
Efficient Search in Large Textual Collections
with Redundancy

Jiangong Zhang and Torsten Suel
CIS Department

Polytechnic University
Brooklyn, NY 11201, USA

zjg@cis.poly.edu, suel@poly.edu

ABSTRACT
Current web search engines focus on searching only the most recent
snapshot of the web. In some cases, however, it would be desirable
to search over collections that include many different crawls and
versions of each page. One important example of such a collec-
tion is the Internet Archive, though there are many others. Since
the data size of such an archive is multiple times that of a single
snapshot, this presents us with significant performance challenges.
Current engines use various techniques for index compression and
optimized query execution, but these techniques do not exploit the
significant similarities between different versions of a page, or be-
tween different pages.

In this paper, we propose a general framework for indexing and
query processing of archival collections and, more generally, any
collections with a sufficient amount of redundancy. Our approach
results in significant reductions in index size and query processing
costs on such collections, and it is orthogonal to and can be com-
bined with the existing techniques. It also supports highlyefficient
updates, both locally and over a network. Within this framework,
we describe and evaluate different implementations that trade off
index size versus CPU cost and other factors, and discuss applica-
tions ranging from archival web search to local search of websites,
email archives, or file systems. We present experimental results
based on search engine query log and a large collection consisting
of multiple crawls.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing

General Terms
Algorithms, Design, Experimentation.

Keywords
Search engines, inverted index, redundancy elimination, index com-
pression, query execution.

1. INTRODUCTION
With the rapid growth of the web, more and more people use web

search engines as their primary means for locating relevantinfor-
mation. Such search engines are built on large clusters of hundreds
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or thousands of servers, and employ numerous published and pro-
prietary performance optimizations in order to support thousands
of queries per second on billions of web pages. Current search en-
gines focus on providing access to the most recent snapshot of the
evolving web. In order to optimize the freshness of their index,
search engine crawlers continuously retrieve new web pages, add
them to their document set, and then either periodically or contin-
uously update their inverted index to reflect the new data. Ifthe
URL of a page has been previously crawled, then the engine typi-
cally replaces the old with the newer version, and any information
contained only in the older version becomes unavailable.

While most users are primarily interested in current pages,there
are many cases where a search over all previous versions would
also be of interest. As one important example, the Internet Archive
has collected more than85 billion web pages over the last decade
in an attempt to archive and preserve the information on the web. It
is currently not feasible for the archive to offer full-textsearch on
the entire data for a large user population, due to the high cost of
processing a query on such a data set. One reason is that current
indexing and query processing techniques, when applied to say ten
successive crawls of the same set of URLs, result in index sizes
and query processing costs roughly ten times that of a singlecrawl.
Of course, completely identical versions of a page could be simply
removed from the index. However, in many cases the new version
of a page is different from, but still substantially similarto, the
previous one, and it would be desirable to be able to exploit this
redundancy to decrease index size and increase query throughput.

A large amount of recent research by networking, OS, and data
compression researchers has focused on the problem of efficiently
storing and transmitting redundant data collections. Thisincludes
work on differential compression techniques, e.g., for storage and
versioning file systems [22, 13, 26, 17, 10], file synchronization
techniques such asrsync [37], and redundancy-eliminating com-
munication protocols for web access or other tasks [19, 25, 27, 34].
Thus, we know how to store and transmit the redundant document
collections themselves in a highly efficient manner. However, al-
most all current techniques for dealing with inverted indexes on
such collections, including current index compression techniques,
are unable to exploit redundancy across version boundaries(one
exception is the very recent work in [7, 16] which we discuss later).

In this paper, we focus on this problem of how to efficiently in-
dex and search collections with significant redundancy. We propose
a complete framework for indexing, index maintenance, and query
processing on such collections. Our main focus is on archival col-
lections, such as the Internet Archive, that contain several similar
versions of the same document. In addition, there are several other
scenarios that can be addressed with our approach. General broad-



based web crawls as well as site-specific collections also tend to
have a significant amount of redundancy, particularly within large
sites [12]. The same is true for email archives where repliesoften
quote from previous messages in the thread. In these cases, our
framework also reduces the index size, though by a more moderate
factor. It can also support highly efficient updates in the case where
old versions are replaced by new versions, and in the case where a
remote index is updated across a network. Finally, there areinter-
esting possibilities for applications to desktop search and indexing
of versioning file systems that retain old versions of all files.

The basic ideas underlying our approach are almost embarrass-
ingly simple, and we now describe them very briefly. First, weuse
content-dependent string partitioning techniques, e.g.,winnowing
[30] or Karp-Rabin partitioning [20], to split each document into
a number offragments, say,10 to 25 on average. The main char-
acteristic of these techniques is that similar files will have many
fragments in common; this has been previously exploited by OS
and networking researchers to save storage and transmission costs
on redundant data sets [13, 19, 22, 25, 27]. We then simply in-
dex these fragments instead of the complete documents, i.e., each
distinct fragment is assigned a fragment ID and the index contains
references to fragments rather than documents. The result is a much
smaller index for collections with significant redundancy.We then
design modified algorithms fordocument-at-a-time query process-
ing that efficiently stitch the fragments back together during eval-
uation of a query. Finally, by also identifying each fragment by a
hash of its content, we can support extremely efficient updates on
such indexes, both locally and across a network.

