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Abstract—Many content-based image search and instance
retrieval systems implement bag-of-visual-words strategies for
candidate selection. Visual processing of an image results in
hundreds of visual words that make up a document, and these
words are used to build an inverted index. Query processing
then consists of an initial candidate selection phase that queries
the inverted index, followed by more complex reranking of
the candidates using various image features. The initial phase
typically uses disjunctive top-k query processing algorithms
originally proposed for searching text collections.

Our objective in this paper is to optimize the performance of
disjunctive top-k computation for candidate selection in content-
based instance retrieval systems. While there has been extensive
previous work on optimizing this phase for textual search engines,
we are unaware of any published work that studies this problem
for instance retrieval, where both index and query data are quite
different from the distributions commonly found and exploited
in the textual case. Using data from a commercial large-scale
instance retrieval system, we address this challenge in three steps.
First, we analyze the quantitative properties of index structures
and queries in the system, and discuss how they differ from the
case of text retrieval. Second, we describe an optimized term-at-
a-time retrieval strategy that significantly outperforms baseline
term-at-a-time and document-at-a-time strategies, achieving up
to 66% speed-up over the most efficient baseline. Finally, we show
that due to the different properties of the data, several common
safe and unsafe early termination techniques from the literature
fail to provide any significant performance benefits.

Index Terms—inverted index; bag-of-visual-words; image re-
trieval; candidate selection; top-k search; cascade ranking

I. INTRODUCTION

The bag-of-words retrieval model represents text as a multi-
set—or a bag—of words. Documents and queries form sparse
vectors in the vocabulary space. An inverted index is a widely
used structure under such assumptions [1], [2], [3], [4]. Results
satisfying a search condition can be ranked based on a distance
score between a query and a document. Typically, due to
abundance of matching results, the user receives only a limited
number of top k documents. We refer to such approach as
top-k retrieval.

Modern search engines employ highly complex ranking
functions, such as those based on learning-to-rank models
[5], [6]. However, using them to rank matching documents is
infeasible due to time restrictions. A widely used solution is
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to build a cascade ranking architecture [7], [8], which breaks
down ranking into several cascades. The first cascade, also
known as the candidate selection phase, ranks all matching
documents using a very fast ranking function, and then selects
a limited number of highest scoring results as candidates.
The following cascades rerank smaller and smaller sets of
candidates using increasingly better, but also more expensive,
ranking functions. In this paper, we deal with the candidate
selection phase.

It has been shown that the bag-of-words model generalizes
beyond text search applications. In particular, Sivic and Zis-
serman showed how to extract visual words from video frames
and store them in an inverted index [9]. They used standard
text retrieval techniques to produce a set of candidates to be
reranked by more precise methods. Since then, similar bag-of-
visual-words (BoVW) approaches have been widely used for
first-phase candidate retrieval in image search engines [10],
[11], [12]. Nevertheless, previous work has focused on the
effectiveness rather than efficiency of this phase, leaving many
questions concerning performance of the BoVW model open.

State-of-the-art image detection methods employ convolu-
tional neural networks (CNN) to generate feature vectors used
to compare images in the database with incoming queries [13],
[14], [15], [16]. While this yields good results, calculating
distances between a query and a large number of images
is undesirable in a number of scenarios. It can be found
infeasible with respect to resource or latency requirements
[12]. Therefore, a bag-of-words method might be necessary
in the initial phase to limit the number of candidates that are
then reranked using more advanced features. Local BoVW
features can be retrieved from a CNN’s activations to achieve
this. Although CNNs have been shown to outperform SIFT
in many applications, many cases still merit using SIFT,
including retrieving: generic objects, gray-scale images, or
images having rich textures or intense color changes [17].

In this paper, we deal with the following augmented reality
scenario, which is currently deployed in a commercial setting:
We are given a set of carefully curated images representing
certain objects or categories of objects. A mobile app is
provided to the user who can continuously point their phone
camera at different objects and then receive information about
these objects in real time. This requires a system that, given a



picture from a camera, retrieves its best match. As the system
works in real time, it must have extremely low latencies. Thus,
pictures are submitted to an inverted index, which generates
candidates that are passed along to the next cascade, where
the top result is selected.

We experiment with a BoVW inverted index containing
images provided to us by Blippar1 (later referred to as the
BoVW index). These documents are a subset of images
deployed in the production environment. Our goal is finding
the most efficient first-phase query processing technique in the
scenario described above.

Our contributions are as follows:
1) We analyze the quantitative properties of the BoVW

index and associated queries, and compare them to those
of the Clueweb09-B [18] text collection, a standard
collection used for textual IR.

2) We compare the efficiency of the term-at-a-time and
document-at-a-time strategies in our image search set-
ting, and show the former to outperform the latter; we
further describe optimizations that significantly improve
the efficiency of the term-at-a-time approach.

3) We discuss the properties of both safe and unsafe early
termination techniques, and show that they perform
poorly on the BoVW index, or indices with similar
properties.

