Optimizing Top-k Document Retrieval Strategies for
Block-Max Indexes

Constantinos
Dimopoulos
Polytechnic Institute of NYU
constantinos@cis.poly.edu

ABSTRACT

Large web search engines use significant hardware and en-
ergy resources to process hundreds of millions of queries each
day, and a lot of research has focused on how to improve
query processing efficiency. One general class of optimiza-
tions called early termination techniques is used in all major
engines, and essentially involves computing top results with-
out an exhaustive traversal and scoring of all potentially
relevant index entries. Recent work in [9, 7] proposed sev-
eral early termination algorithms for disjunctive top-k query
processing, based on a new augmented index structure called
Block-Max Index that enables aggressive skipping in the in-
dex.

In this paper, we build on this work by studying new
algorithms and optimizations for Block-Max indexes that
achieve significant performance gains over the work in [9,
7]. We start by implementing and comparing Block-Max
oriented algorithms based on the well-known Maxscore and
WAND approaches. Then we study how to build better
Block-Max index structures and design better index-traversal
strategies, resulting in new algorithms that achieve a factor
of 2 speed-up over the best results in [9] with acceptable
space overheads. We also describe and evaluate a hierar-
chical algorithm for a new recursive Block-Max index struc-
ture.

1. INTRODUCTION

Large web search engines have to answer hundreds of mil-
lions of queries per day over tens of billions of documents.
To process this workload, such engines use hundreds of thou-
sands of machines distributed over multiple data centers. In
fact, query processing is responsible for a significant part
of the cost of operating a large search engine, and a lot of
industrial and academic research has focused on decreas-
ing this cost. Major families of techniques that have been
studied include caching of full or partial results or index
structures at various levels of the system, index compression
techniques that decrease both index size and access costs,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WSDM’13, February 4-8, 2012, Rome, Italy.

Copyright 2013 ACM 978-1-4503-1869-3/13/02 ...$15.00.

Sergey Nepomnyachiy
Polytechnic Institute of NYU
snepom01@students.poly.edu

Torsten Suel
Polytechnic Institute of NYU

suel@poly.edu

and early termination (or pruning) techniques that, using
various shortcuts, try to identify the best or most promis-
ing results without an exhaustive evaluation of all candi-
dates. Previous work can also be divided into work that im-
proves the efficiency of the overall distributed architecture
(say through smart query routing, data partitioning, and
distributed caching), and work that focuses on the through-
put and response time of individual nodes in the system.

In this paper, we are interested in early termination tech-
niques for optimizing performance within individual query
processing nodes, assuming some distributed architecture
has successfully partitioned the problem over many machines.
More precisely, we study safe early termination (ET) tech-
niques for (ranked) disjunctive queries. We define these
terms later, but disjunctive queries basically means queries
with a simple term-based ranking function (e.g., Cosine,
BM25) that is applied to all documents containing at least
one of the query terms, and safe means that the technique
must return exactly the same results as an exhaustive eval-
uation [19].

While state-of-art search engines use highly complicated
ranking functions based on hundreds of features, simple rank-
ing functions as discussed above are still important for per-
formance reasons. This is because it would be much too
costly to evaluate every candidate result using the full rank-
ing function. Instead, search engines typically first use a
simple ranking function to narrow the field of candidate re-
sults, and then apply more and more complicated ranking
functions in later phases [23].

In the initial phase, search engines may use either dis-
junctive queries, as discussed above, or conjunctive queries
where only documents containing all query terms are con-
sidered (or possibly a mix of the two). Disjunctive queries
are known to return higher-quality results in many scenar-
ios; however, they are also significantly more expensive to
compute than conjunctive queries that can discard any doc-
uments that are missing even a single query term.

This has motivated some amount of previous work on early
termination techniques for disjunctive queries that attempts
to narrow the efficiency gap, including [22, 6, 2, 20, 9, 7].
In particular, two recent papers [7, 9] independently pro-
posed an augmented inverted index structure called Block-
Maz Indez [9], and showed how it can be used for faster
early termination. In a nutshell, a Block-Max Index aug-
ments the commonly used inverted index structure, where
for each distinct term ¢ we store a sorted list of the IDs of
those documents where ¢ occurs, with upper-bound values
for blocks of these IDs. That is, for every say 64 IDs of docu-

ments containing a term ¢, we store the maximum term-wise
score of any of these documents with respect to ¢. This then
allows algorithms to quickly skip over blocks of documents
that score too low to make it into the top results.

1.1 Our Contribution

In this paper, we study and evaluate new and (modifica-
tions of) existing early-termination algorithms for disjunc-
tive queries that use such Block-Max Indexes. The previous
work in [7, 9] proposes essentially the same structure, but
describes different algorithms to exploit it. In particular, [9]
proposes algorithms based on the WAND approach in [6],
while [7] describes algorithms based on the Maxscore ap-
proach described in [22]. The algorithms achieve significant
speedups over previous work, and thus motivate additional
study of Block-Max Indexes and how to best exploit them.

We will start out by performing a direct experimental
comparison of WAND- and Maxscore-based algorithms with
and without Block-Max Indexes, which leads to some new
and unexpected observations. Next, we build on these obser-
vations by designing and implementing new techniques for
exploiting Block-Max Indexes, in particular docID-oriented
block selection schemes, on-the-fly generation of Block-Max
Indexes, and a new recursive query processing algorithm
that uses a hierarchical partitioning of inverted lists into
blocks. Overall, we achieve roughly a factor of two improve-
ment in running time over the fastest previous results in [9],
though we believe that additional improvements are possible
by extending our techniques.

2. BACKGROUND AND RELATED WORK

In this section, we provide some technical background
knowledge on inverted indexes, query processing, and early
termination techniques, and discuss related work.

2.1 Inverted Indexes and Index Compression

Current search engines perform query processing using an
inverted index, which is a simple and efficient data struc-
ture that allows us to find documents containing particular
terms [24, 27]. Given a collection of N documents, we as-
sume each document is identified by a unique document ID
(docID) between 0 and N — 1. An inverted index contains
many inverted lists, where each inverted list L,, is a list of
postings describing all places where term w occurs in the
collection. More precisely, each posting contains the docID
of a document that contains the term w, the number of
occurrences of w in the document (called frequency), and
sometimes the exact locations of these occurrences in the
document or other context such as font size etc. Postings
in each list are typically sorted by docID, or sometimes in
some other way as described later. Thus, in the case where
we store docIDs and frequencies, each posting is of the form
(ds, fi). We focus on this case, but our techniques also apply
to cases where positions, context information, or quantized
impact scores are stored.

The inverted lists of common query terms may consist
of many millions of postings. To allow faster access and
limit the amount of memory needed, search engines use vari-
ous compression techniques that significantly reduce the size
of the inverted lists [27]. Compression is crucial for search
engine performance and there are many compression tech-
niques in the literature; see [26, 25, 18] for some recent work.
In this paper we use a version of the PForDelta compression

method [28] described in [26], but all ideas also apply to
other methods.

