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Abstract. Sorting is an important subroutine in many parallel algorithms and has been studied
extensively on meshes and related networks. If every processor of an n x n mesh is the source and
destination of at most k elements, then sorting requires at least k- n/2 steps in the worst-case, and
simple algorithms have recently been proposed that nearly match this bound. However, this lower
bound does not extend to non-worst-case inputs, or weaker definitions of sorting that are sufficient
in many applications. In this paper, we give algorithms and lower bounds for several such problems.

We first present a very simple scheme for k-k routing that performs optimally under both average-
case and worst-case inputs. As an application of this scheme, we describe a simple k-k sorting
algorithm based on sample sort that nearly matches this bound.

The main part of the paper considers several ‘sorting-like’ problems. In the ranking problem, the
ranks of all elements have to be determined, but there is no requirement about their final positions.
We describe an algorithms running in time (1 + o(1)) - k - n/4 steps, which is nearly optimal under
the considered model of the mesh. We show that the integer versions of the sorting and ranking
problems, where keys are drawn from {0,...,m — 1}, can be solved asymptotically faster than the
general problems for small values of m. A related problem, the excess counting problem, can be
solved in O(n) steps in many interesting cases.

1 Introduction

One of the most thoroughly investigated interconnection schemes for parallel computa-
tion is the n x n mesh, in which a set of n? processing units (PUs) is connected by a
two-dimensional grid of communication links. While the mesh has a large diameter in
comparison to the various hypercubic networks, it is nonetheless of great importance due
to its simple structure and efficient layout. A number of parallel machines with mesh
topology have been built, and a variety of algorithmic problems have been analyzed on
theoretical models of the mesh.

1.1 Routing and Sorting

Routing and sorting are probably the two most extensively studied algorithmic problems
on fixed-connection networks. In a routing problem, a set of packets has to be redistributed
in the network such that every packet ends up at the PU specified in its destination address.
Here, the address of a PU is determined by some fixed numbering of the PUs called an
indexing scheme. A routing problem in which each PU is the source and destination of at
most k packets is called a k-k routing problem.

In the k-k sorting problem, instead of a destination address each packet contains a key
from a totally ordered set, and the packets have to be rearranged such that the packet
of rank i ends up at the PU with index |i/k|, for all i. Thus, in a routing problem the
destinations of the packets are given as part of the input, while in a sorting problem, the
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destinations have to be computed from the given key values. For an introduction into the
problems of routing and sorting, and a survey of basic results, we refer the reader to [13].

There is a trivial lower bound of 2-n—2 for routing and sorting on the two-dimensional
mesh due to the diameter of the network. For large k, this bound is dominated by the lower
bound of k - n/2 for k-k routing and sorting due to the bisection width of the network,
and several algorithms running in (1 + o(1)) - k - n/2 steps have recently been presented
(8, 10, 9, 24].

Note that, while the diameter lower bound of 2-n — 2 (or n — 1 for algorithms that
output the result at a single PU) actually applies to most non-trivial algorithmic problems
on the mesh, the bisection bound of k- n/2 does not seem to extend to any general class
of problems with £k items per PU. As a trivial example, we point out that computing the
prefix sums takes 2-n — 2 steps with one item per PU, and 2-n + O(k) steps with k items
per PU. On the other hand, the bisection lower bound of k - n/2 for k-k sorting relies on
the assumption that the final positions of the packets are given by a fixed indexing scheme,
and that we can thus force all k - n?/2 packets initially located in one half of the network
to move to the other half. If we drop this assumption, and only require the algorithm to
compute the ranks of the packets, then this simple lower bound no longer applies.

1.2 Sorting-Like Problems.

In this paper, we study several problems that are closely related to sorting, but that are
not covered by the above worst-case bisection bound for k-k sorting. These problems are
motivated by the observation that in many applications of parallel sorting it is actually
not necessary to perform a sorting operation in its most general form, but it suffices to
solve a slightly weaker problem.

One example of such a problem is the ranking problem, already alluded to above, in
which the ranks of all packets have to be computed, but the final positions of the packets
are not fixed. Many applications, e.g., in scientific computing, use ranking as a subroutine.
In fact, the ‘Integer Sort’ of the NAS Parallel Benchmarks [1], which is probably the most
widely used set of benchmark problems for parallel machines, requires only a ranking,
rather than sorting, of the keys.

Other problems considered in this paper are the integer sorting, integer ranking, and
excess counting problems. Among other things, they have applications in PRAM emula-
tions, list ranking, and unbalanced communication problems on fixed-connection networks.
In the following, we describe and motivate these problems in more detail.