The remainder of the paper follows the following structure.
Section II provides background on inverted indices, retrieval
strategies, and content-based image retrieval. Section III de-
scribes our experimental setup. In Section IV, we analyze the
structure of the BoVW index and discuss differences between
text and image search. Section V compares document-at-a-
time and term-at-a-time strategies. In Section VI, we introduce
a set of term-at-a-time optimizations, which significantly im-
prove efficiency. In Section VII, we analyze the performance
of common early termination techniques on the BoVW index.
Finally, Section VIII provides a summary.

II. BACKGROUND AND RELATED WORK

This section outlines top-k retrieval methods and puts them
in the context of content-based instance retrieval (CBIR). We
refer to the survey by Zobel and Moffat [4] for a more ex-
haustive description of text retrieval structures and algorithms.

A. Inverted Index

An inverted index (or inverted file) indexes a collection
of documents, such as web pages, to enable fast document
retrieval. Every distinct term contributes a list of postings
(or pointers), each referring to a single document containing
the term. Along with a unique ID of the document, it may
contain (or point to) additional information, such as the term-
document frequency, a pre-computed impact score, or a list
of the occurrences within a document. Each posting list is
commonly sorted by increasing document IDs, for fast joining
of lists and effective compression. However, there are other
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ordering strategies to support a range of query processing
techniques. We discuss those in the following sections.

B. Bag-Of-Visual-Words Model

Although inverted indices primarily deal with text corpora,
they generalize to other applications, including CBIR. In this
section, we briefly describe how an inverted index can be used
in such a setting. We refer to the survey Zheng et al. [17] for
a more in-depth explanation.

The first step is to extract local features from an image,
using methods such as Scale-Invariant Feature Transform
(SIFT) or Convolutional Neural Networks (CNN). The former
detects a set of key points and their support regions in an
image [19]. Then, a local descriptor is identified for each key
point [20], [21], [22]. Both key points and their descriptors
are intended to be robust in the presence of most geometric
and photometric changes. Alternatively, the features can be
retrieved from activations of the fully connected layers or the
lower-level convolutional filters of a CNN. The latter are used
to detect local visual patterns, and are more robust to image
transformation [17], similar to the local invariant detectors
used in SIFT. Various CNN architectures have been used, such
as AlexNet [23], VGGNet [24], GoogleNet [25], and ResNet
[26].

Since the total number of distinct features might be too
large, they are quantized to a set of visual words (or code-
words) by identifying cluster centroids to generate the final
vocabulary. Each feature is assigned to one (hard assignment)
or several (soft assignment) codewords. Soft assignment has
been shown to improve retrieval effectiveness [27] but at the
same time increases the index size. Determining the size of
the vocabulary poses a challenge: a small vocabulary might
fail to distinguish between distant descriptors, while a large
one might generalize poorly. In consequence, the size of the
vocabulary varies between implementations and applications
[28], [29], [30].

The extracted codewords serve as a corpus for building an
index. Typically, queries consist of codewords extracted from
an input image by approximating its detected descriptors to the
closest word, or words if soft assignment is used for queries,
in the vocabulary. From that point forward, the search engine
exploits text retrieval techniques during the candidate selection
phase.

BoVW search can be used as a building block in many
applications, such as finding similar images, or recognizing
objects in images. The index we used in our work is a subset
of an index deployed as part of an augmented reality (AR)
system, where one of the subtasks is to recognize objects
in front of a camera, in order to then retrieve additional
information about these objects. This is achieved by querying
an inverted index to find candidate matches in a set of images
of known objects, followed by additional more specialized
retrieval and recognition systems. We note that Hu et al.
recently used a similar architecture for visual search in Bing
[12], where a set of inverted indices distributed over many



nodes reduces the size of the candidate set by a factor of
10,000.

C. Text Retrieval Strategies

We now describe common techniques for candidate selec-
tion in textual search engines. We focus on disjunctive queries,
as these are necessary in image search scenarios due to the fact
that a document rarely contains all query terms. We distinguish
two major groups of query processing approaches. Exhaustive
methods traverse all postings that satisfy the Boolean condition
(in our case, a disjunction). Early termination (or dynamic
pruning) techniques may choose to ignore some postings to
speed up processing. These further divide into safe and unsafe
methods. The former always return the same top-k results as
an exhaustive search on the same ranking function, while the
latter might yield different results.

The term-at-a-time (TAAT) strategy is arguably the most
straightforward. Each posting list is traversed separately to
accumulate scores for all documents, which determine the
top k results. This simple, sequential nature allows for highly
efficient implementations. On the other hand, accumulating all
partial scores requires time as well as significant memory for
score accumulators (which in turn might result in additional
costs due to cache misses, as the accumulators usually do not
fit in L1).

