Routing and Sorting on Meshes
with Row and Column Buses

Torsten Suel*

Department of Computer Sciences
University of Texas at Austin

Abstract

We give improved deterministic algorithms for permutation routing
and sorting on meshes with row and column buses. Among our
results, we obtain a fairly simple algorithm for permutation rout-
ing on two-dimensional meshes with buses that achieves a running
time of n + o(n) and a queue size of 2. We also describe an algo-
rithm for routing on r-dimensional networks with a running time of
(2—1/r)n+ o(n) and a queue size of 2, and show how to obtain de-
terministic algorithms for sorting whose running times match those
for permutation routing. An interesting feature of our algorithms is
that they can be implemented on a wide variety of different models
of meshes with buses within the same bounds on time and queue
size. Finally, we also study the performance of meshes with buses
on dynamic routing problems, and propose fast routing schemes un-
der several different assumptions about the properties of the bus

system.

1 Introduction

The mesh-connected array of processors is one of the most
thoroughly investigated interconnection schemes for parallel
processing. It is of great importance due to its simple struc-
ture and its good performance in practice. Consequently, a
variety of algorithmic problems have been analyzed as to their
complexity on theoretical models of the mesh; probably the
two most extensively studied problems are those of routing
and sorting. The main drawback of the mesh is its large diam-
eter in comparison to many other networks, such as the mesh
of trees or the hypercubic networks [10]. An n x n mesh has a
diameter of 2n — 2, and hence even computations that require
only a very limited amount of communication, for example pre-
fix computations, require at least n — 1 communication steps.

To remedy this situation, it was proposed by several au-
thors [2, 7, 19] to augment the mesh architecture with high-
speed buses that allow fast communication between processors
located in different areas of the mesh. This has resulted in a
large body of literature on various different models of meshes
with bus connections, and a number of important algorith-
mic problems have been studied under these models. Among
the most frequently studied problems on meshes with buses
are Maximum, Prefix Sums, Selection, as well as various algo-
rithmic problems in image processing and graph theory (e.g.,
see [13, 14, 20] for a list of references).

Due to the low communication requirements of these
problems, significant speed-ups over the standard mesh can
be achieved. The exact time complexities of the proposed al-
gorithms heavily depend on the properties of the bus system.

*Supported by the Texas Advanced Research Program under
Grant No. #003658480. Email: torsten@cs.utexas.edu.

For example, the maximum of n® elements can be computed
in time O(lglgn) on an n X n mesh with a fully reconfigurable
bus, while the same problem requires @(nl/s) steps on a mesh
with fixed row and column buses. In the following, we will
briefly describe some of the main features of the bus system

that determine the power of the model.

(1) Architecture of the bus system: A bus is called global if it
is connected to all processors of the network. Otherwise,
it is called local.

(2) Reconfigurability of the buses: A bus is called reconfig-
urable if it can be partitioned into subbuses, such that
each subbus can be used as a separate, independent bus.
A bus that is not reconfigurable is called fized.

(3) Conflict resolution for bus access: Most papers assume
that the buses have broadcast capability, that is, a value
written on the bus by one processor can be read by all
processors connected to the bus in the next step. Another
common assumption is that the result is undefined if sev-
eral processors simultaneously attempt to write on a bus.
Using the PRAM terminology, we refer to such a bus as
Concurrent Read Fxzclusive Write, or CREW for short.
We also use the term CRCW for buses with broadcast
capability and some form of write conflict resolution.

The model of computation assumed in this paper is a
mesh with row and column buses. We will consider both fixed
and reconfigurable buses. Of course, all algorithms designed
for such a model will also run on more powerful models, such
as the Polymorphic Torus [13] or the PARBUS [21], that can
be reconfigured into a mesh with row and column buses. Un-
less explicitely stated otherwise, we assume the buses to be
CREW. However, we will also discuss the impact of other con-
flict resolution schemes on the performance of the network.

1.1 Related Results

In this paper, we consider the problems of permutation rout-
ing, sorting, and dynamic routing on meshes with row and
column buses. The routing problem is the problem of rear-
ranging a set of packets in a network, such that every packet
ends up at the processor specified in its destination address. A
routing problem in which each processor is the source and des-
tination of at most k packets is called a k—k routing problem.
The routing problem most extensively studied in the literature
is the 1-1 routing problem, also referred to as the permuta-
tion routing problem. In the 1-1 sorting problem, we assume
that each processor initially holds a single packet, where each
packet contains a key drawn from some totally ordered set.
Our goal is to rearrange the packets in such a way that the
packet with the key of rank i is moved to the processor with

index ¢, for all ¢. Finally, in a dynamic routing problem, pack-
ets are continuously generated at each processor according to
some random process; the destinations of the generated pack-
ets are randomly chosen among the processors of the network.
While dynamic routing problems have been studied on several
other classes of networks, including the mesh [10, Section 1.7.2]
and the hypercube [18], we are not aware of any previous at-
tempt to analyze the performance of meshes with buses on
these problems. In the case of permutation routing and sort-
ing, it is easy to see that at least ©(n) steps are required on
all proposed variants of meshes with buses, due to bisection
width. However, the exact complexity of these problems has
only recently been investigated.