Ranking. Let P = {py,...,pm—1} be a set of packets, where each packet p; contains a
value z; drawn from some totally ordered set X. The ranking problem is the problem of
computing, for each packet p;, the function Rank (p;, P) = [{j | ; < z;V(x; = z;A\j < i)}

Note that a sorting problem can be solved by first ranking the packets, and then routing
each packet to the destination corresponding to its rank. In the case of the sequential RAM
model, as well as in the shared-memory PRAM, the time for permuting the data in the
second step is dominated by that for computing the ranks. However, this is not the case
for fixed-connection networks of bounded degree such as the mesh, where routing can take
a significant portion of the time for sorting. On such networks, ranking can sometimes be
performed more efficiently than sorting. Given the close relation between routing, sorting,
and ranking described above, we can also think about the ranking problem as capturing
some of those features that distinguish sorting from routing.

As we will show, ranking takes only about half as much time as sorting on the mesh.
While the definition of ranking allows the final positions of the packets to be arbitrary,
our algorithm in fact arranges the packets in a fairly regular pattern. More precisely, the
packets are arranged in blocks of side length o(n), such that each block contains only



packets with consecutive ranks; we refer to this as a blocked ranking. As it turns out, a
blocked ranking is advantageous in some applications. For example, a blocked ranking is
required as part of the list ranking algorithm for fixed-connection networks in [26].

Integer Sorting and Ranking. The integer sorting and integer ranking problems are
special cases of the sorting and ranking problems where the values of the keys are restricted
to the set {0,...,m — 1}. This problem is motivated by the observation that in many
applications the keys are drawn from a fairly small set of values, often not much larger
than the input size. (In fact, this assumption is part of the definition of the ‘Integer Sort’
in the NAS Parallel Benchmarks [1].) For example, each key could be the index of a PU,
or a pointer into an array or other data structure.

We have to be a little bit careful in the definition of the two integer problems. We
assume that in the integer ranking problem, each PU has to compute the ranks of the
packets initially located in it. In the integer sorting problem, at the end of the computation
the PU with index 7 has to contain the key value belonging to the packet of rank [i/k].
Note that the definition of integer sorting is fairly weak in that it does not require any
way of determining the origins of the key values in the final output. In fact, it turns out
that integer sorting is asymptotically faster than integer ranking. We will show that both
problems can be solved asymptotically faster than general sorting as long as m is not
significantly larger than k - n?.

Excess Counting. A problem related to integer sorting is the excess counting problem,
which asks to mark all packets whose key values appear more than ¢ times. Excess counting
can be used to detect imbalances, say, in irregular communication problems, or in the
distribution of key values. The application that originally motivated our interest in this
problem arises in the context of a deterministic PRAM emulation on the mesh [18]. The
algorithm maintains 2-¢— 1 copies of each memory location, for some constant ¢, that are
distributed over the network. In order to access a memory location, it suffices to access ¢
of the 2- ¢ —1 copies [17]. In a simulation of the algorithm of [18], requests for all 2-¢—1
copies are generated, and then excess counting is used to identify PUs that receive a large
number of requests and eliminate some of these requests, thus speeding up the routing of
the remaining packets [16].

The running time of our algorithm for excess counting only depends on the threshold
t, and is independent of m, the size of the set of possible key values. If ¢ = 2(n€), for
some € > 0, then excess counting can be solved in time proportional to the diameter of
the network. This is significantly faster than the corresponding integer sorting operation
(which could also be used to solve the problem).

1.3 Standard vs. Arbitrary Model

Before we give an overview of the contributions of this paper, a few remarks about our
model of computation are in order. A common assumption in the literature on routing
and sorting is that packets are ‘atomic entities’ whose contents can only be accessed
and manipulated in a very restricted fashion. More precisely, each packet consists of a
destination address or key value plus some additional data, and the algorithm can read
the destination or key but cannot read or alter the data. In each step, a single packet plus
O(logn) bits of auxiliary information can be transmitted across any edge.

In the case of sorting, it is also commonly assumed that the only way to access a key
value is by means of a comparison with another key located in the same (or a neighboring)
PU. This model, which we will refer to as the standard model, is the one assumed in our
results for general sorting and ranking.

However, the standard model does not seem appropriate for problems such as integer
sorting and excess counting, which are more efficiently solved by non-comparison-based



methods. For these problems, we assume a less restrictive model, called the arbitrary model,
which allows unrestricted access and manipulation of the input. If the keys are chosen from
{0,...,m — 1}, then we assume that logm + O(logn) bits can be transmitted across a
communication link in a single step; this allows us to compare the running times with
those for general ranking under the standard model. (All results can also be transformed
into a ‘bit model’, by multiplying the stated bounds by a factor of logm + O(logn).)