While the basic ideas are simple, there are various details that
complicate matters. In particular, we consider several different
fragment sharing policies that trade off index size versus the CPU
cost of query processing and the size of certain auxiliary data struc-
tures: In some cases, we may limit elimination of identical frag-
ments to different versions of a page or pages within a site, while
in other cases we may want to detect duplicate fragments across
the entire collection. While some of the ingredients in our ap-
proach have been previously employed in several scenarios,we be-
lieve that our general framework still makes a significant and novel
contribution. As mentioned, redundancy elimination through par-
titioning of data into blocks has been used to reduce transmission
costs and storage sizes for redundant data sets; see, e.g., [13, 19, 22,
25, 27, 37]. The most relevant previous results on textual indexing
are theLandmarks approach [23], which focuses on efficient index
updates when a new version of a document replaces an older one,
and the very recent work in [7, 16] on searching redundant collec-
tions. TheLandmarks approach in particular strongly influenced
our approach.

The remainder of this paper is organized as follows. In the next
section, we provide some necessary background. Section 3 dis-
cusses related work in more detail, and Section 4 summarizesthe
contributions of this paper. Our general framework is introduced
and discussed in detail in Section 5. Section 6 presents a prelim-
inary experimental evaluation of our framework using real query
logs and web data. Finally, Section 7 provides some concluding
remarks.

2. TECHNICAL BACKGROUND
We now provide some basic technical background on text in-

dexing, search engine query processing, and redundancy detection
through partitioning. In the following definitions, we assume that
we have a document collectionD = fd0; d1; : : : dn�1g of n web
pages that are stored on disk. Each document is uniquely identified
by a document ID (docID); in the simplest case the documents are

just numbered from0 to n� 1. For now we do not distinguish be-
tween different documents and different versions of the same doc-
ument. LetW = fw0; w1; : : : ; wm�1g be all distinct words that
occur anywhere in the collection. Typically, almost any text string
that appears between separating symbols such as spaces, commas,
etc., is treated as a valid word (orterm) for indexing purposes.

Indexes: An inverted index I for the collection consists of a
set of inverted listsIw0 ; Iw1 ; : : : ; Iwm�1 where listIw contains
a posting for each document containingw. Each posting con-
tains the ID of the document where the word occurs (docID), the
number of occurrences in this document (frequency), the (byte- or
word-based) positions of the occurrences within the document (po-
sitions), plus possibly other information about the context of each
occurrence (e.g., in title, in bold font, in anchor text). Inthis paper,
we assume that each posting is of the form(did; f; p0; : : : ; pf�1).
The postings in each inverted list are usually sorted by docID, and
stored on disk in highly compressed form. Thus, Boolean queries
can be implemented as unions and intersections of these lists, while
phrase searches (e.g., “New York”) can be answered by looking at
the positions of the two words. We refer to [38] for more details.

Ranked Queries:We define a queryq = ft0; t1; : : : ; td�1g as
just a set of terms (words). For simplicity, we ignore issuessuch as
term order in the query, phrase searches, or various other options,
though our techniques can be adapted to all of these. The mostba-
sic way to perform ranking of results in search engines is based on
comparing the words (terms) contained in the documents and in the
query. More precisely, documents are modeled as unordered bags
of words, and a ranking function assigns a score to each document
with respect to the current query, based on the frequency of each
query word in the page and in the overall collection, the length of
the document, and maybe the context of the occurrence (e.g.,higher
score if term in title or bold face). Formally, aranking function is
a functionF that, given a queryq = ft0; t1; : : : tk�1g, assigns to
each documentd a scoreF (d; q). The system then returns the, say,10 documents with the highest score. Commonly studied classes
of ranking functions include theCosine andOkapi measures, but
current search engines use many other factors in addition tosimple
term-based ranking. Our techniques are largely orthogonalto these
issues.

The most important observation for our purposes here is thata
ranked query can be processed by traversing the inverted lists for
the query terms, and computing the score for each document en-
countered in the lists, based on the information stored in the post-
ings plus usually some additional statistics stored separately. For
various reasons, many web search engines prefer to return docu-
ments that contain all (or almost all [6]) of the query terms;in this
case, it suffices to only compute the score of any document whose
docID is in the intersection of the relevant inverted lists.

Document-at-a-Time Query Processing:The cost of query
processing is usually dominated by that of traversing the inverted
lists. For large collections, these lists become very long.Given
several billion pages, a typical query involves hundreds ofMB to
several GB of index data which, unless cached in memory, has to be
fetched from disk. Thus, list traversal and intersection computation
has to be highly optimized, and should not require holding the com-
plete lists even temporarily in main memory. This is usuallydone
using an approach calleddocument-at-a-time (DAAT) query pro-
cessing, where we simultaneously traverse the relevant lists from
start to end and compute the scores of the relevant documentsen
passant [6, 21].

We later need to adapt this approach to our new index structure,
and thus we now provide some more discussion; additional details
are available in the appendix. In the DAAT approach, we main-



tain one pointer into each of the inverted lists involved in the query,
and move these pointers forward in a synchronized manner to iden-
tify postings with matching docIDs in the different lists. At any
point in time, only one posting from each list is considered and
must be available in uncompressed form in main memory. Another
advantage of the approach is that it allows us to implement opti-
mizations that skip over many elements when moving forward in
the lists [24], while hiding all details of the index structure and
compression method.

Content-Depending File Partitioning Using Winnowing: A
significant amount of research in the networking, OS, and data
compression communities has focused on eliminating redundancies
in large data sets by partitioning each file into a number of blocks
and then removing any blocks that have previously occurred.This
is usually done by identifying each block by a hash of its content;
if we choose the blocks to be large enough, we can limit the num-
ber of hashes such that they can be kept in main memory for many
scenarios. One problem is how to perform the partitioning. If we
simply partition each file into blocks of fixed size and store their
hashes, then we would be unable to detect many repeated blocks
due to alignment issues. (E.g., if one file differs from another only
by a deleted or inserted character at the beginning, none of the
blocks would likely match.) In some cases, this can be resolved
by checking for all possible alignments between current andprevi-
ously seen blocks [37, 34, 32], but in other scenarios this isinfea-
sible [22, 25, 13, 27, 19].

