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the desired level of e�ciency. Our objective is to determine if the BSP model is a practicalmodel for current parallel systems. Speci�cally, we wish to discover if portability using theBSP model can be demonstrated while achieving e�ciency for realistic input sizes.The BSP model, being an interface between software and hardware, incorporates aspectsof both domains. The BSP model is discussed in detail in Section 3. Here we mention severalof the most signi�cant arguments in support of the model:� For the architect the BSP model describes a parallel computer with three attributes:A collection of components each performing stand-alone processing and memory func-tions; a router that delivers messages point-to-point between any two components;and a mechanism for synchronizing all components. The BSP model presents clearly-de�ned design goals while allowing for a wide range of implementations.� For the programmer the BSP model dictates a disciplined but fairly general and user-friendly programming style. (In this paper, we examine only BSP programs writtenin direct mode [24]. Such programs are written directly for a BSP computer, take intoaccount the number of processors, and have one process per processor.)� For the algorithm designer the BSP model provides a simple cost function for analyzingthe complexity of algorithms. This allows BSP to serve as a framework for developinga theory of e�cient algorithm design.� The BSP model can e�ciently simulate several other models of parallel computation [8,24, 28, 27, 58], including the PRAM model. (Such BSP programs are said to be writtenin automatic mode [24].)Despite these arguments in support of the BSP model, the short-term applicability ofthe BSP model is yet uncertain. In particular, most current parallel computers are notdesigned to support the fundamental routing problem of the BSP model: the h-relation. Anh-relation is a routing problem such that h is the maximum number of (�xed-sized) packetssent or received by any processor. While the e�cient routing of h-relations has been thesubject of numerous theoretical studies, most system designers focus instead on optimizingcommunication at the single-message level [31]. In addition, the BSP model provides a highlyabstract model of the underlying computer. In some situations the BSP cost function maybe overly simplistic and lead the programmer astray. For example, the cost function assumesthat all h-relations require the same amount of time to route, which may be unrealistic forsome systems.We attempt to evaluate the use of the BSP model for the design of e�cient and portableparallel programs. In particular, we are interested in exploring the range of algorithms andapplications that can be e�ciently implemented in the BSP model. While there seems to begeneral agreement that some problems can be e�ciently solved in this model, it has also beenargued that there may be other problems that require asynchronous message passing or evenshared memory for an e�cient implementation on current machines. Thus, we believe thatin order to argue for BSP as a basis of general-purpose parallel computing, it is necessary toshow that the model is not restricted to certain classes of well-behaved problems, but canindeed e�ciently implement most parallel applications of interest. By exploring this issue,2



we also wish to give a basis for a comparison with asynchronous models such as LogP andcertain shared-memory models.We designed several parallel applications that use the Green BSP Library [30], a smalllibrary of BSP message-passing functions we have implemented on a number of parallelplatforms. Inspired by the SPLASH suite of shared-memory applications [56], we focus on avariety of realistic applications. The applications are:� an N -body simulation using the Barnes-Hut algorithm (N -body),� an ocean eddy simulation program adapted from the SPLASH application suite (Ocean) [56],� a minimum spanning tree algorithm (MST),� a shortest paths algorithm (SP),� a multiple shortest paths algorithm (MSP), and� a dense matrix multiplication algorithm (Matmult).In all of our applications, we used only the BSP cost function in both the design andoptimization stages of the program development. Our approach assumed that communica-tion is somewhat more expensive than local computation, and that barrier synchronizationis considerably more expensive than communication. This approach appears reasonable fora wide range of current machines. In discussing our applications, we will touch upon someof our programming decisions and their relationship to the BSP cost function.We describe implementations of the Green BSP Library on three di�erent machines: ashared-memory machine, a distributed-memory machine, and a network of PCs. We thencharacterize the performance of these machines in terms of the BSP cost model, and evaluatethe performance of our applications on these machines. Our results are encouraging, in thatour BSP applications obtain signi�cant speed-ups on all three systems, including nearlyperfect speed-up in several instances.Another question that we investigate is the accuracy of the BSP cost function in pre-dicting execution times. Following [9], we provide data for our applications that can be usedto predict the execution times on each machine under the BSP cost model. Our resultsdemonstrate that the model is able to predict execution times fairly accurately, althoughwe emphasize that we used the BSP cost function only to model communication and syn-chronization costs, and for some of our application these costs turned out to be a smallcomponent of the overall execution time. An example is shown in Figure 1. For this partic-ular application, the communication and synchronization overheads in our implementationwere negligible. (In fact, we credit the simplicity of the BSP cost model for guiding us tosuch e�cient solutions).However, even for those applications for which the communication and synchronizationcosts are signi�cant, our results suggest the cost function is quite reliable in predictingperformance trends. For example, consider the performance of the Ocean simulation withinput size 130 in Figure 3. The cost model accurately predicts that little will be gained byusing four PCs rather than two, and that performance will severely degrade when using eightPCs. Similarly, the cost function accurately predicts that the performance of the NEC Cenju3
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Figure 1: Actual and predicted times and predicted communication times (including syn-chronization) for N -body (size 64k). Experiments such as these are useful for demonstratinge�ciency (our primary objective), but are less useful for determining the utility of the BSPcost model.on this application will not improve much by using more than four processors on this inputsize. Note that the accuracy of the cost function depends of course on the choices made inthe implementation of our BSP library. Thus, inaccuracies in the prediction may also be dueto shortcomings of the library implementation, rather than the BSP cost function itself.The rest of the paper is arranged as follows. Cautionary statements concerning the eval-uation of our results are in Section 2. Section 3 describes the BSP model. Some related workis described in Section 4. The Green BSP Library is presented in Section 5. Implementa-tions of the Green BSP Library on several parallel platforms are described in Section 6. Ourapplications are considered in Section 7. Finally, Sections 9 and 10 contain some concludingremarks and directions for future research.2 CaveatsBefore proceeding, we mention some caveats the reader should keep in mind when evaluatingour data.� We report our speed-up numbers in terms of the ratio of the parallel runtime and theruntime of the same program on a single processor. Viewing this de�nition of speed-upas a performance gain assumes that the single processor code is a reasonable sequentialprogram. We believe that for most of our applications this is the case. For matrixmultiplication, however, many highly optimized sequential codes exist, and thus our4



speed-ups should be interpreted cautiously. Some performance gains are also possiblefor the Barnes-Hut implementation. Writing high-performance sequential codes forthese applications on modern workstations can be a challenging and time-consumingtask, and the best performance is often achieved by optimizing for a particular machinecon�guration.� Several of our results exhibit superlinear speed-up. We de�ne the total work to be thesum of the run times spent on doing computational work across all processors; in thecase of superlinear speed-up, the total work on p processors is less than the total workon one. Superlinear e�ects may occur if the problem size is such that the data �ts inthe main memory (or cache) of p processors while it cannot �t in the main memory(or cache) of one processor. It is also possible that a program written for p processesbut running on a single processor may order operations such that it exploits more dataand instruction locality than a program written for one process. Though we limit ourproblem sizes so that they �t into the main memory of one processor, superlinearitydue to caching may still occur. We discuss this issue in more detail in Section 7.� Part of our objective is to examine the predictive capability of the BSP cost function.We consider BSP to model only communication and synchronization. I/O and localcomputation are not modeled. As a result, none of our experiments include I/O.� One would like to compare results using the BSP model with results obtained by usingother models, or by programming directly for a particular machine. While we compareour Ocean and N -body applications with shared-memory implementations, we warnthe reader that detailed comparisons will not be found in this work. We hope that ourapplications can be used as a basis for future research along these lines.� The machines used for this paper all exhibit only a moderate level of parallelism (upto 16 processors). Promising initial results have been obtained for experiments onmachines with signi�cantly more processors. In particular, Green BSP Libraries havebeen implemented on a 54-processor BBN Butter
y GP1000 [32] and a 8,192-processorMaspar [52]. We have also used the MPI version of our library to run larger N -bodysimulations on the NAS IBM SP2 and a large Cray T3E at NERSC.3 The BSP ModelIt is well-known that scalable parallel performance can be achieved for many problems byusing machine-dependent software. Similarly, portability can be achieved if scalable perfor-mance is sacri�ced. The simultaneous achievement of portability and e�ciency, however,is still a challenging problem in practice, despite the fact that no real theoretical imped-iments exist that would preclude this. In a noteworthy paper, Valiant argued that whatis missing is a bridging model that serves as an interface between \the diverse and chaoticworld of software [and the] diverse and chaotic world of hardware" [57]. Valiant proposedthe Bulk-Synchronous Parallel (BSP) model as a candidate for this role and gave theoreticalarguments in its support. 5