Many lower bounds for the standard model, say the k- n/2 worst-case lower bound for
k-k routing and sorting, follow directly from the observation that only a bounded number
of packets can cross a given bisection of the network in a single step; we call such a lower
bound a standard bisection bound. However, when proving bisection-based lower bounds
in a less restrictive model, we have to be more careful, as it may not be immediately
clear how much information has to be exchanged between different areas of the network
in order to compute the given function (e.g., see [7]). In the case of the arbitrary model,
lower bounds can be established with combinatorial arguments similar to those used in
VLSI theory [14]; we call such a bound an information-theoretic bisection bound.

1.4 Overview of this Paper

In this paper, we study several problems related to routing, sorting, ranking, and counting
on the mesh. In addition to providing algorithms and lower bounds, we also attempt to
motivate and discuss these problems in a more general context.

In Section 2 we review some recent algorithms for k-k routing and sorting on meshes,
and describe their relation to the total-exchange operation, an important communication
primitive in parallel computation. We present a modified scheme for k-k routing that nearly
matches the bisection bound for both average-case and worst-case inputs. Finally, we
discuss an application of this scheme to the efficient implementation of sorting algorithms
on parallel machines.

Section 3 considers the ranking problem with unrestricted key length. We prove a lower
bound of k£ - n/4 in the standard model (where & is the number of items per PU), and
provide nearly matching randomized and deterministic upper bounds.

In Sections 4 and 5 we consider the integer sorting, integer ranking, and excess counting
problems under the arbitrary model. We give nearly tight bounds for all of these problems,
and show that in most cases they can be solved asymptotically faster than the general
sorting problem.

1.5 Model of Computation

Our model of computation is the d-dimensional mesh. It consists of N = n? processing
units (PUs) laid out in a d-dimensional grid of side length n, where every PU is connected
to each of its (at most) 2 - d immediate neighbors by a bidirectional communication link.
We assume that in a single step a PU can exchange a bounded amount of data with
each of its neighbors, as defined in the following paragraph. For the sake of simplicity, we
assume that a PU can perform an unbounded amount of internal computation in each
step. Unless stated otherwise, all presented algorithms can be adapted to run in the same
time bounds on a model with bounded internal computation, provided the input size is at
most polynomial in n.

In the standard model, assumed in Sections 2 and 3, a single packet, plus O(logn) bits
of auxiliary information, can be transmitted across a communication link in each step. The
only way of accessing a key value in the standard model is by performing a comparison
with another key located in the same PU. In the arbitrary model, assumed in Sections 4 and
5, the key values can be manipulated in an arbitrary fashion, and up to logm + O(logn)



bits of data can be transmitted across a directed communication link in each step, where
the key values are chosen from {0,...,m — 1}.

Throughout the paper, we focus on the case d = 2. For most results, generalizations
to meshes of higher dimension, as well as toroidal networks, follow immediately. We also
assume that £ = w(1), which is the most interesting case, and which allows for a more
succinct statement of many of our upper bounds.

2 Routing, Sorting, and the Total-Exchange Operation

In this section, we briefly review the basic ideas underlying the recent optimal algorithms
for k-k routing and sorting on the mesh [8, 10, 9]. In particular, we focus on the relation
of these algorithms to the total-exchange operation [2], a communication primitive used
in many parallel algorithms. We then present a very simple routing scheme based on the
total-exchange operation which achieves nearly optimal performance on both average-case
and worst-case inputs, and which we believe to be of practical interest. Finally, as an
application of our routing scheme, we describe an efficient implementation of a sorting
algorithm based on sample sort. In the description of the algorithms in this section, we
omit most details about their exact implementation on the mesh, in order to keep the
presentation as simple and general as possible.

2.1 Total-Exchange Operation

The total-exchange operation (also sometimes called personalized all-to-all or gossiping)
is a communication primitive in which each PU of a parallel machine sends a different
message of fixed length to each other PU. If each message consists of w packets of data, then
we say that the total-exchange has size w. The total-exchange operation arises in many
parallel applications [2], and its simple and regular structure allows for a very efficient
implementation (relative to the available bandwidth) [5]. As a consequence, the total-
exchange operation has also been studied with respect to its ability to efficiently perform
other, more general communication patterns (e.g., see [5, 20]).

Given a partition of a mesh into blocks, we can also define the blocked total-exchange
operation, in which the blocks play the role of the PUs in the total-exchange, that is, each
block sends a fixed amount of data to each other block.

Several optimal randomized [8] and deterministic [10, 9] schemes for k-k routing and
sorting on the mesh have recently been proposed. The randomized schemes are based on
work by Valiant [27] and Reif and Valiant [21], while the deterministic schemes can be
viewed as efficient implementations of Leighton’s Columnsort [12]. The basic structure
of these algorithms consists of two phases, with each phase containing a blocked total-
exchange. This is most explicitly described in the deterministic algorithms in [9, 10], where
the network is partitioned into m sufficiently large blocks, and each block B; is subdivided
into m buckets, b; o, ...,b; m—1. In every blocked total-exchange, the content of bucket b; ;
in B; is sent to bucket b;; in B;. Following is a high-level description of the algorithms.