Because lists can be very long, we often want to skip parts
of the lists during query processing. To allow this, inverted
lists are usually split into blocks of, say, 64 or 128 post-
ings, such that each block can be decompressed individually.
This requires an additional table that stores for each block
the uncompressed maximum (or minimum) docID and the
block size. The size of this extra table is small compared
to the overall index. For performance reasons, we store the
data in each a block as 64 or 128 doclIDs followed by the
corresponding frequencies.

2.2 Query Processing

The simplest form of query processing is called Boolean
query processing. A query apple AND orange looking for
all documents containing both apple and orange can be im-
plemented by intersecting the docIDs in the inverted lists
for apple and orange. In simple ranked queries, a ranking
function is used to compute a score for each document pass-
ing a Boolean filter, such as the union or intersection of
the query terms, and then the k top-scoring documents are
returned. The ranking function should be efficiently com-
putable from the data in the inverted lists (frequencies and
maybe positions), plus maybe a limited amount of other
statistics stored outside the inverted index (e.g., document
lengths or global scores such as Pagerank). Many classes
of simple ranking functions similar to BM25 or Cosine have
been studied; see [3].A common property of many of these
is that they are decomposable into term scores, i.e., a sum
or other simple combination of per-term scores.

Real search engines use ranking functions based on hun-
dreds of features. However, such functions are quite expen-
sive to evaluate. To achieve efficiency, search engines com-
monly separate the ranking process into two or more phases.
In the first phase, a very simple and fast ranking function
such as BM25 is used to get, say, the top 100 or 1000 docu-
ments. Then in the second and further phases, increasingly
more complicated ranking functions with more and more fea-
tures are applied to documents that pass through the earlier
phases. Thus, the later phases only examine a fairly small
number of result candidates, and a significant amount of
computation is still spent in the first phase. In this paper,
we focus on executing such a simple first-phase function, a
problem that has been extensively studied in the literature.

Recall that simple ranked queries consist of a Boolean fil-
ter followed by ranking the documents that pass this filter.
The most commonly used Boolean filters are conjunctive
(AND) and disjunctive (OR). Disjunctive queries return bet-
ter results than conjunctive queries in many scenarios, but
are much more expensive to compute as they have to eval-
uate many more documents. For this reason, web search
engines try to use conjunctive queries as much as possible,
but improvements in the speed of disjunctive queries could
make these a more attractive alternative.

2.3 Early Termination

When processing simple ranked queries on large document
collections, the main performance challenge is caused by the
lengths of the inverted lists and the large number of candi-
dates that pass the Boolean filter and thus need to be evalu-
ated. Early termination is a set of techniques that addresses
this problem. Following [9], we say that a query processing

algorithm is ezhaustive if it fully evaluates all documents
that satisfy the Boolean filter condition. Any other algo-
rithm uses early termination (ET).

We note that early termination can be achieved in many
different ways, including by (1) stopping early, where each
inverted list is arranged from most to least promising post-
ing and traversal is stopped once enough good results are
found, (2) skipping, where inverted lists are sorted by do-
cIDs, and thus promising documents spread out over the
lists, but we can skip over uninteresting parts of a list, or
(3) partial scoring, where candidate documents are only par-
tially or approximately scored. But the above definition of
ET can also include techniques such as static pruning [5, 11]
and index tiering [15].

In this paper we focus on safe early termination [19],
where we get exactly the same results as an exhaustive algo-
rithm, i.e., the same documents in the same order with the
same scores. Also, we focus on main memory-based indexes
as motivated in [20, 8]. Most major engines either keep the
entire index in memory, or at least a large enough part of
it such that any I/O bottlenecks can be hidden using fairly
standard caching techniques.

2.4 Index Layout and Access

As discussed, some ET techniques may require inverted in-
dex structures to be arranged in specific ways. In particular,
many techniques assume a layout such that the most promis-
ing documents appear early in the inverted lists, which can
be done by either reordering the postings in a list, or parti-
tioning the index into several layers. In general, most tech-
niques use one of the following layouts:

e Document-Sorted Indexes: The standard approach
for exhaustive query processing, where postings in each
inverted list are sorted by docID.

e Impact-Sorted Indexes: Postings in each list are
sorted by their impact (or term score), that is, their
contribution to the document score.

e Impact-Layered Indexes: Each list is partitioned
into several layers, such that all postings in layer i
have a higher impact than those in layer ¢ + 1. In each
layer, postings are sorted by doclID.

Impact-sorted and impact-layered indexes are very pop-
ular for ET algorithms as they place the most promising
postings close to the start of the lists [14, 10, 2, 1, 4, 20,
13, 22]. A problem with impact-sorted indexes is that index
compression suffers when docIDs are not in sorted order. In
this case, an impact-layered index that uses a small number
of layers often provides a better alternative.

In contrast, in document-sorted indexes the most promis-
ing results are spread out over the inverted list, and the goal
in ET is to find ways to skip most of the postings in between.
Few ET algorithms use document-sorted indexes; see, e.g.,
[6, 22, 21, 9, 7]. However, recent work in [7, 9] showed very
good results for document-sorted indexes through the use
of an additional Block-Max structure, and this motivates
our work here where we build on these results. Thus, un-
less stated otherwise, we assume document-sorted indexes
throughout the paper.

One advantage of document-sorted indexes is that they al-
low simple and fast index traversal during query execution
based on a Document-at-a-time (DAAT) approach. Here,
each list has a pointer to a current posting, and all pointers

move forward in parallel as a query is processed. At any
point in time, all postings with doclID less than some value
have already been processed, while documents with larger
docID are yet to be considered. In contrast, impact-sorted
and impact-layered indexes employ other, often more com-
plicated, traversal strategies.

DAAT traversal is commonly implemented using the fol-
lowing methods reminiscent of file system or database ac-
cess: First, there are methods for opening and closing in-
verted lists for reading. Second, a forward-seek operation
called nextGEQ can be used to move the read pointer in an
opened list forward to the first posting with a docID at least
some specified value. Finally, there is an operation for re-
turning the term score of the posting at the current pointer
position. All our algorithms perform DAAT traversal using
these methods, and we report the number of nextGEQ op-
erations and term score computations in some of our results.

2.5 Basic ET Algorithms

We now describe previous safe early termination algo-
rithms for disjunctive queries. We focus on methods us-
ing document-sorted indexes and DAAT traversal that are
closely related to our approaches, in particular the WAND
algorithm in [6], the Maxscore algorithm in [22], and recent
enhancements of these algorithms based on Block-Max In-
dexes in [7, 9].