3.1 The ModelIn the BSP model, a parallel machine consists of a set of processors, each with its own localmemory, and an interconnection network that can route packets of some �xed size betweenprocessors. The computation is divided into supersteps. In each superstep, a processor canperform operations on local data, send packets, and receive packets. A packet sent in onesuperstep is delivered to the destination processor at the beginning of the next superstep.Consecutive supersteps are separated by a barrier synchronization of all processors.The communication time of an algorithm in the BSP model is given by a simple costfunction. The three basic parameters that model a parallel machine are: (i) the number ofprocessors p, (ii) the gap g, which re
ects network bandwidth on a per-processor basis, and(iii) the latency L, which is the minimum duration of a superstep, and which re
ects thelatency to send a packet through the network as well as the overhead to perform a barriersynchronization.Consider a BSP program consisting of S supersteps. Then the execution time for super-step i is given as: wi + ghi + L (1)where wi is the largest amount of work (local computation) performed, and hi the largestnumber of packets sent or received, by any processor during the ith superstep. The executiontime of the entire program is: W + gH + LS (2)where W = PS�1i=0 wi and H = PS�1i=0 hi. We call wi and W the work depths of the superstepand the program, respectively.Thus, e�cient programming of a BSP machine is based on several simple principles.To minimize the execution time, the programmer must (i) minimize the work depth of theprogram, (ii) minimize the maximum number of packets sent or received by any processorin each superstep, and (iii) minimize the total number of supersteps in the program. Inpractice, these objectives can con
ict, and trade-o�s must be made. The correct trade-o�scan be selected by taking into account the particular g and L parameters of the underlyingmachine.3.2 Discussion of the ModelBy examining the BSP cost function, it is clear that e�cient parallelism can be achievedunder certain conditions. Assume a parallel program performs the same amount of compu-tation as the corresponding sequential program, and that computation is balanced amongthe p processors. In particular, if the rate of growth of the work depth (W ) exceeds thatof both communication (H) and synchronization (S), close to optimal e�ciency can beachieved by making the input size su�ciently large. This has led to the design of so-calledone-optimal BSP algorithms|algorithms that are within a factor of 1 + o(1) of optimaltime [6, 23, 24]. Many important applications meet the conditions that guarantee e�ciency.In practice, this approach for e�cient BSP computation is related to Gustafson's view ofparallel speedup [34]|to achieve e�ciency, use large problem sizes. An example of thisphenomenon can be seen by observing Figures 2 to 5. As the problem size increases for6
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Figure 2: Ocean 66|Actual times, predicted times, and predicted communication times(including synchronization).the Ocean application, the relative expense of communication and synchronization decreasesand the attainable speedup improves.More generally, it appears that the e�cient execution of many abstract programmingmodels, including BSP, depends on the existence of a su�cient degree of parallel slackness,often in excess of that required by machine-dependent solutions. (We de�ne parallel slack-ness informally as the ratio of the degree of parallelism in the problem to the number ofprocessors.) On the other hand, it can be argued that for many problems increasing theinput size to the point of e�ciency will eventually become unrealistic as the number of pro-cessors increases, due to the resulting increase in the overall execution time (e.g., see [55]).Underlying this argument, however, is an assumption that as we increase the number ofprocessors, the power of each individual processor stays the same. It is important to realizethat as the speed and memory size of today's processors continue to increase rapidly, we willbe able to run larger and larger problem sizes, which in turn should allow us to e�cientlyuse more and more processors1. Thus, we believe that in today's parallel machines|whichare mostly based on commodity processors|increases in sequential processor speed havebecome an ally, rather than adversary, of e�cient parallelism. In particular, we expect thatportable parallel programming will become feasible on larger numbers of processors.In support of the BSP model, it has been shown that many other programming styles canbe automatically and e�ciently transformed into a BSP style. In particular, Valiant [57, 58]and Gerbessiotis and Valiant [24] have shown that the BSP model can e�ciently simulate theEREW PRAM. This result was subsequently extended to the more powerful QRQW PRAM1This assumes that the values of L and g, and thus the ratio of communication to computation speed,remain about the same. 7
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Figure 3: Ocean 130|Actual times, predicted times, and predicted communication times(including synchronization).
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Figure 4: Ocean 258|Actual times, predicted times, and predicted communication times(including synchronization). 8
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Figure 5: Ocean 514|Actual times, predicted times, and predicted communication times(including synchronization).model by Gibbons, Matias, and Ramachandran [27]. A simulation of asynchronous message-passing programs in BSP is given in [8]. Finally, Gibbons, Matias, and Ramachandran haveshown an emulation of the recently proposed QSM (Queued Shared Memory) model [28].Of course, as Gerbessiotis and Valiant [24] point out, a direct implementation on the BSPmodel will often lead to even better performance.We brie
y discuss a few more aspects of the BSP model. First, the BSP model viewsthe interconnection network as a batch-routing network that can e�ciently route arbitrarybalanced communication patterns. The model ignores the particular network topology ofthe underlying machine. Hence, the model only considers two levels of locality: local (insidea processor) or remote (outside a processor).Second, we note that the BSP model requires complete cooperation among all processorsto route even a single message. While this may seem an unnatural restriction, we argue thatit is appropriate. As stated above, Valiant and others have made numerous theoreticalarguments that parallel programming need not be optimized at the single-message level.Moreover, in the context of interconnection networks, one can often achieve better bandwidthwhen routing large batches of messages rather than individual messages.In contrast, asynchronous models seem to encourage the programmer to design andoptimize their code with respect to the arrival of single messages. Thus, it is contingentupon the architect to attempt to minimize single-message latencies. The requirement ofsynchrony in the BSP model also contributes to its overall simplicity. As a result, we feelthat it is fundamentally easier to reason about the correctness and performance of BSPprograms, as opposed to aggressively asynchronous message-passing programs.Finally, as the BSP model emphasizes the e�cient routing of large h-relations, it appears9



to be particularly suitable for emerging \ultra-high-latency" environments such as meta-computers consisting of several clusters of PCs connected by wide-areas networks, or forparallel and sequential computations that process large data in secondary memory. In fact,one of the codes described in this paper (the Barnes-Hut N -body code) was recently adaptedand optimized by colleagues to run on the Albatross wide-area cluster, where it has achievedhigh performance even for very high latencies [51]. For computing in secondary memory,several simulation results have been established that show that BSP algorithms that toleratehigh-latencies can also be used for e�cient computing in secondary memory [21, 53]. In bothof these cases, certain adjustments and optimizations will be needed to make the model reallypractical. Nonetheless, we believe that many of the principles and properties of the basicBSP model will also prove valuable in these new environments.4 Related WorkThis section gives a brief overview of related work. We describe other work on the BSPmodel, including some proposed extensions to the model. We also give a critical discussionof some alternative candidates for a unifying model for parallel computing, and refer to otherlibraries and programming languages for portable parallel computing. Due to the immenseamount of work in these areas, we have to restrict ourselves to work that is very closelyrelated to our own, or that directly in
uenced our approach and design decisions.4.1 BSP Algorithms, Libraries, and LanguagesSince the introduction of the BSP model, a number of papers have considered the designand analysis of BSP algorithms|see, for example, [7, 9, 23, 24, 48, 58].Several groups of researchers are currently studying the use of the BSP model on existingparallel machines. The Oxford BSP Library, developed by Miller [49] while at Oxford Uni-versity, is based on shared-memory operations similar to those found in the Cray SHMEMlibrary. This makes the library very simple and e�cient to implement on shared-memorymachines. Oxford BSP is restricted, however, by the fact that only statically allocated mem-ory can be accessed by other processors. Nonetheless, this approach is powerful enough formany static computations that arise in scienti�c computing. In contrast, the Green BSPLibrary described in this paper is based on message passing, which requires the programmerto prepare and read messages. Thus, we believe that the Green BSP Library is better suitedfor the irregular and dynamic applications that we have experimented with.Also at Oxford University, McColl's group is working on the development of several BSPprogramming languages, tools, and industrial applications [35, 39, 41, 47].A group at Harvard University lead by Cheatham and Valiant is studying higher-levelprogramming languages and compilation techniques for the BSP model [16, 17]. Bisselingat the University of Utrecht is studying the use of the BSP model in the implementation ofscienti�c computations [9, 10]. A recent implementation of a plasma simulation using theOxford BSP Library is described in [50].Finally, BSP researchers have proposed a standard BSP library [36], which will incor-porate much of the previous experimental work in this area, including the work reported in10