The document-at-a-time (DAAT) strategy [31] introduces
an orthogonal approach: All posting lists are sorted in order
of increasing document IDs and traversed simultaneously one
document at a time, as if merged together. Since all relevant
postings of one document are fully processed before those
of the next, score accumulators become unnecessary, and the
top-k documents can be collected in a small priority queue.
This technique works especially well for conjunctive queries,
where only documents containing all query terms need to be
evaluated.

The score-at-a-time (SAAT) strategy is facilitated by
impact-ordered indices, where postings are sorted by pre-
computed partial scores (impacts), which are quantized by
fixed-length integers. Thus, postings can be traversed in order
of decreasing scores. This is particularly important for a type
of safe early termination, which processes as many leading
postings as allowed by the allocated budget or a stopping
condition [32]. For simplicity, we refer to this technique as
SAAT, implicitly assuming early termination.

D. Safe Early Termination

In this section, we describe three well known safe early
termination approaches: Threshold Algorithm, WAND, and
Max-Score.

a) Threshold Algorithm: Introduced by Fagin et al. [33],
the Threshold Algorithm (TA) traverses all posting lists, sorted
in descending order by their impact scores, in parallel: at step
i, it considers the i-th posting from each list. The sum of
the impact scores of these postings is the current threshold
T , which either decreases or remains the same with each
step. Any newly discovered document is fully scored using

random access lookups into all of the lists. If at least k
documents scored so far have a score of T or higher, then
the algorithm can be terminated, as no new document can
make it into the top-k results. The algorithm is well studied
and analyzed in terms of query cost. It is known to work well
in some scenarios, but can perform poorly in others due to
the large number of random lookups. In particular, efficiency
significantly drops as the number of query terms increases.

b) WAND: This algorithm, as proposed by Broder et
al. [34], is based on a DAAT approach, and therefore keeps
pointers to the currently processed posting for every query
term. Additionally, the terms themselves are kept sorted by
their current document IDs. Each step starts by accumulating
the score upper bounds for the posting lists in order of
increasing IDs until their sum reaches the current threshold
T—the lowest score that can still possibly end up in the top-k
results. The last term in the sum is called the pivot term. If
all the terms up to the pivot point to the same document, we
calculate its score. Otherwise, we advance all pointers to the
pivot’s document (or to the next greater document ID existing
in that list), as no documents before that one can make it into
the top-k. We repeat these steps until all of the terms are fully
processed.

WAND improves upon DAAT by skipping documents that
are known to have a score below the threshold. If enough of
them exist, the processing can be sped up significantly. On the
other hand, WAND introduces additional overhead for sorting
terms and selecting the pivot, which can prove significant for
large numbers of terms.

Block-Max WAND (BMW) [35] is a generalization of
the WAND algorithm in which the score upper bounds are
considered per block of a posting list. Recent work has shown
that allowing variable length blocks can further improve query
efficiency [36].

c) Max-Score: The family of Max-Score algorithms [31]
relies on the score upper bounds for all query terms to partition
them into essential and non-essential terms: Given a list of
terms sorted by increasing upper bounds, the non-essential
terms are those comprising the longest prefix of that list such
that the sum of all lists’ upper bounds is less than T—the
current threshold for top-k results. As a consequence, no top-k
result can occur only in the non-essential lists. The Max-Score
approach comes in both DAAT and TAAT variants.

The DAAT version uses the above property of non-essential
lists as follows: Since any top-k document must occur in at
least one essential list, a DAAT union operation is performed
first only within essential lists. Once a document’s score for
essential terms is known, we calculate its overall upper bound
by adding all the non-essential score upper bounds. If it
exceeds T , then it potentially belongs to the top-k results, and
we must perform lookups in the non-essential lists to calculate
the actual full score of the document. Otherwise, we ignore
it and proceed to the next one. Every time T changes, we
update the essential and non-essential lists to reflect the new
threshold.



The TAAT variant simply processes terms—sorted by de-
creasing maximum score or by increasing posting list length,
depending on the implementation—until the remaining upper
bounds drop below T , which is increasing as we accumulate
postings. After that, we only need to accumulate the scores
of the documents that have already been scored. As with
the DAAT version, we can perform lookups to the remaining
lists utilizing block-skipping. Furthermore, after accumulating
a posting, we can remove its document from the list of
candidates if its score increased by the sum of the remaining
upper bounds is less than T .

E. Long Queries

The queries we encounter in this work are much longer than
those usually seen in text search engines. There has been some
amount of previous work on longer text queries. One line of
work has focused on longer queries issued by users to search
engines, and how such queries should be processed [37], [38],
[39], [40]. The focus in that work is on understanding and
exploiting the characteristics of user text queries, which rarely
have more than about 20 terms, and thus the conclusions
are not very relevant to our scenario of image search queries
derived from query images, where we have hundreds of query
terms.