The study of permutation routing on meshes with row
and column buses was initiated by Leung and Shende [11].
They assume a model of computation, hereafter referred to as
the mesh with fived buses, that consists of a mesh with non-
reconfigurable row and column buses in addition to the stan-
dard mesh edges. For the one-dimensional case, they obtain
a permutation routing algorithm with running time 2n/3, and
also a matching lower bound. For the two-dimensional case,
Leung and Shende show that every permutation can be routed
off-line in n + 1 steps. They also describe a deterministic on-
line algorithm that routes in time (7/6 +¢€)n +o(n) and queue
size O(1/e) on the two-dimensional mesh with fixed buses, and
in time (7(r — 1)/6 4+ €)n + o(n) and queue size O(el_r) on r-
dimensional networks. In a subsequent paper [12], they obtain
an improved algorithm for the two-dimensional case, running
in time (1 4 €)n 4 o(n) with queue size O(1/e).

Rajasekaran and McKendall [16] and Rajasekaran [15]
describe randomized algorithm for routing and sorting on a
mesh in which the mesh edges have been replaced by a recon-
figurable bus system. This model, hereafter referred to as the
mesh with reconfigurable buses, is essentially the same as the
PARBUS, but has the additional property that every subbus
of length 1 can be used in the same way as a bidirectional edge
in a standard mesh. There is an obvious lower bound of n/2
steps for permutation routing and sorting on this model, due
to the bisection width of the network. Rajasekaran and Mc-
Kendall describe a deterministic algorithm for routing on the
one-dimensional mesh with reconfigurable buses with a run-
ning time of 3rn/4 and constant queue size, and a randomized
algorithm for the two-dimensional case that achieves a running
time of (1+¢€)n and a queue size of O(1/¢), with high probabil-
ity. They also obtain randomized algorithms for sorting with
the same bounds on running time and queue size.

Very recently, Sibeyn, Kaufmann, and Raman [17] have
shown improved lower bounds for routing on the d-dimensional
mesh with fixed buses. In particular, they obtain lower
bounds of 0.69n and 0.72n for the two-dimensional and three-
dimensional case, respectively. For large d, their lower bounds
are approximately %n. The lower bound for the two-
dimensional case was also independently discovered by Cheung
and Lau [3]. Sibeyn, Kaufmann, and Raman also give random-
ized algorithms for permutation routing on meshes with fixed
buses that are significantly faster than the deterministic algo-
rithms of Leung and Shende. For the two-dimensional case,
they obtain an algorithm with running time 0.78n. They also
give an algorithm for d-dimensional networks that achieves a
running time of (2 — 1/r)n + o(n).

For the problem of k-k routing on r-dimensional net-
works, r > 1, there are obvious lower bounds of kn/3 and
kn/2 for meshes with fixed and reconfigurable buses, respec-
tively, due to bisection width. For the mesh with fixed buses,
Rajasekaran [15] and Sibeyn, Kaufmann, and Raman [17] de-
scribe randomized algorithms that asymptotically match this
lower bound. An optimal deterministic algorithm for k—k sort-
ing on the mesh with reconfigurable buses can be obtained by
a straightforward implementation of the optimal algorithms
for the standard mesh in [8, 9].

1.2 Overview of the Paper

In this paper, we study the complexity of permutation rout-
ing, sorting, and dynamic routing on meshes with fixed and
reconfigurable row and column buses.

We give a fairly simple deterministic algorithm for per-
mutation routing on the n x n mesh with buses that achieves
a running time of n + o(n) and a queue size of 2. We also give
an algorithm for d-dimensional meshes, d > 3, with a running
time of (2 — 1/r)n + o(n) and a queue size of 2, and show
how to obtain algorithms for 1-1 sorting that match those for
permutation routing. An interesting feature of all our algo-
rithms is that they can be efficiently implemented on a variety
of different classes of networks, including the PARBUS and the
Mesh of Trees [10]. For the mesh with fixed buses, our algo-
rithms offer a significant improvement over the best previously
known deterministic algorithms [11, 12] with respect to both
running time and queue size. For the mesh with reconfigurable
buses, our algorithms even improve over the best known ran-
domized algorithms [15]. Our algorithms are obtained with a
novel technique that allows us to convert certain off-line rout-
ing schemes into deterministic on-line algorithms. We believe
that this technique may have further applications.

In the second part of the paper, we study dynamic rout-
ing problems on meshes with buses. In the case of permutation
routing, we cannot hope to get a speed-up of more than a con-
stant factor over the standard mesh, with any system of buses
that can be laid out in O(n2) area. However, the situation is
completely different in the case of dynamic routing. We will
show an algorithm for the mesh with fixed buses that routes
every packet in time O(nl/g’)7 with high probability. For the
mesh with reconfigurable buses, we propose a very simple rout-
ing scheme that routes each packet in O(lgn) steps. For the
mesh with fixed CRCW buses, a delivery time of O(lgnlglg n)
can be achieved. In contrast, the expected time for the com-
pletion of a routing request on the standard mesh is ©(n).