WAND: The WAND algorithm proposed by Broder et al.
in [6] maintains for each query term a pointer to the current
posting in the list (as done in DAAT). It also stores for each
inverted list the highest impact score of any posting in the
list, called the mazscore of the list. Whenever the algorithm
moves forward in the inverted lists, it does so in three steps,
pivot selection, alignment check, and evaluation.

In the first step, the current list pointers are sorted by do-
cID. Then a pivot term is selected by summing up the maxs-
cores of the query terms in ascending order of list pointer
doclD, until the sum becomes larger or equal to the thresh-
old 0 that is needed to be part of the current top-k results.
The term where this happens is selected as the pivot, and
used to drive query processing. This is illustrated in Figure
1, where cat is selected as the pivot term. The crucial ob-
servation is that no docID smaller than the current docID
of the pivot term can make it into the top-k results, unless
it was already considered earlier.

maxscore
10.4 ‘ (e} ‘ mouse
5.1 ‘ o] ‘ cat
0=14.7
7.3 ’ e} ‘ dog
15.7 ‘ o ‘ squirrel

—

docID space

Figure 1: Pivot selection in the WAND algorithm with
4 terms, where the current threshold for the top-k results
is 14.7. The list for cat is selected as pivot since 10.4+5.1 >
14.7.

In the second step, we try to align the terms above the
pivot term with the docID of the pivot term, called the pivot
ID. To do this, we take these terms one after the other (in
the figure, just the list for mouse) and do a forward seek
using nextGEQ to the pivot doclID. If such a seek results in
a doclID strictly larger than the pivot docID (because the

list does not have a posting for the pivot docID), then we go
back to the first step and re-sort and select another pivot. If
all seeks result in a posting at the pivot doclID, then in the
third step we fully evaluate this docID, check if it needs to
be inserted into the current top-k, move all pointers forward
to at least this docID plus one, and then continue.

Maxscore: This algorithm has been known for a long
time but was first described in detail in [22]. There are sev-
eral versions of Maxscore based on both DAAT and TAAT
traversal. The version described here is similar to those pre-
sented in [21, 12]. Like WAND, this algorithm also exploits
knowledge of the maxscore of a list, hence the name. How-
ever, instead of using sorting by current docID and pivot
selection to dynamically partition the lists into lists above
and below the pivot term, Maxscore distinguishes between
essential and non-essential lists.

Suppose the lists for the query terms are sorted from top
to bottom by their maxscore, as shown in Figure 2. We
again have a threshold 0 that a document score has to reach
to make it into the current top-k results. We now select as
non-essential lists a set of lists such that their maxscores sum
up to less than 0, by adding lists starting from the list with
the smallest maxscore. The other lists are called essential.
Observe that no document can make it into the top-k results
just using postings in the non-essential lists, and at least one
of the essential terms has to occur in any top-k document.

Thus, we can safely execute a top-k query by essentially
performing a union operation over the essential lists, and
then performing lookups into the non-essential lists to get
the precise document scores. In every step we select the
next larger doclD in the essential lists, but instead of fully
scoring each such candidate in all lists, we perform partial
scoring as follows. We first evaluate the scores of this docID
in the essential lists. If the sum of these scores plus the
maxscores of the non-essential lists is less than 6, then we can
abort the evaluation. Otherwise, we score the candidate in
the non-essential lists until either we have a complete score,
or the maximum possible score drops below the threshold.
Whenever we find a new top-k result, we also check if the
resulting increase in the threshold # means that another list
can be added to the non-essential lists.

maxscore

prefix :75717: ’ (0] ‘ cat
sum | !
73] o | dog
T 0=14.7
10.4 ‘ o) ‘ mouse
15.7 ‘ o) ‘ squirrel
doclD space -

Figure 2: Selecting non-essential lists in the Maxscore
algorithm. Here, the lists for cat and dog are non-
essential as their maxscores sum up to 5.1 4 7.3 < 14.7.

To optimize this algorithm, we need to decide how to se-
lect the non-essential lists and in which order to evaluate
postings in the non-essential lists. We could select non-
essential lists with the smallest maxscore (minimizing the
number of essential lists), or select the longest lists (mini-
mizing the total size of the essential lists). Not surprisingly,
the longest lists are almost always the ones with the small-
est maxscore in common ranking functions such as BM25,
and thus selecting by maxscore usually achieves both objec-

tives.! When evaluating scores in the non-essential lists, it
is best to go from highest to lowest maxscore.

Block-Max Indexes and Algorithms: Two recent pa-
pers [9, 7] independently proposed an augmented inverted
index structure called a Block-Maz Index and used it to
speed up the WAND [9] and Maxscore [7] approaches. The
basic idea of the structure is very simple: Since inverted lists
are often compressed in blocks of say 64 or 128 postings, we
store for each block the maximum term score within the
block, called block mazscore. Thus each inverted list main-
tains a piece-wise constant upper bound approximation of
the term scores, as shown in Figure 3.

t
@ (NTRIR I EETT

docID space

Figure 3: Three inverted lists are piecewise upper-
bounded by the maximum scores in each block. As
shown for one block in the bottom list, inside each block
we have various values, including many zero values, that
can be retrieved by evaluating the postings.

Since both WAND and Maxscore use the maxscore of a
list to enable skipping, the simplest idea for using the Block-
Max Index is to try to use block maxscores instead of list
maxscores whenever possible. In fact, this is basically what
the approaches in [9, 7] do, but there are some technical chal-
lenges that need to be overcome to make this work. These
challenges are due to the fact that block maxscores are only
valid within a block, and thus we have to be careful when-
ever we move over one or more block boundaries. Moreover,
block boundaries in different lists are not aligned.

In the following, we refer to the approach in [9] as Block-
Maz WAND (BMW), and to the approach in [7] as Block-
Maz Mazscore (BMM). BMW and BMM differ in two main
ways. First, BMW builds on WAND [9] while BMM builds
on Maxscore. Second, BMW deals with block boundaries in
an online fashion as they are encountered, while BMM uses a
preprocessing step that detects and aligns block boundaries.

More precisely, BMW selects a candidate pivot using list
maxscores as in WAND, but then uses block maxscores to
check if this is really a viable pivot or if its score is too low
to make it into the top-k results. In general, a combination
of block maxscores and partial evaluation in selected lists is
used to quickly rule out many pivots. Thus, block boundary
issues are avoided by using list maxscores for pivot selection,
and only using block maxscores once a pivot candidate has
been selected. We refer to [9] for more details.

BMM first preprocesses the block boundaries in order to
partition the docID space into intervals, such that we have
an interval boundary whenever any of the participating lists
has a block boundary. Then BMM runs Maxscore within
each interval, selecting non-essential lists and doing par-
tial scoring using block maxscores instead of list maxscores.

!We observed that this correlation between list length and
maxscore value is quite strong over most of the range of lists
lengths, but breaks down for lists with only a few postings.

More details and some additional variations of this basic
idea are discussed in [7]. Also, followup work to [9, 7] in [16]
shows how to deal with ranking functions that add a query-
independent score such as Pagerank to the term scores.