Another line of work going back more than two decades
focuses on very long text queries that may derive from longer
topic descriptions used as queries, or from automatic query
expansion techniques, with evaluations taking place on older
TREC collections. In particular, Kaszkiel and Zobel [41]
showed that term-at-a-time processing is more efficient than
document-at-a-time for longer queries—though these are still
significantly shorter than our queries. Performance results for
queries with up to about 300 terms on older TREC collections
were for example reported by Ahn et al. [42] and Persin et
al. [43]. The latter propose a filtering algorithm working on a
frequency-ordered index that limits the number of accumulated
postings by over 80% with little decrease in accuracy. Even
though many improved early termination techniques have been
proposed since, including SAAT strategies on impact-ordered
indices [44], [45], we are unaware of any recent work that
evaluates them on such long queries.

F. Alternative Approaches

Content-based image retrieval bears a resemblance to near-
est neighbor search: based on visual features, we look for the
indexed image (or images) that matches the query as closely
as possible. Some algorithms based on indices such as k-d
trees [46] and R-trees [47] address the issue of finding the
nearest neighbors in an n-dimensional space. However, the
complexity of those depends on the number of dimensions,
and thus they perform poorly when n is large [48], [49], [50].
In fact, in practice it is quite difficult to obtain significant
performance improvements over a simple sequential scan in
the high-dimensional case [51], [52]. Since image retrieval is
a high-dimensional problem, these approaches are unlikely to
be efficient.

Fine-tuned single-pass convolutional neural networks reign
supreme among object recognition systems due to their pre-
cision [17]. However, they can prove inefficient or ineffective
for a large, generic domain [17], [12]. On the other hand, this
approach can be preferable for search in limited, specialized
domains. For example, Blippar implements a range of targeted
neural networks, such as cars, logos, or dog breeds recogni-
tion, among others. Here, a single shot detector [53] detects
categories and passes queries along to specialized engines, and
an inverted index is used whenever no specialized engine can
be selected by the detector.

III. DATA AND SETUP

Our collection consists of roughly 2.6 million images made
available to us by Blippar, which is a subset of the images
uploaded to their production database. We use the OpenCV
(opencv.org) implementation of SIFT [20] for key point and
descriptor detection. Query image descriptors are converted to
vocabulary codewords using an approximate k-nearest neigh-
bors algorithm [54]. Unless stated otherwise, we use hard
descriptor assignment.

When evaluating unsafe algorithms in Section VII, we
report N-S scores based on the UK Bench [55] collection,
a standard data set used for instance retrieval, which was
incorporated into the collection for evaluation purposes. This
collection consists of a set of photographs of real-life objects,
where each object is photographed four times from different
angles. The N-S score is the average number of correct, i.e.,
representing the queried object, images in the top 4 results
(thus the score always falls between 0 and 4). However,
since we want to evaluate the first-phase candidate retrieval
independently of the re-ranking phase, we report the results
assuming a perfect re-ranker that always puts the correct
images first, provided they are in the candidate set. Therefore
we count the number of the correct results in the top k = 30
documents.

In Section IV, we compare our collection to Clueweb09-B,
a standard textual data set used by the Information Retrieval
community. It contains roughly 50 million documents in
English retrieved by a web crawler. We assume BM25 scoring
for text retrieval.

Although many index compression methods exist [56],
we leave our index uncompressed. This decision is dictated
by a relatively small size (see Section IV), simplicity, and
speed requirements. The index stores document IDs in a
contiguous memory region for each list, along with another
region containing consecutive partial impact scores, acquired
from the visual processing of the indexed images (with tf-idf
type weights). Both IDs and scores are represented by 4-byte
integers. The the entire index is in main memory.

We ran our experiments on a server with an Intel Xeon E5-
2670 v2 CPU @ 2.50GHz. We executed queries sequentially
in a single thread. The latency is reported in milliseconds. We
exclude time of tasks common to all methods, such as query
parsing, fetching posting lists, and printing results.
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Fig. 1. The density of the distributions of posting list lengths for both
Clueweb09-B and BoVW indices. The former is presented on a logarithmic
length scale for improved readablility. The vertical line indicates the mean.

The following type of box and whiskers plot is used
throughout the paper2: the bar indicates the median; the
diamond within the box, if displayed, indicates the mean
average; the lower and upper hinges correspond to the first and
the third quartile, respectively; the upper whisker corresponds
to the largest value that is no further than 1.5 × IQR (inter-
quartile range, i.e., the distance between the first and the third
quartiles) from the upper hinge; the lower whisker corresponds
to the lowest value that is no further than 1.5 × IQR from the
lower hinge; outliers, if shown, are represented by dots outside
of the whiskers.

