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Abstract

The Bulk-Synchronous Parallel (BSP) model was proposed by Valiant as a standard
interface between parallel software and hardware. In theory, the BSP model has been
shown to allow the asymptotically optimal execution of architecture-independent soft-
ware on a variety of architectures. Our goal in this work is to experimentally examine
the practical use of the BSP model on current parallel architectures. We describe the
design and implementation of the Green BSP Library, a small library of functions that
implement the BSP model, and of several applications that were written for this library.
We then discuss the performance of the library and application programs on several
parallel architectures. Our results are positive, in that we demonstrate efficiency and
portability over a range of parallel architectures, and show that the BSP cost model is
useful for predicting performance trends and estimating execution times.

Index Terms: BSP, minimum spanning tree problem, models of parallel computation,
N-body problem, parallel computing, parallel graph algorithms, shortest path problem.

1 Introduction

A fundamental goal of parallel computing is the development of portable and efficient parallel
programs. Valiant has argued that his Bulk-Synchronous Parallel (BSP) model achieves both
portability and efficiency for a large class of problems [57]. The cost of portability is that
BSP code may require a larger input size than machine-specific code in order to achieve
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the desired level of efficiency. Our objective is to determine if the BSP model is a practical
model for current parallel systems. Specifically, we wish to discover if portability using the
BSP model can be demonstrated while achieving efficiency for realistic input sizes.

The BSP model, being an interface between software and hardware, incorporates aspects
of both domains. The BSP model is discussed in detail in Section 3. Here we mention several
of the most significant arguments in support of the model:

e For the architect the BSP model describes a parallel computer with three attributes:
A collection of components each performing stand-alone processing and memory func-
tions; a router that delivers messages point-to-point between any two components;
and a mechanism for synchronizing all components. The BSP model presents clearly-
defined design goals while allowing for a wide range of implementations.

e For the programmer the BSP model dictates a disciplined but fairly general and user-
friendly programming style. (In this paper, we examine only BSP programs written
in direct mode [24]. Such programs are written directly for a BSP computer, take into
account the number of processors, and have one process per processor.)

e For the algorithm designer the BSP model provides a simple cost function for analyzing
the complexity of algorithms. This allows BSP to serve as a framework for developing
a theory of efficient algorithm design.

e The BSP model can efficiently simulate several other models of parallel computation |8,
24,28, 27, 58], including the PRAM model. (Such BSP programs are said to be written
in automatic mode [24).)

Despite these arguments in support of the BSP model, the short-term applicability of
the BSP model is yet uncertain. In particular, most current parallel computers are not
designed to support the fundamental routing problem of the BSP model: the h-relation. An
h-relation is a routing problem such that A is the maximum number of (fixed-sized) packets
sent or received by any processor. While the efficient routing of h-relations has been the
subject of numerous theoretical studies, most system designers focus instead on optimizing
communication at the single-message level [31]. In addition, the BSP model provides a highly
abstract model of the underlying computer. In some situations the BSP cost function may
be overly simplistic and lead the programmer astray. For example, the cost function assumes
that all h-relations require the same amount of time to route, which may be unrealistic for
some systems.

We attempt to evaluate the use of the BSP model for the design of efficient and portable
parallel programs. In particular, we are interested in exploring the range of algorithms and
applications that can be efficiently implemented in the BSP model. While there seems to be
general agreement that some problems can be efficiently solved in this model, it has also been
argued that there may be other problems that require asynchronous message passing or even
shared memory for an efficient implementation on current machines. Thus, we believe that
in order to argue for BSP as a basis of general-purpose parallel computing, it is necessary to
show that the model is not restricted to certain classes of well-behaved problems, but can
indeed efficiently implement most parallel applications of interest. By exploring this issue,



we also wish to give a basis for a comparison with asynchronous models such as LogP and
certain shared-memory models.

We designed several parallel applications that use the Green BSP Library [30], a small
library of BSP message-passing functions we have implemented on a number of parallel
platforms. Inspired by the SPLASH suite of shared-memory applications [56], we focus on a
variety of realistic applications. The applications are:

e an N-body simulation using the Barnes-Hut algorithm (/N-body),
e an ocean eddy simulation program adapted from the SPLASH application suite (Ocean) [56],

e a minimum spanning tree algorithm (MST),

a shortest paths algorithm (SP),

a multiple shortest paths algorithm (MSP), and
e a dense matrix multiplication algorithm (Matmult).

In all of our applications, we used only the BSP cost function in both the design and
optimization stages of the program development. Our approach assumed that communica-
tion is somewhat more expensive than local computation, and that barrier synchronization
is considerably more expensive than communication. This approach appears reasonable for
a wide range of current machines. In discussing our applications, we will touch upon some
of our programming decisions and their relationship to the BSP cost function.

We describe implementations of the Green BSP Library on three different machines: a
shared-memory machine, a distributed-memory machine, and a network of PCs. We then
characterize the performance of these machines in terms of the BSP cost model, and evaluate
the performance of our applications on these machines. Our results are encouraging, in that
our BSP applications obtain significant speed-ups on all three systems, including nearly
perfect speed-up in several instances.

Another question that we investigate is the accuracy of the BSP cost function in pre-
dicting execution times. Following [9], we provide data for our applications that can be used
to predict the execution times on each machine under the BSP cost model. Our results
demonstrate that the model is able to predict execution times fairly accurately, although
we emphasize that we used the BSP cost function only to model communication and syn-
chronization costs, and for some of our application these costs turned out to be a small
component of the overall execution time. An example is shown in Figure 1. For this partic-
ular application, the communication and synchronization overheads in our implementation
were negligible. (In fact, we credit the simplicity of the BSP cost model for guiding us to
such efficient solutions).

However, even for those applications for which the communication and synchronization
costs are significant, our results suggest the cost function is quite reliable in predicting
performance trends. For example, consider the performance of the Ocean simulation with
input size 130 in Figure 3. The cost model accurately predicts that little will be gained by
using four PCs rather than two, and that performance will severely degrade when using eight
PCs. Similarly, the cost function accurately predicts that the performance of the NEC Cenju
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Figure 1: Actual and predicted times and predicted communication times (including syn-
chronization) for N-body (size 64k). Experiments such as these are useful for demonstrating
efficiency (our primary objective), but are less useful for determining the utility of the BSP
cost, model.

on this application will not improve much by using more than four processors on this input
size. Note that the accuracy of the cost function depends of course on the choices made in
the implementation of our BSP library. Thus, inaccuracies in the prediction may also be due
to shortcomings of the library implementation, rather than the BSP cost function itself.

The rest of the paper is arranged as follows. Cautionary statements concerning the eval-
uation of our results are in Section 2. Section 3 describes the BSP model. Some related work
is described in Section 4. The Green BSP Library is presented in Section 5. Implementa-
tions of the Green BSP Library on several parallel platforms are described in Section 6. Our
applications are considered in Section 7. Finally, Sections 9 and 10 contain some concluding
remarks and directions for future research.

2 Caveats

Before proceeding, we mention some caveats the reader should keep in mind when evaluating
our data.

e We report our speed-up numbers in terms of the ratio of the parallel runtime and the
runtime of the same program on a single processor. Viewing this definition of speed-up
as a performance gain assumes that the single processor code is a reasonable sequential
program. We believe that for most of our applications this is the case. For matrix
multiplication, however, many highly optimized sequential codes exist, and thus our
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speed-ups should be interpreted cautiously. Some performance gains are also possible
for the Barnes-Hut implementation. Writing high-performance sequential codes for
these applications on modern workstations can be a challenging and time-consuming
task, and the best performance is often achieved by optimizing for a particular machine
configuration.

Several of our results exhibit superlinear speed-up. We define the total work to be the
sum of the run times spent on doing computational work across all processors; in the
case of superlinear speed-up, the total work on p processors is less than the total work
on one. Superlinear effects may occur if the problem size is such that the data fits in
the main memory (or cache) of p processors while it cannot fit in the main memory
(or cache) of one processor. It is also possible that a program written for p processes
but running on a single processor may order operations such that it exploits more data
and instruction locality than a program written for one process. Though we limit our
problem sizes so that they fit into the main memory of one processor, superlinearity
due to caching may still occur. We discuss this issue in more detail in Section 7.

Part of our objective is to examine the predictive capability of the BSP cost function.
We consider BSP to model only communication and synchronization. I/O and local
computation are not modeled. As a result, none of our experiments include 1/0.

One would like to compare results using the BSP model with results obtained by using
other models, or by programming directly for a particular machine. While we compare
our Ocean and N-body applications with shared-memory implementations, we warn
the reader that detailed comparisons will not be found in this work. We hope that our
applications can be used as a basis for future research along these lines.

The machines used for this paper all exhibit only a moderate level of parallelism (up
to 16 processors). Promising initial results have been obtained for experiments on
machines with significantly more processors. In particular, Green BSP Libraries have
been implemented on a 54-processor BBN Butterfly GP1000 [32] and a 8,192-processor
Maspar [52]. We have also used the MPI version of our library to run larger N-body
simulations on the NAS IBM SP2 and a large Cray T3E at NERSC.

