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Abstract

We consider a special subgraph of a weighted directed graph: one comprising only the &
heaviest edges incoming to each vertex. We show that the maximum weight branching in this
subgraph closely approximates the maximum weight branching in the original graph. Specifi-

cally, it is within a factor of kLH Our interest in finding branchings in this subgraph is motivated

by a data compression application in which calculating edge weights is expensive but estimating
which are the heaviest k incoming edges is easy. An additional benefit is that since algorithms
for finding branchings run in time linear in the number of edges our results imply faster algo-
rithms although we sacrifice optimality by a small factor. We also extend our results to the case
of edge-disjoint branching of maximum weight and to maximum weight spanning forests.

Keywords. Analysis of algorithms; Graph algorithms.

1 Introduction

Given a graph G = (V, E), (V, B) is a branching if B is a subset of E such that each vertex in (V, B)
has in-degree at most one and there are no cycles. Branchings are basic graph structures which
have found applications in various fields of computer science. Motivated by a data compression
problem [12] we prove the following general theorem about weighted branchings:

If w(Gy) is the weight of a maximum weight branching on a subgraph of G where
each node only retains its k£ heaviest incoming edges, and w(G) is the weight of a
maximum weight branching on the entire graph, then

w(Gk) 1
w@ =R

Thus, we can a compute a branching with a weight almost as large as the maximum possible
weight on a dense graph by only considering a few incoming edges for each vertex. Since algorithms
for computing maximum weight branchings [15, 3] depend at least linearly on the number of edges
in the graph, this implies faster algorithms for approximate maximum weight branching after
appropriate preprocessing of the dense graph. More importantly, in many scenarios that can be
modeled as graph problems, the main cost is in computing appropriate edge weights for the input
graph rather than in the actual graph computation; our result implies that for branching problems
it suffices to exactly compute only the weights of the heaviest edges in the reduction.
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1.1 A Simple Application of Maximum Weight Branching

Consider the following simple application in the context of data compression [12], which provided
the initial motivation for our work. We are interested in compressing a collection of files where
there is a significant degree of similarity (or redundancy) between many of the files. For example,
web pages from the same site frequently share certain elements in their page layout and menu
structure, and may also contain some similar and repeated content. This inter-file redundancy can
be exploited to achieve better overall compression of the collection.

The process of compressing one file (the target file) with respect to another file (the reference
file) is called delta compression or differential compression [7, 9, 17, 10]. But given a collection
of n files, in what order should we apply delta compression between pairs of files to minimize the
overall size? There is an exponential number of possible orderings of the pairwise compression
steps. Obviously, it is beneficial to compress each file with respect to another very similar file.
However, we have to avoid cycles, such as A being compressed with respect to B and B being
compressed with respect to A, since it would be impossible to uncompress the resulting data.

This scenario [12], as well as related problems in the compression of web graphs [1] and mul-
tispectral images [16], can be modeled as a maximum weight branching problem on a directed
graph. Finding an optimal set of delta compression steps is equivalent to finding a maximum
weight branching on a complete directed graph with one node v4 for each file A in the collection,
where edge (v4,vp) has a weight equal to the savings in bits obtained by delta compressing B with
respect to A instead of compressing B by itself [12].

One problem with this reduction is that the resulting graph has n? edges, slowing down the
maximum weight branching computation. However, in practice a much more significant challenge
is the computation of the edge weights: The only way to determine the precise weight of an edge
is to actually run the delta compressor on the two files involved. Of course, the final branching
usually contains mostly fairly heavy edges, and thus it would be highly desirable to compute for
each node only the weights of these most promising edges, instead of materializing the entire graph.
Fortunately, in our scenario efficient techniques are known for estimating the similarities among
pairs of files and for finding for each file the & most similar other files (or k-nearest neighbors)
under various definitions of file similarity [11, 2, 6, 8.

Thus, a promising approach would be to compute for each node only the weights of the incoming
edges from the k most similar files, and then compute the maximum weight branching on this
subgraph. But can we show that this results in a compression scheme that is almost as good as
using the complete graph? There are two issues here. First, the techniques for finding k-nearest
neighborsin [11, 2, 6, 8] assume certain formal similarity measures between files that do not precisely
model the benefit obtained by an actual delta compressor that uses a combination of various state-
of-the-art compression techniques to minimize size. However, this issue is unlikely to be completely
resolved, and in practice the known techniques seem to be able to identify promising references files
for each file. The second question is, assuming that we have correctly identified for each file the k
best references files, if we run a branching computation on this subgraph are we guaranteed to get
a compression scheme whose benefit approximates that of a scheme based on the complete graph?