IV. QUANTITATIVE ANALYSIS

The quantitative properties of data can influence efficiency
of retrieval algorithms to a great extent. In this section, we
look into differences and similarities between text and image
data distributions and discuss their potential impact.

a) Observation 1. Query Lengths: Image queries are on
average two orders of magnitude longer (2.8 and 272 for
Clueweb09-B and BoVW, respectively). Such long queries
cause a large overhead of selecting the list from which to take
the next document (as done in DAAT and SAAT strategies).
The queries become even longer with soft assignment. For in-
stance, Blippar also uses 3-descriptor assignments to improve
precision, which increases the average query length to over
800 terms.

b) Observation 2. Posting List Lengths: The distributions
of posting list lengths differ significantly. Short posting lists
dominate the lexicon of the text index. In fact, unique words
make up more than a half of all terms, and 75% of the terms
occur at most 3 times. However, the most common words form
extremely long posting list. Some early termination techniques
can leverage this skew by effectively avoiding processing the
long lists, or big parts of them, especially when the longer
lists have lower impact scores. However, the distribution of
the BoVW index is much more uniform (Figure 1), which
may impact early termination efficiency.

c) Observation 3. Posting List Max Scores: Techniques
such as WAND and Max-Score utilize maximum term scores
for early termination. As seen in Figure 2, the maximum scores

2This is the default box and whiskers plot produced by the matplotlib
library: https://matplotlib.org/api/ as gen/matplotlib.axes.Axes.boxplot.html
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Fig. 2. The density of the distributions of the maximum impact score in
a posting list, for both Clueweb09-B and BoVW indices. BM25 was used
to score documents for Clueweb09-B, while the scores in BoVW are those
acquired from the visual analysis of the indexed images. The vertical line
indicates the mean.

of visual words are more consistent than those of terms in the
textual index. This is likely to have similar effect as uniformity
of list lengths.

d) Observation 4. Length and Max Score Correlation: In
textual indices, rare query terms, and therefore short posting
lists, typically have high maximum scores due to the inverted
document frequency component of most popular scoring func-
tions, such as BM25 and cosine similarity. For example,
for TREC evaluation queries run on ClueWeb09B, posting
list lengths and maximum scores exhibit a strong negative
correlation (Pearson correlation coefficient equal to -0.66).
However, we found these to be largely uncorrelated in the
queries submitted to the BoVW index. In fact, they exhibit
a slight positive correlation (0.06), and thus higher frequency
terms have higher maximum scores. This suggests potentially
less advantage for techniques such as Max-Score.

e) Observation 5. Query Term Footprint: While the top
textual results contain most of the query terms, content-based
image search exhibits a very small query term footprint—the
fraction of the query terms actually contained in an average
top-k result. We found that the average term footprint for UK
Bench queries is only 1.5% for k = 30. (We exclude the result
identical to the query image, as it is implausible for a user to
take a picture identical to one in the index.) It is even lower for
our production queries, barely reaching 1.1%, as these include
many queries that describe no existing object in the index. This
essentially renders conjunctive queries useless. Moreover, we
expect it to have negative impact for Max-Score type early
termination methods, as there will be few non-essential lists
to skip.

f) Observation 6. Index Size: We index relatively few
images. Clueweb09-B contains over 50 million web pages, and
commercial web engines index considerably more, whereas
our collection consists of less than 3 million images. While
we operate on a subset of an industrial collection, even the
size of the full production instance is nowhere near the size
of a large-scale web index. This gives us the advantage of
fitting the index in main memory.

g) Observation 7. Accumulator Sparsity: We analyzed
how many documents are scored on average (assuming ex-
haustive processing). When running a random TREC Web
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Fig. 3. Latency comparison between TAAT and DAAT strategies. Experiments
were run for 10,000 randomly sampled production queries. Outliers are
ignored for improved readablility.

Track query on the ClueWeb09B index, 15% of all documents
have non-zero scores, while the same is true for only 8%
of documents for the BoVW index on a random sample of
production queries. The sparsity suggests that accumulating
and aggregating results could be improved beyond the regular
TAAT strategy.

V. DAAT AND TAAT COMPARISON

This section compares two strategies of posting list traver-
sal: DAAT and TAAT. We briefly describe our implementation
and analyze the experimental results.

Due to Observation 5, we must implement the disjunctive
version of the DAAT algorithm. To handle large numbers of
terms, we keep pointers to current document IDs for each
term in an optimized priority queue. Until the queue empties,
we retrieve all pointers with the lowest current document ID,
accumulate the document score, move these pointers to the
next document ID, and insert them back to the queue. The
accumulated scores are stored in another priority queue of
size k. Therefore, the time complexity is O(p log q+m log k),
where p is the number of postings, q is the number of query
terms, and m is the number of documents with a score above
the top-k threshold at the moment of its accumulation.

Our TAAT implementation allocates memory for a full
accumulator array, and sets its values to 0 before each query.
Then, it sequentially traverses each posting list, accumulating
scores in the array. Once finished, a priority queue aggregates
the top-k documents in a single traversal of the accumulator
array.

On average, this simple implementation significantly out-
performs the DAAT strategy, mostly due to the large number
of query terms (Observation 1), what has been also shown
for long queries in case text retrieval [41]. We profiled both
methods on a sample of 1,000 queries using cachegrind3.
Indeed, we found that retrieving posting lists from and pushing
them into the heap accounts for 75% of the instructions in
DAAT. Furthermore, it suffers from a similar cache miss issue
as TAAT: irregular posting list access along with large list
numbers often causes the processor to miss the L1 cache
during posting traversal.