Due to space constraints, we can only give a brief descrip-
tion of the main results. A more detailed presentation can be
found in [20].

The remainder of the paper is organized as follows. Sec-
tion 2 describes our algorithms for permutation routing and
sorting. Section 3 contains the analysis of dynamic routing on
various models of meshes with buses. Finally, Section 4 lists
some open questions for future research.

2 Permutation Routing and Sorting

In this section, we introduce a new technique that allows us to
convert certain off-line routing schemes into deterministic rout-
ing algorithms. We then use this technique to design improved
algorithms for permutation routing and sorting on meshes with

buses. We begin by giving a description of a simple n + 1 step
off-line routing scheme proposed by Leung and Shende [11, 12].
In Subsection 2.2 we show how this off-line routing scheme can
be converted into a fast and fairly simple deterministic rout-
ing algorithm. In Subsection 2.3 we apply our technique to
multi-dimensional meshes with buses. Finally, Subsection 2.4
contains our algorithms for 1-1 sorting.

2.1 Off-line Routing

In the off-line routing scheme of Leung and Shende [11, 12],
every packet 1s first routed on a column bus to its destina-
tion row, and then routed on a row bus to its destination in
the following step. Leung and Shende show that for any in-
put permutation, a schedule for the above routing scheme can
be computed in time O(n®?), by computing a sequence of n
maximum matchings. Once the schedule has been computed,
it can be executed in n + 1 steps.

Now consider the following interpretation of the above
scheduling problem. The columns of the bused mesh are in-
terpreted as processes Py, ..., Ph_1. Every process P; has ex-
clusive ownership of its column bus, and has to transmit the n
packets in its column to their destinations. To do so, a process
needs to send packets on the row buses, which are interpreted
as resources Ry, ..., Rn—1. Before a packet can be transmitted
across a row bus to its final destination, it has to be routed
within its column to the correct row; this can be done in the
preceding step using the column bus. If & packets in column ¢
have a destination in row j, then process P; will need resource
R; for k time steps. These k steps can be scheduled in any
arbitrary order, provided that in any given step, each resource
is accessed by at most one process, and each process uses at
most one resource. The problem of finding a minimum time
schedule that satisfies all of these demands is known as the
Open Shop Scheduling Problem, and was solved by Gonzalez
and Sahni [5].

For 0 <1,5 < n, let D;;, the demand of process P; for
resource R;, be the number of packets in column ¢ that have
a destination in row j. Note that

n—1 n-1
ZDW =n and ZDW =n (1)
i=0 3=0

holds, since every row is the destination, and every column
the origin, of exactly n packets. A simple algorithm for find-
ing a minimum time schedule computes a sequence of max-
imum matchings in the bipartite graph G = (U,V, E) de-
fined by U = {P,...,Prc1}, V. = {Ro,...,Rn_1}, and
E = {(P;,R;) | Di; > 0}. More precisely, the algorithm
first computes a maximum matching M of G, and schedules
each process with its matched resource for Dpin time steps,
where Dnin = min{D;; | (P;, R;) € M}. Next, we subtract
Diin from all D;; with (P;, R;) € M, construct a new bi-
partite graph G’ corresponding to the new values of the D ;,
and compute a new maximum matching M’. This procedure is
repeated until all demands D; ; have been reduced to zero. Us-
ing Hall’s Matching Theorem, it can be shown that the above
equation (1) guarantee that the resulting schedule has a length
of at most n. This in turn implies that at most n matchings
have to be computed, since for every matching the length of
the schedule is increased by at least one step.

A maximum matching on a bipartite graph with 2n ver-
tices can be computed in time O(n®?°) using the algorithm of
Hopcroft and Karp [6]. Thus, the entire schedule can be com-
puted in time O(r®®). Of course, this makes the algorithm
inappropriate for use as an on-line algorithm.

2.2 Two-Dimensional Routing

In order to get a running time of n 4+ o(n), we will modify the
above algorithm in such a way that the routing schedule can
be computed on-line in time o(n). Executing the computed
schedule will then take another n 4 o(n) steps. The key idea
in our construction is a technique to reduce the size of the
scheduling problem that has to be solved, and thus the size and
number of the matchings that have to be computed. Informally
speaking, this can be done by partitioning the mesh into a
smaller number of processes and resources, and by treating
sets of packets with similar sources and destinations as if they
were a single packet.

We partition the bused mesh into blocks B;, 0 < 1 <
n>72% of size n® xn®, where « is some constant that is smaller,
but sufficiently close to 1 (for example, a = 0.9). We as-
sume that the blocks B; are indexed in row-major order (thus,
By and B, 2-2a_; are the blocks in the upper left and lower
right corner, respectively). We now interpret each of the nl=e
columns of blocks as a process, and each of the n'~® rows of
blocks as a resource. Each process P; has exclusive ownership
of its n® column buses, while each resource R; consists of n®
At most one process will be allowed to access a
single resource at any point in time. Thus, a process that has
exclusive access to a resource can transmit up to n® packets
across the row buses of the resource in a single step.