this paper.4.2 Extensions to the BSP ModelGerbessiotis and Valiant [24] examined several extensions of the BSP model, including specialmechanisms for parallel-pre�x computation (PPF-BSP), broadcasting (b-BSP), and concur-rent reads and writes (c-BSP). Their overall conclusion is that these extensions provide onlymodest improvements in e�ciency, though in some cases they achieve one-optimality forsmaller input sizes or larger latency values.The BSP� model of B�aumker, Dittrich, and Meyer auf der Heide [7, 5, 6] introduces anadditional parameter B that speci�es the minimum length of a message, thus rewarding theprogrammer for sending large messages. This means that the cost of an h-relation dependsnot only on the value of h, but also on the structure of the h-relation. (In particular, theBSP� model will assign a a higher cost to small h-relations in which a processor exchangespackets with many other processors, and a lower cost to small h-relations where all h packetsare sent to the same destination.)The dx-BSP (\deluxe BSP") model proposed in [12] attempts to model the performanceof high-bandwidth shared-memory machines such as the Cray C90 in which the memorybanks are signi�cantly slower than the processors.Finally, the Extended BSP (E-BSP) model [37] provides a more accurate cost function forunbalanced communication in networks where the primary bottleneck is not at the processor-network interface. A comparison of the BSP and E-BSP models on several machines andapplications is given in [38]. However, the programs in this study are written in PVM, MPL,and Split-C, which were not designed with e�cient BSP computation in mind. Our approach,on the other hand, is based on the belief that e�cient and portable BSP computation requiresa careful implementation of the basic BSP functions, although it is an interesting questionto what degree the BSP cost function can also be used to predict the performance of bulk-synchronous-style programs executed on other platforms.4.3 Other Cost ModelsA number of other models for general-purpose parallel computing have been proposed inrecent years|see [46] for an overview. In the following, we only mention those models thatare most closely related to BSP.LogP model [20] is based on asynchronous message passing. It measures the performanceof point-to-point messages with three parameters representing software overhead, networklatency, and communication bandwidth. The LogP model has been used as a performancemodel for active messages [59] and the Split-C language [18], and it has been applied to theanalysis of several application programs [19, 45]. A theoretical comparison of the BSP andLogP models can be found in [8]. This study concludes that the two models are substan-tially equivalent in terms of asymptotic analysis. While the LogP model may be valuable formodeling the behavior of current asynchronous message-passing layers and low-level com-munication routines (such as broadcasting or pre�x computations), it seems that applyingthe model to more complex parallel programs is often quite di�cult. We thus believe thatthe BSP model is preferable for designing and analyzing parallel application programs, due11



to its extreme simplicity. For example, the BSP model frees the programmer from concernssuch as scheduling messages to avoid endpoint contention, or choosing the right message sizeto avoid large software overheads.Other closely related models are the Postal Model [3], the Atomic Model [43], and severalmodels for end-point contention (e.g., see [2]) inspired by the prospect of optical communi-cation in parallel machines. Like BSP and LogP, these models do not refer to the topology ofthe underlying machine, but assume that the interconnection network behaves essentially likea completely connected network, with the only contention arising at the processor-networkinterface.A shared-memory model that is closely related to BSP is the Queued Shared Memory(QSM) model recently proposed by Gibbons and Matias [28]. This model can be seen asa generalization of the QRQW PRAM model [27, 26] that incorporates the g parameterof the BSP and LogP models in order to model shared-memory platforms with limitedcommunication bandwidth.4.4 Standardized Message-Passing LibrariesA somewhat di�erent approach to portable parallel programming is based on standardizedmessage-passing libraries such as PVM [22] and MPI [33]. While these libraries provide acommon set of functions on a variety of parallel machines, they do not o�er any cost function(in the strict sense) that could guide the programmer in the design of e�ciently portablecode. It seems that the very idea of these libraries is to o�er a fairly rich set of functions,including various collective operations, each of which can be optimized with respect to theunderlying architecture. This rules out any simple cost model based on just a few parameters,whereas the BSP and LogP models assume a very small set of basic functions and|at leastin theory|require any other operations to be implemented on top of these functions.4.5 High-level Programming Models and LanguagesOne of the most popular approaches to parallel programming has been the use of the shared-memory model. While it can be argued that shared memory is a natural and user-friendlyapproach to parallel programming, it also seems to have serious limitations in terms ofscalability. The basic impediment is that most shared-memory machines assume a view ofthe hardware where all memory accesses have the same cost. As stated before, if there issu�cient communication bandwidth, then the BSP model can e�ciently execute programswritten for various shared-memory models. However, the BSP model also allows e�cientsolutions to many problems in the case of large values of g and L, by using the localityinherent in these problems.In addition, hardware support for sequential consistency, the most straightforward shared-memory model, becomes more ine�cient as the number of processors increases. To over-come this problem, a number of other models for shared-memory consistency have beenproposed [25]. However, these weaker and usually more complicated consistency models canhinder both programmability and portability.High-Performance Fortran (HPF) is a parallel extension of Fortran that has receivedconsiderable attention over the last few years [1]. HPF allows a fairly easy implementation12



of scienti�c computations with regular data and communication structures. The main dis-advantage of HPF is that it provides limited support for implementing adaptive algorithms.The Nesl language of Blelloch [13, 14] is an example of a data-parallel language thatattempts to overcome these shortcomings of HPF, while retaining a large degree of e�-ciency. Nesl also provides a simple cost model that is based on the total work and depthof a computation. The Nesl model is not processor based, and thus there is no notion ofprocessor locality. As a result, e�cient computation with Nesl is currently restricted toparallel machines with high communication bandwidth.5 The Green BSP LibraryThe Green BSP Library is a set of functions for BSP programming. In this section, we givea brief description of the library design and the semantics of the functions.The Green BSP Library is designed to be as simple and as portable as possible withoutsacri�cing basic BSP functionality. Information is transferred through the use of �xed-length packets. The size of the packets is set at compile time. Program text is in a SPMD(Single-Program, Multiple-Data) format. The library makes no particular e�ort to provide auser-friendly programming environment, nor does it make concessions to improve e�ciencyon speci�c parallel platforms. Despite these self-imposed restrictions, we claim the the GreenBSP Library provides a relatively easy-to-understand parallel programming environment andthat it will run with reasonable e�ciency on almost any type of parallel system.The library consists of the seven functions shown in Table 1. For a BSP computer, thebasic tasks of the interconnection network are to provide point-to-point packet delivery andbarrier synchronization. In the Green BSP Library the functions that implement these tasksare called fundamental functions. In Table 1 the �rst three functions are the fundamentalfunctions. The last four functions are less central to the BSP philosophy and are calledsupplemental functions.Supplemental functions have been included in the library sparingly. As stated earlier, itis not our purpose to develop a user-friendly environment|presumably, such an environmentwould have several other supplemental functions that could be useful in certain contexts. Fora supplemental function to be included in the Green BSP Library it had to be extremelyuseful, e�cient, and simple to implement.We begin by discussing the fundamental functions. To sending of packets, we use:void bspSendPkt(int pid, const bspPkt *pktPtr);The address of the destination process is pid, and the pointer to the packet to be sent ispktPtr.To receive a pointer to a packet that was sent in the previous superstep, the followingfunction is provided:bspPkt *bspGetPkt(void);If there are no more packets to be accessed, this function will return the symbolic constantNULL. The returned pointer is only guaranteed to be valid during the current superstep.Barrier synchronization requires the use of the following function:13



Function Semanticsvoid bspSendPkt() send packet to another processbspPkt *bspGetPkt() receive packet sent in theprevious superstepvoid bspSynch() perform barrier synchronizationint bspGetPid() return pidint bspGetNumProcs() return number of processesint bspGetNumPkts() return number of packets sentto the process in the previoussuperstep that have not yetbeen accessedint bspGetNumStep() return number of currentsuperstepTable 1: The seven functions that constitute the Green BSP Library. The �rst three func-tions are classi�ed as fundamental functions while the last four functions are classi�ed assupplemental functions.void bspSynch(void);After a process returns from a bspSynch() call, it can begin to access the packets that weresent to it in the previous superstep by utilizing bspGetPkt().The supplemental functions can be used to obtain the process id:int bspGetPid(void);the number of processes:int bspGetNumProcs(void);the number of packets awaiting access in the incoming-packet bu�er:int bspGetNumPkts(void);and the number of the current superstep (the initial superstep being superstep 0):int bspGetNumStep(void);To demonstrate the programming style supported by the Green BSP Library, a short toyprogram is presented in Figure 6. This program demonstrates the basic BSP functionalitiesof packet sending and receiving as well as barrier synchronization.Note that the program is written at a very low level. The packets are stu�ed andunstu�ed using memcpy(), thus the programmer must know that the size of an integer is(in this example) four bytes long. The program further assumes that all processes use thesame representation for integers. It is possible to allow for greater 
exibility by creatingsystem-dependent utility functions on top of the Green BSP Library that ensure a commonrepresentation for all relevant data structures.14