As shown in Figure 4, DAAT performs better for short
queries due to initialization and aggregation phases in TAAT,
which are linear with respect to the collection size (we address

3http://valgrind.org/docs/manual/cg-manual.html
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Fig. 4. Efficiency of TAAT and DAAT strategies for varying query length
ranges based on a sample of production queries. The TAAT+ method includes
the optimizations proposed in Section VI.

this issue in the following section). However, short queries
make up only a small fraction of the production query log. The
large majority of the queries are longer than 70 codewords;
for these, TAAT performs better: overall, its average latency
is 4ms compared to 16.4ms for DAAT.

Having established the performance benefit, memory usage
remains our main concern. Fitting the entire accumulator
array in the main memory poses no issue in our scenario
(Observation 6). Indeed, one accumulator array currently uses
a little over 10 MB, which makes up barely a fraction of
the entire index (11 GB). Since the index is kept in main
memory, its size would become an issue much faster than the
accumulator array. In that case, partitioning of the entire index
would most likely take place.

However, a larger accumulator array might exceed the L2
(or L3) cache size, slowing down processing. In that case,
we could implement a document-range-at-a-time (DRAAT)
strategy: (1) partition the documents into ranges that fit in the
L2 cache, (2) process them one by one in TAAT fashion, and
(3) aggregate the results from all ranges. We could potentially
take it one step further and decrease the range sizes to fit in the
L1 cache. However, L1 is orders of magnitude smaller than
L2, and therefore the ranges would have to be so small as to
contain only a few postings from each list, making the traversal
inefficient. Preliminary experiments with such small document
ranges showed a significant slowdown for query processing,
so we did not pursue this further.

VI. TAAT OPTIMIZATIONS

In this section, we describe further improvements to the
TAAT strategy. We summarize the experimental results in
Figure 5. Table I breaks down the three subsequent stages
of improvements into the major TAAT processing phases:
(1) accumulator array initialization, (2) posting list traversal
and score accumulation, and (3) top-k result aggregation. In
addition to hard assignment results, we include results obtained
using term query soft assignment: each key point is assigned to



TAAT A A+P A+P+I
0

2

4

6
L

at
en

cy
(m

s)

Fig. 5. Efficiency of the proposed TAAT optimizations.

Hard Asgmt. Init. Traversal Aggregation Total

TAAT 1.072 1.019 1.936 4.027
TAAT+A 1.074 1.136 0.133 2.343
TAAT+A+P 1.066 0.886 0.129 2.081
TAAT+A+P+I 0.135 1.059 0.180 1.374

Soft Asgmt. Init. Traversal Aggregation Total

TAAT 1.076 3.062 1.951 6.089
TAAT+A 1.078 3.381 0.129 4.588
TAAT+A+P 1.081 2.809 0.130 4.020
TAAT+A+P+I 0.137 3.317 0.181 3.635

TABLE I
AVERAGE ELAPSED TIME IN THE THREE TAAT PHASES, FOR
CONSECUTIVE STAGES OF THE OPTIMIZATIONS. IN THE SOFT

ASSIGNMENT CASE, WE ASSIGN 3 CODEWORDS TO EACH LOCAL
DESCRIPTOR OF AN IMAGE QUERY.

3 visual words, and thus the queries are effectively three times
longer. However, we still use hard assignment for indexed
documents.

We only consider direct-mapped array-based accumulators.
Although using a hash table eliminates the initialization phase,
our experiments showed both traversal and aggregation phases
to be significantly slower.

A. Block Aggregation (A)

Finding the top-k results among all processed documents
accounts for a major portion of processing time. We aim
to improve this by partitioning the accumulator array into
blocks of documents of some fixed same size b. Throughout
the traversal phase, we also maintain the maximum score in
each block. When aggregating results, a block can be skipped
whenever its maximum score is lower than the k-th result
aggregated so far. Even though this requires some overhead
during posting traversal, we experienced an overall efficiency
improvement due to very fast top-k aggregation in the final
phase (over 10 times faster on average).

Two main factors determine the efficiency of this method:
the number of processed postings and the size of the accumu-
lator array. We gain the most when the ratio of the number
of postings to the collection size is the lowest. We see this in
Table I: we improve overall latency by 43% when using hard
assignment but only 25% once we triple the number of terms
using soft assignment. Furthermore, the efficiency depends on
the size b of the blocks. We empirically found b = 1024 to
yield the best results among the tested values.

m 32 - m

qa accumulator

Fig. 6. An illustration of the lazy initialization described in Section VI-C.
Each accumulator is shrunk to make room for the query counter. Whenever
the accumulator’s counter qa is smaller than the current query counter q, the
entire accumulator is erased and qa is updated to q. Whenever the current
query counter q cycles back to 0, all accumulators are cleared.