For such cases, several techniques have been proposed that parti-
tion a file in a content-dependent manner, such that two similar files
are likely to contain a large number of common blocks [20, 30,29,
35]. Among these, we focus on the more recentwinnowing tech-
nique proposed in [30], which appears to perform well in practice.
Given a filef [0 : : : n� 1℄, the process runs in two phases:

(1) First, we choose a hash functionH that maps substrings of
some fixed small sizeb to integer values, say forb around10 to 20. We then hash each of then � b + 1 substringssi = f [i : : : i + b � 1℄ in f , resulting in an array of integer
valuesh[0 : : : n� b℄ with h[i℄ = H(si).

(2) We now choose a larger window sizew, sayw = 100 or
more, and slide this window over the arrayh[0 : : : n � b℄,
one position at a time. For every position of the window, we
now use the following rules to partition the original filef :

(a) Supposeh[i℄ is strictly smaller than all other valuesh[j℄
in the current window of sizew. Then cutf betweenf [i� 1℄ andf [i℄.

(b) Suppose there are several positionsi in the current win-
dow with the same minimum valueh[i℄. If we have pre-
viously cut directly before one of these positions, then
no cut is applied in this step. Otherwise, cut before the
rightmost such position.

It is shown in [30] that if two files have a common substring of
size at leastw + b + 1, then they are guaranteed to have at least
one common block. The maximum size of a block isw, while the
expected size, assuming a random hashH, is (w+1)=2. The parti-
tioning can be performed highly efficiently by using arolling hash
functionH, i.e., a function such thatH(si+1) can be computed di-
rectly fromH(si) andf [i + b℄. The entire process is illustrated in
Figure 2.1.

Index Updates: Finally, we need some background on efficient
schemes for updating inverted indexes. Consider a new page that
has been crawled and needs to be added to the index. The primary
performance challenge here is that the typical page has several hun-
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Figure 2.1: Example of the winnowing approach on a file. A
small window of sizeb = 3 moves over the file to create a se-
quence of hashes. A larger window of sizew = 5 moves over
the hashes to determine block boundaries.

dred distinct words, and thus a naive scheme for disk-resident in-
dexes would require several hundred changes in different locations
on disk. A number of optimizations for index updates have been
proposed [9, 36, 11]. If a very high rate of updates needs to be
supported, then the best approach appears to be based on periodi-
cally pushing updates to the index. That is, when new documents
arrive in the system, we first add them to a second, memory-based
index structure. To keep this structure from growing beyondmem-
ory size, we periodically merge it (or parts of it) into the main index
on disk. If the main index is very large, it may be preferable to use
a multi-level scheme where the data in memory is first merged into
a slightly larger index structure on disk, which itself is periodically
merged into an even larger structure, etc. To process a query, we
perform separate accesses into each of the index structures(includ-
ing the one in memory) and then merge the results. This approach
has provable performance bounds and is used in a number of sys-
tems (e.g., Lucene and the text index of MS SQL Server).

Many details depend on the types of updates we need to support,
e.g., addition of new documents, deletions, replacement ofold ver-
sions by newer versions, or addition of newer versions. Notethat
if we do not store positions in the postings, then a new version of
a page that differs very slightly from the previous one may only
require updates to a few postings. If positions are stored aswell,
then a single word added to the beginning of the page may result
in updates to all postings. This challenge was addressed by the
Landmarks approach in [23], which we discuss in more detail later.
In general, when a document is added, deleted, or modified, this
results in a sequence of insert, delete, and update commandson
individual postings that are first buffered in memory and then pe-
riodically applied to the larger disk-based structures. The perfor-
mance of such an update scheme is determined by the number of
such commands that are generated, as this determines the frequency
and amortized cost of the periodic merges into the disk-based struc-
tures. In our later experiments, we will use this as our measure of
efficiency.

3. DISCUSSION OF RELATED WORK
We now provide some pointers to related work and discuss the

most closely related previous work in more detail. For basics of
search engine architecture we refer to [5, 28, 14]. For background
on indexing, ranking, and query execution in IR and web search
engines, see [2, 3, 38, 39]. Document-at-a-time query processing
is described and evaluated, e.g., in [21].

Inverted Index Compression:There are a large number of tech-
niques for inverted index compression; see [38, 39] for an overview.
One simple and popular scheme calledvar-byte, evaluated in [31],



encodes each posting, frequency, or position in a variable number
of bytes. This allows much faster decompression than many bit-
aligned schemes such as Golomb, Rice, Gamma, or Delta coding
that in turn achieve a smaller compressed size. However, very re-
cent bit-aligned schemes in [1, 15] manage to outperform var-byte
in terms of both compressed size and decompression speed. Inour
experiments, we will use var-byte as well as the recent Simple-9
scheme from [1]. Our approach here is orthogonal to the choice
of compression, and can be used in combination with any of these
techniques.

We note that improvements in compression rate can also be ob-
tained by assigning docIDs to pages based on similarity and then
applying appropriate local coding models [4, 33]. However,these
techniques give only fairly moderate improvements, and do no ef-
fectively exploit redundancies when pages are very similar. The
issue of assigning appropriate docIDs (or in our case, docIDs and
fragment IDs) will also come up in our approach.