The BSP Model

It is well-known that scalable parallel performance can be achieved for many problems by
using machine-dependent software. Similarly, portability can be achieved if scalable perfor-
mance is sacrificed. The simultaneous achievement of portability and efficiency, however,
is still a challenging problem in practice, despite the fact that no real theoretical imped-
iments exist that would preclude this. In a noteworthy paper, Valiant argued that what
is missing is a bridging model that serves as an interface between “the diverse and chaotic
world of software [and the] diverse and chaotic world of hardware” [57]. Valiant proposed
the Bulk-Synchronous Parallel (BSP) model as a candidate for this role and gave theoretical
arguments in its support.



3.1 The Model

In the BSP model, a parallel machine consists of a set of processors, each with its own local
memory, and an interconnection network that can route packets of some fixed size between
processors. The computation is divided into supersteps. In each superstep, a processor can
perform operations on local data, send packets, and receive packets. A packet sent in one
superstep is delivered to the destination processor at the beginning of the next superstep.
Consecutive supersteps are separated by a barrier synchronization of all processors.

The communication time of an algorithm in the BSP model is given by a simple cost
function. The three basic parameters that model a parallel machine are: (i) the number of
processors p, (ii) the gap g, which reflects network bandwidth on a per-processor basis, and
(iii) the latency L, which is the minimum duration of a superstep, and which reflects the
latency to send a packet through the network as well as the overhead to perform a barrier
synchronization.

Consider a BSP program consisting of S supersteps. Then the execution time for super-
step ¢ is given as:

w; + gh; + L (1)

where w; is the largest amount of work (local computation) performed, and h; the largest
number of packets sent or received, by any processor during the ith superstep. The execution
time of the entire program is:

W+gH+ LS (2)

where W = 50" w; and H = 7" h;. We call w; and W the work depths of the superstep
and the program, respectively.

Thus, efficient programming of a BSP machine is based on several simple principles.
To minimize the execution time, the programmer must (i) minimize the work depth of the
program, (ii) minimize the maximum number of packets sent or received by any processor
in each superstep, and (iii) minimize the total number of supersteps in the program. In
practice, these objectives can conflict, and trade-offs must be made. The correct trade-offs
can be selected by taking into account the particular ¢ and L parameters of the underlying

machine.

3.2 Discussion of the Model

By examining the BSP cost function, it is clear that efficient parallelism can be achieved
under certain conditions. Assume a parallel program performs the same amount of compu-
tation as the corresponding sequential program, and that computation is balanced among
the p processors. In particular, if the rate of growth of the work depth (W) exceeds that
of both communication (H) and synchronization (S), close to optimal efficiency can be
achieved by making the input size sufficiently large. This has led to the design of so-called
one-optimal BSP algorithms—algorithms that are within a factor of 1 + o(1) of optimal
time [6, 23, 24]. Many important applications meet the conditions that guarantee efficiency.
In practice, this approach for efficient BSP computation is related to Gustafson’s view of
parallel speedup [34] to achieve efficiency, use large problem sizes. An example of this
phenomenon can be seen by observing Figures 2 to 5. As the problem size increases for
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Figure 2: Ocean 66 Actual times, predicted times, and predicted communication times
(including synchronization).

the Ocean application, the relative expense of communication and synchronization decreases
and the attainable speedup improves.

More generally, it appears that the efficient execution of many abstract programming
models, including BSP, depends on the existence of a sufficient degree of parallel slackness,
often in excess of that required by machine-dependent solutions. (We define parallel slack-
ness informally as the ratio of the degree of parallelism in the problem to the number of
processors.) On the other hand, it can be argued that for many problems increasing the
input size to the point of efficiency will eventually become unrealistic as the number of pro-
cessors increases, due to the resulting increase in the overall execution time (e.g., see [55]).
Underlying this argument, however, is an assumption that as we increase the number of
processors, the power of each individual processor stays the same. It is important to realize
that as the speed and memory size of today’s processors continue to increase rapidly, we will
be able to run larger and larger problem sizes, which in turn should allow us to efficiently
use more and more processors!. Thus, we believe that in today’s parallel machines—which
are mostly based on commodity processors increases in sequential processor speed have
become an ally, rather than adversary, of efficient parallelism. In particular, we expect that
portable parallel programming will become feasible on larger numbers of processors.

In support of the BSP model, it has been shown that many other programming styles can
be automatically and efficiently transformed into a BSP style. In particular, Valiant [57, 58]
and Gerbessiotis and Valiant [24] have shown that the BSP model can efficiently simulate the
EREW PRAM. This result was subsequently extended to the more powerful QRQW PRAM

IThis assumes that the values of L and ¢, and thus the ratio of communication to computation speed,
remain about the same.
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model by Gibbons, Matias, and Ramachandran [27]. A simulation of asynchronous message-
passing programs in BSP is given in [8]. Finally, Gibbons, Matias, and Ramachandran have
shown an emulation of the recently proposed QSM (Queued Shared Memory) model [28].
Of course, as Gerbessiotis and Valiant [24] point out, a direct implementation on the BSP
model will often lead to even better performance.

We briefly discuss a few more aspects of the BSP model. First, the BSP model views
the interconnection network as a batch-routing network that can efficiently route arbitrary
balanced communication patterns. The model ignores the particular network topology of
the underlying machine. Hence, the model only considers two levels of locality: local (inside
a processor) or remote (outside a processor).

Second, we note that the BSP model requires complete cooperation among all processors
to route even a single message. While this may seem an unnatural restriction, we argue that
it is appropriate. As stated above, Valiant and others have made numerous theoretical
arguments that parallel programming need not be optimized at the single-message level.
Moreover, in the context of interconnection networks, one can often achieve better bandwidth
when routing large batches of messages rather than individual messages.

In contrast, asynchronous models seem to encourage the programmer to design and
optimize their code with respect to the arrival of single messages. Thus, it is contingent
upon the architect to attempt to minimize single-message latencies. The requirement of
synchrony in the BSP model also contributes to its overall simplicity. As a result, we feel
that it is fundamentally easier to reason about the correctness and performance of BSP
programs, as opposed to aggressively asynchronous message-passing programs.

Finally, as the BSP model emphasizes the efficient routing of large h-relations, it appears



to be particularly suitable for emerging “ultra-high-latency” environments such as meta-
computers consisting of several clusters of PCs connected by wide-areas networks, or for
parallel and sequential computations that process large data in secondary memory. In fact,
one of the codes described in this paper (the Barnes-Hut N-body code) was recently adapted
and optimized by colleagues to run on the Albatross wide-area cluster, where it has achieved
high performance even for very high latencies [51]. For computing in secondary memory,
several simulation results have been established that show that BSP algorithms that tolerate
high-latencies can also be used for efficient computing in secondary memory [21, 53]. In both
of these cases, certain adjustments and optimizations will be needed to make the model really
practical. Nonetheless, we believe that many of the principles and properties of the basic
BSP model will also prove valuable in these new environments.

4 Related Work

This section gives a brief overview of related work. We describe other work on the BSP
model, including some proposed extensions to the model. We also give a critical discussion
of some alternative candidates for a unifying model for parallel computing, and refer to other
libraries and programming languages for portable parallel computing. Due to the immense
amount of work in these areas, we have to restrict ourselves to work that is very closely
related to our own, or that directly influenced our approach and design decisions.

4.1 BSP Algorithms, Libraries, and Languages

Since the introduction of the BSP model, a number of papers have considered the design
and analysis of BSP algorithms—see, for example, [7, 9, 23, 24, 48, 58].

Several groups of researchers are currently studying the use of the BSP model on existing
parallel machines. The Oxford BSP Library, developed by Miller [49] while at Oxford Uni-
versity, is based on shared-memory operations similar to those found in the Cray SHMEM
library. This makes the library very simple and efficient to implement on shared-memory
machines. Oxford BSP is restricted, however, by the fact that only statically allocated mem-
ory can be accessed by other processors. Nonetheless, this approach is powerful enough for
many static computations that arise in scientific computing. In contrast, the Green BSP
Library described in this paper is based on message passing, which requires the programmer
to prepare and read messages. Thus, we believe that the Green BSP Library is better suited
for the irregular and dynamic applications that we have experimented with.

Also at Oxford University, McColl’s group is working on the development of several BSP
programming languages, tools, and industrial applications [35, 39, 41, 47].

A group at Harvard University lead by Cheatham and Valiant is studying higher-level
programming languages and compilation techniques for the BSP model [16, 17]|. Bisseling
at the University of Utrecht is studying the use of the BSP model in the implementation of
scientific computations [9, 10]. A recent implementation of a plasma simulation using the
Oxford BSP Library is described in [50].

Finally, BSP researchers have proposed a standard BSP library [36], which will incor-
porate much of the previous experimental work in this area, including the work reported in

10



this paper.

4.2 Extensions to the BSP Model

Gerbessiotis and Valiant [24] examined several extensions of the BSP model, including special
mechanisms for parallel-prefix computation (PPF-BSP), broadcasting (b-BSP), and concur-
rent reads and writes (c-BSP). Their overall conclusion is that these extensions provide only
modest improvements in efficiency, though in some cases they achieve one-optimality for
smaller input sizes or larger latency values.