Our work in this paper starts from the work in [9, 7]
and asks how we can further improve query processing with
Block-Max Indexes, by either refining the BMW or BMM
approaches or designing new algorithms. It seems to us that
there are a lot of additional benefits that can be obtained
by using Block-Max Indexes and related structures.

3. PRELIMINARY EXPERIMENTS

In this section, we implement and evaluate a set of base-
line algorithms derived from previous work. While the algo-
rithms are not really novel, we are not aware of any previous
comparison.

In our experiments, we use the TREC GOV2 dataset con-
sisting of 25.2 million web pages with an uncompressed size
of 426GB. We build inverted index structures with 64 docIDs
and frequencies per block, using the version of PForDelta
used in [26]. The resulting compressed index size is 8.75GB.
We use 1000 queries selected at random from the TREC
2006 Efficiency track queries, and 1000 random queries from
TREC 2005 as our testing sets.

All algorithms were implemented using C++ and com-
piled using gcc with -O3 optimization. Algorithms were
carefully optimized for performance. We use BM25 as rank-
ing function, and return top-10 results unless stated other-
wise. All experiments were conducted on a single core of a
2.27Ghz Intel Xeon (E5520) CPU. All data structures are
memory-resident.

3.1 Methods without Block-Max Indexes

We start by comparing the methods without Block-Max
Indexes, in particular WAND, Maxscore, and the method of
Strohman and Croft (SC) [20]. For SC, we use the numbers
reported in [9] which were on the same data and machine.
All other methods were re-implemented for this paper.

The implementation of WAND follows closely the descrip-
tion in [6] and the implementation in [9]. Recall that the
method first selects a pivot, then aligns the lists, and then
evaluates. We tried using partial scoring techniques in the
evaluation phase, and interleaving alignment and scoring,
but found no performance benefits in this. For Maxscore,
we follow the description in Section 2.5, with careful use of
partial scoring techniques.

In Table 1 we compare the performance of SC, WAND,
and Maxscore on the TREC 2006 and 2005 queries. We show
average times over all queries, and average times for queries
with 2, 3, 4, 5, and more than 5 terms. The most important
observation is that Maxscore consistently and significantly
outperforms the SC and WAND algorithms, by roughly a
factor of 2. This is surprising because SC and WAND were
intended to be performance optimizations over the older
Maxscore algorithm. Comparing WAND and Maxscore, we
believe there are two main costs that slow down WAND, the
pivot selection via sorting (which we carefully optimized by
updating the sorted order), and the large number of calls
to nextGEQ as part of the alignment process as shown in
Table 2. We also note that Maxscore is especially strong
on queries with 5 or more queries, where it outperforms the
others by more than a factor of 2.

TREC 06

Algorithm avg 2 3 4 5 >5
SC (from [0]) | 64.3 | 12.2 | 36.7 | 75.6 | 117.2 | 2263
WAND 75.43 | 20.59 | 42.42 | 88.25 | 146.73 | 240.44
Maxscore 34.17 | 10.67 | 22.76 | 41.71 | 60.32 91.05
TREC 05
WAND 51.4 | 18.19 | 34.82 | 55.33 | 102.14 | 321.29
Maxscore 20.13 | 9.42 | 17.51 | 25.85 | 35.33 87.84

Table 1: Running times in ms per query for methods
without Block-Max Index structure.

TREC 06
Algorithm | Time (ms) | # evals | # nextgeq
WAND 75.43 448,209 | 1,211,034
Maxscore 34.17 673,862 722,867
TREC 05
WAND 51.4 366,063 775,581
Maxscore 20.13 409, 444 429,835

Table 2: Number of term score evaluations and calls
to nextGEQ per query for methods without Block-Max
Index structure.

3.2 Block Max-Based Methods

Next, we compare basic methods that use Block-Max In-
dexes, in particular BMW, BMM, and some modifications
of these. We note that previous work [9, 7, 16] chooses
block boundaries in the Block-Max Index by placing a fixed
number of postings, e.g., 64, in each block. This is a natu-
ral choice for two reasons: First, since blocks are also used
in index compression, it seems natural to piggy-back onto
this mechanism and add another value, the block maxscore.
Second, this allows easy control over the space overhead of
the structure. We refer to such an approach as a Posting-
Oriented Block-Max Index, and use this approach for our
first experiments. However, in later sections we revisit this
assumption and look at other choices of block boundaries
that result in better performance.

For the experiments, we re-implemented BMW as de-
scribed in [9] and re-used some code from the core com-
pression and index access mechanisms. Our baseline in this
study is the BMW algorithm in [9], which to the best of
our knowledge, achieves the best reported query process-
ing times. We also implemented a Maxscore-based method
(BMM), but with some changes over the implementation
described in [7]. In particular, we removed the preprocess-
ing for aligning block boundaries and the selection of non-
essential lists in each interval as described in [7], as we found
this to be a performance bottleneck. We note here that
while the numbers reported in [7] are higher than those in
[9] and for a smaller data set, they include some disk access
costs and make somewhat different architectural assump-
tions. Thus, it is difficult to directly compare the numbers.

In the implementation of BMM, we select the essential
lists as in Maxscore, based on list maxscores, but use a se-
ries of filters based on block maxscores to rule out most can-
didates. In particular, after selecting the next unprocessed
posting from the essential lists, we first check if the (pre-
computed) sum of the list maxscores of the non-essential
lists plus the sum of the block maxscores of the essential
lists is above the threshold. If yes, then we replace the list
maxscores of the non-essential lists with block maxscores,
and check again. Next, we get the term scores of the can-

didate in the essential lists, and check if the potential score
is still above the threshold. If so, we then start scoring the
non-essential lists until all terms have been evaluated or the
candidate has been ruled out.

In case the first (or second) filter above fails, we can in
fact not just skip the current posting, but move directly to
the end of the shortest (or shortest essential) block. (This
is similar to the GetNewCandidate() method described in
[9].) We note that in many cases, we may be able to skip
even beyond the end of that block, for example when the
block is followed by one with a smaller block maxscore. We
can exploit this by a more aggressive optimization, where we
skip over block boundaries until we arrive at the next live
block where the sum of the block-max scores of all terms is
larger than . We note that [7] has a similar idea for skipping
over dead areas. We refer to the version of BMM that uses
this optimization as Block-Max Mazscore-Next Live Block
(BMM-NLB).

Finally, initial experiments found that some methods are
better for queries with few terms, and some for queries with
many terms. Since all algorithms use exactly the same data
structures, it is easy to call the best method for any number
of query terms; this combined method is called BM-OPT.
We did not see any way to implement a good Block-Max
based version of SC, which takes a very different, non-DAAT
based, approach from the other algorithms.