We now show how to arrange the packets inside the pro-
cesses in such a way that we can make optimal use of this new
configuration. To do so we have to slightly relax the goal of the
routing schedule that will be computed. Rather than requiring
each packet to be at its final destination after execution of the
schedule, we will be content with routing each packet to some
position in the n® x n® block that contains its destination.

row buses.

We can then bring the packets to their final destinations by
routing locally inside each block.

To arrange the packets for the routing schedule, we sort
the blocks into row-major order, where the packets are sorted
by the index of their destination block. We say that a row of
a block B; is clean if all its packets have the same destination
block. Otherwise, we say that the row is dirty. All n® packets
in a clean row of a block will be transmitted across the row
buses to their common destination block in a single step, af-
ter they have been routed to the correct row of blocks in the
preceding step. If a row of a block is dirty, then the packets in
the row will be transmitted across the row buses to their re-
spective destination blocks in d separate steps, where d is the
number of distinct destination blocks that occur among the
packets in the row. In other words, such a row will be treated
in the same way as d separate rows; this increases the number
of steps required to route this row by d—1. Since there are only
n>72% blocks, this will increase the number of steps required
to route the elements of a single block across the row buses by
at most n~?% —1. Consequently, the number of steps required
to route all the elements of a process P; across the row buses
will be increased by less than n®~®*. Hence, if D;; denotes

the number of steps that process P; needs resource R;, then
n—1 n—1
ZDW < n 4+ n°73e and ZDW < n 4+ n°73e (2)
3=0 1=0

hold for all ¢, 7. Here, the second inequality holds since for any
two blocks By, Bi, there can be at most two dirty rows in By
that contain packets destined for B;. Equation (2) guarantees
the existence of a schedule of length n+n®~%* =n+ o(n) that
routes every packet to its destination block.

It remains to show that such a schedule can be computed
in time o(n). Since we only have n'~ processes and resources,
the graph G that is used in the construction of the schedule
will have only 2n'~*
this graph can be computed in time O (n2'5(1_a)). For each
matching that is computed, at least one edge will be removed
from the graph. This implies that at most n?~2® matchings
have to be computed, and the total time to compute the sched-
ule sequentially is bounded by O (n4'5(1_a)) = o(n). In order
to implement this computation on a bused mesh, all the data
needed to construct the graph G is routed to a small area,
say, in the center of the mesh, where the schedule is computed
and then broadcast to all blocks. It suffices if each block con-
tributes the numbers m;, 0 < 1 < n?~2% where m; is defined as
the number of elements in the block that are destined to block
B;. This can clearly be done in time o(n), since not a lot of
information has to be transmitted. We will not elaborate on
the implementation of the maximum matching algorithm on
the mesh. Since we do not need an algorithm that is faster
than the sequential one, this is an easy task. Altogether, we
obtain the following algorithm:

vertices. Hence, a maximum matching in

(1) Partition the mesh into blocks of size n® x n®. Sort the
packets in each block into row-major order by destination

blocks. This takes O(n®) = o(n) steps.

(2) Ineach block, use prefix computations to compute the m;,
0<i<n?™2 (m; was defined as the number of packets
with destination block B,‘). Send the m; to a small area
in the center of the mesh. This takes o(n) steps.

(3) Compute the schedule and broadcast it to all blocks of
the mesh. This can be done in time o(n), assuming that
the constant « is chosen close enough to 1.

(4) Execute the computed schedule of length n + o(n).

(5) Use local routing inside each block to bring the packets
to their final destinations. This takes time O(n%) = o(n)

It remains to show that the above algorithm can be im-
plemented with a small, constant queue size. Consider any
destination block B; inside the mesh, and recall that up to n®
packets enter B; across the row buses in a single step. Due
to the sorting in Step (1) of the algorithm, every block in the
mesh can have at most two dirty rows that contain elements
with destination block B;. This implies that B; will only re-
ceive packets in at most n® + 2n>7>“ steps of the schedule. If
we require that the packets arriving in the ith such step are
stored by the processors in the (i mod n®)th column of B,
then most processors in B; will only get a single packet, while
up to 2n>~° processors will receive two packets. In addition,
every processors can still contain one packet that originated
from B; and has not been sent out yet. Finally, some of the

processors in B; will also have to store the n® packets that can
enter the block across the column buses in each step, and that
are then routed across the row buses in the following step. This
gives a total queue size of 4. Using a slightly more complicated
implementation [20], the following result can be stablished.

Theorem 2.1 There exists a deterministic algorithm for per-
mutation routing on the n x n mesh with buses that runs in
time n 4 o(n) with a queue size of 2.