The BSP* model of Baumker, Dittrich, and Meyer auf der Heide [7, 5, 6] introduces an
additional parameter B that specifies the minimum length of a message, thus rewarding the
programmer for sending large messages. This means that the cost of an h-relation depends
not only on the value of h, but also on the structure of the h-relation. (In particular, the
BSP* model will assign a a higher cost to small h-relations in which a processor exchanges
packets with many other processors, and a lower cost to small A-relations where all A packets
are sent to the same destination.)

The dx-BSP (“deluxe BSP”) model proposed in [12] attempts to model the performance
of high-bandwidth shared-memory machines such as the Cray C90 in which the memory
banks are significantly slower than the processors.

Finally, the Extended BSP (E-BSP) model [37] provides a more accurate cost function for
unbalanced communication in networks where the primary bottleneck is not at the processor-
network interface. A comparison of the BSP and E-BSP models on several machines and
applications is given in [38]. However, the programs in this study are written in PVM, MPL,
and Split-C, which were not designed with efficient BSP computation in mind. Our approach,
on the other hand, is based on the belief that efficient and portable BSP computation requires
a careful implementation of the basic BSP functions, although it is an interesting question
to what degree the BSP cost function can also be used to predict the performance of bulk-
synchronous-style programs executed on other platforms.

4.3 Other Cost Models

A number of other models for general-purpose parallel computing have been proposed in
recent years see [46] for an overview. In the following, we only mention those models that
are most closely related to BSP.

LogP model [20] is based on asynchronous message passing. It measures the performance
of point-to-point messages with three parameters representing software overhead, network
latency, and communication bandwidth. The LogP model has been used as a performance
model for active messages [59] and the Split-C language [18], and it has been applied to the
analysis of several application programs [19, 45]. A theoretical comparison of the BSP and
LogP models can be found in [8]. This study concludes that the two models are substan-
tially equivalent in terms of asymptotic analysis. While the LogP model may be valuable for
modeling the behavior of current asynchronous message-passing layers and low-level com-
munication routines (such as broadcasting or prefix computations), it seems that applying
the model to more complex parallel programs is often quite difficult. We thus believe that
the BSP model is preferable for designing and analyzing parallel application programs, due
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to its extreme simplicity. For example, the BSP model frees the programmer from concerns
such as scheduling messages to avoid endpoint contention, or choosing the right message size
to avoid large software overheads.

Other closely related models are the Postal Model [3], the Atomic Model [43], and several
models for end-point contention (e.g., see [2]) inspired by the prospect of optical communi-
cation in parallel machines. Like BSP and LogP, these models do not refer to the topology of
the underlying machine, but assume that the interconnection network behaves essentially like
a completely connected network, with the only contention arising at the processor-network
interface.

A shared-memory model that is closely related to BSP is the Queued Shared Memory
(QSM) model recently proposed by Gibbons and Matias [28]. This model can be seen as
a generalization of the QRQW PRAM model [27, 26] that incorporates the g parameter
of the BSP and LogP models in order to model shared-memory platforms with limited
communication bandwidth.

4.4 Standardized Message-Passing Libraries

A somewhat different approach to portable parallel programming is based on standardized
message-passing libraries such as PVM [22] and MPI [33]. While these libraries provide a
common set of functions on a variety of parallel machines, they do not offer any cost function
(in the strict sense) that could guide the programmer in the design of efficiently portable
code. It seems that the very idea of these libraries is to offer a fairly rich set of functions,
including various collective operations, each of which can be optimized with respect to the
underlying architecture. This rules out any simple cost model based on just a few parameters,
whereas the BSP and LogP models assume a very small set of basic functions and—at least
in theory require any other operations to be implemented on top of these functions.

4.5 High-level Programming Models and Languages

One of the most popular approaches to parallel programming has been the use of the shared-
memory model. While it can be argued that shared memory is a natural and user-friendly
approach to parallel programming, it also seems to have serious limitations in terms of
scalability. The basic impediment is that most shared-memory machines assume a view of
the hardware where all memory accesses have the same cost. As stated before, if there is
sufficient communication bandwidth, then the BSP model can efficiently execute programs
written for various shared-memory models. However, the BSP model also allows efficient
solutions to many problems in the case of large values of g and L, by using the locality
inherent in these problems.

In addition, hardware support for sequential consistency, the most straightforward shared-
memory model, becomes more inefficient as the number of processors increases. To over-
come this problem, a number of other models for shared-memory consistency have been
proposed [25]. However, these weaker and usually more complicated consistency models can
hinder both programmability and portability.

High-Performance Fortran (HPF) is a parallel extension of Fortran that has received
considerable attention over the last few years [1]. HPF allows a fairly easy implementation
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of scientific computations with regular data and communication structures. The main dis-
advantage of HPF is that it provides limited support for implementing adaptive algorithms.

The NESL language of Blelloch [13, 14] is an example of a data-parallel language that
attempts to overcome these shortcomings of HPF, while retaining a large degree of effi-
ciency. NESL also provides a simple cost model that is based on the total work and depth
of a computation. The NESL model is not processor based, and thus there is no notion of
processor locality. As a result, efficient computation with NESL is currently restricted to
parallel machines with high communication bandwidth.

5 The Green BSP Library

The Green BSP Library is a set of functions for BSP programming. In this section, we give
a brief description of the library design and the semantics of the functions.

The Green BSP Library is designed to be as simple and as portable as possible without
sacrificing basic BSP functionality. Information is transferred through the use of fixed-
length packets. The size of the packets is set at compile time. Program text is in a SPMD
(Single-Program, Multiple-Data) format. The library makes no particular effort to provide a
user-friendly programming environment, nor does it make concessions to improve efficiency
on specific parallel platforms. Despite these self-imposed restrictions, we claim the the Green
BSP Library provides a relatively easy-to-understand parallel programming environment and
that it will run with reasonable efficiency on almost any type of parallel system.

The library consists of the seven functions shown in Table 1. For a BSP computer, the
basic tasks of the interconnection network are to provide point-to-point packet delivery and
barrier synchronization. In the Green BSP Library the functions that implement these tasks
are called fundamental functions. In Table 1 the first three functions are the fundamental
functions. The last four functions are less central to the BSP philosophy and are called
supplemental functions.

Supplemental functions have been included in the library sparingly. As stated earlier, it
is not our purpose to develop a user-friendly environment—presumably, such an environment
would have several other supplemental functions that could be useful in certain contexts. For
a supplemental function to be included in the Green BSP Library it had to be extremely
useful, efficient, and simple to implement.

We begin by discussing the fundamental functions. To sending of packets, we use:

void bspSendPkt(int pid, const bspPkt *pktPtr);

The address of the destination process is pid, and the pointer to the packet to be sent is
pktPtr.

To receive a pointer to a packet that was sent in the previous superstep, the following
function is provided:

bspPkt *bspGetPkt(void) ;

If there are no more packets to be accessed, this function will return the symbolic constant
NULL. The returned pointer is only guaranteed to be valid during the current superstep.
Barrier synchronization requires the use of the following function:
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Function Semantics

void bspSendPkt () send packet to another process
bspPkt *bspGetPkt() | receive packet sent in the
previous superstep

void bspSynch() perform barrier synchronization

int bspGetPid () return pid

int bspGetNumProcs() | return number of processes
int bspGetNumPkts() | return number of packets sent
to the process in the previous
superstep that have not yet
been accessed

int bspGetNumStep() | return number of current
superstep

Table 1: The seven functions that constitute the Green BSP Library. The first three func-
tions are classified as fundamental functions while the last four functions are classified as
supplemental functions.

void bspSynch(void);

After a process returns from a bspSynch() call, it can begin to access the packets that were
sent to it in the previous superstep by utilizing bspGetPkt ().
The supplemental functions can be used to obtain the process id:

int bspGetPid(void);
the number of processes:
int bspGetNumProcs(void);
the number of packets awaiting access in the incoming-packet buffer:
int bspGetNumPkts(void);
and the number of the current superstep (the initial superstep being superstep 0):
int bspGetNumStep(void);

To demonstrate the programming style supported by the Green BSP Library, a short toy
program is presented in Figure 6. This program demonstrates the basic BSP functionalities
of packet sending and receiving as well as barrier synchronization.

Note that the program is written at a very low level. The packets are stuffed and
unstuffed using memcpy (), thus the programmer must know that the size of an integer is
(in this example) four bytes long. The program further assumes that all processes use the
same representation for integers. It is possible to allow for greater flexibility by creating
system-dependent utility functions on top of the Green BSP Library that ensure a common
representation for all relevant data structures.
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Although it is not an issue in this example, the programmer must remember that packets
can arrive in arbitrary order. Thus, packets must have sufficient labeling information for
proper utilization by the destination process. Since there is no implicit labeling information
that arrives with the packet, programmers must explicitly decide the packet format. Of
course, even in one superstep there may be several distinct packet formats in use.

6 Library Implementations

The Green BSP library has been implemented on a number of platforms. The results in this
paper are based on the following library versions and parallel machines:

e a shared-memory version, used on an SGI Challenge with sixteen MIPS R4400 proces-
sors (SGI),

e an MPI version, used on an NEC Cenju consisting of sixteen MIPS R4400 processors
connected by a multi-stage network, with a peak bandwidth of 20 Mbytes/s available
for each processor (Cenju), and

e a TCP version, used on a system of eight 166-MHz Pentium PCs running Linux and
connected by a 100-Mbps Ethernet switch (PC-LAN).