1. In the first phase, each block distributes its packets ‘approximately evenly’ over its
buckets. Then it calls a blocked total-exchange of size w = k- N/m?. The distribution of
the packets over the buckets can either be done deterministically by sorting the packets
inside each block B; and placing the packet of rank j into bucket b; jmodm, or we can
use randomization.

2. In the second phase, each block B; sorts its packets, and places the packet of rank j
into bucket b; |;/,,|. Then another blocked total-exchange of size w is performed. After-
wards, local operations are used to bring the packets to their destinations.



It can be shown that after the second blocked total-exchange, each packet is within
one block of its final destination (assuming that the blocks are sufficiently large, and that
blocks with consecutive indices are adjacent in the network). Note that in the case of
routing, we can simply place each packet into the bucket corresponding to its destination
block during the second phase. This results in an approximately equal number of packets
in each bucket, and the size of the second total-exchange is then determined by (an upper
bound on) the maximum number of packets in any bucket.

The running time of this scheme is dominated by the time for the two blocked total-
exchange operations. In [9, 10] it is shown that a blocked total-exchange of size k - n?/m?
can be performed in (1+0(1))-k-n/4 steps on the n x n mesh. This is also clearly optimal,
and leads to a running time of (1 + o(1)) - k- n/2 for k-k routing and sorting.

2.2 Routing with Good Average-Case and Worst-Case Performance

The approach described in the previous subsection is nearly optimal with respect to worst-
case inputs, in which all &£- N packets have to cross the bisection of the network. However,
the running time is a factor of 2 away from the lower bound with respect to average-case
inputs, in which only half of the packets have to cross the bisection.

It is not difficult to modify the scheme such that it runs in optimal time on average-case
inputs, by essentially omitting the first phase [11]. (This is because the sole purpose of
the first phase is to distribute the packets evenly over the network, thus reducing a worst-
case to an average-case problem.) Unfortunately, this one-phase algorithm has a miserable
worst-case performance. Of course, one could add an additional step to the algorithm
that scans the input to decide whether it should be treated as worst case or average case.
While this approach may solve the problem from a purely theoretical point of view, it
seems unlikely that it would lead to any practical and elegant routing schemes.

In the following, we describe a simple refinement of the above two-phase routing scheme
that has both good average-case and good worst-case performance. A somewhat similar
idea, although in a different context, is described in [20]. For the remainder of this subsec-
tion, we restrict our attention to routing problems. Our scheme consists of the following
two phases.

1. In the first phase, each block B; computes w;, the minimum, over all blocks Bj, of
the number of packets that have to be sent from B; to B;. It then places w; packets with
destination B; into each bucket b; ;, and distributes all remaining packets evenly over the
buckets, either by sorting with respect to destination blocks, or through randomization.
Then a blocked total-exchange of size w = k- N/m? is performed. This delivers (at least)
m - w; packets from each B; to their destination blocks, and distributes the remaining
k-N —m -, w; packets evenly over the network.

2. In the second phase, each B; places all remaining packets with destination in B;
into bucket b; ;. Then it calls a blocked total-exchange operation of size approximately
w' = k-N/m? -3, w;/m. Afterwards, local operations can be used to bring the packets
to their final destinations.

It can be shown that for a random input we have w' = o(w) with high probability. Hence,
the total running time for this case is dominated by the cost of the first total-exchange,
and we obtain the following result.

Theorem 1 The described scheme performs k-k routing on meshes in (1 4+ o(1)) - k-n/2
steps for all distributions, and in (1 + o(1)) - k- n/4 steps on the average.

Thus, we achieve optimality for both average-case and worst-case inputs. In addition,
the algorithm also seems to perform well on inputs that are ‘between average and worst
case’, although it does not achieve optimality on every possible input,



2.3 Application to Sorting

As a simple application of our routing scheme, we can obtain a sorting algorithm based on
sample sort [22, 21, 3] that performs optimally on both worst-case and average-case inputs.
Informally speaking, sample sort uses randomly [22, 21, 3] or deterministically [9] selected
splitters in order to reduce a sorting problem to a routing problem. In many cases, the
time for solving this routing problem dominates the time for selecting and handling the
splitters. (Although for realistic problem sizes the latter may also be significant, see [25]
for a discussion.) The routing problem resulting from this reduction can be either worst
case or average case (or somewhere in between), depending on the input to the sorting
problem. By applying the routing scheme from the previous subsection, we obtain the
following result.