Note that the above algorithm does not assume any par-
ticular model of the mesh with row and column buses. In
fact, the algorithm can be implemented on a variety of dif-
ferent models within the same bounds on running time and
queue size. For the mesh with fixed buses, this improves upon
the best previously known deterministic algorithm [11] in both
running time and queue size (as an example, that algorithm
required a queue size of more than 200 to obtain a running
time of 1.2n). On the mesh with reconfigurable buses, our
algorithm even improves upon the best previously known ran-
domized algorithms of Rajasekaran and McKendall [16]. On
the PARBUS model, which does not allow bidirectional com-
munication in subbuses of length one, our algorithm is optimal
within an additive lower order term. For another example,
consider a model of the bused mesh in which the buses have
a non-unit propagation delay p(n). It was observed by Che-
ung and Lau [3] that, for any nonconstant delay function p,
routing will take time 2n — o(n) in this model, assuming that
no pipelining is allowed on the buses. However, if we lift this
restriction and allow a processor that sends a packet on the
bus to send another packet in the next step, then we can route
in time n + o(n), for any p = o(n), using a variant of the
above algorithm. As an interesting corollary, this implies an
n + o(n) algorithm for permutation routing on the Mesh of
Trees [10]. Finally, our algorithm can be easily adapted to the
Polymorphic Torus network described in [13] (this network is
essentially a mesh with reconfigurable row and column buses
and additional wrap-around connections). The resulting algo-
rithm routes any permutation in time n/2 4 o(n), and thus
nearly matches the bisection lower bound of n/2.

The above result shows that for the problem of permuta-
tion routing, even a fairly simple algorithm on the mesh with
buses can achieve a speed-up by a factor of 2 over meshes
without buses. For partial permutations with fewer pack-
ets, an even greater speed-up over the standard mesh can be
achieved [20]. Moreover, our algorithm achieves a queue size
of 2. In this context, we point out that the 3n — 3 step off-
line scheme for routing on the standard mesh described by
Annexstein and Baumslag [1] achieves a queue size of 1 only
because in the standard mesh model two packets can be ex-
changed across an edge in a single step. Since we do not allow
two arbitrary processors that are connected to a common bus
to exchange two packets in a single step, it seems unlikely that
any algorithm that uses buses to transmit packets can achieve
a queue size of 1.

2.3 Multi-Dimensional Routing

In this subsection, we apply the ideas from the previous subsec-
tion to obtain an improved deterministic algorithm for routing
on multi-dimensional meshes with buses. On an r-dimensional
network with side length n, our algorithm achieves a running

time of (2 — %)n +o(n) and a queue size of 2. This bound even
holds if the dimension of the mesh is non-constant, provided
that the side length n is sufficiently larger than the dimension
r. In the following, we will only give a very brief description
of the main ideas underlying our algorithm; more details can
be found in [20].

The algorithm is based on a well-known scheme for off-line
routing on r-dimensional meshes described by Annexstein and
Baumslag [1]. The routing scheme consists of 2r — 1 phases. In
phase 7, 1 <@ < r —1, each packet is routed along dimension 1
to an appropriately chosen intermediate location. In phase ¢,
r <1 < 2r —1, each packet is greedily routed along dimension
2r — 1. Each phase of the routing scheme involves a collection
of routing problems on linear arrays of length n, and will thus
take at most n steps on the standard mesh. Hence, the entire
routing will be completed after (2r — 1)n steps. Clearly, this
bound can also be achieved on meshes with buses.

In order to route a given permutation with the above rout-
ing scheme, it s necessary to determine appropriate choices for
the intermediate locations assumed by the packets in the first
r — 1 phases. This can again be done by constructing a se-
quence of perfect matchings in a graph. The running time
of these matching computations is polynomial in the number
of packets in the network n”. To convert this off-line routing
scheme into a fast on-line algorithm, we introduce the notion
of a super-packet. Informally speaking, a super-packet consists
of a collection of packets that have similar sources and des-
tinations, and that move in lock step. By combining a large
number of packets into a single super-packet, we can decrease
the number of packets in the network in such a way that the
intermediate locations can be computed in time o(n).

The resulting on-line algorithm with running time (2r —
1)n + o(n) is uni-azial, that is, the algorithm communicates
only across a single dimension in any given step of the compu-
tation. Thus, we could simultaneously run up to r “copies” of
the algorithm without any contention for the buses. To make
use of this observation, we partition the set of packets into r
sets of equal size, such that the sources and destinations of
the packets in each set are approximately evenly distributed
over the entire network. As each set contains only a % fraction
of all packets, it can be routed in time (2 — %)n + o(n) by
the above algorithm. By running r “copies” of the algorithm
simultaneously, we obtain the following result.

Theorem 2.2 There exists a deterministic algorithm for
routing on r-dimensional meshes with buses that runs in time
(2- %)n + o(n) with a queue size of 2.

Like the algorithm in the previous subsection, this algo-
rithm can be implemented on a variety of different models of
meshes with buses. For the mesh with fixed buses, we obtain
a significant improvement over the best previously known de-
terministic algorithm [11] with respect to both running time
and queue size. Our algorithm matches the running time of the
randomized algorithms of Sibeyn, Kaufmann, and Raman [17],
while achieving a slightly better queue size. The algorithm
can easily be adapted to the multi-dimensional variants of the
other networks mentioned in the previous subsection.

2.4 Sorting on Meshes with Buses

The routing algorithms presented in the previous subsections
can also be used to design fast deterministic algorithms for

sorting on meshes with buses. The idea for the algorithms is
very simple. First, we use a deterministic sampling technique
to compute a set of splitters. After the splitter set has been
broadcast throughout the network, each element can compute
its approximate rank, and hence its approximate final location
in the sorted order. Next, we use a routing algorithm to move
each element to this location. Finally, local sorting can be used
to bring each element to its final destination. A more detailed
description of the algorithm and the deterministic sampling
technique can be found in [20]. Ee get the following result.