Following we give a brief description of each of the three library implementations used
in this paper, and then analyze the library performance in terms of the BSP parameters L
and g.

6.1 The Shared-Memory Version

In the shared-memory implementation, each process has two large input buffers in shared
memory, which are used in alternating supersteps.? Because the input buffers have many
writers, they are protected by locks. However, when a process acquires a lock it allocates
enough space for 1000 packets, so the locking cost is small per packet. Also, because the
locks are used infrequently, we were able to use Lamport’s software locking algorithm, which
is tuned for the case of low contention. There is one case that probably would generate
substantial lock contention: supersteps with small all-to-all communication patterns. To
eliminate this case we begin each superstep by pre-allocating p memory blocks (one for each
writer) at the start of each input buffer. With this scheme, the locks are only used when
there is actually enough communication to pay for them.

Note that, unlike the MPI and TCP implementations, which synchronize implicitly via
their all-to-all communication patterns, the shared-memory version requires explicit synchro-
nization at superstep boundaries. We accomplish this using p variables in shared memory
that are incremented by the processes to indicate that they are ready to proceed to the next
superstep. Process 0 then spins on variables 1 through p — 1, while processes 1 through p —1
spin on variable 0.

2The processes themselves run in separate address spaces.
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void program(void)

{

Figure 6: A sample program using the Green BSP Library. The program is designed for
three processes. Each process starts with initial values for integers A and B. Each process
sends the value of A to its neighbor process at pid + 1, where the addition is modulo the
number of processes. Finally, each process calculates and prints its own value for C, equal

int pid, numProcs, A, B, C;
bspPkt pkt, *pktPtr;

pktPtr = &pkt;

pid = bspGetPid();
numProcs = bspGetNumProcs() ;

if (pid == 0) {A = 3; B = 12;}
if (pid == 1) {A = 1; B = 18;}
if (pid == 2) {A = 5; B = 7;}

memcpy ( (void *)pktPtr, (void *)&A, 4);
bspSendPkt ((pid+1)%numProcs, pktPtr);

bspSynch() ;

pktPtr = bspGetPkt () ;
memcpy ( (void *)&C, (void *)pktPtr, 4);

C =C + B;

fprintf (stdout, "Process %d, C = %d\n",

bspSynch() ;

/*
/*

/*

/*
/*

/*

/*
/*

/*

/*

Get process ID */
Get number of processes */

Initialize A and B %/

Store A in packet */
Send packet to neighbor */

Superstep synch */

Receive packet */
Put packet value in C */

Calculate final C */

pid, C);

Superstep synch */

to its original value for B plus its neighbor’s value for A.
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6.2 The MPI Version

In the MPI version, each process has a distinct input and output buffer for each of the other
processes. There is no overlap of computation and communication—during a superstep,
messages are simply read from and written to the appropriate buffers. When a process
reaches a superstep boundary, it posts an Irecv for each input buffer and an Isend for
each output buffer, and then waits until all 2p incoming and outgoing transmissions are
completed, before starting the next superstep.

6.3 The TCP Version

As in the MPI version, each process uses a distinct input and output buffer to communicate
with each of the other processes, and communication only occurs at superstep boundaries.
The blocking TCP protocol we employ requires receivers to actively empty the pipe whenever
another process sends a large amount of data, so deadlock could occur if we are not careful
in scheduling the communication. In our setup, the processes pair off and talk according to
a pre-computed p — 1 stage total-exchange pattern. Note that while this rigid scheduling
method works well for random h-relations, it is not efficient for certain worst-case commu-
nication patterns. We ran this version on a system of eight PCs connected by a 100-Mbps
Ethernet switch that allows the p/2 conversations in each communication stage to occur in
parallel. As it turned out, the maximum bandwidth that we were able to obtain between
two processors was about 5 MB/s, and thus significantly below the 12.5 MB/s restriction of
the Fast Ethernet connections. (We conjecture that this is due to some bottleneck in the
operating system.)

6.4 Library Performance

Figure 2 shows the values of L and ¢ achieved by the different versions of our library.
Synthetic benchmarks were used to measure these values. The value for L corresponds to
the time for a superstep in which each process sends a single packet; this incorporates both
the message latency and the barrier synchronization overhead. The bandwidth parameter g
is the time to route a large, balanced h-relation divided by A. These benchmark h-relations
were randomly generated.

Looking at the entries in Figure 2, we can see that L grows linearly with the number of
processors, due to our implementation choices. Of course, some changes in the implementa-
tions would be necessary to achieve acceptable values of L on significantly more processors.
However, for the fairly small machines used in this study, it seems difficult to get significant
improvements in this area.

7 Applications

For each of our applications, we ran experiments on four or five different input sizes and
numbers of processors. In this section, we give a brief description of each application, and
summarize the results of our experiments. A brief overview of the performance results is
shown in Tables 3, 4, and 5.
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SGI SGI | Cenju Cenju | PC-LAN PC-LAN
Pl oy L g L g L
(ps) (ps) | (ps)  (ps) (ps) (1)
11077 3 2.20 130 0.92 2
21082 16 2.20 260 3.30 540
4 1088 29 2.20 470 4.80 1556
8 097 52 2.50 1470 8.60 3715
9 | 1.00 57 2.70 1680
16 1 0.95 105 | 3.60 2880
Table 2: BSP system parameters.
SGI (p=16) | Cenju (p=16) | PC-LAN (p=8)
app size | time spdp | time spdp | time spdp
(5) (5) (5)
Ocean 514 | 2.23 17.0 | 4.0 13* 6.46 7.2
N-body 64k | 5.04 14.8 | 3.72 15.6 | 6.06 7.6
MST 40k | 0.40 15.8 | 0.56  10.1 0.65 4.2
SP 40k | 0.26 9.7 | 0.48 5.3 0.59 2.6
MSP 40k | 4.71 9.4 | 3.68 12* 4.88 7.1
Matmult 576 | 2.42 11.4 | 2.31 13 —

Table 3: Speedup summaries for large problem sizes; * indicates an estimate on the speedup

as we were unable to run the largest problem size on a single processor.

seq. work seq. work | spdp

app size | time p=16 p=1 w.r.t.

(s) (s) (s) | p=16

Ocean 514 | 2.23 35.43 38.43 15.9
N-body 64k | 5.04 70.06 74.08 13.9
MST 40k | 0.40 3.92 6.3 9.8
SP 40k | 0.26 1.88 2.54 7.2
MSP 40k | 4.71 39.57 44.36 8.4
Matmult 576 | 2.42 31.21 27.53 12.9

Table 4: For all applications except Matmult, the measured total sequential work of the

16-processor SGI program was less than that of the 1-processor SGI program.
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SGI  SGI | SGI
app size | time pred | W H S
() () |
Ocean 514 | 2.23 2.48 | 2.38 69946 312
N-body 64k | 5.04 4.97 | 4.95 24661 6
MST 40k | 0.40 0.34 | 0.32 9562 62
SP 40k | 0.26 0.28 | 0.26 2820 101
MSP 40k | 4.71 3.64 | 3.58 39874 138
Matmult 576 | 2.42 2.09 | 1.97 124416 7

Table 5: Algorithmic and model summaries for large problem sizes on 16-processor SGI
system.

Table 3 shows speedup results for large input sizes, for each application and system. To
obtain meaningful values for speedup, we limit the problem sizes so no swapping to disk is
necessary. The speedup results are usually stated as the ratio of single-processor time and
parallel time. In two cases, we were unable to run the relevant problem size on a single
processor; here we give estimates of the speedup.

In analyzing the performance of our algorithms we noticed that the total sequential work
(i.e., local computation) performed by the 16-processor programs on the SGI was typically
less than the total work performed by the single-processor programs. For this reason, we
also include the relative speed-ups with respect to the total sequential work on 16 processors
in Table 4.

In Table 5, we provide some data about the abstract BSP performance of our applica-
tions. We also provide the algorithmic parameters, including the work depth (as measured
on the SGI), the sum over all supersteps of the maximum number of packets sent or received
by any processor, and the number of supersteps. We also include the actual running times
and predicted running times using the BSP model, where the values for L and ¢ are taken
from Table 2.

The work depth W and the total work of the parallel programs were computed by
simulating the parallel computation on a single processor using an IPC shared-memory
implementation of our library. Initially, we had considered using a single constant factor
to translate the measured work depths of the SGI to estimated work depths for the Cenju.
A different constant factor would be used to estimate the work depth of the PC-LAN.
Unfortunately, this approach proved to be insufficient the estimated work depths were often
far from their actual values. In short, we were unable to use a constant factor to parameterize
the relative speed of local computation on a platform. To provide better estimates for work
depths, therefore, we used a different constant factor for each (application, input size) pair.
For example, if Ocean 130 on one processor took time A on the SGI, time B on the Cenju,
and time C' on the PC-LAN;, the factor B/A was used to translate SGI work depths to Cenju
work depths and the factor C'/A was used to translate SGI work depths to PC-LAN work
depths.

In some of our applications, our approach introduced systematic errors that produced

19



high predicted running times. That is, the work depth is in some cases more than the actual
parallel execution time. We point out the applications where we believe these errors to occur
in the discussion below.