Theorem 2 There are simple randomized and deterministic algorithms that perform k-k
sorting on meshes in (1+o0(1))-k-n/2 steps for all distributions, and in (1+o0(1))-k-n/4
steps on the average.

While in our algorithm the routing times for the average case and worst case differ
by only a factor of two, this gap can be significantly larger in actual implementations
of sample sort on parallel machines (e.g., see [3, 4]), due to the algorithm used in the
routing phase (and partly also due to the router). Because most parallel machines can
efficiently implement highly regular communication patterns such as the total-exchange,
we believe that the simple routing scheme in Section 2.2 may provide a practical solution
to the problem of worst-case key distributions in sample sort and related algorithms.

3 Ranking

In this section, we give nearly tight bounds for ranking in the standard model. We first
prove a lower bound, and then present an algorithmic scheme that leads to nearly optimal
randomized and deterministic solutions. We assume that every PU initially holds k packets.

3.1 Lower Bound

We prove a simple lower bound for ranking in the standard model, where we can only
compare two key values located in the same PU:

Theorem 3 Any randomized or deterministic algorithm for ranking requires at least k-n/4
steps on the standard model of the mesh.

Proof: Partition the packets into pairs (I;,7;), 0 < i < k-n?/2, where each [; is initially
located in the left half, and each r; is initially located in the right half of the network.
Consider all assignments of key values to the packets such that val(l;) = 3 -7+ 1 and
val(r;) € {3-4,3 -7+ 2}, for all 0 < i < k-n%/2. Thus, in order to compute the rank of
[;, it is necessary to perform a comparison between /; and r;. Since a comparison can only
be performed between packets located in the same PU, at least one packet in each of the
k-n?/2 pairs has to cross the bisection. As at most 2-n9~! packets can cross the bisection
in a single step, the theorem follows. O

In the arbitrary model, we have to be more careful, since an algorithm might try to
perform a comparison between packets in different areas of the network with only par-
tial knowledge of their key values. In fact, there are well-known randomized protocols
that compare two k-bit values located in different processors by communicating o(x) bits
between the processors [28]. If the range of key values is sufficiently large, then these pro-
tocols can be used to obtain asymptotically faster algorithms for ranking in the arbitrary
model.



3.2 Basic Scheme

We now present our basic algorithmic scheme for ranking, which can be seen as an exten-
sion of the well-known sample sort algorithm [3, 21, 22]. We will later use this scheme to
obtain nearly optimal randomized and deterministic solutions.

Partition the mesh into g square blocks of equal size, called G-blocks, where g = w(1).
Let f = w(g) be a multiple of g. (Suitable choices for g and f are discussed further below.)
Our basic scheme consists of the following steps.

1. Select a global set of s = w(f) approximately evenly spaced splitter elements, and
compute the exact global ranks of the splitters. Then broadcast the splitters and their
ranks to all G-blocks.

2. Use the splitters to estimate for every packet p; its ranks r;, and define R; = |f -
ri/(k-n?)|. Bach R;, 0 < R; < f, is the index of the destination interval of p;.

3. Compute a suitable assignment of destination intervals to G-blocks, such that f/g
intervals are assigned to each G-block.

4. Route each packet to the G-block to which its destination interval was assigned.

5. Complete the ranking by locallysorting the packets in the G-blocks.

Lemma 1 Step 1, 2 and 5 can be performed in o(k - n) steps. At most (1+0(1))-k-n?/f
packets are allocated to any destination interval.

Proof: The selection of the splitters and computation of their global ranks in Step 1 can be
performed in o(k-n) steps using either randomized [8, 21, 22| or deterministic [9] sampling
techniques. Step 2 can be performed in time o(k - n) by sorting the packets together with
the splitters in the G-blocks.

Every destination interval is assigned approximately k - n?/f packets, up to a small
inaccuracy due to packets that lie between two splitters that are in different destination
interval. This inaccuracy is bounded by the maximum number of packets between any
two splitters. If s is chosen sufficiently larger then f, then this is number is lower-order
compared to k- n?/f. O

It remains to show how we can assign the destination intervals to the G-blocks such
that the routing in Step 4 can be performed efficiently. The assignment must be such that
the routing is as ‘balanced’ as possible. More precisely, we want to minimize the maximum
number of packets that have to be sent from any G-block to any other G-block. This goal
is justified by the following lemma.

Lemma 2 If at most (1 + o(1)) - k - n?/g? packets have to be routed between any two
G-blocks, then the routing in Step 4 can be performed in (1 + o(1)) - k- n/4 steps.

