the algorithms given in Section 2 are based on afairly simple idea, they are not practical due to their compli-cated control structure and their fairly large lower order terms.It is an interesting question whether the ideas described in thispaper can be used in the design of more practical algorithms.Finally, we believe that the study of dynamic routing
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