In the following, we give a brief discussion of the applications. For each application, we
describe its implementation, and discuss the resulting performance in terms of highlights,
lowlights, algorithmic performance in the BSP cost model, and possible implications. We
also discuss some additional experiments and analyses whose data was not included in the
main part of this paper.

7.1 Ocean Simulation

We converted an ocean eddy simulation program from the Stanford Parallel Library for
Shared Memory Applications (SPLASH) [56] to our BSP system. The program computes
ocean eddy currents using a multigrid technique on an underlying grid; see [54] for details.
The conversion to BSP was fairly straightforward, due to the fact that the SPLASH code
for this application was already in a BSP style; the grid is partitioned among processors,
the processors compute on their own portions of the grid, and the processors communicate
exclusively at global synchronization points.

We remark that initial versions of the SPLASH codes were not in a BSP style. They
were in a style more consistent with a shared memory approach for parallel computing; the
entire grid was allocated in one data structure, and all processors computed and modified
the common data structure. This method was found to be ineffective. The fact that the
effective version is in a BSP style suggests that the BSP model is more appropriate for this
application.

7.1.1 Discussion

Table 6 contains our results for the Ocean application. Not shown in the table is the fact the
performance of the BSP Ocean code on the SGI matches that of the direct shared-memory
SPLASH implementation for problem size 258. This may be seen as somewhat surprising
given that we are using message passing on a shared-memory architecture. We believe this
speaks well of our library implementation in particular and of the prospect of efficient BSP
library implementations in general.

On the NEC Cenju, the Ocean code performs relatively poorly with 16 processors, except
for the largest problem size, where it performs much better (perhaps nearly ideal; we only
give a plausible lower bound in the table, as the problem was too large for a single processor).
We suspect that this is due to the fairly large latency of the BSP implementation on the NEC
Cenju, given that the BSP algorithmic data in Table 6 shows that the number of supersteps
is quite large.

A surprising aspect of the Ocean program is that the number of supersteps actually
decreases with increasing problem size. Thus, as the problem size increases, the latency
overheads will become less significant at an even faster rate than one would normally expect
in parallel computing. It can be hoped that the high-latency systems quickly “catch up” as
the problem size grows. Our data shows that this occurs for both high-latency systems (8
processor PC-LAN and 16 processor NEC Cenju) at a problem size of 514.
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SGI Cenju PC-LAN SGI SGI
app size p pred time  spdp | pred time spdp pred time spdp w H S TWk
() (s) ) () (s) (s) (s) (s)

Ocean 66 1 0.55 0.51 1.0 0.82 0.8 1.0 0.52 0.46 1.0 0.54 114 468 0.54
Ocean 66 2 0.39 0.29 1.8 0.67 0.58 1.4 0.58 0.6 0.8 0.38 12192 | 468 0.73
Ocean 66 4 0.26 0.18 2.8 0.57 0.54 1.5 0.96 0.94 0.5 0.23 12530 | 468 0.86
Ocean 66 8 0.2 0.14 3.6 0.95 0.91 0.9 1.98 3.37 0.1 0.16 15400 | 468 1.11
Ocean 66 16 0.19 0.13 3.9 1.58 1.54 0.5 — — — 0.13 13360 | 468 1.78
Ocean 130 1 2.13 2.07 1.0 3.02 2.88 1.0 1.86 1.68 1.0 2.12 91 379 2.12
Ocean 130 2 1.24 1.05 2.0 1.84 1.63 1.8 1.25 1.22 1.4 1.21 20762 | 379 2.36
Ocean 130 4 0.69 0.54 3.8 1.15 1.01 2.9 1.22 1.19 1.4 0.66 21034 379 2.46
Ocean 130 8 0.42 0.32 6.5 1.14 1.12 2.6 1.92 2.96 0.6 0.37 25700 | 379 2.68
Ocean 130 16 0.3 0.22 9.4 1.5 1.44 2.0 — — — 0.24 21316 379 3.28
Ocean 258 1 9.12 8.95 1.0 12.81 12.72 1.0 7.8 7.07 1.0 9.12 81 339 9.12
Ocean 258 2 4.55 4.32 2.1 6.49 5.99 2.1 4.29 3.98 1.8 4.51 38170 | 339 8.95
Ocean 258 4 2.31 212 4.2 3.42 3.21 4.0 2.6 2.56 2.8 2.27 38412 339 8.77
Ocean 258 8 1.26 1.09 8.2 2.29 2.18 5.8 2.65 3.2 2.2 1.2 46818 | 339 8.88
Ocean 258 16 0.76 0.6 14.9 2.07 1.93 6.6 — — — 0.68 37994 | 339 9.74
Ocean 514 1 38.43 37.87 1.0 53.85 — — 46.51 46.77 1.0 38.43 72 312 38.43
Ocean 514 2 18.76  18.28 2.1 26.41  34.08 24.53 24.64 1.9 18.7 71688 | 312 37.24
Ocean 514 4 9.14 8.71 4.3 13.01 13.64 — 8.47 7.92 5.9 9.07 71912 | 312 35.62
Ocean 514 8 4.65 4.29 8.8 7.04 6.51 — 5.82 6.46 7.2 4.55 87226 | 312 34.83
Ocean 514 16 2.48 2.23 17.0 4.48 4.0 2.38 69946 | 312 35.43

Table 6: Data for Ocean application.

We note that our estimates for the total work of the Ocean program are systematically
too high. In particular, the estimates obtained through the IPC single-processor simulation
are actually higher than the actual running time of the code. Thus, our predicted times
for the Ocean program are too high. We also ran additional experiments on the PC-LAN
for this application that suggested that the total work of the parallel program goes down
dramatically for the PC-LAN, while it does not for the SGI system. Thus, any observed
speedup for the PC-LAN may have as much to do with this effect as with parallelism.

7.2 N-Body Simulation Using Barnes-Hut

The N-body problem is the problem of simulating the movement of a set of N bodies
under the influence of a gravitational, electrostatic, or other type of force. The problem
has numerous applications in astrophysics, molecular dynamics, fluid dynamics, and even
computer graphics.

The N-body code in this study is based on the Barnes-Hut algorithm [4], which uses
an irregular oct-tree structure, called BH tree, to hierarchically group bodies into clusters
according to their distribution in three-dimensional space. The basic structure of our im-
plementation is similar to those of Warren and Salmon [60] and Liu and Bhatt [44]. In
particular, we use the ORB partitioning scheme to partition the bodies among the proces-
sors. Instead of repartitioning the bodies after each iteration as in [60], we only do so if the
load imbalance reaches a certain threshold, as suggested in [44].

The positions of the bodies are updated in discrete time steps. In each step, the BH tree
is first constructed locally inside each processor. Then appropriate subtrees, called “locally
essential trees,” are exchanged between every pair of processors, such that afterwards every
processor has a local BH tree that contains all the data needed to compute the forces on its
bodies, and whose structure is consistent with that of the global BH tree constructed in the
sequential algorithm. More details about the implementation can be found in [11], which
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SGI Cenju PC-LAN SGI
app size p pred time spdp pred time spdp pred time spdp w H S TWk
() (s) () (5) (s) (s) (s)

N-body 1k 1 0.46 0.46 1.0 0.35 0.32 1.0 0.31 0.31 1.0 0.46 0 4
N-body 1k 2 0.24 0.24 1.9 0.18 0.18 1.8 0.17 0.17 1.8 0.24 824 6
N-body 1k 4 0.13 0.13 3.5 0.1 0.1 3.2 0.1 0.1 3.1 0.13 1798 6
N-body 1k 8 0.08 0.08 5.8 0.07 0.07 4.6 0.09 0.08 3.9 0.08 2360 6
N-body 1k 16 0.05 0.05 9.2 0.06 0.07 4.6 — — — 0.05 2530 6
N-body 4k 1 2.9 2.89 1.0 2.17 2.1 1.0 1.93 1.91 1.0 2.9 0 4
N-body 4k 2 1.45 1.43 2.0 1.09 1.02 2.1 0.98 0.97 2.0 1.45 2067 6
N-body 4k 4 0.75 0.75 3.9 0.57 0.54 3.9 0.53 0.54 3.5 0.75 4353 6
N-body 4k 8 0.41 0.4 7.2 0.32 0.3 7.0 0.34 0.32 6.0 0.4 5506 6
N-body 4k 16 0.3 0.25 11.6 0.26 0.22 9.5 — — — 0.29 6249 6
N-body 16k 1 15.38 15.42 1.0 11.54 11.64 1.0 10.25 9.86 1.0 15.38 0 4
N-body 16k 2 7.64 7.65 2.0 5.74 5.56 2.1 5.11 4.89 2.0 7.64 5700 6
N-body 16k 4 3.86 3.86 4.0 2.91 2.89 4.0 2.63 2.59 3.8 3.85 10692 | 6
N-body 16k 8 1.96 1.96 7.9 1.5 1.44 8.1 1.43 1.38 7.1 1.95 12235 | 6
N-body 16k 16 1.13 1.12 13.8 0.9 0.86 13.5 — — — 1.12 12100 | 6
N-body 64k 1 74.08 74.59 1.0 55.56  57.96 1.0 49.33 46.01 1.0 74.08 0 4 74.08
N-body 64k 2 36.37 36.42 2.0 27.3 27.52 2.1 24.26 22.92 2.0 36.35 15046 | 6 72.52
N-body 64k 4 18.54 18.45 4.0 13.95 13.5 4.3 12.46 11.78 3.9 18.52 25443 6 71.25
N-body 64k 8 9.27 9.23 8.1 7.01 6.75 8.6 6.41 6.06 7.6 9.25 26003 | 6 70.58
N-body 64k 16 4.97 5.04 14.8 3.82 3.72 15.6 4.95 24661 | 6 70.06
N-body 256k 1 344 345.59 1.0 258 — — 229 212 1.0 344.43 0 4 344.43
N-body 256k 2 168 167.92 2.1 126 — — 112 111 1.9 168.07 | 37493 | 6 333.3
N-body 256k 4 83 83.71 4.1 62 62.92 56 57 3.7 83.0 63321 | 6 322.04
N-body 256k 8 42 41.86 8.3 31 31.66 — 28 26.4 8.0 41.7 59251 | 6 318.65
N-body 256k 16 22 22.16 15.6 17 16.37 22.1 53422 | 6 316.38

Table 7: Data for N-body application.

also describes a parallel implementation of adaptive multipole methods in Green BSP based
on a similar replication schemes.