File Partitioning and Redundancy Elimination: A number of
networking, OS, and data compression researchers have studied the
problem of eliminating repeatedly occurring blocks of datafrom
large data sets; see, e.g., [37, 27, 34, 32, 22, 25, 13, 19]. Insome
cases [37, 32, 18, 26], it is possible to use blocks of fixed size, but
many other scenarios require the use of content-dependent parti-
tioning techniques such as [20, 30, 29, 35]. We use thewinnowing
technique in [30], which according to our experiments performs
well in practice in terms of the trade-off between the amountof re-
dundancy detected and the number of blocks that are created.Our
initial goal in this work was to study bandwidth-efficient index up-
dates over a network, and we were particularly influenced in this
direction byrsync [37] and theLow-Bandwidth File System [25].

We also note that a lot of work in the web community has fo-
cused on detecting plagiarism, near-duplicate pages, and phrase-
level duplication between different documents; see, e.g.,[12, 8].
In fact, the winnowing technique was initially proposed forsuch
purposes rather than for eliminating redundancy for performance
reasons. (Our description of this technique in the previoussection
was adapted to this new scenario.)

Index Updates:A number of researchers have studied the prob-
lem of efficiently updating inverted index structures [9, 36, 11,
23]. As mentioned, current state-of-the-art methods generate post-
ing updates that are only periodically merged into the disk-based
structures, rather than directly applying changes on disk.

Most relevant to our work here is theLandmarks approach in
[23], which focuses on the case where an old version of a web page
is replaced with a updated, but often very similar, version.If posi-
tions are stored in each posting, then a naive approach wouldhave
to update almost all postings when a new version arrives, dueto
changes in alignment. The approach in [23] avoids this by express-
ing positions relative to certainLandmarks in the page, rather than
as absolute offsets from the start of the page. When an updateoc-
curs, posting updates are only generated for those areas of the page
that have actually changed, and the position information for the
Landmarks is updated to account for changes in the offsets from the
start of the page. We note that theLandmarks approach can be seen
as an implicit partitioning of a page into blocks or fragments, one
for each Landmark. The work in [23] looked at several heuristics
for selecting theLandmarks, but did not consider the above parti-
tioning techniques. One main insight in our work came when we
realized the relationship between file synchronization techniques
such asrsync and the index update approach inLandmarks.

However, there are also a number of differences to our work.
The work in [23] focuses on the scenario where old versions of
pages are replaced by newer ones, and does not consider the case of

archival collections and collections with redundancies between dif-
ferent URLs, which is the main focus of our work. We use content-
dependent partitionings and identify each resulting fragment by a
hash. Our approach also supports efficient updates over a network,
and does not require access to the complete outdated versionduring
updates. In summary, we believe our framework provides an ele-
gant generalization and significant extension to the work in[23].

Indexing of Redundant Content: Very recent work in [7, 16],
published while our work was in progress, describes alternative ap-
proaches for indexing text collections with redundancy. The basic
idea is also to avoid repeated indexing of content that is shared be-
tween different pages or different versions of a page. However, the
approaches taken are somewhat different from ours. In [7], simi-
lar documents are organized in a tree structure where each node is
a document with some private and some shared content, and each
node inherits its ancestors’ shared content. In [16], common parts
of different versions of a document are identified by solvinga mul-
tiple sequence alignment problem. The approaches in [7, 16]also
use adaptations of standard DAAT query processing. They do not
consider incremental updates, but require that the collection is fully
available during indexing. There are interesting opportunities for
future research that combine ideas from these approaches with our
own.

4. CONTRIBUTIONS OF THIS PAPER
We study the problem of indexing and searching large web page

collections with redundancy, and propose a new and general frame-
work that results in significant savings in the size of the inverted
index and the performance of query processing. In particular, our
contributions are:

(1) We propose the use of content-dependent partitioning tech-
niques, in particular thewinnowing approach in [30], to avoid
repeated indexing of content that is shared between several
pages or several versions of a page. This is done by parti-
tioning each page into a number of fragments and then inde-
pendently indexing each fragment using standard techniques.

(2) We propose modifications of document-at-a-time query pro-
cessing algorithms that can efficiently utilize such fragment-
based indexes. We consider several sharing policies between
different pages, and show how to adapt query processing for
these policies.

(3) We discuss several application scenarios for our framework,
and provide efficient update mechanisms for local indexes
and index updates over a network.

(4) We perform a preliminary experimental evaluation of our
framework based on search engine query traces and more
than6 million web pages extracted from several crawls. Our
results show benefits in index size, query processing speed,
and update cost.

5. OUR FRAMEWORK
We now describe our new framework in detail. We first describe

the various data structures in our setup and the basic steps during
indexing and index updates.

5.1 Basic Setup
In the following, we use the term page to refer to distinct docu-

ments or information items identified, e.g., by a URL. We use the
termversion to refer to different versions of the same page. Thus, if
a crawler visits the same one million URLs ten times, we have one
million pages and ten million versions. We use the termfragment to



refer to a block of data produced by applying a content-dependent
partitioning technique to a page. Pages are identified by a docID,
while fragments are identified by a fragID.

Basic Indexing Process:To index a new version of a page, we
first partition it into a number of fragments. However, before run-
ning winnowing, we first remove all HTML tags from the page and
then hash each word in the resulting text page to an integer value;
in fact, it suffices to hash to an unsigned char. We then run winnow-
ing on the resulting unsigned char array, where each character cor-
responds to a single word – this guarantees that partitioning aligns
with word boundaries. By using values ofw between100 and200,
we obtain fragments containing50 to 100 words on average; thus
the typical web page is divided into about10 to 20 fragments.