Proof: Apply a blocked total-exchange of size (1 + o(1)) - k - n2/g? with respect to the
G-blocks, as defined in Section 2.1. O

Thus, if we can efficiently find a good assignment, then we immediately obtain a ranking
algorithm running in (1 4 o(1)) - k - n/4 steps. We formalize the problem as follows. Let
M =k - N =k -n? be the total number of packets, and let A = (a; ;) be a g x f matrix,
where entry a;; gives the number of packets in the ith G-block belonging to the jth
destination interval. It follows that

0<a;; <M/f, forall 0 <i<g,0<j<f,

> jaij=M]/g, forall0 <i<g, and
Yiai;=M]/f, forall0 <j < f.



We have to partition the set of columns into g disjoint subsets of f/g columns each, such
that every row sum in every subset is at most (1 4+ o(1)) times the average value. More
formally, we have to construct an f x g zero-one matrix S = (s;;), with

ZSi,j:L forall 0 <<y, Zsi,j:f/g, forall 0 <j < f, (1)
J i

satisfying
(A-8);;=(1+0(1) - M/g*, forall 0 <i,j < g. (2)

3.3 Randomized Solution

We now show that a randomly chosen matrix S satisfies (2) with high probability (i.e.,
with failure probability at most M ¢, for some € > 0). A similar idea was mentioned in
[3] in the context of an implementation of sample sort on the CM-5, where the authors
propose to ‘randomize the locations of the buckets’ in order to make the performance of
the algorithm independent of the key distribution.

Thus, we randomly select a matrix S satisfying (1) and prove that (2) holds with high
probability given an appropriate choice of f and g. Note that (2) imposes ¢ conditions
that must be satisfied simultaneously. If any single condition is violated with probability
at most M ¢/g?, then the probability that any of them is violated is at most M €.

Lemma 3 If f = u)(lml/3 M), then a randomly selected zero-one matriz S that satisfies
(1) also satisfies (2) with high probability.

Proof: We can bound the probability for a single condition by analyzing the following
situation. Given a multi-set 7 of f numbers between 0 and M/f whose sum is equal to
M /g, we have to bound the probability that the sum of the elements of a random subset
S of size f/g exceeds M/g? +t, for t = o(M/g?). The expected value of this sum is M/g?.

A majorization argument shows that the probability that the sum of the values of
the elements in S exceeds M/g? + t is smaller than the probability that the sum of f/g
independently selected elements X;, with 0 < X; < M/f and with expected value M/g?,
exceeds M/g? +1t (see [23] and the references therein). Applying Hoeffding’s Inequality [6]
this probability can be estimated as follws.

P’I“(ZXZ' > M/g* +1t) <exp(—2-f>-t*/(g- M?)).
i
So, we should take
t(fagaM) =c-M- lnl/QM'gl/Q/fS/Qu
for some constant ¢, to get the desired bound on the probability. In order that t(f,g, M) =
o(M/g?), we must have In'/2 M - g°/2 = o(f3/2). Since the only condition on g is g = w(1),
the lemma follows. O

3.4 Deterministic Solution

We now derive a deterministic solution by performing a (very simple) derandomization
[15] of the above algorithm. To do so, we show that the parameters f, g in the randomized
solution can be chosen such that the sample space is of size O(N) and the success prob-
ability is non-zero. We can then search the entire sample space by assigning a constant
number of samples to each of the N PUs.

Lemma 4 Let k be polynomial in N. If f = log N/loglog N then it suffices to test at
most N matrices satisfying (1) in order to find one that also satisfies (2).



Proof: Lemma 3 implies that for f = w(In'/3 M) a randomly selected S satisfies (2) with
high probability. Hence, there ezists an S that satisfies (2). The size s(f, g) of the sample
space can be estimated as
J! f
s(f.9) = ame <[
((f/9)))
Thus, if we choose f < log N/loglog N, then f/ < N. Assuming that & is polynomial in
N, the condition f = w(In'/? M) is also satisfied. a

Since the matrices that have to be tested can be generated in a systematic way, the
tests can be performed in a distributed fashion. Thus, Lemma 4 implies that every PU
has to generate and test only one f x g zero-one matrix. This takes O(f - g?) time. Since
f <log N, this time is negligible in comparison to the routing time. Combining all results
from Lemma 1 to 4, we obtain the main result of this section.

Theorem 4 If every PU initially holds k packets, then the ranking problem can be solved
deterministically in time (1 + o(1)) - k - k/4 on the n x n mesh.

It follows from Lemma 1 that at most (1 + o(1)) - k - n?/g packets are routed to any
G-block. If desired, we can redistribute the packets in o(k - n) steps such that every PU
holds exactly k£ packets at the end.

The large lower-order terms make the deterministic algorithm impractical for reason-
able values of n and k.* The probabilistic algorithm, on the other hand, has a fairly simple
structure and may be of practical interest.