Our implementation of the Barnes-Hut algorithm was strongly guided by the BSP model.
In particular, our choice of the data structures and replication scheme was directly influenced
by the emphasis the BSP model places on the efficient routing of large h-relations. Another
helpful feature was the separation of latency and bandwidth in the BSP cost model. After
fixing the basic replication scheme, and thus the number of supersteps, we were able to
focus on minimizing the total amount of information transmitted during replication, without
having to consider issues such as packet size or send overhead?.

7.2.1 Discussion

Results for the N-body application are in Table 7. As input for our experiments we used
the Plummer model generated by the SPLASH code [56]. The timing and speedup results
in Tables 3 and 7 show that for large enough input sizes, the N-body code achieves nearly
perfect parallel speedup on all three machines. Our implementation needs slightly larger
input sizes than the SPLASH code to achieve the same speedup. However, even the largest
input size in Table 7 is not overly large, given that simulations are currently performed with
hundreds of thousands and even millions of bodies [60].

The running time of the single-processor version of our implementation on the SGI is
slightly faster than that of the SPLASH code. In the code used in the above experiments,
we did not fully optimize the computation of the interactions, which take around 97% of the

3 Apart from the very small cost of the calls to the BSP library routines.
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total sequential running time for a problem size of 16k on the SGI. Of course, doing this
might increase the relative weight of the parallel overhead, and thus slightly decrease the
resulting speedup.

Our N-body code performs only six supersteps per iteration, and its bandwidth require-
ments are fairly modest as we were careful to minimize the amount of data sent during the
transmission of the “locally essential trees.” This makes the program efficient even for fairly
small problem sizes, while for larger input sizes the program achieves high performance even
on platforms with very high latency. In fact, a slightly modified version of our code was re-
cently shown to achieve high performance on a meta-computer consisting of several clusters
of PCs located in different cities and connected by a wide-area network [51]. The application
is irregular and dynamic, due to the uneven and changing positions of the bodies. However,
the load distribution can be predicted fairly accurately from that of the previous iteration,
as the system evolves only slowly.

7.3 Minimum Spanning Tree

The minimum spanning tree of a weighted graph G is the tree of minimum weight that
contains all the nodes of G. In our parallel implementation, we assume that the input
graph is initially partitioned among the processors. Each processor contains a data structure
representing the portion of the graph for which it is responsible, and also a copy of each node
in the graph that is connected to a node in its portion. The nodes for which a processor is
responsible are called home nodes and the other nodes are called border nodes.

The algorithm is conservative for the BSP model in that the number of messages com-
municated by any processor is at most the number of its border nodes. The program starts
out with a completely local phase that computes the local components of the minimum
spanning tree. The program then enters a parallel phase that uses a simplification of a
conservative DRAM algorithm developed by Leiserson and Maggs [42]. Once the number
of components becomes small, the program switches to a mixed parallel/sequential phase
that first uses all the processors to find subforests of the remaining components using edges
that are guaranteed to be in the minimum spanning tree, and then uses a single processor
to assemble the forests into components. See [29] for more details.

The input graphs are generated as follows. Nodes are assigned uniformly at random to
points on the unit square. Now construct a graph G(r) on the nodes by adding an edge
between all nodes within distance r. The graph G is G(J) where 6 is the minimum value
such that G(0) is a single connected component. The weight assigned to edge (u,v) is the
distance between the points corresponding to u and v.

For this class of input graphs, the running time of the single-processor version of our
parallel MST code is within 5% of a sequential implementation of Kruskal’s algorithm on
10k-node graphs.

We reiterate that this algorithm was designed with the the BSP model very much in mind;
First the algorithm is designed to fully utilize available sequential work which corresponds to
bulking the computation. Second, the conservative methodology used in the parallel portion
of the algorithm is demanded by the BSP design goal of having small and evenly balanced

4This concept was originally defined for the DRAM model [42].
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SGI Cenju PC-LAN SGI SGI
app size P pred time spdp | pred time spdp | pred time spdp w H S TWk
() (s) () (s) (s) (s) (s) (s)
MST 2.5k 1 0.1 0.1 1.0 0.1 0.1 1.0 0.1 0.08 1.0 0.1 3 12 0.1
MST 2.5k 2 0.08 0.07 1.4 0.09 0.09 1.1 0.1 0.08 1.0 0.08 666 30 0.15
MST 2.5k 4 0.06  0.05 2.0 0.07 0.09 1.1 0.12 0.09 0.9 0.05 1276 36 0.18
MST 2.5k 8 0.05  0.05 2.0 0.12 0.14 0.7 0.23 0.22 0.4 0.04 2224 46 0.26
MST 2.5k 16 0.07 0.18 0.6 0.24 0.25 0.4 — — — 0.06 3014 60 0.41
MST 10k 1 0.8 0.81 1.0 0.8 1.03 1.0 0.6 0.61 1.0 0.8 3 12 0.8
MST 10k 2 0.44 0.4 2.0 0.45 0.53 1.9 0.35 0.34 1.8 0.44 1377 30 0.85
MST 10k 4 0.23 0.2 4.0 0.25 0.27 3.8 0.24 0.22 2.8 0.22 3288 36 0.79
MST 10k 8 0.15 0.15 5.4 0.22 0.22 4.7 0.31 0.28 2.2 0.14 5302 42 0.92
MST 10k 16 0.13  0.19 4.3 0.3 0.3 3.4 — — — 0.11 5866 56 1.17
MST 40k 1 6.3 6.34 1.0 6.3 5.63 1.0 2.71 2.71 1.0 6.3 3 12 6.3
MST 40k 2 3.86  3.87 1.6 3.88 3.13 1.8 1.69 1.6 1.7 3.86 3163 36 7.46
MST 40k 4 1.2 1.1 5.8 1.22 1.38 4.1 0.61 0.92 2.9 1.19 6287 42 4.24
MST 40k 8 0.6 0.56 11.3 0.69 0.83 6.8 0.53 0.65 4.2 0.59 | 10335 | 52 3.91
MST 40k 16 0.34 0.4 15.8 0.53 0.56 10.1 — — — 0.32 9562 62 3.92

Table 8: Data for MST application.

communication patterns. Both aspects are crucial to good performance.

7.3.1 Discussion

Results for the MST experiment are shown in Table 8. This application is a fast computation
(less than a second for the parallel code on the largest problem size). Thus, even a modest
number of communication steps can figure significantly into the running time of the algorithm
on high-latency systems. As a result of this, we once again obtain significantly better results
for the low-latency SGI than the high-latency systems. Still we achieved a factor of four
on the very-high latency 8-processor PC-LAN, and a factor of ten on the high-latency 16-
processor Cenju.

Looking at the algorithmic data, we observe that the number of supersteps required for
this computation grows quite slowly with the problem size. Furthermore, the total volume of
communication is quite small relative to the computation costs for even the smallest problem
size. That is, even for our worst machine the ratio between the total bandwidth cost and
running time for the smallest problem size is less than a third, while for the largest problem
sizes the ratio is less than an eighth. This suggests that we could perform MST computations
on more highly connected graphs without much degradation in performance.

Finally, as discussed earlier, the good speedup results for the minimum spanning tree
application on large input sizes shown in Table 3 should be qualified, since the total work for
sixteen processors (3.9 seconds) is significantly less than the total work for a single processor
(6.3 seconds). For the SGI, the 9.8 speedup shown in Table 4 is perhaps more reasonable
than the 15.8 speedup shown in Table 3.

Thus, the best we can claim is about 70% of ideal speedup (despite the speedups reported
in the table for the SGI). We argue that this is still quite good since our initial graph
partitioning is only load-balanced to within about 10%, and the nature of the computation
is quite dynamic.

24



7.4 Shortest Paths

A single source shortest paths computation on a weighted graph labels each node u with a
distance label that corresponds to the length of the shortest path from u to the source. In
our implementation, we assume that the input graph is initially partitioned in the same way
as in the minimum spanning tree application. The class of graphs in our experiments is also
the same.