Theorem 2.3 Deterministic sorting can be performed in time
n-4+ o(n) on the two-dimensional mesh with buses, and in time
(2- %)n + o(n) on the r-dimensional mesh with buses.

3 Dynamic Routing Problems

Previous work on routing algorithms for meshes with buses
was restricted to the case of routing problems in which ev-
ery packet is already present at the beginning of the routing,
and the algorithm terminates after all packets have been deliv-
ered. However, in many real applications new packet routing
requests are constantly generated by the processors through-
out an ongoing computation. In this section, we study the
performance of different models of meshes with buses on such
dynamzic routing problems.

Following the framework given by Leighton [10, Sec-
tion 1.7.2], we assume that in a dynamic routing problem, each
processor generates a new packet at each step with some fixed
probability A, also called the arrival rate. The destination ad-
dresses of these newly generated packets are chosen randomly
from among the processors of the network. Our goal is to de-
sign routing algorithms that deliver each generated packet to
its destination within some number 7 of steps, with probabil-
ity at least 1 — O(1/n?) (in the following referred to as high
probability). We will assume that the performance of an algo-
rithm on a dynamic routing problem is characterized by this
time bound 7, and by the network capacity Ao, that is, the
maximal arrival rate A that can be handled by the algorithm.

Note that for two-dimensional meshes and related net-
works, including the networks considered in this paper, there
is an upper bound of O(1/n) on the capacity of the network.
The exact bound on the capacity depends on the specific prop-
erties of the network. Asan example, on the standard mesh the
maximal arrival rate is bounded by 4/n [10], while on meshes
with fixed buses, A can be at most 1/n if we want to make use
of the buses for routing packets over long distances.

In [10, Section 1.7.2], Leighton investigates the dynamic
routing problem on the standard mesh under the greedy rout-
ing scheme, in which each packet is first routed along the row
to the correct column, and then along the column to its des-
tination, and priority is given to the packet with the farthest
distance to travel. It is shown that in any time interval of
length 7' and for any arrival rate less than 4/n, no packet is
delayed by more than O(lg T'+1g n) steps, and no queue grows
beyond size O(l—l—ll—i—:), with high probability. While this result
shows that greedy algorithms perform well on dynamic routing
problems, the expected time for the completion of a routing
request is, of course, still ©(n), due to distance arguments.
In the following, we will show that the maximal delivery time
for a dynamic routing request can be significantly reduced by
adding buses to the network.

In the greedy routing scheme considered by Leighton, a
newly generated packet starts moving towards its destination
as soon as it can do so under the given priority scheme. We
will call such a routing scheme dynamic. Another possible
way of solving a dynamic routing problem is to partition the
computation time into intervals [¢;, ¢i41], ¢ > 0, of length k,
and delay all packets generated in the interval [t;, ¢;41] until
a new round of routing is started at time ¢;41. We will call
such a routing scheme static. It is pointed out in [10, page 173]
that such a scheme is not a good choice for networks with large
diameter, such as the mesh. Since the delivery time of a packet
in these networks is mainly determined by the distance it has
to travel, it is a better idea to move the packet closer to its
destination whenever this is possible. However, this situation
is quite different on meshes with buses, where the delivery
time is not determined by the distance. It will turn out that
the main issue raised by dynamic routing problems on these
networks is that of possible contention for the buses. In the
following, we will propose static and dynamic algorithms for
several different models of meshes with buses.

3.1 Meshes with Fixed Buses

We assume that new packets are generated by the processors
with rate A = k/n, for some k < 1. Thus, we expect about kn
packets to be generated in any step. However, the generated
packets will not be completely evenly distributed among the
rows and columns of the mesh. This raises the problem of
scheduling the buses in such a way that no two processors
simultaneously attempt to write on the same bus.

We partition the mesh into blocks of size n X nl/S7
and partition the computation time into intervals of length
©(n'/*1gn). Then in each interval, and in each block, ©(Ig n)
packets will be generated, with high probability. On the other
hand, during each interval, @(n2/ ®lgn) bus rides are avail-
able on the n'/? row buses passing through the block. Thus,
we could use a fixed schedule that assigns to each of the n?/®
blocks in a row ©O(lgn) bus rides per interval. A newly gen-
erated packet can now walk in time O(nl/s) to a unique “bus
stop” located within its block, where it waits for a slot on
the bus. The process i1s then repeated for the column buses.
The resulting dynamic algorithm routes each packet in time
O(n*’*1gn), and no packet takes more than O(lg T+n'/® 1g n)
steps in any time interval of length 7', with high probability.

We can improve the running time in the static case by us-
ing a prefix computation to determine the number of packets
generated in each block. We can then assign an appropri-
ate number of bus rides to each block. Since prefix computa-
tions can be performed in O(nl/s) steps on a mesh with fixed
CREW buses, we obtain a static routing algorithm that routes
all packets in time O(nl/g’)7 with high probability.