B. Prefetching During Traversal (P)

Due to random access to the accumulator array, TAAT
traversal experiences many L1 cache misses—almost 50% of
all the accumulator access instructions. We use pre-fetching
directives to ensure that the accumulators are fetched by the
processor in advance, eliminating some of the cache misses.

Effectively, we hint the processor to fetch the accumulator
associated with a document l postings ahead of the currently
processed one (we empirically selected l to be equal to 3).
Therefore, the accumulator is usually already in L1 when we
need it. Additionally, we inform the processor that the pre-
fetched memory will be used for both reading and writing,
and can be evicted right after. As shown in Table I, we were
able to speed up posting traversal by approximately 20%.

C. Accumulator Initialization (I)

Many accumulators are unused during query processing
(Observation 7), yet they still must be initialized—a task
taking over 1ms per query. To avoid it, we attempted to
leverage our accumulator blocks from Section VI-A, and only
re-initialize those blocks that have non-zero maximum score.
This closely resembles the method proposed by Jia et al.
[57], except that we use the existing structure to partition
the accumulator array. However, the scored documents are
scattered across the accumulator array, and we are rarely able
to skip any blocks during the initialization. Therefore, we
observed no improvements for this method. Even with the
blocks as small as 128 documents, we found that only 2%
of the accumulators could be skipped during initialization, at
which point the comparison overhead significantly outweighed
the negligible speedup.

As another attempt to speed up the initial phase, we intro-
duce a lazy initialization scheme. We reserve an m-bit prefix
of each accumulator for a query counter: a sequential query
index modulo 2m, denoted as q (Figure 6). We fully erase the
accumulator array only when q = 0. Otherwise, we proceed to
posting traversal right away. However, before an accumulator
update, we must erase it if its prefix qa is lower than q (i.e., the
existing accumulator value was calculated for another query)
and update the prefix to q. Otherwise, we simply add the partial
score.

The larger the value of m, the less often we have to do
a full initialization. However, it introduces a minor overhead
for each posting that is traversed, and also during aggregation.
Furthermore, we need to store the query index q, which uses
m bits of the accumulator, and therefore m must be relatively
small. We experimentally found no further improvement for
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Fig. 7. Conservative lower bounds on the relative cost of early termination
techniques averaged for each query length. The costs are defined as follows.
Max-Score: the fraction of the postings that are in the essential lists; WAND:
the fraction of the postings that must be visited; TA: the fraction of the postings
that must be visited, excluding random lookups.

m > 3, and therefore set m = 3 in our experiments, as
reported in Table I.

On average, the initialization phase now takes only an eighth
of what it used to, as the accumulators are fully erased every
eighth query—we can observe these queries as the outliers
in Figure 4. In case we require execution time to distribute
more evenly, we could initialize a different subset of the
accumulators each time.

On the other hand, for every posting, we take an additional
step to determine whether to clear the score; similar extra work
is required in aggregation. Nevertheless, we observe an overall
decrease in latency, as this overhead is small.

D. Summary

We have experimented with four optimization techniques for
the TAAT approach, and found three of them to decrease query
time. We substantially leveraged accumulator sparsity (Obser-
vation 7) to speed-up initialization and aggregation phases,
and utilized the compiler’s prefetch instructions to eliminate
many L1 cache misses, thus improving the performance of
posting traversal. Overall, we decreased average query time
by 66% for hard and 40% for soft query term assignment.

VII. EARLY TERMINATION

In this section, we examine a list of well-known early
termination concepts in terms of the efficiency of querying
the BoVW index. We first analyze safe approaches: TA [33],
WAND [34], and Max-Score [31], and then evaluate the
time-quality trade-off of an unsafe SAAT strategy. We chose
these approaches as they represent a wide spectrum of early
termination methods. We believe that such algorithms as those
proposed by Anh and Moffat [32], or Strohman and Croft
[58], or the Block-Max WAND algorithm [35], [36] would
make little difference in the overall picture, as they are based
on similar basic ideas as TA and WAND. In this section,
we show that known early termination techniques seem to
provide little benefit on the BoVW index. We chose to report
results of a simulation in order to avoid having to go into too
many implementation details. Instead, we aim to show that no
implementation can obtain a significant improvement.

A. Threshold Algorithm (TA)

We simulated TA [33] to calculate when the stopping
condition occurs and found that 98% of the postings had to
be traversed (excluding random lookups) before the k-th score
grew above the threshold. Therefore, we are unable to improve
the speed we achieved with the TAAT strategy.

TA performs poorly for a few major reasons: First, each
document exist in only few out of many posting lists. There-
fore, the scores of the top-k documents are low relative to
the threshold T . Furthermore, the scores within a posting list
decrease slowly: we found that, on average, the minimum
score is only 47% smaller than the median. Finally, TA is
known to slow down with increasing numbers of terms. In
fact, its time complexity becomes closer and closer to linear in
the number of indexed documents for extremely long queries.
Figure 7 shows the average fraction of the postings that must
be processed for different query lengths.