4 Integer Ranking and Sorting

In this section, we consider the integer ranking and integer sorting problems, where the
keys are restricted to the set {0,...,m — 1}. We will show that both problems can be
solved asymptotically faster than general sorting, provided that m is not much larger than
k - n/2. Throughout this section, we assume the arbitrary model of the mesh, which is
more useful than the comparison-based standard model for problems with restricted key
size. We begin with the following lower bound (which, of course, also extend to the more
restricted standard model.)

Theorem 5 If m = O(k-n?), then any deterministic algorithm for integer sorting requires
Q2(n+ Vvm - k/logn) steps on the arbitrary model of the mesh.

Proof: (Sketch) Consider any two square blocks By and B; of side length /4 in the

mesh. Let X be the set of those inputs where every possible key value appears exactly
once in By U By, while all keys in the rest of the network have value 0. Note that every
input in X results in the same output. If we do not distinguish between inputs that can be
obtained from each other by only permuting keys within By or within By, then X contains
(1n/o) distinct inputs.

A simple crossing-sequence argument (e.g., see [14]) shows that at least log(|X|) =
2(m) bits of data have to be communicated between By and By, since otherwise there is
an input 7 that coincides with some 7y € X in By, and with some 7 € X, my # piq, in the
rest of the network, and that results in the same output as my and m;. The lower bound
then follows from the fact that By and By have only O(y/m/k) outgoing edges, each of
which can transmit at most m 4+ O(logn) bits in each step. O

* Going through the proofs of the above lemmas, we find that for f = log N/loglog N, we can take
g =log'/® N. On the mesh this gives lower-order terms bounded by O(k - n/log'/® n).



For the case of integer ranking, the above lower bound can be strenghtened slightly.
We obtain the following result, the proof of which is omitted.

Theorem 6 Ifm = O(k-n?), then any deterministic algorithm for integer ranking requires
Qn+vVm-k- log(n-k/m) steps on the arbitrary model of the mesh.

logn

We now describe algorithms for integer sorting and ranking whose running times nearly
match the lower bounds. Our algorithms are based on counting sort, and rely on an efficient
implementation of a restricted form of the ‘multiprefix’ operation described in [19]. We
first present a simple, but non-optimal, algorithm that solves both integer sorting and
ranking, and then explain how the algorithm can be modified into optimal solutions for
each problem.

In the following, we assume that k- n? > m > k. (If m < k, then the problem can be
solved in O(n + k) steps by a simple pipelined prefix operation.) The algorithm consists
of the following steps.

1. Partition the mesh into blocks of side length \/m/k, and determine in each block
the number a; of occurrences of key value 4, for 0 < 7 < m. Arrange the numbers inside
each block such that a; is contained in PU P;,0qx of the block.

2. Combine the values a; from all blocks in the mesh by repeatedly ‘merging’ groups
of four adjacent blocks. That is, add the corresponding a; values from the four blocks,
and distribute the resulting values over the larger block.

3. Use a simple prefix operation to compute the ranks of the key values.

4. In the case of integer sorting, simple routing and segmented broadcast operations
can be used to bring the key values to the correct PUs. For integer ranking, we have to
deliver the rank information to the PUs initially holding the keys. To do so, we reverse
the ‘merging’ in Step 2 by performing a downwards pass in the merging tree (as in
standard prefix algorithms).

Step 1 of the algorithm can be performed in O(v/m - k) steps using local sorting. It can
be shown that the running time for Steps 2 and 4 is dominated by the time needed for
the lowest level of the merging tree, which is also O(v/m - k). Thus, the algorithm runs in
time O(Vm - k).

The non-optimality of this simple algorithm is due to the inefficient representations of
the key values as a collection of values a; in the upward pass in Step 2, and the rank values
in the downward pass in Step 4. To improve the running time of the algorithm, we assume
that the keys and ranks in Steps 2 and 4 are given as sorted lists. Note that a sorted
list of v key values from {0,...,u — 1} can be represented with O((1 + log(u/v)) - v) bits.
Using such a representation, and starting with blocks of side length y/m/k/logn in Step 1,

we can reduce the time for Steps 2 and 4 to O(vV'm - k/logn) and O(Vm - k - M,

logn
respectively. This establishes the following results.

Theorem 7 If m = O(k-n?), then integer sorting and integer ranking can be performed in

time O(n+ vVm - k/logm) and O(vVm - k - %, respectively, on the arbitrary model
of the mesh.

Thus, the results asymptotically match the lower bounds. The algorithms can be
adapted to the case where m = o((k - n?)'7¢) for any constant ¢ > 0, for which they
still achieve an asymptotic improvement over general sorting.



5 Excess Counting

In this section, we consider the excess counting problem, where each PU holds k£ colored
packets, and we want to mark those packets whose colors occur more than some threshold
t times. We start with a lower bound. The proof uses an information-theoretic bisection-
bound argument applied to some corner section, similar to those in Section 4.