We then compute an MD5 hash over the content of each frag-
ment, and check a global table to see if a fragment with this hash
has been previously indexed. If yes, then we do not index thisfrag-
ment. Otherwise, we assign a unique fragment ID (fragID) to this
fragment, and add for each term in the fragment a posting of the
form (fragID; f; p0; : : : ; pf�1), wheref is the number of oc-
currences of the term in this fragment and thepi are the offsets of
the occurrences from the start of the fragment. We will laterdiscuss
how to best generate fragIDs, as this impacts query processing and
index size. For now, we observe that these postings can be treated
by the index just as normal postings, and that the average gapbe-
tween consecutive fragIDs in the inverted lists increases while the
average values off and thepi decrease, relative to the docIDs,
frequencies, and positions in a standard index.

Finally, for each page, we maintain a data structure that keeps
track of the different versions of the pages and which fragments
each version consists of. This structure will be stored in com-
pressed form, and is updated whenever we add a new page or ver-
sion to the index (even if a page consists completely of already
existing fragments).

Data Structures: Search engines typically contain three major
data structures that are needed for query processing:� the inverted index, consisting of inverted lists sorted by do-

cID and mapped into one or several large files,� a dictionary structure which stores for each distinct term in
the collection a pointer to the start of the inverted list forthis
term, plus useful statistical information such as the number
of documents containing the term, and� a page table which stores for each docID the length of the
corresponding page in words, other useful information such
as the Pagerank value of the page, and possibly the complete
URL of the page.

The structures are illustrated in the top half of Figure 5.1.To exe-
cute a query, we first use the dictionary to find the start of thein-
verted lists of the query terms, then compute the top-10 results by
traversing the lists and computing scores using the postinginfor-
mation and the additional statistics kept in the dictionaryand page
table, and finally we use the information in the page table to fetch
the actual pages for the top-10 results in order to return meaningful
text snippets with the results.

In our framework, we add several new data structures, shown in
the bottom half of Figure 5.1, as follows:� a hash table which stores a hash value (e.g., 64-bit of MD5)

of the content of each distinct fragment that has occurred
in the collection, plus the corresponding fragID (or several
fragIDs in some scenarios).� a doc/version table that stores information about a page and
its various versions, in particular how many versions there
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Figure 5.1: Major data structures in our index organization:
standard (top) and additional structures in a fragment-based
index (bottom).

are, which version contains which fragment, and how large
each fragment is.� a fragment reuse table that stores in whichother pages a frag-
ment occurs. For efficiency reasons, it is useful to distinguish
betweenlocal sharing, where a fragment occurs repeatedly
in different versions of one page, andglobal sharing, where
fragments are reused in versions of other pages. Each frag-
ment has aprimary page, which is the first page where it
occurs. Entries in this table are only created when an already
existing fragment is reused in another page.

We note that in some scenarios, we can remove or merge some
of the structures, as we discuss later. For example, the hashtable
is only needed during updates. In terms of memory resources,the
largest new structure is typically the hash map which (for large data
sets and with proper prefix compression) can be stored in about 9
bytes for each pair of a64-bit hash and a32-bit fragID. (We chose64 bits as this results in a fairly low probability of any hash colli-
sions even for moderately large data sets. Note that if a collision
does occur, the result is equivalent to that of a slightly incorrect
parsing of the new page with the colliding fragment.)

5.2 Algorithms for Local and Global Sharing
We now consider query processing in our new index organiza-

tion. In particular, we consider two different sharing policies:� Global Sharing: In this policy, we allow unrestricted re-
dundancy elimination across pages. Thus, if a fragment has
previously occurred in any other page, it is not indexed again.� Local Sharing: In this policy, we only avoid re-indexing of
a fragment if it has previously occurred in a version of the
same page.

Note that there are other interesting choices in between these two,
such as allowing fragment sharing only among pages on the same
site. Since such pages are more likely to be similar than random
pages from other sites, this might achieve most of the benefits of
global sharing without some of the costs. We focus here on thetwo
above extreme cases.

Concerning the assignment of fragIDs to fragments, it will be de-
sirable to number fragments in a way such that fragments occurring
in the same page are close to each other in the inverted lists.This
is easy to do if we have no updates, while a little bit more work
is needed in the update case. However, even with updates thisis
possible if suitable adjustments to the numbering scheme are per-
formed as part of the periodic update operations to the disk-based
index that are performed by efficient update schemes. It it some-
times useful to assume that a fragID is actually a pair consisting of



the docID of its primary page and a fragment number; i.e.,(89; 3)
means that a fragment occurred first in page89 and was the fourth
fragment that occurred first in that page. In terms of actual post-
ing structure, we may either store the fragID as one number oras
two smaller numbers, assuming care is taken to use an appropriate
index compression technique.

Our query processing can be seen as consisting of three phases,
(i) identification of pages that contain all query words (whether
or not they occur in the same version), (ii) for each such pagea
check if any version of the page contains all words (this requires
retrieval of the doc/version table to understand how fragments map
to versions), and (iii) computation of the actual score for apage or
version. Note that this possibly also allows us to rank pagesand
versions based on other factors such as when and how long a page
contained the query words, or other temporal factors that wedo not
explore in this paper.