Although it is not an issue in this example, the programmer must remember that packetscan arrive in arbitrary order. Thus, packets must have su�cient labeling information forproper utilization by the destination process. Since there is no implicit labeling informationthat arrives with the packet, programmers must explicitly decide the packet format. Ofcourse, even in one superstep there may be several distinct packet formats in use.6 Library ImplementationsThe Green BSP library has been implemented on a number of platforms. The results in thispaper are based on the following library versions and parallel machines:� a shared-memory version, used on an SGI Challenge with sixteen MIPS R4400 proces-sors (SGI),� an MPI version, used on an NEC Cenju consisting of sixteen MIPS R4400 processorsconnected by a multi-stage network, with a peak bandwidth of 20 Mbytes/s availablefor each processor (Cenju), and� a TCP version, used on a system of eight 166-MHz Pentium PCs running Linux andconnected by a 100-Mbps Ethernet switch (PC-LAN).Following we give a brief description of each of the three library implementations usedin this paper, and then analyze the library performance in terms of the BSP parameters Land g.6.1 The Shared-Memory VersionIn the shared-memory implementation, each process has two large input bu�ers in sharedmemory, which are used in alternating supersteps.2 Because the input bu�ers have manywriters, they are protected by locks. However, when a process acquires a lock it allocatesenough space for 1000 packets, so the locking cost is small per packet. Also, because thelocks are used infrequently, we were able to use Lamport's software locking algorithm, whichis tuned for the case of low contention. There is one case that probably would generatesubstantial lock contention: supersteps with small all-to-all communication patterns. Toeliminate this case we begin each superstep by pre-allocating p memory blocks (one for eachwriter) at the start of each input bu�er. With this scheme, the locks are only used whenthere is actually enough communication to pay for them.Note that, unlike the MPI and TCP implementations, which synchronize implicitly viatheir all-to-all communication patterns, the shared-memory version requires explicit synchro-nization at superstep boundaries. We accomplish this using p variables in shared memorythat are incremented by the processes to indicate that they are ready to proceed to the nextsuperstep. Process 0 then spins on variables 1 through p�1, while processes 1 through p�1spin on variable 0.2The processes themselves run in separate address spaces.15



void program(void){ int pid, numProcs, A, B, C;bspPkt pkt, *pktPtr;pktPtr = &pkt;pid = bspGetPid(); /* Get process ID */numProcs = bspGetNumProcs(); /* Get number of processes */if (pid == 0) {A = 3; B = 12;} /* Initialize A and B */if (pid == 1) {A = 1; B = 18;}if (pid == 2) {A = 5; B = 7;}memcpy((void *)pktPtr, (void *)&A, 4); /* Store A in packet */bspSendPkt((pid+1)%numProcs, pktPtr); /* Send packet to neighbor */bspSynch(); /* Superstep synch */pktPtr = bspGetPkt(); /* Receive packet */memcpy((void *)&C, (void *)pktPtr, 4); /* Put packet value in C */C = C + B; /* Calculate final C */fprintf(stdout, "Process %d, C = %d\n", pid, C);bspSynch(); /* Superstep synch */}Figure 6: A sample program using the Green BSP Library. The program is designed forthree processes. Each process starts with initial values for integers A and B. Each processsends the value of A to its neighbor process at pid + 1, where the addition is modulo thenumber of processes. Finally, each process calculates and prints its own value for C, equalto its original value for B plus its neighbor's value for A.
16



6.2 The MPI VersionIn the MPI version, each process has a distinct input and output bu�er for each of the otherprocesses. There is no overlap of computation and communication|during a superstep,messages are simply read from and written to the appropriate bu�ers. When a processreaches a superstep boundary, it posts an Irecv for each input bu�er and an Isend foreach output bu�er, and then waits until all 2p incoming and outgoing transmissions arecompleted, before starting the next superstep.6.3 The TCP VersionAs in the MPI version, each process uses a distinct input and output bu�er to communicatewith each of the other processes, and communication only occurs at superstep boundaries.The blocking TCP protocol we employ requires receivers to actively empty the pipe wheneveranother process sends a large amount of data, so deadlock could occur if we are not carefulin scheduling the communication. In our setup, the processes pair o� and talk according toa pre-computed p � 1 stage total-exchange pattern. Note that while this rigid schedulingmethod works well for random h-relations, it is not e�cient for certain worst-case commu-nication patterns. We ran this version on a system of eight PCs connected by a 100-MbpsEthernet switch that allows the p=2 conversations in each communication stage to occur inparallel. As it turned out, the maximum bandwidth that we were able to obtain betweentwo processors was about 5 MB/s, and thus signi�cantly below the 12.5 MB/s restriction ofthe Fast Ethernet connections. (We conjecture that this is due to some bottleneck in theoperating system.)6.4 Library PerformanceFigure 2 shows the values of L and g achieved by the di�erent versions of our library.Synthetic benchmarks were used to measure these values. The value for L corresponds tothe time for a superstep in which each process sends a single packet; this incorporates boththe message latency and the barrier synchronization overhead. The bandwidth parameter gis the time to route a large, balanced h-relation divided by h. These benchmark h-relationswere randomly generated.Looking at the entries in Figure 2, we can see that L grows linearly with the number ofprocessors, due to our implementation choices. Of course, some changes in the implementa-tions would be necessary to achieve acceptable values of L on signi�cantly more processors.However, for the fairly small machines used in this study, it seems di�cult to get signi�cantimprovements in this area.7 ApplicationsFor each of our applications, we ran experiments on four or �ve di�erent input sizes andnumbers of processors. In this section, we give a brief description of each application, andsummarize the results of our experiments. A brief overview of the performance results isshown in Tables 3, 4, and 5. 17



SGI SGI Cenju Cenju PC-LAN PC-LANp g L g L g L(�s) (�s) (�s) (�s) (�s) (�s)1 0.77 3 2.20 130 0.92 22 0.82 16 2.20 260 3.30 5404 0.88 29 2.20 470 4.80 15568 0.97 52 2.50 1470 8.60 37159 1.00 57 2.70 1680 | |16 0.95 105 3.60 2880 | |Table 2: BSP system parameters.SGI (p=16) Cenju (p=16) PC-LAN (p=8)app size time spdp time spdp time spdp(s) (s) (s)Ocean 514 2.23 17.0 4.0 13� 6.46 7.2N -body 64k 5.04 14.8 3.72 15.6 6.06 7.6MST 40k 0.40 15.8 0.56 10.1 0.65 4.2SP 40k 0.26 9.7 0.48 5.3 0.59 2.6MSP 40k 4.71 9.4 3.68 12� 4.88 7.1Matmult 576 2.42 11.4 2.31 13 | |Table 3: Speedup summaries for large problem sizes; � indicates an estimate on the speedupas we were unable to run the largest problem size on a single processor.
seq. work seq. work spdpapp size time p=16 p=1 w.r.t.(s) (s) (s) p=16Ocean 514 2.23 35.43 38.43 15.9N -body 64k 5.04 70.06 74.08 13.9MST 40k 0.40 3.92 6.3 9.8SP 40k 0.26 1.88 2.54 7.2MSP 40k 4.71 39.57 44.36 8.4Matmult 576 2.42 31.21 27.53 12.9Table 4: For all applications except Matmult, the measured total sequential work of the16-processor SGI program was less than that of the 1-processor SGI program.18



SGI SGI SGIapp size time pred W H S(s) (s) (s)Ocean 514 2.23 2.48 2.38 69946 312N -body 64k 5.04 4.97 4.95 24661 6MST 40k 0.40 0.34 0.32 9562 62SP 40k 0.26 0.28 0.26 2820 101MSP 40k 4.71 3.64 3.58 39874 138Matmult 576 2.42 2.09 1.97 124416 7Table 5: Algorithmic and model summaries for large problem sizes on 16-processor SGIsystem.Table 3 shows speedup results for large input sizes, for each application and system. Toobtain meaningful values for speedup, we limit the problem sizes so no swapping to disk isnecessary. The speedup results are usually stated as the ratio of single-processor time andparallel time. In two cases, we were unable to run the relevant problem size on a singleprocessor; here we give estimates of the speedup.In analyzing the performance of our algorithms we noticed that the total sequential work(i.e., local computation) performed by the 16-processor programs on the SGI was typicallyless than the total work performed by the single-processor programs. For this reason, wealso include the relative speed-ups with respect to the total sequential work on 16 processorsin Table 4.In Table 5, we provide some data about the abstract BSP performance of our applica-tions. We also provide the algorithmic parameters, including the work depth (as measuredon the SGI), the sum over all supersteps of the maximum number of packets sent or receivedby any processor, and the number of supersteps. We also include the actual running timesand predicted running times using the BSP model, where the values for L and g are takenfrom Table 2.The work depth W and the total work of the parallel programs were computed bysimulating the parallel computation on a single processor using an IPC shared-memoryimplementation of our library. Initially, we had considered using a single constant factorto translate the measured work depths of the SGI to estimated work depths for the Cenju.A di�erent constant factor would be used to estimate the work depth of the PC-LAN.Unfortunately, this approach proved to be insu�cient|the estimated work depths were oftenfar from their actual values. In short, we were unable to use a constant factor to parameterizethe relative speed of local computation on a platform. To provide better estimates for workdepths, therefore, we used a di�erent constant factor for each (application, input size) pair.For example, if Ocean 130 on one processor took time A on the SGI, time B on the Cenju,and time C on the PC-LAN, the factor B=A was used to translate SGI work depths to Cenjuwork depths and the factor C=A was used to translate SGI work depths to PC-LAN workdepths.In some of our applications, our approach introduced systematic errors that produced19