Lemma 5 The excess-counting problem with threshold t requires that some connections

transfer Q2(k -n/\/t) bits.

Proof: Divide the mesh in a corner C and the remainder of the network R. C has size
(n/(2-t)Y?) x (n/(2-t)'/?), and contains = k- N/(2 - t) packets. All colors occurring in
C are unique. In R there are k- N - (1 —1/(2-t)) > 2 -z - (t — 1) packets.

Suppose that 2z colors occur exactly £ —1 times in R, and that the = colors occurring
in C are chosen from these 2z colors. Then clearly the complete information on the colors

occurring in C has to be sent into R. There are (2;) possible choices of these z colors Thus,

at least log ((2;)) = (2(z) bits have to be transferred over the 2-n/(2 - t)'/? connections
between C to R, and the result follows. O

In the following, we derive an algorithm whose running time comes comes quite close
to the above lower bound. Note that a trivial possibility is to sort the packets on their
colors, and then count the packets of each color; this can be done in (1+o0(1))-k-n/24+2-n
steps. A factor of two can be gained by applying the ranking algorithm of Section 3 (using
the fact that the algorithm produces a blocked ranking). If the number of possible colors is
very large, and t small, then this is the best algorithm we know. If the number of possible
colors is not too large, then we can apply the techniques of Section 4.

In the following, we present an alternative scheme that runs in time independent of
the number of possible colors, and that is considerably faster than sorting for sufficiently
large values of t. Its structure differs significantly from the algorithm for integer sorting.
The algorithm is inspired by the following observation.

Observation 1 Consider a network that is partitioned into x subnetworks. If a color
occurs more than t times in total, then in some subnetwork it occurs at least [t/x] times.

We assume the arbitrary model. Initially the network is partitioned into ¢ subnetworks
with N/t PUs each, called blocks (assume that ¢ divides V). The packets in each subnet-
work are sorted on their colors and the frequency of each color is determined. All occurring
colors are candidates. Iteratively, the candidates in pairs of subnetworks are merged to-
gether. More precisely, inductively we assume that the following invariant holds at all
times:

Invariant 1 After i merges, and for any subnetwork S with 20 . N/t PUs, a color ¢ is a
candidate in S iff it occurs at least 2" times. There are at most k - N/t candidates in S,
and the candidates and their frequencies are known in all blocks in S.

Intially Invariant 1 holds. Finally, for ¢ = log#, the invariant states that a packet is a
candidate iff it occurs more than ¢ times in the whole network, and that the candidates
are known in every block. In that case, one more local operation suffices to mark all packets
with colors that occur more than ¢ times.

Assume that Invariant 1 holds after merge i. Then the following steps are performed
to merge two subnetworks S; and Sy of 2! blocks each (we only describe the operations in
Ss, as the situation in Sp is symmetric):

Algorithm EXCESS-MERGE
1. The candidates from S; and their frequencies are broadcast to all blocks of Ss.



2. In each block of Sy, determine the frequency of the candidates from 5.

3. The frequencies of the candidates of S; in the blocks of Sy are added up, and made
available in every block. These numbers are then added to their frequencies in S;.

4. All old candidates from S; and S5 that occur more than 27! times are selected as
candidates.

Theorem 8 By iterating EXCESS-MERGE for ¢ = 0,1,...,logt — 1, excess counting with
threshold t can be performed in time O(n + logt -k -n/\/t) on an n x n mesh.

Proof: The correctness follows from the invariant, which is obviously restored after every
merge. To analyze the running time, we consider the described merging of two subnetworks
consisting of 2° blocks each. The blocks have size n/v/t x n/v/t and the subnetworks have
size (2Li/2] -n/v/t) x (21i/2] -n/\/t). Step 1 takes O((2"/2 4+ k) -n/\/t) steps (distance plus
bisection bound). Step 2 can be implemented by sorting in every block S, and Step 3 is
similar to a broadcast. Thus, this application of EXCESS-MERGE takes O((2/% + k) -n/\/1)
steps. By summing over all log¢ iterations we obtai the result. O

The result can be generalized to a bound of O(d - n + logt - k - n/t'/%) for excess
determination on a d-dimensional mesh. Note that our scheme outperforms sorting for all
t = w(1). To the best of our knowledge, the deterministic sequential complexity of this
problem is the same as that of sorting. (In a randomized setting, better performance can
be achieved by applying hashing and bucket-sort.) So our algorithm gives an interesting
example of a problem for which an adaptation of a sequential algorithm does not lead to a
good parallel algorithm for the mesh. Also, we see here that problems which are apparently
of about the same complexity sequentially, might have a substantially different complexity
on the mesh.
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