Query Processing with Global Sharing: In this case, we pro-
cess a query in a similar manner as in a standard index, by scan-
ning lists from start to end. However, there are some differences:
In standard indexes, we can often skip forward over many post-
ings (usingnextGEQ()), while the existence of global sharing now
prevents us from doing so in many cases. For example, consider
the case of a query for “cat”,“dog”, and “sheep” where “cat” is the
shortest list and “sheep” the longest, and “cat” occurs firstin fragID(5; 1), “dog” occurs first in(2; 0), and “sheep” occurs first in(9; 3).
Suppose we start by reading the first posting in the “cat” list, with
fragID (5; 1). Then we cannot simply follow the standard DAAT
approach: If the fragment(5; 1) is also used in a version of page9, then we have to make sure not to skip any fragments for page9
in the “dog” list since a match for “dog” there would indicatethat
each of the three words occurs at least in some version of page9. If
the fragment(2; 0) also occurs in page5, then we cannot even skip
any fragments for page5 in the “dog” list.

In other words, global sharing restricts the amount of skipping
we can perform in the index traversal when computing an intersec-
tion. In particular, in all lists, in addition to the stops implied by
standard DAAT, we need to stop to check for the existence of any
postings for fragIDs that are later reused in another page. If such
a posting exists, we also need to stop to check for any postings in
pages where those fragIDs are later reused – we can find the do-
cIDs and thus fragIDs of those later pages through a lookup into
the fragment reuse table. If reuse is concentrated on a few frag-
ments that are reused by many other pages, then we can still get a
reasonable amount of skipping in the index, but in other cases we
end up traversing all postings. In general, when we find a posting
that is later reused, we create aticket that stores the information in
the posting itself and the pages where the fragID is reused later, and
we put these tickets into a priority queue organized by the docID
of the next reuse. As we later visit postings that match a ticket, we
update and eventually erase the ticket.

A few remarks about the costs of this scheme. Forward skips
in DAAT processing can save a significant amount of CPU time
as we can avoid uncompressing all postings (but the importance
of this aspect may be more modest for very recent schemes such
as [15] that can decompress postings at a rate of several GB per
second). On the other hand, skipping seems to rarely save much on
disk transfer times given current disk performance characteristics,
as skips are rarely long enough to skip a large enough chunk of
data on disk. (In our experiments, the query processor endedup
almost always fetching all the list data). There is additional time
and space overhead due to the priority queue; however, we findthat
most sharing is fairly local, i.e., between pages on the samesite,
and thus the queue stays fairly small most of the time.

Query Processing with Local Sharing:If we only allow local
sharing, then the above algorithm simplifies in several ways. First,
we do not need a fragment reuse table at all. Second, no tickets are
required, and we can essentially run standard DAAT on the index to
implement phase (i). On the other hand, we would expect a larger
index size. Local sharing alone should already give decent benefits
if there are many versions of each page, but of course will give no
benefit at all for a single snapshot of pages with a certain amount
of redundant content between different pages.

Discussion:In summary, our approach requires changes in query
processing that may result in additional computational andmemory
costs. The details depend on our choice of sharing policy (local,
global, or in between), but also on whether we assume AND or OR
semantics for our query terms. For AND, we may not be able to
perform as many forward skips, while for OR this is less of an is-
sue. On the other hand, fast schemes for OR often use precomputed
quantized score that take document lengths into account; itis not
clear how to do this in our approach where a fragment may occur
in several documents of different lengths. Finally, additional dif-
ferences and challenges may arise once we add early-termination
techniques to the query processor, but this is beyond the scope of
this paper.

5.3 Index Updates
We now consider how to use our framework for efficient up-

dating of the index. First, consider the case of a new version(or
new page) being added to the index. In this case, we partitionthe
page into fragments, look up the hashes of the fragments in the
hash table, and then index only those fragments that do not find
a match while discarding the others. In addition, we update or
insert the appropriate records in the various tables. As we index
the new fragments, we generate postings that are first inserted into
a main-memory structure and later periodically merged intodisk-
based structures. One nice feature of the approach, and advantage
over Landmarks [23], is that we do not even have to fetch the old
version of the page from disk.

This leads to a very simple protocol for the case where, say, a
crawler needs to update a remote index over a network. In the
first phase, we send only the MD5 hashes of the fragments, and
the index replies with a bit vector indicating which hashes found
a match. In the second phase, we send only those fragments that
did not find a match. We note that this protocol is of course very
close torsync [37], LBFS [25], and similar schemes for distributing
redundant data sets. In general, our approach naturally combines
with transmission and storage schemes based on block-wise elim-
ination of redundancies, with interesting implications for possible
applications in storage and file systems.

Finally, we can also support updates where a new version re-
places an older version. In this case, in addition to creating new
postings for new fragments, we also need to delete old fragments
that are not used by any page anymore. This is done most effi-
ciently by first adding a “delete fragment” command to a main-
memory structure, and propagating the deletion to disk during the
next periodic merge of the updates onto disk. One assumptionin
this approach is of course that we can hold a strong enough hash
value for each fragment in memory; our experiments indicatethat
this is realistic for many scenarios. (If no incremental updates are
performed, then of course the hash table is not needed at all during
query processing.)

5.4 Application Scenarios
We now briefly summarize a few of the scenarios and applica-

tions that are covered by our framework.



� Archival Search: This is the main focus of our presenta-
tion here, where for each page we have a number of different
versions.� Redundant Web Collections:Pages from the same site, or
even from different sites, often share common blocks of data
that can be eliminated with our approach.� Email and Personal Files: As also observed in [7], large
amounts of email data, and collections of personal files, also
frequently contain significant amounts of common data.� Versioning File Systems:As indicated in the previous sub-
section, our techniques are uniquely suited for integration
with versioning file systems that keep all versions of files,
or with any storage systems that use block-wise redundancy
elimination when storing data. Another interesting applica-
tion in this direction might be for use in revision control sys-
tems for code or documents.� Distributed Indexing: As also discussed, our approach al-
lows efficient updating over a network. This includes index-
ing in distributed/P2P systems as well as functionalities such
as the “search across machines” feature in Google Desktop
Search that synchronizes indexes across machines.