In Table 3, we report the performance of the various algo-
rithms on the TREC 2006 and 2005 queries. We observe that
BMW obtains very large gains over WAND), as reported in
[9]. BMM, however, achieves only slight improvements over
our optimized version of Maxscore, which already did much
better than WAND. Overall, BMW now performs better
than BMM. The BMM-NLB version that tried to skip addi-
tional block boundaries actually performs worse than BMM
except for 2-term queries; the reason is that there are not
that many dead areas for multi-term queries, so the benefit
is limited while the added complexity slows down perfor-
mance. We also observe that BMM outperforms BMW for
queries with many terms, and for this reason BM-OPT per-
forms slightly better on average than BMW.

Finally, Table 4 shows the average number of term score
evaluations and calls to neztGEQ per query. We can see that
BMW evaluates significantly fewer documents and makes
fewer calls than all other algorithms. However, while BMM
performs many more evaluations and calls, its running time
was only slightly slower than BMW. This indicates that
these evaluations and calls are not the only indicator of per-
formance. In fact, it seems that BMW spends a fair amount
of effort trying to avoid evaluations and calls, while BMM
does not spend as much time thinking about avoiding them
and instead keeps the control structure simple.

For the remainder of the paper we report the performance
of our algorithms only for the TREC 06 query traces, due
to space limitation.

4. A HIERARCHICAL ALGORITHM

Next, we describe a new query processing algorithm that
uses a modified hierarchical Block-Max Index. The basic
intuition for this is very natural; instead of using only one
size of blocks, we partition inverted lists into a hierarchy
of blocks and store block maxscores at all different levels.
We would expect that different terms and queries lead to
different optimal choices for the block size, and that even for

TREC 06

Algorithm avg 2 3 4 5 >5
BMW 27.44 | 4.14 12.09 | 32.83 | 55.11 | 108.47
BMM 32.77 | 10.35 | 21.95 | 39.8 | 57.73 | 87.41
BMM-NLB | 51.48 | 9.62 | 30.24 | 64.32 | 99.09 | 159.08
BM-OPT | 25.95 | 4.14 | 12.09 | 32.83 | 55.11 | 87.41
TREC 05
BMW 16.25 3 10.38 | 17.55 | 33.66 | 127.61
BMM 19.97 | 9.33 | 17.35 | 25.66 | 35.18 | 86.45
BMM-NLB | 29.46 | 8.85 | 25.19 | 41.02 | 61.37 | 168.15
BM-OPT | 13.83 3 10.38 | 17.55 | 33.66 | 86.4

Table 3: Running times in ms per query for basic meth-
ods with Block-Max Index Structures.

TREC 06
Algorithm | Time (ms) | # evals | # nextgeq
BMW 27.44 27,440 431,817
BMM 32.77 661,072 667,642
BMM-NLB 51.48 573,630 | 581,442
TREC 05
BMW 16.25 17,555 240, 756
BMM 19.97 404,441 407,331
BMM-NLB 29.46 309, 047 312,552

Table 4: Number of term score evaluations and calls to
nextGEQ for the different algorithms.

a particular term and query, a hierarchical structure would
enable large skips whenever possible while allowing us to
drill into smaller block sizes if needed. As indicated before,
this structure is now completely decoupled from the blocks
used in index compression.

We start with a basic partitioning into fairly small blocks
containing, say, 8 or 16 postings. We then build a binary tree
structure on top of these blocks, where each higher-up block
stores as its block maxscore and right block boundary the
larger of the two childrens’ block maxscores and right block
boundaries, respectively. Finally, the root contains the list
maxscore and has as its right boundary the value N (where
all docIDs are between 0 and N —1. We also implicitly treat
the actual postings, and the empty spaces between them, as
child nodes of the basic blocks at the bottom of the tree;
this is called the posting level of the tree.

Given this structure, we now design an algorithm that
uses it. The basic idea is to perform a traversal of the trees
for the query terms, reminiscent of branch-and-bound com-
putations. During traversal, we maintain a value cub that
is an upper bound on the scores of any documents in the
intersection of the current blocks. For each term, we have
a stack or other mechanism (say successor pointers) for effi-
cient tree traversal. We first place the roots of the trees for
the query terms on a stack, and initialize cub to the sum of
their maxscores.

Now we repeatedly check if cub is above the current thresh-
old for top-k results. If yes, there are two cases: (1) If we
have reached the posting level in all lists, this means that we
have completely evaluated a docID and can place it into the
top-k, and then continue with the next docID by popping
any blocks associated with postings (but not those represent-
ing space between postings). (2) In the other case, there is
the possibility of a top-k result, but we need to go deeper
into the trees to check. To do so, we select one of the lists,
say the one with the farthest right boundary, pop it from
the stack, and instead push its children on the stack and

update cub as needed. Once we reach the posting level, we
do not immediately place all postings in the block on the
stack, but materialize them one at a time from the inverted
index using nextGEQ and scoring of terms.

If the cub was below the threshold, this means that no
top-k result can be in the intersection of the current nodes,
and we can skip to the end of the block with the closest right
boundary, by popping this block from the stack and updat-
ing cub. The algorithm stops when the stacks are empty. We
note that this algorithm cannot easily be classified as being
WAND or Maxscore based. There are also various ways to
modify and optimize this algorithm, but due to space con-
straints we have to omit some of the details.

We show performance results for the new algorithm in Ta-
ble 5. The performance of the algorithm depends on the size
of the basic blocks at the bottom of the tree, and for this
case we used a size of 4 postings per block for lists shorter
than 1500000 postings and 8 postings per block for longer
ones. Thus, the resulting hierarchical Block-Max structure
is comparable to the size of the entire inverted index. De-
spite this size, the algorithm only outperforms the BMW
algorithm by a moderate amount. The reason is that there
is a fair amount of overhead for pushing and popping nodes
onto the stack, and for selecting which nodes to push and
pop. We will revisit the performance of this algorithm later
in the context of reordered indexes.

Algorithm | avg 2 3 4 5 >5

BMW 27.44 | 4.14 | 12.09 | 32.83 | 55.11 | 108.47
HIER 24.47 | 2.14 | 9.06 | 31.03 | 50.40 | 100.75

Table 5: Running times in ms per query for BMW and
for the new algorithm with a hierarchical Block-Max In-
dex, for 2, 3, 4, 5, and more than 5 query terms.

In the following section, we describe new algorithms that
move beyond the posting-oriented Block-Max Index struc-
tures used here. This means that we decouple the choice of
blocks for storing block maxscores from the choice of blocks
for inverted index compression, and the reader should think
about the Block-Max Index as a structure that is separate
from the inverted lists. In some cases, we may choose much
smaller blocks than before, resulting in better pruning power
but much larger Block-Max Index structures, and part of
the challenges we address are about how to limit this space
overhead.