B. WAND

Under favorable circumstances, WAND [34] can signifi-
cantly decrease the number of postings that are processed. The
best improvements can be made when the following occurs
frequently during the processing: (1) many posting lists point
to a lower document than the pivot, and (2) the difference
between the lowest document ID and the pivot document ID
is large. When these two hold, many postings can be skipped.
Otherwise, the improvements might be insufficient to make
up for the overhead of selecting the pivot, which can be
significant.

In our scenario, we found no cost benefit, due to very few
postings being skipped during traversal (Figure 7). The average
number of posting lists preceding the pivot is only 3.3, while
the average number of terms is over 200. Almost 80% of the
postings had to be visited on average, and over 70% of them
had to be evaluated (in our case, evaluation means reading
the partial score, multiplying it by the query-term weight,
and adding it to the accumulator variable). Considering the
additional overhead of pivot selection, we found these savings
to be insufficient to improve upon the DAAT baseline.

C. Max-Score

Let us assume that, given a query, we know the final score
of the k-th retrieved document. We denote it as T and use it
as a threshold during query processing: no document can be
returned if we know its score to be lower than T . Following
the Max-Score [31] approach, we partition the posting lists
into essential and non-essential ones based on T . Doing so,
we found 97% of terms, accounting for 98% of the postings, to
be essential on average. Figure 7 shows the results for specific
query length ranges.

Like TA and WAND, Max-Score suffers from the low scores
of the top-k results, relative to the maximum scores in the
posting lists. It is caused by very few of the query terms
actually occurring in the top-k results. Furthermore, both the
lengths and maximum scores of posting lists vary little, as
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Fig. 8. Precision of the anytime SAAT method for different fractions of the
processed postings.

stated in Observations 2 and 3. As a result, the Max-Score
approach is unable to improve query efficiency.

D. SAAT

In the SAAT strategy [32], postings are traversed in order
of decreasing impacts. The power of this method lies in its
straight-forward application as an unsafe early termination
technique. We maximize the collective impact of the processed
postings by considering the ones with the largest partial
impacts, discarding the rest. Although no guarantee regarding
result quality can be made, it is a reasonable and well-known
heuristic. Ideally, we would like to traverse only a small
portion of all postings, yet experience little decrease in result
quality. This approach was found to be very effective on text
collections [44], [45].

Several potential SAAT implementation exist. Anytime
ranking [44] selects the next highest impact among the posting
lists at each step, until the maximum number of processed
postings is reached. This ensures that the highest scored
postings are always accumulated. However, it introduces a
significant overhead for long queries, similar to that of the
DAAT approach.

We note that some of the overhead of selecting the next
posting from the lists of the query terms should be avoidable,
say, by choosing an impact threshold, or a percentage of post-
ing to be processed, and then performing a quick computation
to identify the relevant postings. However, it is not clear how
to select the right cutoffs, and the idea runs counter to the
anytime-ranking approach. Nevertheless, our results show that
even in this case any possible improvements would be very
limited at best.

We implemented the anytime ranking algorithm to analyze
the time-precision trade-off. Figure 8 shows average N-S
scores for different fractions of processed postings. We found
that at least 75% must be processed on average to retain the
precision of the exhaustive methods. This is a significantly
higher threshold compared with the reported 10% for textual
indices [44], [45]. We found these savings to be insufficient to
make up for the overhead introduced in the anytime ranking
approach. Faster methods, such as those mentioned above,
could be employed to remove the overhead, but it is unclear
whether they can offer an acceptable trade-off, and even in the
best case improvements would be limited to 25%.

VIII. CONCLUSION

Candidate selection is an important part of a CBIR system.
Due to its high efficiency, an inverted index is often used in this
phase. However, the quantitative properties of such an index
differ significantly from those of a textual one, and therefore
different query processing approaches might be needed.

We analyzed image and text data, and pointed out differ-
ences that may influence the efficiency of retrieval algorithms.
We made several important observation, which later were
backed up by experiments.

We compared TAAT and DAAT strategies and found the for-
mer to significantly outperform the latter due to high numbers
of query terms. We further introduced a set of optimizations
to the TAAT strategy. They reduced the overall query time
by 66% and 40% with hard and soft query term assignment,
respectively.

It was recently shown by Crane et al. [59] that some well-
known safe early termination methods perform poorly for large
k. We analyzed their efficiency in the image retrieval scenario
and concluded that they are also inefficient for very long
queries, even at low values of k. Furthermore, we showed that
the SAAT strategy offers a trade-off between speed and quality
on our data that is significantly worse than the previously
reported results for textual data.

Nevertheless, some question remain open. Despite thor-
ough analysis, we failed to find a suitable early termination
technique. Further attempts could be made to propose novel
approaches that increase the efficiency of a BoVW index
(or indices of similar properties), or to provide more def-
inite evidence that effective early termination is impossible
under the presented circumstances. Furthermore, additional
data analysis may unveil properties that could be exploited
to further optimize the TAAT strategy.
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