1/3

3.2 Reconfigurable Meshes

We now consider the dynamic routing problem on meshes with
reconfigurable CREW buses. [t turns out that the problem of
scheduling the buses becomes much simpler under this model,
since we can avoid write conflicts by reconfiguring the buses
appropriately. Consider a row of the mesh with a number of
packets that want to move in a common direction, say towards
the right. If any processor that contains such a packet discon-
nects the row bus between itself and its left neighbor, then no

write conflict can occur when the packets are broadcast to-
wards the right in the following step. This observation leads
to the following simple routing scheme.

As before, every packet is first routed along the row to
its destination column, and then along the column to its final
destination. We divide the routing into odd and even steps. In
an odd step, we route all packets that have to be moved to the
right. To do this, we disconnect the row bus to the left of each
packet and broadcast the packet to the right. Similarly, we
route all packets that have to move downwards on the column
buses. In an even step, we route the packets that have to move
upwards or towards the left.

The resulting dynamic algorithm routes each packet in
O(lg n) steps, and no packet takes more than O(lgT + lgn)
steps in any time interval of length 7', with high probability.
To prove this, observe that in every step, either at least one
element in each row reaches its destination column, or no ele-
ment at all is routed in that row. A corresponding statement
holds for the columns.

Note that the above scheme is very similar to the greedy
routing scheme on the standard mesh. We can also use the
scheme in the case of buses with non-unit delay. Interestingly,
as the delay function increases, the number of packets currently
in the network will increase, and the resulting behavior of the
algorithm will eventually become more and more similar to the
greedy algorithm for the standard mesh.

3.3 Meshes with CRCW Buses

Up to this point, we have restricted our attention to meshes
with CREW buses. The main reason for this restriction was
that there was no apparent benefit in allowing concurrent write
access to the buses in permutation routing and sorting. This
situation appears to be different, however, in the case of dy-
namic routing problems on meshes with fixed buses. In the
following, we assume that no packet will be transmitted at all
if two or more processors try to write to the same bus in a
single step. Instead, the bus will broadcast a special signal
indicating that a write conflict has occurred.

A naive routing scheme would require every packet to flip
a coin before each step, and attempt to write on the bus if and
only if the outcome of the coin flip is a “1”7. If every row and
every column contains only a constant number of packets, then
this scheme will route a packet across each bus in a constant
fraction of the steps. However, if a row or column receives a
larger number of packets, then this routing scheme will very
likely result in a write conflict in any given step, and eventu-
ally in a large backlog of undelivered packets. To avoid this
problem, a more intricate coin-flipping strategy is needed.

We partition the computation time into intervals of length
O(lgnlglgn). Then in every such interval ©(lgnlglg n) pack-
ets will be generated in each row. To route these packets across
the row buses to their destination column, we can use an al-
gorithm recently analyzed by Geréb-Graus and Tsantilas [4]
in the context of routing h-relations on an optical computer
model. The algorithm uses appropriately biased coin-flips to
route O(lgnlglgn) packets in time O(lgnlglgn), with high
probability. For a description of the algorithm, we refer the
reader to the cited paper. The algorithm is then repeated for
the routing across the columns.

The above algorithm can be implemented both as a static

and as a dynamic scheme. However, it seems to have one seri-
ous drawback. In the unlikely event that too many packets are
generated in the same row over some sufficiently long period
of time, the network will not return to its “normal” state even
after the arrival rate has gone back to normal.

3.4 Discussion

We have observed in this section that the delivery time for
a dynamic routing request is considerably smaller on meshes
with buses than on the standard mesh. Of course, it needs to
be pointed out that an improvement in the expected routing
time from ©(n) to, say, O(lgn) will in general not result in
a proportional speed-up of the underlying computation per-
formed by the network. The maximal speed-up that can be
achieved by adding a bus system will depend on the properties
of the particular application. If on average only a small num-
ber of routing requests are generated in a single step, then a
significant speed-up is possible. For larger arrival rates, some
constant speed-up can still be obtained in many cases.

If most of the generated packets only have to travel a short
distance, then the performance of a network with fixed buses
can be improved by reserving the buses for the few packets
that have to travel over a long distance, and routing the other
packets on the mesh edges. Of course, this is already done in
many algorithms, such as the O(nl/s) prefix sums algorithm,
but it might be interesting to investigate this idea under the
more general framework of dynamic routing.

4 Summary and Open Problems

In this paper, we have given improved deterministic algorithms
for routing and sorting on meshes with row and column buses.
The algorithms can be implemented on a variety of different
models of meshes with buses, and are based on a new tech-
nique that seems especially suitable for networks with a large
diameter that have been augmented with a bus system or a
small-bandwidth interconnection network. We have also in-
vestigated the performance of various models of meshes with
buses on dynamic routing problems.