S. DOCID-ORIENTED BLOCKS

We now go back to the non-hierarchical case and try to
further improve the BMW and BMM approaches. As in
the hierarchical case, we decouple the Block-Max structure
from the blocks used for index compression, thus allowing
us to choose block boundaries in a way that optimizes per-
formance. In particular, we could define block boundaries
based not on the number of postings in a block, but based
on doclD space. For example, if we choose to have one block
maxscore say for every 1024 doclDs, then given the docID
of a candidate, we can find the location of its corresponding
block maxscore by just shifting the docID by 10 bits to the
right.

We call such blocks that are based on a simple partitioning
of doclID space docID-oriented Block-Max structures. Their
main benefit is extremely fast lookup. The main challenge
is how to select the block sizes. Having one block for every
1024 doclIDs might be feasible for longer lists, but would be

a huge waste of space for a term with only a handful of post-
ings, where most block maxscores would be zero. We now
consider three ways to select docID-oriented block bound-
aries, choosing a fixed size, choosing sizes based on the ex-
pected number of postings in a block, and choosing variable
block sizes. Some of the methods result in very large Block-
Max structures, and we will address the space problem in
the next section.

Fixed Block Size: We first consider docID-oriented Block-
Max structures that split the docID space into blocks of the
same fixed size for all inverted lists. We consider docID
ranges that are powers of two, to achieve very fast block
maxscore lookups. Figure 4 shows the running times of the
BMW, BMM, and BMM-NLP algorithms from Section 3.2
as we vary the block size from 2% to 2'° docIDs. We note
that the methods do not perform very well for very large or
extremely small blocks. For large blocks, we get very little
pruning power from block maxscores, and we would be bet-
ter off just using the Maxscore algorithm. For very small
blocks, we only get very small skips and have a lot of mem-
ory accesses to fetch block maxscores. However, in between,
in the range from 2° to 2%, we see very good performance. In
particular, BMM-NLB achieves a running time of less than
13ms vper auerv for blocks of size 64 doclDs.

—&— BMW —&— BMM —%— BMM-NLB
70
60
50
40
30

Average gp time (ms)

20
10

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Blocks of size 2¢

Figure 4: Times per query for fixed block sizes ranging
from 22 to 29 docIDs.

However, if we actually store one 4-byte block maxscore
for every 64 docIDs in docID space, then for the GOV2 col-
lection of 25.2 million documents this means about 1.5M B
of data for each inverted list. Since there are more than 20
million distinct terms in the collection, most of them having
only a few postings, the space requirement would be about
35T B.

Expected Block Size: Another natural approach would
be to choose larger docID ranges for short lists, and smaller
doclID ranges for long lists. In particular, we could pick the
docID range for each inverted list such that the expected
number of postings in each block (total number of postings
divided by total number of blocks) is kept constant. This
gives us direct control over the total size of the structure,
similar to the case of posting-oriented blocks before.

In Figure 5 we show the running time of our algorithms
as we vary the expected number of postings per block from
1 to 2'9. More precisely, given a target b, we choose the
block size as the smallest number 2% such that the expected
number of postings per block is at most b. We observe that
BMW performs well for values of b up to 2°, while BMM
and BMM-NLB only do well for even smaller values of b.
However, none of the methods achieves running times below
20ms. Thus, this method limits the size of the Block-Max

—&— BMW —¢— BMM —¥— BMM-NLB

Average gp time (ms)
B
o

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Expected postings per block 2

Figure 5: Times per query for expected number of post-
ings per block ranging from 1 to 219.

Algorithm | Time (ms) | # evals | # nextgeq
BMW 18.44 2,230 369, 230
BMM 16.16 45,060 | 443,789

BMM-NLB 12.73 45,060 57,391

Table 6: Running times for one particular variable block
size setting.

structure, but performance degrades compared to the fixed
block size method.

Variable Block Size: As seen, both fixing the block size
and fixing the expected number of postings per block has
problems. The former uses too much space, and the latter
is slow. We now check if there is some way to get the same
performance as in the fixed case by using (slightly) less space
and a variable block size. Experiments showed that we can
basically match the best running times for the fixed case,
as shown in Table 6 where the best method, BMM-NLB,
achieves a time of 12.73ms.

Note that these results are meaningless without more in-
formation about the settings and space consumption. In
particular, the results in Table 6 use a block size of 2'° do-
cIDs for any inverted list of up to 2'° postings, then 2° up
to length 2'2, 27 up to length 2'°, 2% up to length 27, 27
up to length 2'8, and 2° for any list longer than 2!%. The
astute reader will notice that this still uses block sizes of at
most 2'° docIDs for all lists, including for lists with only a
few postings. Thus, this can save at most a factor of 2% = 16
over the earlier setting that required more than 357'B. In
fact, this setting still requires about 2.25T'B of space! We
will show in the next section how we can reduce this by a
factor of 1000 to obtain a more realistic structure, without
significant increases in running time.

6. ENGINEERING THE SPACE ISSUE

In the previous section, we discovered some settings that
achieve very fast running times, but at the cost of an unre-
alistic space consumption. In this section, we address this
problem, and study two simple ways to significantly reduce
the required space, thus making these settings feasible in
practice.

On-The-Fly Block-Max Generation: As mentioned
before, most of the inverted lists in a collection are very
short, consisting of only a few postings. In fact, 96.95%
of all distinct terms in our dataset occur in less than 128
documents. However, for such terms, it is quite feasible
to create the docID-oriented Block-Max structure on-the-
fly, that is, during query processing. Note that this re-

quires three steps, initializing an array to hold the Block-
Max structure, decompressing the entire inverted list and
evaluating its postings, and using the uncompressed docIDs
and computed scores to set the block maxscores in the array.
The first step involves zeroing out an array of about 25, 000
numbers in the case of block size 2!° docIDs on GOV2, and
modern CPUs can do this in a few microseconds. The other
steps depend on the list length, but we will see that this is
efficient for lists of up to a few ten thousand postings.

In Table 7, we show the total space for the variable docID-
oriented Block-Max index in Table 6 in the last section,
which had a raw size of about 2.257'B, and the resulting
additional cost in ms per query of generating Block-Max
structures on the fly. If we limit on-the-fly generation to
lists of at most 2! postings, we still have a space require-
ment of over 94G B for the Block-Max structure. Performing
on-the-fly generation for lists up to length 27 brings the size
down to 8.41G B, about the same size as the inverted index,
but adds several ms to the running time of a query. How-
ever, doing on-the-fly generation for lists up to length 2'°
brings us to a space of about 11G B with less than 0.5ms in
overhead. We note that the small overhead per query is due
to the speed of one-the-fly generation and the fact that not
every query has a query term with a short enough list.

Method Space (GBs) | Overhead (ms/q)
on-the-fly BMG _511 94.53 0.02
on-the-fly BMG _513 24.52 0.10
on-the-fly BMG _515 11.07 0.44
on-the-fly BMG _517 8.41 3.42
No on-the-fly BMG 2249.66 —

Table 7: Space/time trade-off for one-the-fly block-max
generation.