6. EXPERIMENTAL EVALUATION
We now present our results from a preliminary experimental eval-

uation of our approach. We first describe the data sets, then evaluate
the amount of redundancy detected by our schemes, and then pro-
vide some limited results for an actual compressed index structure
and query processor implementing our framework.

Data Sets: The main data set for our evaluation was extracted
from a set of19 weekly crawls of several hundred large sites dur-
ing Spring 2006 that was made available by the Stanford WebBase
project. Each crawl consisted of about2 million pages that were
obtained by starting from the same set of seed pages in each site.
However, due to changes in the site structure over time, thisre-
sulted in somewhat different sets of URLs that were crawled in each
week. Thus, the set does not contain19 versions of each page, or
even most pages.

We preprocessed the set by removing all pages that we could not
effectively parse (mostly pages primarily or completely inFlash or
Javascript), and by removing all exact duplicates among thever-
sions. Exact duplicates are easily handled with existing techniques
and thus not a good measure of the efficacy of our approach. This
left us with a total of 6,356,374 versions of pages from 2,528,362
distinct URLs. Thus, on average there were only2:5 versions of
each page, though some pages have more versions while many oth-
ers have only one.

We show the cumulative distributions of the number of URLs
and number of versions over the19 weeks in Figure 6.1. As we
see, about40% of the URLs and15% of the total data (versions) is
concentrated in the crawl for the first week, while afterwards new
versions and URLs arise at some smaller but fairly constant rate.

Number of Distinct Fragments and Term Positions:We first
look at the resulting numbers of fragments and the amount of re-
dundancy that we observed in the collection. In Figures 6.2 and
6.3, we see the reduction in the number of fragments and totalnum-
ber of term positions that occurs when we eliminate duplicate frag-
ments under a local sharing policy. For the first crawl, wherethere
are no different versions of the same URL, the ratio is (of course)
essentially1:0, with very minor savings due to fragments repeated
within the same version of a page. When we use data from all19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19
Version Number

R
el

at
iv

e 
S

iz
e 

of
 D

is
tin

ct
U

R
Ls

/V
er

si
on

s

Distinct URLs

Distinct Versions

Figure 6.1: Increase in the number of URLS and versions versus
crawl week.

weeks, between40% (w = 300) and50% (w = 100) of all frag-
ments (Figure 6.2) and positions (Figure 6.3) are eliminated. The
results in Figure 6.3 are about1% worse than those in Figure 6.2 as
small fragments are slightly more likely to occur repeatedly.
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Figure 6.2: Cumulative percentage of unique fragments versus week
of crawl.
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Figure 6.3: Cumulative percentage of positions within unique frag-
ments versus week of crawl.

Next, we compare local versus global fragment sharing policies
in Figure 6.4. We see that for our data set there is a significant addi-
tional benefit due to sharing between different pages. For a window
size ofw = 50, we observe almost a factor of4 in reduction in the
number of fragments, while even forw = 300 we get a factor of2:5, when compared to an index with no redundancy elimination.

Figure 6.5 shows the results as a fraction of the corresponding
numbers from a standard index, for both the number of fragments
and the number of positions. We see significant benefits for global
sharing over local sharing, and for local sharing over no sharing,
that increase as we decrease the window sizew. We note in particu-
lar that global sharing benefits more than local sharing fromsmaller
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window sizes, and thus the difference between the two methods in-
creases for smallw. This agrees with our expectation that different
versions of the same page are more similar, and have larger blocks
of common content, than similar but different pages. (Recall that
the difference between local and global sharing is due to matches
not available in other versions, but only in other pages.)
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Compressed Size and Query Performance:We now show some
preliminary results on the actual compressed index size andthe
cost of processing queries. All subsequent results are for awin-
dow size ofw = 100 on the19 crawls, and were performed on a
machine with a3:2 Ghz Pentium-4. We experimented with two dif-
ferent index compression techniques, the simple byte-aligned var-
byte method [31], and the very recent word/bit-aligned Simple-9
technique in [1]. Both schemes were reimplemented and carefully
optimized by us, resulting in decompression speeds of between150
and350 million integers per second for var-byte, and between200
and400 million integers per second for Simple-9. Overall, Simple-
9 consistently outperformed var-byte in terms of decompression
speed. As observed in [1], decompression speed varies basedon
the sizes of the numbers involved. For our standard index, weob-
served decompression speeds close to the upper limits of theranges
for docIDs and frequencies (which tend to be smaller values), and
closer to the lower limit for position information (which also dom-
inates the size of the index overall). We note that these numbers

slightly shift as we move from docIDs to fragIDs with larger gaps
but smaller frequency and position values.

# of Frags # of Posits Index Size (GB)
(millions) (billions) var-byte Simple-9 S9 no Pos

No Sharing 121.48 6.100 13.03 10.51 2.23
Local Sharing 63.89 3.271 7.34 5.23 2.68
Global Sharing 38.74 2.126 5.01 3.59 1.84

Table 6.1: Comparison of resulting index sizes for a standard
index and for fragment-based indexes with local and global
sharing. Shown from left to right are the number of fragments,
total number of positions stored, index size under var-byte
compression, index size under Simple-9 compression, and index
size under Simple-9 when no position information is stored.