We first implemented a naive parallel version of Dijkstra’s algorithm, where each pro-
cessor contains a priority queue of nodes whose distance labels have recently changed. Each
processor proceeds by removing nodes from the priority queue and updating the neighbors
as in Dijkstra’s algorithm, until the priority queue is empty. Then each processor sends, for
each home node whose distance label has changed, a message to any processor that contains
that node as a border node, and ends its superstep. This process repeats until no node is
entered into the priority queue during a superstep.

On noticing that this approach worked poorly, we redesigned the algorithm. We allowed
a processor to communicate and end its superstep whenever it had worked on its local piece
of the graph for some period of time called the work factor, rather than having it continue
until it had absolutely no work left. This may lead to both better load balancing and quicker
convergence. In any case, it leads to better performance.

The appropriate way to use this algorithm is to adjust the work factor according to the
architecture (i.e., the work factor should grow with L). In our data, we chose one work factor
to optimize performance across our platforms. That is, our numbers are for the exact same
program and input on all of the architectures.

The BSP model was used heavily in both the initial design and the eventual algorithm.
The key issues are the tradeoffs between communication frequency and load balancing. That
is, an infinite work factor essentially minimizes communication frequency at some cost in
load balance and perhaps also in the total work performed by the algorithm due to the
lack of global information. A smaller work factor increases the communication frequency
while improving the load balance and the total computation cost. The bulk computa-
tion/communication style of the BSP model is perfect for reasoning at this level.

7.4.1 Discussion

Table 9 contains the data from the SP experiments. For this application, the performance
was limited by load-balancing issues for the low-latency systems and by synchronization
costs for the high-latency systems.

For the single source shortest path problem, no efficient parallel algorithms are currently
known; this was the reason for choosing a naive parallelization of the sequential algorithm.
While our best speedup of 10 for a two-second long computation is not an embarrassment,
one can question the scalability of this approach for shortest path computations in general.
Also, since the sequential work again decreases with increasing numbers of processors, the
reported speedups may be considered generous.

Still, we felt that this was an interesting first step towards the application of performing
several shortest path computations on the same graph. Indeed, this algorithm does serve as
the fine-grained inner loop of our next application.
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SGI Cenju PC-LAN SGI SGI

app  size p pred time spdp | pred time spdp | pred time spdp w H S TWk
() (s) () (s) (s) (s) (s) (s)

SP 2.5k 1 0.06  0.07 1.0 0.06 0.07 1.0 0.04 0.05 1.0 0.06 4 8 0.06
SP 2.5k 2 0.05  0.04 1.8 0.07 0.05 1.4 0.06 0.06 0.8 0.05 244 50 0.09
SP 25k 4 0.04  0.03 2.3 0.07 0.05 1.4 0.12 0.12 0.4 0.04 399 59 0.09
SP 2.5k 8 0.04  0.03 2.3 0.16 0.15 0.5 0.34 0.63 0.1 0.03 883 83 0.13
SP 25k 16 0.05 0.1 0.7 0.33 0.31 0.2 — — — 0.04 | 1382 | 101 0.19
SP 10k 1 0.52  0.53 1.0 0.52 0.56 1.0 0.35 0.35 1.0 0.52 4 8 0.52
SP 10k 2 0.31  0.26 2.0 0.32 0.29 1.9 0.23 0.22 1.6 0.31 457 50 0.52
SP 10k 4 0.14 0.12 4.4 0.16 0.14 4.0 0.17 0.16 2.2 0.14 806 47 0.46
SP 10k 8 0.12 0.1 5.3 0.23 0.21 2.7 0.36 0.52 0.7 0.12 | 1407 74 0.51
SP 10k 16 0.09 0.12 4.4 0.32 0.3 1.9 — — — 0.08 | 1954 83 0.64
SP 40k 1 2.54 2.52 1.0 2.54 2.56 1.0 1.69 1.51 1.0 2.54 4 8 2.54
SP 40k 2 1.53  1.46 1.7 1.54 1.49 1.7 1.05 0.91 1.7 1.53 | 1308 56 2.53
SP 40k 4 0.82  0.75 3.4 0.85 0.81 3.2 0.66 0.7 2.2 0.81 | 1774 68 2.25
SP 40k 8 0.49 041 6.1 0.61 0.54 4.7 0.66 0.59 2.6 0.48 | 2198 86 2.01
SP 40k 16 0.28  0.26 9.7 0.56 0.48 5.3 — — — 0.26 | 2820 | 101 1.88

Table 9: Data for Shortest Path application.

7.5 Multiple Shortest Paths

In many situations, it is useful to perform a number of shortest path computations simul-
taneously. Examples are the all-pairs shortest paths problem (or a subset of all-pairs), the
global routing phase in VLSI layout, and some graph-partitioning heuristics. Thus, we mod-
ified the code in the previous application to allow the computation of many shortest path
trees simultaneously.

Here, one can use the same underlying (read-only) graph and keep data structures for
each computation for the read-write data required in Dijkstra’s algorithm. We note that
the graph itself required Q(|E| + |V]) storage, while the read-write data is O(|V]), or more
specifically, three integers and one double per node.

The bulk computation/communication style of the BSP approach leads to this imple-
mentation. For example, with our approach, each shortest path computation runs once on
each process in each superstep. This can be contrasted to an asynchronous message passing
algorithm that could switch between shortest path computations on the granularity of single
message arrivals. While some advantage may be gained in the asynchronous approach, the
complexity and overhead makes it seem unlikely.

7.5.1 Discussion

Results for MSP are in Table 10. In our experiments, we performed 25 shortest path compu-
tations simultaneously. We used the same work factor as in the shortest path experiments.
The total sequential work decreased only slightly with increasing numbers of processors.
Thus, our speedup numbers are mostly due to parallelism rather than computational advan-
tages.

Our results for this experiment are particularly impressive for the PC-LAN considering
the high latency of this system. We obtain a speedup of 7.1 on our 8-processor setup.
Moreover, its raw performance is essentially the same as the 16 processor SGI system, while
its cost is a fraction of the cost of the SGI system. This bodes well for the prospect of
distributed data applications on networks of workstations.
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SGI Cenju PC-LAN SGI SGI

app size P pred time spdp pred time spdp pred time spdp w H S TWk
() (5) () (5) (s) (s) (s) (s)

MSP 2.5k 1 1.18 1.2 1.0 1.18 1.25 1.0 0.79 0.88 1.0 1.18 28 9 1.18
MSP 2.5k 2 0.81 0.74 1.6 0.83 0.74 1.7 0.58 0.62 1.4 0.8 4833 51 1.51
MSP 2.5k 4 0.52 0.46 2.6 0.57 0.48 2.6 0.49 0.47 1.9 0.52 7569 72 1.66
MSP 2.5k 8 0.43 0.45 2.7 0.57 0.48 2.6 0.68 0.67 1.3 0.42 9856 87 2.25
MSP 2.5k 16 0.33 0.47 2.6 0.64 0.58 2.2 — — — 0.31 10030 | 102 2.84
MSP 10k 1 8.93 8.9 1.0 8.93 9.95 1.0 5.94 7.02 1.0 8.93 28 9 8.93
MSP 10k 2 4.89 4.85 1.8 4.92 4.99 2.0 3.31 3.22 2.2 4.88 10265 57 8.52
MSP 10k 4 2.7 2.63 3.4 2.77 2.54 3.9 2.02 1.93 3.6 2.68 23467 78 8.72
MSP 10k 8 1.73 1.72 5.2 1.91 1.69 5.9 1.76 1.7 4.1 1.69 28938 | 102 9.48
MSP 10k 16 1.14 1.36 6.5 1.54 1.27 7.8 — — — 1.1 26717 120 11.29
MSP 40k 1 44.36  44.34 1.0 44.36 — — 29.54 34.6 1.0 44.36 28 9 44.36
MSP 40k 2 24.21  24.43 1.8 24.27 16.25 17.9 1.9 24.18 | 34879 60 45.28
MSP 40k 4 12.41 12.2 3.6 12.49 13.14 — 8.53 10.3 3.4 12.37 | 35056 78 42.04
MSP 40k 8 6.83 7.05 6.3 7.04 6.89 5.24 4.88 7.1 6.79 38849 | 105 37.96
MSP 40k 16 3.64 4.71 9.4 4.12 3.68 — — — — 3.58 39874 | 138 39.57

Table 10: Data for Multiple Shortest Paths application.

7.6 Matrix Multiplication

This program multiplies two dense n x n matrices A and B using Cannon’s Algorithm (e.g.,
see [40]). The input matrices are assumed to be initially partitioned into blocks of size
n//p x n/\/p, such that processor i holds the block with index (z, 2 +y mod ,/p) of A, and
the block with index (x +y mod /p,y) of B, where x = [i/\/p| and y = i mod /p.

The algorithm then proceeds in ,/p iterations. In each iteration, each processor first
multiplies its two local blocks using a sequential blocked matrix multiplication algorithm,
and adds the result to the local part of the result matrix C'. It then sends the A block to the
next processor on its right, and the B block to the next processor below it (modulo /p).