high predicted running times. That is, the work depth is in some cases more than the actualparallel execution time. We point out the applications where we believe these errors to occurin the discussion below.In the following, we give a brief discussion of the applications. For each application, wedescribe its implementation, and discuss the resulting performance in terms of highlights,lowlights, algorithmic performance in the BSP cost model, and possible implications. Wealso discuss some additional experiments and analyses whose data was not included in themain part of this paper.7.1 Ocean SimulationWe converted an ocean eddy simulation program from the Stanford Parallel Library forShared Memory Applications (SPLASH) [56] to our BSP system. The program computesocean eddy currents using a multigrid technique on an underlying grid; see [54] for details.The conversion to BSP was fairly straightforward, due to the fact that the SPLASH codefor this application was already in a BSP style; the grid is partitioned among processors,the processors compute on their own portions of the grid, and the processors communicateexclusively at global synchronization points.We remark that initial versions of the SPLASH codes were not in a BSP style. Theywere in a style more consistent with a shared memory approach for parallel computing; theentire grid was allocated in one data structure, and all processors computed and modi�edthe common data structure. This method was found to be ine�ective. The fact that thee�ective version is in a BSP style suggests that the BSP model is more appropriate for thisapplication.7.1.1 DiscussionTable 6 contains our results for the Ocean application. Not shown in the table is the fact theperformance of the BSP Ocean code on the SGI matches that of the direct shared-memorySPLASH implementation for problem size 258. This may be seen as somewhat surprisinggiven that we are using message passing on a shared-memory architecture. We believe thisspeaks well of our library implementation in particular and of the prospect of e�cient BSPlibrary implementations in general.On the NEC Cenju, the Ocean code performs relatively poorly with 16 processors, exceptfor the largest problem size, where it performs much better (perhaps nearly ideal; we onlygive a plausible lower bound in the table, as the problem was too large for a single processor).We suspect that this is due to the fairly large latency of the BSP implementation on the NECCenju, given that the BSP algorithmic data in Table 6 shows that the number of superstepsis quite large.A surprising aspect of the Ocean program is that the number of supersteps actuallydecreases with increasing problem size. Thus, as the problem size increases, the latencyoverheads will become less signi�cant at an even faster rate than one would normally expectin parallel computing. It can be hoped that the high-latency systems quickly \catch up" asthe problem size grows. Our data shows that this occurs for both high-latency systems (8processor PC-LAN and 16 processor NEC Cenju) at a problem size of 514.20



SGI Cenju PC-LAN SGI SGIapp size p pred time spdp pred time spdp pred time spdp W H S TWk(s) (s) (s) (s) (s) (s) (s) (s)Ocean 66 1 0.55 0.51 1.0 0.82 0.8 1.0 0.52 0.46 1.0 0.54 114 468 0.54Ocean 66 2 0.39 0.29 1.8 0.67 0.58 1.4 0.58 0.6 0.8 0.38 12192 468 0.73Ocean 66 4 0.26 0.18 2.8 0.57 0.54 1.5 0.96 0.94 0.5 0.23 12530 468 0.86Ocean 66 8 0.2 0.14 3.6 0.95 0.91 0.9 1.98 3.37 0.1 0.16 15400 468 1.11Ocean 66 16 0.19 0.13 3.9 1.58 1.54 0.5 | | | 0.13 13360 468 1.78Ocean 130 1 2.13 2.07 1.0 3.02 2.88 1.0 1.86 1.68 1.0 2.12 91 379 2.12Ocean 130 2 1.24 1.05 2.0 1.84 1.63 1.8 1.25 1.22 1.4 1.21 20762 379 2.36Ocean 130 4 0.69 0.54 3.8 1.15 1.01 2.9 1.22 1.19 1.4 0.66 21034 379 2.46Ocean 130 8 0.42 0.32 6.5 1.14 1.12 2.6 1.92 2.96 0.6 0.37 25700 379 2.68Ocean 130 16 0.3 0.22 9.4 1.5 1.44 2.0 | | | 0.24 21316 379 3.28Ocean 258 1 9.12 8.95 1.0 12.81 12.72 1.0 7.8 7.07 1.0 9.12 81 339 9.12Ocean 258 2 4.55 4.32 2.1 6.49 5.99 2.1 4.29 3.98 1.8 4.51 38170 339 8.95Ocean 258 4 2.31 2.12 4.2 3.42 3.21 4.0 2.6 2.56 2.8 2.27 38412 339 8.77Ocean 258 8 1.26 1.09 8.2 2.29 2.18 5.8 2.65 3.2 2.2 1.2 46818 339 8.88Ocean 258 16 0.76 0.6 14.9 2.07 1.93 6.6 | | | 0.68 37994 339 9.74Ocean 514 1 38.43 37.87 1.0 53.85 | | 46.51 46.77 1.0 38.43 72 312 38.43Ocean 514 2 18.76 18.28 2.1 26.41 34.08 | 24.53 24.64 1.9 18.7 71688 312 37.24Ocean 514 4 9.14 8.71 4.3 13.01 13.64 | 8.47 7.92 5.9 9.07 71912 312 35.62Ocean 514 8 4.65 4.29 8.8 7.04 6.51 | 5.82 6.46 7.2 4.55 87226 312 34.83Ocean 514 16 2.48 2.23 17.0 4.48 4.0 | | | | 2.38 69946 312 35.43Table 6: Data for Ocean application.We note that our estimates for the total work of the Ocean program are systematicallytoo high. In particular, the estimates obtained through the IPC single-processor simulationare actually higher than the actual running time of the code. Thus, our predicted timesfor the Ocean program are too high. We also ran additional experiments on the PC-LANfor this application that suggested that the total work of the parallel program goes downdramatically for the PC-LAN, while it does not for the SGI system. Thus, any observedspeedup for the PC-LAN may have as much to do with this e�ect as with parallelism.7.2 N-Body Simulation Using Barnes-HutThe N -body problem is the problem of simulating the movement of a set of N bodiesunder the in
uence of a gravitational, electrostatic, or other type of force. The problemhas numerous applications in astrophysics, molecular dynamics, 
uid dynamics, and evencomputer graphics.The N -body code in this study is based on the Barnes-Hut algorithm [4], which usesan irregular oct-tree structure, called BH tree, to hierarchically group bodies into clustersaccording to their distribution in three-dimensional space. The basic structure of our im-plementation is similar to those of Warren and Salmon [60] and Liu and Bhatt [44]. Inparticular, we use the ORB partitioning scheme to partition the bodies among the proces-sors. Instead of repartitioning the bodies after each iteration as in [60], we only do so if theload imbalance reaches a certain threshold, as suggested in [44].The positions of the bodies are updated in discrete time steps. In each step, the BH treeis �rst constructed locally inside each processor. Then appropriate subtrees, called \locallyessential trees," are exchanged between every pair of processors, such that afterwards everyprocessor has a local BH tree that contains all the data needed to compute the forces on itsbodies, and whose structure is consistent with that of the global BH tree constructed in thesequential algorithm. More details about the implementation can be found in [11], which21



SGI Cenju PC-LAN SGI SGIapp size p pred time spdp pred time spdp pred time spdp W H S TWk(s) (s) (s) (s) (s) (s) (s) (s)N-body 1k 1 0.46 0.46 1.0 0.35 0.32 1.0 0.31 0.31 1.0 0.46 0 4 0.46N-body 1k 2 0.24 0.24 1.9 0.18 0.18 1.8 0.17 0.17 1.8 0.24 824 6 0.48N-body 1k 4 0.13 0.13 3.5 0.1 0.1 3.2 0.1 0.1 3.1 0.13 1798 6 0.5N-body 1k 8 0.08 0.08 5.8 0.07 0.07 4.6 0.09 0.08 3.9 0.08 2360 6 0.56N-body 1k 16 0.05 0.05 9.2 0.06 0.07 4.6 | | | 0.05 2530 6 0.68N-body 4k 1 2.9 2.89 1.0 2.17 2.1 1.0 1.93 1.91 1.0 2.9 0 4 2.9N-body 4k 2 1.45 1.43 2.0 1.09 1.02 2.1 0.98 0.97 2.0 1.45 2067 6 2.89N-body 4k 4 0.75 0.75 3.9 0.57 0.54 3.9 0.53 0.54 3.5 0.75 4353 6 2.91N-body 4k 8 0.41 0.4 7.2 0.32 0.3 7.0 0.34 0.32 6.0 0.4 5506 6 3.02N-body 4k 16 0.3 0.25 11.6 0.26 0.22 9.5 | | | 0.29 6249 6 3.34N-body 16k 1 15.38 15.42 1.0 11.54 11.64 1.0 10.25 9.86 1.0 15.38 0 4 15.38N-body 16k 2 7.64 7.65 2.0 5.74 5.56 2.1 5.11 4.89 2.0 7.64 5700 6 15.22N-body 16k 4 3.86 3.86 4.0 2.91 2.89 4.0 2.63 2.59 3.8 3.85 10692 6 14.79N-body 16k 8 1.96 1.96 7.9 1.5 1.44 8.1 1.43 1.38 7.1 1.95 12235 6 14.95N-body 16k 16 1.13 1.12 13.8 0.9 0.86 13.5 | | | 1.12 12100 6 15.37N-body 64k 1 74.08 74.59 1.0 55.56 57.96 1.0 49.33 46.01 1.0 74.08 0 4 74.08N-body 64k 2 36.37 36.42 2.0 27.3 27.52 2.1 24.26 22.92 2.0 36.35 15046 6 72.52N-body 64k 4 18.54 18.45 4.0 13.95 13.5 4.3 12.46 11.78 3.9 18.52 25443 6 71.25N-body 64k 8 9.27 9.23 8.1 7.01 6.75 8.6 6.41 6.06 7.6 9.25 26003 6 70.58N-body 64k 16 4.97 5.04 14.8 3.82 3.72 15.6 | | | 4.95 24661 6 70.06N-body 256k 1 344 345.59 1.0 258 | | 229 212 1.0 344.43 0 4 344.43N-body 256k 2 168 167.92 2.1 126 | | 112 111 1.9 168.07 37493 6 333.3N-body 256k 4 83 83.71 4.1 62 62.92 | 56 57 3.7 83.0 63321 6 322.04N-body 256k 8 42 41.86 8.3 31 31.66 | 28 26.4 8.0 41.7 59251 6 318.65N-body 256k 16 22 22.16 15.6 17 16.37 | | | | 22.1 53422 6 316.38Table 7: Data for N -body application.also describes a parallel implementation of adaptive multipole methods in Green BSP basedon a similar replication schemes.Our implementation of the Barnes-Hut algorithm was strongly guided by the BSP model.In particular, our choice of the data structures and replication scheme was directly in
uencedby the emphasis the BSP model places on the e�cient routing of large h-relations. Anotherhelpful feature was the separation of latency and bandwidth in the BSP cost model. After�xing the basic replication scheme, and thus the number of supersteps, we were able tofocus on minimizing the total amount of information transmitted during replication, withouthaving to consider issues such as packet size or send overhead3.7.2.1 DiscussionResults for the N -body application are in Table 7. As input for our experiments we usedthe Plummer model generated by the SPLASH code [56]. The timing and speedup resultsin Tables 3 and 7 show that for large enough input sizes, the N -body code achieves nearlyperfect parallel speedup on all three machines. Our implementation needs slightly largerinput sizes than the SPLASH code to achieve the same speedup. However, even the largestinput size in Table 7 is not overly large, given that simulations are currently performed withhundreds of thousands and even millions of bodies [60].The running time of the single-processor version of our implementation on the SGI isslightly faster than that of the SPLASH code. In the code used in the above experiments,we did not fully optimize the computation of the interactions, which take around 97% of the3Apart from the very small cost of the calls to the BSP library routines.22