In Table 6.1, we compare the resulting index sizes for a standard
index, an index with local sharing, and an index with global shar-
ing. We note that Simple-9 achieves a smaller compressed size than
var-byte, and that the advantage becomes more pronounced for lo-
cal and global sharing. The reason is that var-byte cannot exploit
the smaller frequency and position values in indexes with local and
global sharing, as it must use at least one byte for every value that
is compressed. For Simple-9, we observe a reduction in indexsize
by a factor of2 for local sharing, and almost3 for global sharing,
over a standard index. We also note that benefits are much smaller,
and in many cases nonexistent, for index structures that do not store
position information; for local sharing, we see an increasein index
size while for global sharing we get a small benefit. This is not sur-
prising since a fragment-based index essentially stores approximate
position information (i.e., in which fragment a term occurs) that is
not available in a standard index without positions. However, for
sets with enough redundancy (many versions or very similar pages)
our approach would also give significant benefits.

Next, we look at the performance of a prototype that implements
query processing on fragment indexes. We limit ourselves here
to local sharing and the var-byte compression scheme. The in-
verted index resides on disk, and the query processor uses a main-
memory cache of size512 MB for index data. We then issued1000
queries selected at random from a publicly available trace of the
Excite search engine, starting with an empty cache. (Performance
should be slightly better when starting with a hot cache.) Table 6.2
shows that disk accesses during query processing decrease by al-
most50%, which is slightly better than the reduction in index size
for var-byte from Table 6.1. The reason is that the reduced index
size also results in a higher hit ratio in the list cache, as a higher per-
centage of the index now fits in memory. Total wall clock time is
also reduced significantly, though not as much as I/O. We notehere
that we are using a somewhat older version of our query processor,
and that optimizations would decrease these numbers somewhat.

Setup Million Frags Block Reads Time (s)

No Sharing 121.48 71,608 374
Local Sharing 63.89 38,881 295

Table 6.2: Number of fragments, number of 64KB blocks retrieved
from disk, and wall clock time for processing1000 queries, for a stan-
dard index and an index with local sharing of fragments.

Finally, in Table 6.3 we show the cost savings during index up-
dates when compared to the baseline method of inserting eachpost-
ing. We see that each new version of a page results in about220
new positions, compared to about950 for the baseline method.
Overall, we believe that our results indicate the potentialfor sig-
nificant performance improvements with our framework.



Crawl New Versions New Posits per Version Same for Standard Index

17 279 K 219.66 924.56
18 227 K 228.71 960.93
19 248 K 254.01 995.59

Table 6.3: Cost of index updates per new version of a page, for ver-
sions arriving during the 17th to 19th crawl. We compare the average
number of new position values per version that need to be indexed with
local sharing, and the number of postings that would be generated us-
ing a standard index.

7. CONCLUDING REMARKS
In this paper, we have presented a new framework for index-

ing and query processing on textual collections with significant
amounts of redundancy. This includes as important cases archival
collections containing many versions of documents, and general
collections of web pages, emails, or personal files that havesome
amount of redundancy. Our preliminary evaluation showed the po-
tential for significant benefits, but there are several ways to further
optimize our methods. For example, a new content-dependentfile
partitioning approach proposed in [35] might give slight improve-
ments in the trade-off between the number of fragments and the
amount of redundancy detected.

There are a number of intriguing possibilities for future research.
It would be nice to combine our framework with the approachesin
[7, 16] to further improve compression. In general, it seemsthat
redundancies between versions or pages provide a new avenuefor
further improvements in index compression, similar to the gains in
document and file compression that have been obtained from global
redundancy elimination techniques (see, e.g., [22]).

We are particularly interested in exploring applications of the
approach in file and storage systems (including versioning file sys-
tems and revision control systems). We observe that storagesys-
tems typically perform redundancy elimination in a manner that is
completely transparent to the higher levels, and our indexing ap-
proach would thus have to be implemented at the lower levels for
best performance. Extensions to regular expression searchwould
also be of interest.

Finally, it might be interesting to reexamine the query processing
issue in the case of significant global sharing. It could be that in
this case, a pure DAAT approach is not the best due to the extra
complexity, or that the ideas from [7] are more appropriate than
unrestricted sharing.
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APPENDIX: DAAT Query Processing
To implementdocument-at-a-time (DAAT) query processing, it is
useful to consider each inverted list as an input stream thatcan be
accessed using the following operations:

� openList(t) opens the inverted list for termt and returns a
pointer/cursorlp for this stream.closeList(lp) closes the list.� nextGEQ(lp, k) advances cursorlp forward to the next posting
with docID� k, and returns its docID. Returns MAXDOCID
if none exists.� getPost(lp) returns the complete posting pointed at bylp.

The algorithm for DAAT query processing is illustrated in the fol-
lowing snippet of code. Here, it is assumed that the terms in the
query are sorted from shortest to longest. For each query, wefirst
open all the lists, and then first access the shortest list, and then try
to find matching elements in the longer lists. If an element isfound
to occur in all lists, then its score is computed. We note thatoper-
ationnextGEQ() completely hides any details of the internal index
organization, such as layout, caching, and compression methods.

for (i = 0; i < numterms; i++)  lp[i] = openList(qterm[i]);

for (docid = 0; docid < MAXDOCID; docid++)

{

/* get next element from first (shortest) list */

docid = nextGEQ(lp[0], docid);

/* see if you find entries with same docID in other lists */

for (i = 1, d = docid; (i < numterms) && (d == docid); i++)

d = nextGEQ(lp[i], docid);

if (d > docid)   /* docid not in intersection; continue */

docid = d-1;

else             /* docid in intersection; compute score */

{

for (i = 0; i < numterm; i++)  p[i] = getPost(lp[i], did);

computeScore(p, numterm);

}

}

for (i = 0; i < num; i++)  closeList(lp[i]);

Figure 8.1: Code from an simple implementation of document-
at-a-time query processing.