This question lead us to the following very simple and natural conjecture about maximum
weight branchings: If w(Gy) is the weight of a maximum weight branching on a subgraph of G
where each node only retains its k& heaviest incoming edges, and w(G) the weight of a maximum
weight branching on the entire graph, we conjecture that u;(%f“) >1- k%rl

In this paper we settle the above conjecture in the affirmative. We also show that this result
can be extended in a natural way to ¢ edge disjoint branchings [4] of maximum total weight, and
to maximum weight spanning forests in undirected graphs.
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Figure 1: Tightness. Let the graph be G. All other edges in this graph have 0 weight. The weight
of the maximum weight branching in G is k+ 1 while the maximum weight branching in Gy, is k+e.

As e — 0 we get a kiﬂ factor.

2 Maximum Weight Branchings

We consider a directed graph G = (V, E) with an edge weight function w : E — IR". A branching
(V,B) is a subgraph of G with an edge set B C F such that (V| B) is acyclic and the in-degree
of any vertex of (V,B) is at most 1. Note that in general, a branching forms a forest of rooted
directed trees. The weight of a branching B is w(B) = ) g w(e). A mazimum weight branching
is a branching with weight at least that of any other branching.

We define the k-heavy subgraph of G, denoted G, as the subgraph that contains only the k
heaviest edges incoming to each vertex. If the in-degree of a vertex is less than k then we assume
edges of weight zero. Ties are broken arbitrarily.

We prove the following theorem relating the weights of the maximum weight branchings in G
and Gj. The theorem follows as a corollary of the more general Theorem 2.2 below, and thus we
defer the proof.

Theorem 2.1 Let G be a weighted directed graph and an integer 0 < k < n —1 . The weight of
the maximum weight branching in Gy, is at least 1 — k%rl times the weight of the mazrimum weight
branching in G.

2.1 Tightness of Approximation

We first prove that the above bound of 1 — k’LH is in fact tight. Figure 1 gives an example of a
simple graph that shows that the bound is the best possible in the worst case.

2.2 Maximum Weight c-Edge Disjoint Branchings

We define a c-EDB (a set of ¢ edge disjoint branchings) in G = (V, E) as a tuple (V, By, Ba, ..., B.)
such that for all 1 < i < ¢, (V,B;) is a branching in G and the edge sets By, ..., B, are disjoint.
The weight of a ¢-EDB is the sum of the weights of all the ¢ branchings. A maximum weight
c-EDB is a ¢-EDB on a weighted directed graph such that its weight is at least the weight of any
other ¢-EDB. Efficient algorithms are known for computing edge-disjoint branchings in graphs.
Edmonds inaugurated the area by giving conditions for existence of edge-disjoint branchings [4].
Tarjan [13, 14] gave efficient algorithms for computing edge-disjoint branchings which were improved
and used in the context of determining connectivity by Gabow [5].
We present a generalization of theorem 2.1. For ¢ = 1 we get the statement of theorem 2.1.



Theorem 2.2 Let G be a weighted directed graph, k be a natural number for which Gy is well
defined and ¢ be a natural number such that ¢ < k. The weight of the maximum weight c-EDB in
Gy, is at least 1 — k_#m times the weight of the maximum weight c-EDB in G.

Proof. We prove the theorem by constructing a ¢-EDB in G from a maximum weight ¢-EDB
in G such that its weight is at least a 1 — k_#m fraction of the weight of the maximum weight
c-EDB in G. The maximum weight ¢-EDB in G is a set of ¢ branchings: By, Bs, ..., B., such that
no two branchings share a common edge. The edges that these branchings are composed of, are
not necessarily amongst the k heaviest incoming edges at each node. We transform each of these
branchings into branchings that use only the k& heaviest incoming edges at each node. There is
some loss in weight in the course of this transformation.