Block-Max Score Quantization: We can further de-
crease the space requirements by replacing the 4-byte float-
ing point representation of the maxscores with 1-byte un-
signed chars. To do this, we need to quantize the float-
ing point numbers to 256 distinct values. Quantization is a
standard technique in information retrieval, and a number
of methods have been proposed for quantizing term scores.

Our problem here is actually a little simpler since the
block maxscores are only used as a rough initial filter, and
not for the final ranking of the results. In this case, a simple
linear quantization is good enough, where for each inverted
list we choose a basic quantile z and then represent each
block maxscore m by the smallest ¢ such that ¢ x 2z > m. If
z is chosen by dividing the list maxscore by 255, then each ¢
can be stored in one unsigned char. When we access a block
maxscore, we simply multiply ¢ with the (term-dependent)
quantile z. The rounding-up to the next multiple of z re-
sults in slightly larger block maxscores and thus slightly less
pruning, but the difference is negligible.

Experimental Results: We now present the space/time
trade-off that are achieved when using both on-the-fly Block-
Max generation and block maxscore quantization in our
query processing algorithms, using the same block size set-
tings as in Table 6.

We start by looking at the performance of our fastest
algorithm, BMM-NLB. Table 8 shows the performance of
BMM-NLB with on-the-fly generation and with and with-
out quantization. We note that there are two factors that
can increase the running time of the algorithm, the time
for the on-the-fly generation, and the cost of accessing the

Method Space (GBs) | Time (ms)
on-the-fly BMG 513 24.52 12.83
on-the-fly BMG_,15 + BMQ 6.13 14.34
on-the-fly BMG _515 11.07 13.17
on-the-fly BMG_,15 + BMQ 2.76 14.64
[No on-the fly BMG and, no BMQ | 2249.66 | 12.73

Table 8: Space/time trade-off for on-the-fly block-max
generation and quantization in BMM-NLB.

quantized values and multiplying them with the quantile z.
We see that with on-the-fly generation only for lists shorter
than 2'® and no quantization, we get a running time of 12.83
ms and a space requirement of 24.52G B. At the other hand
of the spectrum, we get a running time of 14.64ms with a
space requirement of 2.76G B, about 30% of the size of the
inverted index, by using quantization and on-the-fly gener-
ation for lists up to length 25,

Algorithm Time (ms) | # evals | # nextgeq
BMW 19.82 1,646 369,571
BMM 17.44 16,207 | 444,569

BMM-NLB 14.64 46,207 58,809

BM-OPT 14.32 45,905 74,027

[Posting-oriented BMW [27.44 [27,440 | 431,817 |

Table 9: Performance of the algorithms when both on-
the-fly generation and quantization are used.

Next, in Table 9 we show the performance of all three
basic algorithms when both on-the-fly generation and quan-
tization is applied, using the setting from Table 8 that re-
sults in the smallest space requirement. We see that all
algorithms are significantly faster than the state-of-the-art
postings-oriented BMW. Finally, Table 10 shows the results
for different numbers of query terms.

Algorithm avg 2 3 4 5 >5
BMW 19.82 | 3.79 | 10.08 | 22.73 | 39.67 | 73.4
BMM 17.44 | 4.4 9.98 | 21.36 | 32.71 | 54.66

BMM-NLB | 14.64 | 5.59 | 9.54 | 17.44 | 24.55 | 42.23

BM-OPT 14.32 | 3.79 9.54 17.44 | 24.55 | 42.23

Table 10: Time in ms per query (ms) for queries with
2, 3, 4, 5, and more than 5 terms.

7. ADDITIONAL RESULTS

In this section, we provide a few additional results. In
particular, we look at the performance of the methods for
reordered and impact-layered indexes, and at how perfor-
mance changes when we need top-100 or top-1000 results
rather than just the top-10. Due to space constraints, we
only present some selected results.

Document ID Reordering: A lot of work over the last
decade has looked at how to improve the compressibility of
inverted indexes by reordering them, that is, by assigning
docIDs to documents in a way that minimizes index size.
In general, this is done by assigning consecutive docIDs to
similar documents; one particularly simple and effective way
to do this is to assign docIDs to web pages based on an al-
phabetic sorting of their URLs [17]. Recent work in [25]
showed that this not only decreases index size, but also ac-
celerates conjunctive query processing, and [9] extended this
observation to the BMW algorithm for disjunctive queries.

Thus, we decided to check how our new methods fare un-
der reordering, using URL-sorting as suggested in [17] and

used in [9]. Table 11 shows the resulting running times for
our new docID-oriented Block-Max Index structures with
quantization and on-the-fly generation. Note that the best
previous result for this case in [9] was 8.89ms, for the old
posting-oriented version of BMW. As we see, reordering
also gives a significant boost to the new algorithms, though
BMM-NLB benefits less than the other methods.

Algorithm | Time (ms) | # evals | # nextgeq
BMW 8.34 4,324 129, 560
BMM 7.02 17,476 169, 709

BMM-NLB 10.33 17,476 18,964

Table 11: Impact of docID reordering on the query pro-
cessing time of BM'W, BMM, and BMM-NLB with quan-
tization and on-the-fly generation.

In Table 12 we show the performance of the hierarchical
method from the previous sections under reordering. Some-
what surprisingly, the hierarchical method did extremely
well under reordering and significantly outperformed all oth-
ers. We believe that this is due to the ability of the hierarchi-
cal method to exploit the larger but also the highly variable
(between different queries and different regions of the docID
space) skips that are possible under document reordering.
We note that it also has the largest space requirement for
its hierarchical Block-Max structure, and we give results for
two settings with sizes of 6GB and 10GB. (These numbers
can be reduced using quantization and on-the-fly generation
of hierarchical Block-Max structures.)

Algorithm Time (ms)
HIER 6GB 4.85
HIER 10GB 4.29

Table 12: Impact of docID reordering on the query pro-
cessing time of the hierarchical method.

7.1 Document ID Reordering and Layering

The work in [9] also proposed a version of BMW that uses
an impact-layered index structure with two layers. This
means that each inverted list longer than some threshold
is split into two layers, the first layer containing postings
with high term scores, and the second layer containing post-
ings with low scores. Then the resulting lists are fed into
the query, which treats the two layers as two distinct in-
verted lists. We implemented layered versions of our BMW,
BMM, and BMM-NLB algorithms with quantization and
on-the-fly generation, and evaluated the results. For the
non-reordered case, there were no significant improvements
over the non-layered version, but in the case of reordered
indexes we obtained the results in Table 13. We can see
that BMW benefits significantly from layering, while BMM
and BMM-NLB actually perform worse by adding layers in
the index-reordered case. For comparison, the best result
for this case in [9] was 7.4ms.