total sequential running time for a problem size of 16k on the SGI. Of course, doing thismight increase the relative weight of the parallel overhead, and thus slightly decrease theresulting speedup.Our N -body code performs only six supersteps per iteration, and its bandwidth require-ments are fairly modest as we were careful to minimize the amount of data sent during thetransmission of the \locally essential trees." This makes the program e�cient even for fairlysmall problem sizes, while for larger input sizes the program achieves high performance evenon platforms with very high latency. In fact, a slightly modi�ed version of our code was re-cently shown to achieve high performance on a meta-computer consisting of several clustersof PCs located in di�erent cities and connected by a wide-area network [51]. The applicationis irregular and dynamic, due to the uneven and changing positions of the bodies. However,the load distribution can be predicted fairly accurately from that of the previous iteration,as the system evolves only slowly.7.3 Minimum Spanning TreeThe minimum spanning tree of a weighted graph G is the tree of minimum weight thatcontains all the nodes of G. In our parallel implementation, we assume that the inputgraph is initially partitioned among the processors. Each processor contains a data structurerepresenting the portion of the graph for which it is responsible, and also a copy of each nodein the graph that is connected to a node in its portion. The nodes for which a processor isresponsible are called home nodes and the other nodes are called border nodes.The algorithm is conservative4 for the BSP model in that the number of messages com-municated by any processor is at most the number of its border nodes. The program startsout with a completely local phase that computes the local components of the minimumspanning tree. The program then enters a parallel phase that uses a simpli�cation of aconservative DRAM algorithm developed by Leiserson and Maggs [42]. Once the numberof components becomes small, the program switches to a mixed parallel/sequential phasethat �rst uses all the processors to �nd subforests of the remaining components using edgesthat are guaranteed to be in the minimum spanning tree, and then uses a single processorto assemble the forests into components. See [29] for more details.The input graphs are generated as follows. Nodes are assigned uniformly at random topoints on the unit square. Now construct a graph G(r) on the nodes by adding an edgebetween all nodes within distance r. The graph G is G(�) where � is the minimum valuesuch that G(�) is a single connected component. The weight assigned to edge (u; v) is thedistance between the points corresponding to u and v.For this class of input graphs, the running time of the single-processor version of ourparallel MST code is within 5% of a sequential implementation of Kruskal's algorithm on10k-node graphs.We reiterate that this algorithmwas designed with the the BSP model very much in mind;First the algorithm is designed to fully utilize available sequential work which corresponds tobulking the computation. Second, the conservative methodology used in the parallel portionof the algorithm is demanded by the BSP design goal of having small and evenly balanced4This concept was originally de�ned for the DRAM model [42].23



SGI Cenju PC-LAN SGI SGIapp size p pred time spdp pred time spdp pred time spdp W H S TWk(s) (s) (s) (s) (s) (s) (s) (s)MST 2.5k 1 0.1 0.1 1.0 0.1 0.1 1.0 0.1 0.08 1.0 0.1 3 12 0.1MST 2.5k 2 0.08 0.07 1.4 0.09 0.09 1.1 0.1 0.08 1.0 0.08 666 30 0.15MST 2.5k 4 0.06 0.05 2.0 0.07 0.09 1.1 0.12 0.09 0.9 0.05 1276 36 0.18MST 2.5k 8 0.05 0.05 2.0 0.12 0.14 0.7 0.23 0.22 0.4 0.04 2224 46 0.26MST 2.5k 16 0.07 0.18 0.6 0.24 0.25 0.4 | | | 0.06 3014 60 0.41MST 10k 1 0.8 0.81 1.0 0.8 1.03 1.0 0.6 0.61 1.0 0.8 3 12 0.8MST 10k 2 0.44 0.4 2.0 0.45 0.53 1.9 0.35 0.34 1.8 0.44 1377 30 0.85MST 10k 4 0.23 0.2 4.0 0.25 0.27 3.8 0.24 0.22 2.8 0.22 3288 36 0.79MST 10k 8 0.15 0.15 5.4 0.22 0.22 4.7 0.31 0.28 2.2 0.14 5302 42 0.92MST 10k 16 0.13 0.19 4.3 0.3 0.3 3.4 | | | 0.11 5866 56 1.17MST 40k 1 6.3 6.34 1.0 6.3 5.63 1.0 2.71 2.71 1.0 6.3 3 12 6.3MST 40k 2 3.86 3.87 1.6 3.88 3.13 1.8 1.69 1.6 1.7 3.86 3163 36 7.46MST 40k 4 1.2 1.1 5.8 1.22 1.38 4.1 0.61 0.92 2.9 1.19 6287 42 4.24MST 40k 8 0.6 0.56 11.3 0.69 0.83 6.8 0.53 0.65 4.2 0.59 10335 52 3.91MST 40k 16 0.34 0.4 15.8 0.53 0.56 10.1 | | | 0.32 9562 62 3.92Table 8: Data for MST application.communication patterns. Both aspects are crucial to good performance.7.3.1 DiscussionResults for the MST experiment are shown in Table 8. This application is a fast computation(less than a second for the parallel code on the largest problem size). Thus, even a modestnumber of communication steps can �gure signi�cantly into the running time of the algorithmon high-latency systems. As a result of this, we once again obtain signi�cantly better resultsfor the low-latency SGI than the high-latency systems. Still we achieved a factor of fouron the very-high latency 8-processor PC-LAN, and a factor of ten on the high-latency 16-processor Cenju.Looking at the algorithmic data, we observe that the number of supersteps required forthis computation grows quite slowly with the problem size. Furthermore, the total volume ofcommunication is quite small relative to the computation costs for even the smallest problemsize. That is, even for our worst machine the ratio between the total bandwidth cost andrunning time for the smallest problem size is less than a third, while for the largest problemsizes the ratio is less than an eighth. This suggests that we could perform MST computationson more highly connected graphs without much degradation in performance.Finally, as discussed earlier, the good speedup results for the minimum spanning treeapplication on large input sizes shown in Table 3 should be quali�ed, since the total work forsixteen processors (3.9 seconds) is signi�cantly less than the total work for a single processor(6.3 seconds). For the SGI, the 9.8 speedup shown in Table 4 is perhaps more reasonablethan the 15.8 speedup shown in Table 3.Thus, the best we can claim is about 70% of ideal speedup (despite the speedups reportedin the table for the SGI). We argue that this is still quite good since our initial graphpartitioning is only load-balanced to within about 10%, and the nature of the computationis quite dynamic.
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7.4 Shortest PathsA single source shortest paths computation on a weighted graph labels each node u with adistance label that corresponds to the length of the shortest path from u to the source. Inour implementation, we assume that the input graph is initially partitioned in the same wayas in the minimum spanning tree application. The class of graphs in our experiments is alsothe same.We �rst implemented a naive parallel version of Dijkstra's algorithm, where each pro-cessor contains a priority queue of nodes whose distance labels have recently changed. Eachprocessor proceeds by removing nodes from the priority queue and updating the neighborsas in Dijkstra's algorithm, until the priority queue is empty. Then each processor sends, foreach home node whose distance label has changed, a message to any processor that containsthat node as a border node, and ends its superstep. This process repeats until no node isentered into the priority queue during a superstep.On noticing that this approach worked poorly, we redesigned the algorithm. We alloweda processor to communicate and end its superstep whenever it had worked on its local pieceof the graph for some period of time called the work factor, rather than having it continueuntil it had absolutely no work left. This may lead to both better load balancing and quickerconvergence. In any case, it leads to better performance.The appropriate way to use this algorithm is to adjust the work factor according to thearchitecture (i.e., the work factor should grow with L). In our data, we chose one work factorto optimize performance across our platforms. That is, our numbers are for the exact sameprogram and input on all of the architectures.The BSP model was used heavily in both the initial design and the eventual algorithm.The key issues are the tradeo�s between communication frequency and load balancing. Thatis, an in�nite work factor essentially minimizes communication frequency at some cost inload balance and perhaps also in the total work performed by the algorithm due to thelack of global information. A smaller work factor increases the communication frequencywhile improving the load balance and the total computation cost. The bulk computa-tion/communication style of the BSP model is perfect for reasoning at this level.7.4.1 DiscussionTable 9 contains the data from the SP experiments. For this application, the performancewas limited by load-balancing issues for the low-latency systems and by synchronizationcosts for the high-latency systems.For the single source shortest path problem, no e�cient parallel algorithms are currentlyknown; this was the reason for choosing a naive parallelization of the sequential algorithm.While our best speedup of 10 for a two-second long computation is not an embarrassment,one can question the scalability of this approach for shortest path computations in general.Also, since the sequential work again decreases with increasing numbers of processors, thereported speedups may be considered generous.Still, we felt that this was an interesting �rst step towards the application of performingseveral shortest path computations on the same graph. Indeed, this algorithm does serve asthe �ne-grained inner loop of our next application.25