We start with branching B;. There is no specific order required of the branchings, so B; could
be chosen arbitrarily. In addition the same transformation procedure is applied to each of the
branchings, therefore we restrict the discussion to By. Let Ej be the k-heavy edges in G. Consider
that there is an edge e = (u,v) in Bj such that, e ¢ Ej and every descendent edge in Bj is in Fj.
Let eq,e9,..., e, be the k-heavy edges incident on v. None of these k edges are part of By. For all
1<i<k,

e ¢; is in exactly any one of the branchings Bs, Bs, ..., B.; or

e ¢; results in a cycle in Bj.

Note that since there are ¢ — 1 other edge disjoint branchings there can be at most ¢ — 1 edges
of the k-heavy edges that may already be in use in other branchings. This leaves kK — ¢+ 1 edges
that cannot be part of any branching. We denote this set of k — c 4+ 1 edges by the set X. We
perform one of the following two transformations:

Transformation 1. If any edge z € X is incident on v from a non-descendent of v in By then
simply add z and remove e from B;. Next we continue the search for an edge in B; that is not in
E.

Transformation 2. If all the edges in X are incident on v from descendents of v then each edge
must result in a cycle in By. There are k —c+1 cycles possible. Each cycle has at least one distinct
vertex (the distinct vertices are the sources of the edges in X). This means that each cycle must
have at least two distinct edges. At least one of these must already be in the branching. Therefore,
there are at least k — ¢ + 1 distinct edges that are descendents of v in B;. We denote this set of
edges by the set Y. Let y be the least weight edge in Y. Let o € X be the edge that creates a
cycle with y in it. We perform one of the two following edits the choice of which is decided by the
weight of y:

2.1 if the weight of y is less than that of x then remove edges y and e from B; and add = to By;
else

2.2 remove e from Bj.

Next we continue the search for an edge in B; that is not in FEy.

It is clear that with these two primitive transformations we can convert a ¢c-EDB into a k-heavy
c-EDB as long as k£ > c. Next we show the accounting to prove that the loss in weight due to the
transformations is bounded. Transformation 1 does not require any accounting because the weight



of the branching increases after applying it. In the case of transformation 2, there is a net loss of at
most (w(Y)4w(e))/(k—c+2). To show this we present the argument in the two different possible
outcomes of transformation 2.

In subcase 2.1 of transformation 2 we remove edges e and y and insert edge x. Since x is heavier
than y and e, we have effectively removed the smallest edge either e or y from amongst k — ¢ + 2
edges (Y U{e}). The net loss is (w(Y) +w(e))/(k — ¢+ 2) and is charged to Y U {e}.

In subcase 2.2 of transformation 2 we only remove edge e. Since e is the smallest edge amongst
k —c+ 2 edges (Y U{e}) the net loss is (w(Y) + w(e))/(k — ¢+ 2) and is charged to Y U {e}.

The crucial factor in the accounting is that once transformation 2 is applied edge e is removed
and therefore the edges that have been charged can never be charged again. There is a possibility
that they may be involved in a type 1 transformation but never a type 2. Therefore, the weight of
the transformed structure is at least a 1 — k——i—i—2 multiplicative factor of the weight of the maximum
weight ¢-EDB in G. O

3 Maximum Weight Spanning Forests

A Forest of an undirected graph G = (V, E) is a subgraph H = (V,F) such that F* C E and
H is acyclic. The mazimum weight spanning forest of G is a forest H such that its weight is no
less than the weight of any forest of G. Note that Prim’s or Kruskal’s MST algorithm yields a
maximum weight spanning forest when run on G. A k-heavy subgraph of an undirected graph, G is
a subgraph Gy = (V, Ej) such that E; C E and for each (u,v) € Fy, (u,v) is one of the k heaviest
edges incident on u or one of the k heaviest edges incident on v. Ties are broken arbitrarily. Note
that |Ex| < k|V|. A ¢-EDF (a set of ¢ edge disjoint forests) is a set of ¢ forests on an undirected
graph such that no edge of the graph is in more than one forest. A maximum weight c-EDF is
a c-EDF on a weighted undirected graph such that its weight is at least the weight of any other
c-EDF in that graph.

Let G be an undirected graph, k be a natural number for which G}, is well defined and ¢ be a
natural number such that ¢ < k. The following corollaries are a consequence of theorem 2.2.

1

Corollary 3.1 The weight of the mazimum weight forest in Gy, is at least 1 — =5

of the maximum weight forest in G.

times the weight

Corollary 3.2 The weight of the maximum weight c-EDF in Gy is at least 1 — k_#m times the
weight of the maximum weight c-EDF in G.
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