Algorithm | Time (ms) | # evals | # nextgeq
BMW 57 2,085 72,314
BMM 12.53 58, 560 287,494

BMM-NLB 21.63 58, 560 69,027

Table 13: Impact of docID reordering and layering on
query processing times with quantization and on-the-fly
generation.

Increasing k: Finally, we look at the performance of
our methods when we are interested not just in the top-10,
but the top-100 or top-1000 results. Getting more than 10
results is necessary in scenarios where results are re-ranked
in subsequent phases, as done in current web search engines.
(We note however that even in that case, we might only need
top-10 results from each of 100 query processing nodes.)

—&— BMW —— BMMS —¥— BMMS-NLB

40
35
30
25
20
15
10

5

0
10 50 100 500 1000

Average gp time (ms)

Top-k
Figure 6: Performance of top-k query processing as we
increase k.

We show results for the case of reordered indexes in Figure
6. We observe that while BMM and BMM-NLB show some
performance degradation as we increase k, BMW fares much
better, achieving around 12ms per query for top-100 and
around 21.5ms per query for top-1000.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed improved algorithms for
safe early termination in disjunctive queries based on the
recently proposed Block-Max Index structures. Our main
contributions are an experimental comparison of several new
and existing methods, a new hierarchical algorithm that out-
performs existing methods on reordered indexes, and new
and extremely fast methods using docID-based block bound-
aries plus techniques that make them feasible in terms of
space requirements. Overall, we achieve about a factor of 2
in speed-up over the fastest previous methods for standard
inverted indexes, and slightly less improvement for reordered
and layered index structures.

There are still many open problems and opportunities for
future research, including additional and better hierarchi-
cal algorithms, potential Block-Max structures for pairs of
frequently co-occurring terms, or early termination meth-
ods that better exploit the data parallel (SSE) instructions
available in current generations of processors.

Acknowledgement

This research was supported by NSF Grant 11S-1117829 "Ef-
ficient Query Processing in Large Search Engines”, and by
a grant from Google. Sergey Nepomnyachiy was supported
by NSF Grant ITR-0904246 "The Role of Order in Search”.

REFERENCES

9.

[1] V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking
with effective early termination. In Proceedings of the 24th
Annual Int. ACM SIGIR Conference on Research and
Development in Inf. Retrieval, 2001.

[2] V. N. Anh and A. Moffat. Pruned query evaluation using
pre-computed impacts. In Proc. of the 29th Annual Int. ACM
SIGIR Conf. on Research and Development in Information
Retrieval, 2006.

[3] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern
Information Retrieval. ACM Press / Addison-Wesley, 1999.

[4] H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and
G. Weikum. IO-Top-K: Index-access optimized top-k query
processing. In Proceedings of the 32th International
Conference on Very Large Data Bases, 2006.

5]

6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

R. Blanco and A. Barreiro. Probabilistic static pruning of
inverted files. ACM Transactions on Information Systems,
28(1), Jan. 2010.

A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Y.
Zien. Efficient query evaluation using a two-level retrieval
process. In Proc. of the 12th ACM Conf. on Information and
Knowledge Management, 2003.

K. Chakrabarti, S. Chaudhuri, and V. Ganti. Interval-based
pruning for top-k processing over compressed lists. In Proc. of
the 27th Int. Conf. on Data Engineering, 2011.

J. Dean. Challenges in building large-scale information retrieval
systems. In Proceedings of the Second ACM International
Conference on Web Search and Data Mining, 2009.

S. Ding and T. Suel. Faster top-k document retrieval using
block-max indexes. In Proc. of the 34th Int. ACM SIGIR
Conf. on Research and Development in Information
Retrieval, 2011.

R. Fagin. Combining fuzzy information: an overview. SIGMOD
Record, 31:2002, 2002.

R. Fagin, D. Carmel, D. Cohen, E. Farchi, M. Herscovici,

Y. Maarek, and A. Soffer. Static index pruning for information
retrieval systems. In Proceedings of the 24th Annual Int. ACM
SIGIR Conference on Research and Development in Inf.
Retrieval, 2001.

S. Jonassen and S. E. Bratsberg. Efficient compressed inverted
index skipping for disjunctive text-queries. In Proc. of the 33th
European Conf. on Information Retrieval, 2011.

X. Long and T. Suel. Optimized query execution in large search
engines with global page ordering. In Proceedings of the 29th
International Conference on Very Large Data Bases, 2003.
M. Persin, J. Zobel, and R. Sacks-davis. Filtered document
retrieval with frequency-sorted indexes. Journal of the
American Society for Information Science, 47:749-764, 1996.
K. Risvik, Y. Aasheim, and M. Lidal. Multi-tier architecture
for web search engines. In 1st Latin American Web Congress,
2003.

D. Shan, S. Ding, J. He, H. Yan, and X. Li. Optimized top-k
processing with global page scores on block-max indexes. In
Proc. of the Fifth Int. Conf. on Web Search and Data
Mining, 2012.

F. Silvestri. Sorting out the document identifier assignment
problem. In Proc. of the 29th European Conf. on Information
Retrieval, 2007.

F. Silvestri and R. Venturini. Vsencoding: efficient coding and
fast decoding of integer lists via dynamic programming. In
Proc. of the 19th ACM Conf. on Information and Knowledge
Management, 2010.

T. Strohman. Efficient Processing of Complex Features for
Information Retrieval. PhD thesis, University of Massachusetts
Ambherst, 2007.

T. Strohman and W. B. Croft. Efficient document retrieval in
main memory. In Proc. of the 30th Annual Int. ACM SIGIR
Conf. on Research and Development in Information
Retrieval, 2007.

T. Strohman, H. R. Turtle, and W. B. Croft. Optimization
strategies for complex queries. In Proc. of the 28th Annual Int.
ACM SIGIR Conf. on Research and Development in
Information Retrieval, 2005.

H. R. Turtle and J. Flood. Query evaluation: Strategies and
optimizations. Inf. Processing and Management,
31(6):831-850, 1995.

L. Wang, J. J. Lin, and D. Metzler. A cascade ranking model
for efficient ranked retrieval. In Proc. of the 34th Annual Int.
ACM SIGIR Conf. on Research and Development in
Information Retrieval, 2011.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images, Second
Edition. Morgan Kaufmann, 1999.

H. Yan, S. Ding, and T. Suel. Inverted index compression and
query processing with optimized document ordering. In Proc.
of the 18th Int. Conf. on World Wide Web, 2009.

J. Zhang, X. Long, and T. Suel. Performance of compressed
inverted list caching in search engines. In Proc. of the 17th Int.
Conf. on World Wide Web, 2008.

J. Zobel and A. Moffat. Inverted files for text search engines.
ACM Comput. Surv., 38(2), 2006.

M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar
RAM-CPU cache compression. In Proceedings of the 22th Int.
Conf. on Data Engineering, 2006.