SGI Cenju PC-LAN SGI SGIapp size p pred time spdp pred time spdp pred time spdp W H S TWk(s) (s) (s) (s) (s) (s) (s) (s)SP 2.5k 1 0.06 0.07 1.0 0.06 0.07 1.0 0.04 0.05 1.0 0.06 4 8 0.06SP 2.5k 2 0.05 0.04 1.8 0.07 0.05 1.4 0.06 0.06 0.8 0.05 244 50 0.09SP 2.5k 4 0.04 0.03 2.3 0.07 0.05 1.4 0.12 0.12 0.4 0.04 399 59 0.09SP 2.5k 8 0.04 0.03 2.3 0.16 0.15 0.5 0.34 0.63 0.1 0.03 883 83 0.13SP 2.5k 16 0.05 0.1 0.7 0.33 0.31 0.2 | | | 0.04 1382 101 0.19SP 10k 1 0.52 0.53 1.0 0.52 0.56 1.0 0.35 0.35 1.0 0.52 4 8 0.52SP 10k 2 0.31 0.26 2.0 0.32 0.29 1.9 0.23 0.22 1.6 0.31 457 50 0.52SP 10k 4 0.14 0.12 4.4 0.16 0.14 4.0 0.17 0.16 2.2 0.14 806 47 0.46SP 10k 8 0.12 0.1 5.3 0.23 0.21 2.7 0.36 0.52 0.7 0.12 1407 74 0.51SP 10k 16 0.09 0.12 4.4 0.32 0.3 1.9 | | | 0.08 1954 83 0.64SP 40k 1 2.54 2.52 1.0 2.54 2.56 1.0 1.69 1.51 1.0 2.54 4 8 2.54SP 40k 2 1.53 1.46 1.7 1.54 1.49 1.7 1.05 0.91 1.7 1.53 1308 56 2.53SP 40k 4 0.82 0.75 3.4 0.85 0.81 3.2 0.66 0.7 2.2 0.81 1774 68 2.25SP 40k 8 0.49 0.41 6.1 0.61 0.54 4.7 0.66 0.59 2.6 0.48 2198 86 2.01SP 40k 16 0.28 0.26 9.7 0.56 0.48 5.3 | | | 0.26 2820 101 1.88Table 9: Data for Shortest Path application.7.5 Multiple Shortest PathsIn many situations, it is useful to perform a number of shortest path computations simul-taneously. Examples are the all-pairs shortest paths problem (or a subset of all-pairs), theglobal routing phase in VLSI layout, and some graph-partitioning heuristics. Thus, we mod-i�ed the code in the previous application to allow the computation of many shortest pathtrees simultaneously.Here, one can use the same underlying (read-only) graph and keep data structures foreach computation for the read-write data required in Dijkstra's algorithm. We note thatthe graph itself required 
(jEj + jV j) storage, while the read-write data is O(jV j), or morespeci�cally, three integers and one double per node.The bulk computation/communication style of the BSP approach leads to this imple-mentation. For example, with our approach, each shortest path computation runs once oneach process in each superstep. This can be contrasted to an asynchronous message passingalgorithm that could switch between shortest path computations on the granularity of singlemessage arrivals. While some advantage may be gained in the asynchronous approach, thecomplexity and overhead makes it seem unlikely.7.5.1 DiscussionResults for MSP are in Table 10. In our experiments, we performed 25 shortest path compu-tations simultaneously. We used the same work factor as in the shortest path experiments.The total sequential work decreased only slightly with increasing numbers of processors.Thus, our speedup numbers are mostly due to parallelism rather than computational advan-tages.Our results for this experiment are particularly impressive for the PC-LAN consideringthe high latency of this system. We obtain a speedup of 7:1 on our 8-processor setup.Moreover, its raw performance is essentially the same as the 16 processor SGI system, whileits cost is a fraction of the cost of the SGI system. This bodes well for the prospect ofdistributed data applications on networks of workstations.26



SGI Cenju PC-LAN SGI SGIapp size p pred time spdp pred time spdp pred time spdp W H S TWk(s) (s) (s) (s) (s) (s) (s) (s)MSP 2.5k 1 1.18 1.2 1.0 1.18 1.25 1.0 0.79 0.88 1.0 1.18 28 9 1.18MSP 2.5k 2 0.81 0.74 1.6 0.83 0.74 1.7 0.58 0.62 1.4 0.8 4833 51 1.51MSP 2.5k 4 0.52 0.46 2.6 0.57 0.48 2.6 0.49 0.47 1.9 0.52 7569 72 1.66MSP 2.5k 8 0.43 0.45 2.7 0.57 0.48 2.6 0.68 0.67 1.3 0.42 9856 87 2.25MSP 2.5k 16 0.33 0.47 2.6 0.64 0.58 2.2 | | | 0.31 10030 102 2.84MSP 10k 1 8.93 8.9 1.0 8.93 9.95 1.0 5.94 7.02 1.0 8.93 28 9 8.93MSP 10k 2 4.89 4.85 1.8 4.92 4.99 2.0 3.31 3.22 2.2 4.88 10265 57 8.52MSP 10k 4 2.7 2.63 3.4 2.77 2.54 3.9 2.02 1.93 3.6 2.68 23467 78 8.72MSP 10k 8 1.73 1.72 5.2 1.91 1.69 5.9 1.76 1.7 4.1 1.69 28938 102 9.48MSP 10k 16 1.14 1.36 6.5 1.54 1.27 7.8 | | | 1.1 26717 120 11.29MSP 40k 1 44.36 44.34 1.0 44.36 | | 29.54 34.6 1.0 44.36 28 9 44.36MSP 40k 2 24.21 24.43 1.8 24.27 | | 16.25 17.9 1.9 24.18 34879 60 45.28MSP 40k 4 12.41 12.2 3.6 12.49 13.14 | 8.53 10.3 3.4 12.37 35056 78 42.04MSP 40k 8 6.83 7.05 6.3 7.04 6.89 | 5.24 4.88 7.1 6.79 38849 105 37.96MSP 40k 16 3.64 4.71 9.4 4.12 3.68 | | | | 3.58 39874 138 39.57Table 10: Data for Multiple Shortest Paths application.7.6 Matrix MultiplicationThis program multiplies two dense n� n matrices A and B using Cannon's Algorithm (e.g.,see [40]). The input matrices are assumed to be initially partitioned into blocks of sizen=pp�n=pp, such that processor i holds the block with index (x; x+ y mod pp) of A, andthe block with index (x + y mod pp; y) of B, where x = bi=ppc and y = i mod pp.The algorithm then proceeds in pp iterations. In each iteration, each processor �rstmultiplies its two local blocks using a sequential blocked matrix multiplication algorithm,and adds the result to the local part of the result matrix C. It then sends the A block to thenext processor on its right, and the B block to the next processor below it (modulo pp).Cannon's Algorithm was chosen for its simplicity and its space and communication e�-ciency. The latency contribution due to the pp supersteps is negligible in most situations.In fact, the example of matrix multiplication shows that for reasons of space-e�ciency itmay sometimes be desirable to increase the number of supersteps in order to decrease theamount of main memory needed to bu�er the packets at the sending and receiving ends. InCannon's Algorithm, each processor sends and receives in each superstep an amount of dataproportional to the size of the input. For large input instances, it may become necessaryto split each such large superstep into several smaller ones in order to avoid using a largeamount of bu�er space. (In the experiments reported here, the input instances are smallenough to not require this modi�cation.)7.6.1 DiscussionTable 11 contains the data for the matrix multiplication application, which is the most trivialof our applications, and the most regular one in terms of the communication pattern. Thenumber of supersteps is small (proportional to pp), and the communication cost is mainlydetermined by the size of the h-relations. Of course, as the input size increases, this cost isitself dominated by the local computation cost.Note that this is the only application where the NEC Cenju achieves signi�cantly betterspeedup than the SGI. Comparing the results with the predicted times, we observe that our27