While our algorithms for permutation routing and sorting
are optimal for some models of meshes with buses, for exam-
ple the PARBUS or the Polymorphic Torus, there is still a
gap between the best upper and lower bounds on the mesh
with fixed and reconfigurable buses. It would certainly be
an interesting improvement to close these gaps. For the two-
dimensional mesh with reconfigurable buses, it is yet unclear
whether routing can be done in less than n steps. For the mesh
with fixed buses, there remains a small gap between the best
lower bounds and the running times of the randomized algo-
rithms of Sibeyn, Kaufmann, and Raman [17]. By applying a
new and fairly general derandomization technique for routing
and sorting on meshes [8], we have very recently obtained de-
terministic routing algorithms that match the running times
of their randomized algorithms. The resulting algorithms will
be described in a subsequent paper.

While the algorithms given in Section 2 are based on a
fairly simple idea, they are not practical due to their compli-
cated control structure and their fairly large lower order terms.
It is an interesting question whether the ideas described in this
paper can be used in the design of more practical algorithms.

Finally, we believe that the study of dynamic routing

problems on meshes with buses deserves further attention. For
example, one could try to show lower bounds for the cases of
meshes with fixed CREW and CRCW buses. A more precise
analysis of the proposed dynamic routing schemes would also
be of interest.

Acknowledgements
[would like to thank Phil MacKenzie, Greg Plaxton, and Raj-

mohan Rajaraman for helpful discussions.

References

[1] F. Annexstein and M. Baumslag. A unified approach to off-line
permutation routing on parallel networks. In Proceedings of the
2nd Annual ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 398-406, July 1990.

[2] S. H. Bokhari. Finding maximum on an array processor with a
global bus. IEEE Transactions on Computers, 33:133-139, 1984.

[3] S. Cheung and F. C. M. Lau. A lower bound for permutation
routing on two-dimensional bused meshes. Information Processing
Letters, 45:225-228 1993.

[4] M. Geréb-Graus and T. Tsantilas. Efficient optical communication
in parallel computers. In Proceedings of the 4th Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 41—
48, June 1992.

[5] T. Gonzalez and S. Sahni. Open shop scheduling to minimize finish
time. Journal of the ACM, 23:665—679, 1976.

[6] J. E. Hopcroft and R. M. Karp. An n%/? algorithm for maxi-
mum matchings in bipartite graphs. STAM Journal on Comput-
ing, 2:225-231, 1073.

[7] H. F. Jordan. A special purpose architecture for finite element
analysis. In International Conference on Parallel Processing,
pages 263-266, 1978.

[8] M. Kaufmann, J. Sibeyn, and T. Suel. Derandomizing algorithms
for routing and sorting on meshes. In Proceedings of the Fifth
Annual ACM-STAM Symposium on Discrete Algorithms, January
1994. To appear.

[9] M. Kunde. Block gossiping on grids and tori: Deterministic sorting
and routing match the bisection bound. In Proceedings of the 1st
Annual European Sympostum on Algorithms, September 1993.

[10] F. T. Leighton. Introduction to Parallel Algorithms and Archi-
tectures: Arrays, Trees and Hypercubes. Morgan-Kaufmann, San
Mateo, CA, 1991.

[11] J. Y. Leung and S. Shende. Packet routing on square meshes with
row and column buses. In Proceedings of the 3rd Annual IEEE
Symposium on Parallel and Distributed Processing, pages 834—
837, December 1991.

[12] J. Y. Leung and S. Shende. On multi-dimensional packet rout-
ing for meshes with buses. Technical Report TR-150, Department
of Computer Science and Engineering, University of Nebraska at
Lincoln, 1992.

[13] H. Li and Q. F. Stout. Reconfigurable Massively Parallel Com-
puters. Prentice Hall, Englewood Cliffs, New Jersey, 1991.

[14] R. Miller, V. K. Prasanna Kumar, D. I. Reisis, and Q. F. Stout.
Parallel computations on reconfigurable meshes. IEEE Transac-
tions on Computers, 42:678-692, June 1993.

[15] S. Rajasekaran. Mesh-connected computers with fixed and recon-
figurable buses: Packet routing, sorting, and selection. In Pro-
ceedings of the 1st Annual European Symposium on Algorithms,
September 1993.

[16] S. Rajasekaran and T. McKendall. Permutation routing and sort-
ing on the reconfigurable mesh. Technical Report MS-CIS-92-36,
Department of Computer and Information Science, University of
Pennsylvania, May 1992.

[17] J. Sibeyn, M. Kaufmann, and R. Raman. Randomized routing on
meshes with buses. In Proceedings of the 1st Annual European
Symposium on Algorithms, September 1993.

[18] G. D. Stamoulis and J. N. Tsitsiklis. The efficiency of greedy rout-
ing in hypercubes and butterflies. In Proceedings of the 3rd An-
nual ACM Symposium on Parallel Algorithms and Architectures,
pages 248-259, July 1991.

[19] Q. F. Stout. Mesh-connected computers with broadcasting. /[EEFE
Transactions on Computers, 32:826-830, 1983.

[20] T. Suel. Routing and sorting on meshes with row and column
buses. Technical report, Department of Computer Sciences, Uni-
versity of Texas at Austin, February 1994.

[21] B. Wang and G. Chen. Constant time algorithms for the transitive
closure and some related graph problems on processor arrays with
reconfigurable bus systems. [EEE Transactions on Parallel and
Dustributed Systems, 1:500-507, 1990.