Cannon’s Algorithm was chosen for its simplicity and its space and communication effi-
ciency. The latency contribution due to the ,/p supersteps is negligible in most situations.
In fact, the example of matrix multiplication shows that for reasons of space-efficiency it
may sometimes be desirable to increase the number of supersteps in order to decrease the
amount of main memory needed to buffer the packets at the sending and receiving ends. In
Cannon’s Algorithm, each processor sends and receives in each superstep an amount of data
proportional to the size of the input. For large input instances, it may become necessary
to split each such large superstep into several smaller ones in order to avoid using a large
amount of buffer space. (In the experiments reported here, the input instances are small
enough to not require this modification.)

7.6.1 Discussion

Table 11 contains the data for the matrix multiplication application, which is the most trivial
of our applications, and the most regular one in terms of the communication pattern. The
number of supersteps is small (proportional to \/1_9), and the communication cost is mainly
determined by the size of the h-relations. Of course, as the input size increases, this cost is
itself dominated by the local computation cost.

Note that this is the only application where the NEC Cenju achieves significantly better
speedup than the SGI. Comparing the results with the predicted times, we observe that our
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SGI Cenju PC-LAN SGI SGI
app size p pred time  spdp pred time spdp pred time spdp w H S TWk
) () ) (5) (s) (s) (s) (s)
Matmult 144 1 0.43 0.42 1.0 0.43 0.47 1.0 0.29 0.3 1.0 0.43 0 1 0.43
Matmult 144 4 0.15 0.15 2.8 0.16 0.16 2.9 0.15 0.18 1.7 0.14 10368 3 0.54
Matmult 144 9 0.09 0.12 3.5 0.11 0.09 5.2 0.08 9216 5 0.64
Matmult 144 16 0.06 0.11 3.8 0.1 0.07 6.7 0.05 7776 7 0.7
Matmult 288 1 3.4 3.37 1.0 3.4 3.71 1.0 2.26 2.32 1.0 3.4 0 1 3.4
Matmult 288 4 0.99 1.01 3.3 1.05 1.11 3.3 0.84 1.1 2.1 0.95 41472 3 3.79
Matmult 288 9 0.5 0.59 5.7 0.57 0.55 6.7 0.46 36864 5 4.13
Matmult 288 16 0.32 0.42 8.0 0.42 0.36 10.3 — — — 0.29 31104 7 4.49
Matmult 432 1 11.53 11.49 1.0 11.53 12.55 1.0 7.68 7.83 1.0 11.53 0 1 11.53
Matmult 432 4 3.17 3.18 3.6 3.3 3.49 3.6 2.51 3.34 2.3 3.09 93312 3 12.33
Matmult 432 9 1.54 1.65 7.0 1.69 1.7 7.4 — — — 1.46 82944 5 13.03
Matmult 432 16 0.93 1.14 10.1 1.13 1.04 12.1 0.86 69984 7 13.66
Matmult 576 1 27.53  27.51 1.0 27.53  29.94 1.0 18.33 18.71 1.0 27.53 0 1 27.53
Matmult 576 4 7.29 7.33 3.8 7.52 8.09 3.7 5.56 7.52 2.5 7.15 165888 | 3 28.52
Matmult 576 9 3.47 3.69 7.5 3.72 3.84 7.8 3.32 147456 | 5 29.78
Matmult 576 16 2.09 2.42 11.4 2.43 2.31 13.0 — — — 1.97 124416 7 31.21

Table 11: Data for matrix multiplication application.

predictions for the SGI are too optimistic. We suspect that this may be due to the fact that
the SGI is not a true BSP machine, as the only private memory in the SGI are the caches.

8 Interpretation of Experimental Results

In this section, we attempt to develop a context in which to understand the experimental
results. In particular, we address the issues of performance relative to other programming
approaches, and the accuracy of the BSP cost model.

8.1 Performance Relative to Other Approaches

We first consider the performance of the BSP code relative to other programming mod-
els. Would code based on other approaches—such as machine-specific code, MPI, LogP,
etc. have a substantial performance advantage? An examination of the experimental data
indicates that for this set of BSP applications, larger problem sizes achieve greater efficiency.
Indeed, the performance trends suggest that if sufficient main memory were available, an
arbitrary level of efficiency could be achieved. Thus, the speed advantage obtained from any
other approach, even a machine-specific one, will be negligible for large problem sizes.

The reason these BSP programs achieve high efficiency is simple: each application is
designed such that the computation is balanced among the processors, and such that the
communication to computation ratio decreases as problem size increases. It is important to
note that not all algorithms are so well behaved. For example, if one assumes a cost model
for which communication is inexpensive, as in the PRAM model, it is quite reasonable to
design algorithms for which the communication to computation ratio is either constant or
growing as problem size increases.

Though detailed head-to-head comparisons with alternative parallel programming ap-
proaches are beyond the scope of this paper, such comparisons would certainly be of interest.
We encourage other researchers to compare their experimental results to those shown here.
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8.2 Accuracy of the BSP Cost Model

We next consider the predictive accuracy of the BSP cost model. To keep the discussion in
context, there are several points that should be considered. First, it can be argued that the
purpose of the model is primarily prescriptive, as opposed to descriptive. (That is, from the
point of view of the system designer, the model is primarily intended to guide the design.
The extent to which the model provides accurate descriptions of current parallel systems is
less significant.) Second, it should be noted that prediction accuracy is not just a property of
the model itself, but also of its implementation. Third, there seems to be limited value in a
parallel model that is very accurate if we have no way of predicting sequential performance.
With these caveats in mind, we begin our discussion of the suitability of the BSP cost model
for current systems.

The BSP model assigns a communication cost at the level of a batch of messages. In
contrast, many other models (such as LogP) assign a cost at the single-message level. By
modeling a finer-grained communication, such models may appear to provide a more accurate
description of the underlying system. However, experimental results indicate that this is not
the case [31]. Asynchronous single-message models assume overly precise and predictable
timing behavior for low-level operations, and are particularly ineffective when communication
cannot be predicted at run-time.

Our experimental results suggest that the BSP model provides reasonable accuracy,
though it should be noted that many of these applications are large enough that they become
computation-bound, and our use of BSP models only communication cost. It also appears
that the model is sufficiently accurate to reveal overall performance trends, such as indicating
when the use of additional processors will have a negative effect on performance. Whether
the prediction accuracy demonstrated in these experiments is sufficient depends on the needs
of the user and the application. In general, greater predictability could be obtained by
having a model with more parameters, at the cost of making the model more complex and
the algorithmic tradeoffs less obvious. The related work described in Section 4.2 addresses
several proposed extensions to the BSP model.

An examination of the experimental results indicates there was one case where the cost
model turned out to be too simplistic. The system using PCs and the Ethernet switch
exhibited bad behavior on some of our programs when 8 processors were employed. It
appears that in this configuration there were certain programs whose times were dominated
by latency costs that triggered bad behavior. This happened on small instances of SP
and Ocean. It did not happen with MST, the other program whose small-instance time
was dominated by latency on the PC cluster, so perhaps that program did not trigger the
switch’s bad behavior. In this case, one could argue that the BSP cost model is providing
an overly abstract description of a complex real-world system. However, of the systems that
we tested, only the case of the 8-processor Ethernet switch resulted in a severe discrepancy
between predicted and actual run times.
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9 Conclusions

We have described the implementation and performance of several parallel applications that
use a simple message-passing library based on the BSP model. Our results may be viewed as
a partial validation of the practicality of the BSP model, since both efficiency and portability
were demonstrated for a range of applications on diverse platforms.

Concerning the accuracy of the BSP cost model, we believe that the cost model should
not be expected to accurately predict the precise running times on various input sizes and
machines. Such a “curve fitting” approach seems more realistic on fairly simple subroutines
(i.e., broadcast or sorting) than on more complex application programs. Also, note that
the degree to which computation and communication can be overlapped depends on the
particular architecture and application. (While we have defined the cost function as the sum
of communication and computation costs, it is also sometimes defined as the maximum of
the two.)

However, we found the cost model to be very reliable in modeling the overall behavior of
an application, including the prediction of “breakpoints” at which the performance changes
fundamentally due to the effects of latency, bandwidth, or local computation. We believe
that this should make the BSP model a good evaluation tool for parallel architectures and
algorithms. In general, we feel that the cost model was accurate enough to guide us towards
an efficient solution.

10 Future Research

Additional work is needed in order to arrive at a more complete assessment of the strengths
and limitations of the BSP approach. In particular, all the experiments in this paper were
performed on parallel machines with a fairly small number of processors. Implementations
on machines with larger numbers of processors exist [32, 52], but further work is needed,
particularly on more recent massively parallel machines.

Investigating the range of applications that can be efficiently handled in a BSP style is
another important issue. We are currently working on the implementation of some additional
application programs, including several variants of the adaptive Fast Multipole Method [15].

Additional work is also needed to develop optimized and scalable BSP library implemen-
tations. The BSP models postulates the efficient resolution of arbitrary balanced communi-
cation patterns, which presents a challenging problem to every library designer. This type
of communication makes it possible to consider a whole range of algorithmic ideas in order
to avoid contention in the routing phase. (In contrast, many asynchronous models require
the application programmer to schedule the communication, as there is very little a library
designer can do to avoid contention.) Particularly in the case of large message-startup costs,
this situation leads to a number of interesting algorithmic problems.

Finally, to promote utilization and further study of the model, standardization seems
necessary. We believe that the BSP Standard Library proposed in [36] is an important first
step in this direction.
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