SGI Cenju PC-LAN SGI SGIapp size p pred time spdp pred time spdp pred time spdp W H S TWk(s) (s) (s) (s) (s) (s) (s) (s)Matmult 144 1 0.43 0.42 1.0 0.43 0.47 1.0 0.29 0.3 1.0 0.43 0 1 0.43Matmult 144 4 0.15 0.15 2.8 0.16 0.16 2.9 0.15 0.18 1.7 0.14 10368 3 0.54Matmult 144 9 0.09 0.12 3.5 0.11 0.09 5.2 | | | 0.08 9216 5 0.64Matmult 144 16 0.06 0.11 3.8 0.1 0.07 6.7 | | | 0.05 7776 7 0.7Matmult 288 1 3.4 3.37 1.0 3.4 3.71 1.0 2.26 2.32 1.0 3.4 0 1 3.4Matmult 288 4 0.99 1.01 3.3 1.05 1.11 3.3 0.84 1.1 2.1 0.95 41472 3 3.79Matmult 288 9 0.5 0.59 5.7 0.57 0.55 6.7 | | | 0.46 36864 5 4.13Matmult 288 16 0.32 0.42 8.0 0.42 0.36 10.3 | | | 0.29 31104 7 4.49Matmult 432 1 11.53 11.49 1.0 11.53 12.55 1.0 7.68 7.83 1.0 11.53 0 1 11.53Matmult 432 4 3.17 3.18 3.6 3.3 3.49 3.6 2.51 3.34 2.3 3.09 93312 3 12.33Matmult 432 9 1.54 1.65 7.0 1.69 1.7 7.4 | | | 1.46 82944 5 13.03Matmult 432 16 0.93 1.14 10.1 1.13 1.04 12.1 | | | 0.86 69984 7 13.66Matmult 576 1 27.53 27.51 1.0 27.53 29.94 1.0 18.33 18.71 1.0 27.53 0 1 27.53Matmult 576 4 7.29 7.33 3.8 7.52 8.09 3.7 5.56 7.52 2.5 7.15 165888 3 28.52Matmult 576 9 3.47 3.69 7.5 3.72 3.84 7.8 | | | 3.32 147456 5 29.78Matmult 576 16 2.09 2.42 11.4 2.43 2.31 13.0 | | | 1.97 124416 7 31.21Table 11: Data for matrix multiplication application.predictions for the SGI are too optimistic. We suspect that this may be due to the fact thatthe SGI is not a true BSP machine, as the only private memory in the SGI are the caches.8 Interpretation of Experimental ResultsIn this section, we attempt to develop a context in which to understand the experimentalresults. In particular, we address the issues of performance relative to other programmingapproaches, and the accuracy of the BSP cost model.8.1 Performance Relative to Other ApproachesWe �rst consider the performance of the BSP code relative to other programming mod-els. Would code based on other approaches|such as machine-speci�c code, MPI, LogP,etc.|have a substantial performance advantage? An examination of the experimental dataindicates that for this set of BSP applications, larger problem sizes achieve greater e�ciency.Indeed, the performance trends suggest that if su�cient main memory were available, anarbitrary level of e�ciency could be achieved. Thus, the speed advantage obtained from anyother approach, even a machine-speci�c one, will be negligible for large problem sizes.The reason these BSP programs achieve high e�ciency is simple: each application isdesigned such that the computation is balanced among the processors, and such that thecommunication to computation ratio decreases as problem size increases. It is important tonote that not all algorithms are so well behaved. For example, if one assumes a cost modelfor which communication is inexpensive, as in the PRAM model, it is quite reasonable todesign algorithms for which the communication to computation ratio is either constant orgrowing as problem size increases.Though detailed head-to-head comparisons with alternative parallel programming ap-proaches are beyond the scope of this paper, such comparisons would certainly be of interest.We encourage other researchers to compare their experimental results to those shown here.28



8.2 Accuracy of the BSP Cost ModelWe next consider the predictive accuracy of the BSP cost model. To keep the discussion incontext, there are several points that should be considered. First, it can be argued that thepurpose of the model is primarily prescriptive, as opposed to descriptive. (That is, from thepoint of view of the system designer, the model is primarily intended to guide the design.The extent to which the model provides accurate descriptions of current parallel systems isless signi�cant.) Second, it should be noted that prediction accuracy is not just a property ofthe model itself, but also of its implementation. Third, there seems to be limited value in aparallel model that is very accurate if we have no way of predicting sequential performance.With these caveats in mind, we begin our discussion of the suitability of the BSP cost modelfor current systems.The BSP model assigns a communication cost at the level of a batch of messages. Incontrast, many other models (such as LogP) assign a cost at the single-message level. Bymodeling a �ner-grained communication, such models may appear to provide a more accuratedescription of the underlying system. However, experimental results indicate that this is notthe case [31]. Asynchronous single-message models assume overly precise and predictabletiming behavior for low-level operations, and are particularly ine�ective when communicationcannot be predicted at run-time.Our experimental results suggest that the BSP model provides reasonable accuracy,though it should be noted that many of these applications are large enough that they becomecomputation-bound, and our use of BSP models only communication cost. It also appearsthat the model is su�ciently accurate to reveal overall performance trends, such as indicatingwhen the use of additional processors will have a negative e�ect on performance. Whetherthe prediction accuracy demonstrated in these experiments is su�cient depends on the needsof the user and the application. In general, greater predictability could be obtained byhaving a model with more parameters, at the cost of making the model more complex andthe algorithmic tradeo�s less obvious. The related work described in Section 4.2 addressesseveral proposed extensions to the BSP model.An examination of the experimental results indicates there was one case where the costmodel turned out to be too simplistic. The system using PCs and the Ethernet switchexhibited bad behavior on some of our programs when 8 processors were employed. Itappears that in this con�guration there were certain programs whose times were dominatedby latency costs that triggered bad behavior. This happened on small instances of SPand Ocean. It did not happen with MST, the other program whose small-instance timewas dominated by latency on the PC cluster, so perhaps that program did not trigger theswitch's bad behavior. In this case, one could argue that the BSP cost model is providingan overly abstract description of a complex real-world system. However, of the systems thatwe tested, only the case of the 8-processor Ethernet switch resulted in a severe discrepancybetween predicted and actual run times.
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9 ConclusionsWe have described the implementation and performance of several parallel applications thatuse a simple message-passing library based on the BSP model. Our results may be viewed asa partial validation of the practicality of the BSP model, since both e�ciency and portabilitywere demonstrated for a range of applications on diverse platforms.Concerning the accuracy of the BSP cost model, we believe that the cost model shouldnot be expected to accurately predict the precise running times on various input sizes andmachines. Such a \curve �tting" approach seems more realistic on fairly simple subroutines(i.e., broadcast or sorting) than on more complex application programs. Also, note thatthe degree to which computation and communication can be overlapped depends on theparticular architecture and application. (While we have de�ned the cost function as the sumof communication and computation costs, it is also sometimes de�ned as the maximum ofthe two.)However, we found the cost model to be very reliable in modeling the overall behavior ofan application, including the prediction of \breakpoints" at which the performance changesfundamentally due to the e�ects of latency, bandwidth, or local computation. We believethat this should make the BSP model a good evaluation tool for parallel architectures andalgorithms. In general, we feel that the cost model was accurate enough to guide us towardsan e�cient solution.10 Future ResearchAdditional work is needed in order to arrive at a more complete assessment of the strengthsand limitations of the BSP approach. In particular, all the experiments in this paper wereperformed on parallel machines with a fairly small number of processors. Implementationson machines with larger numbers of processors exist [32, 52], but further work is needed,particularly on more recent massively parallel machines.Investigating the range of applications that can be e�ciently handled in a BSP style isanother important issue. We are currently working on the implementation of some additionalapplication programs, including several variants of the adaptive Fast Multipole Method [15].Additional work is also needed to develop optimized and scalable BSP library implemen-tations. The BSP models postulates the e�cient resolution of arbitrary balanced communi-cation patterns, which presents a challenging problem to every library designer. This typeof communication makes it possible to consider a whole range of algorithmic ideas in orderto avoid contention in the routing phase. (In contrast, many asynchronous models requirethe application programmer to schedule the communication, as there is very little a librarydesigner can do to avoid contention.) Particularly in the case of large message-startup costs,this situation leads to a number of interesting algorithmic problems.Finally, to promote utilization and further study of the model, standardization seemsnecessary. We believe that the BSP Standard Library proposed in [36] is an important �rststep in this direction.
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