
Beyond the Worst-Case Bisection Bound:Fast Sorting and Ranking on Meshes?Michael Kaufmann1, Jop F. Sibeyn2, Torsten Suel31 Wilhelm-Schickard-Institut f�ur Informatik, Universit�at T�ubingen, Sand 13,72076 T�ubingen, Germany. Email: mk@informatik.uni-tuebingen.de.2 Max-Planck-Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany. Email:jopsi@mpi-sb.mpg.de.3 NEC Research Institute, 4 Independence Way, Princeton, NJ 08540, USA.Email: torsten@research.nj.nec.com.Abstract. Sorting is an important subroutine in many parallel algorithms and has been studiedextensively on meshes and related networks. If every processor of an n� n mesh is the source anddestination of at most k elements, then sorting requires at least k � n=2 steps in the worst-case, andsimple algorithms have recently been proposed that nearly match this bound. However, this lowerbound does not extend to non-worst-case inputs, or weaker de�nitions of sorting that are su�cientin many applications. In this paper, we give algorithms and lower bounds for several such problems.We �rst present a very simple scheme for k-k routing that performs optimally under both average-case and worst-case inputs. As an application of this scheme, we describe a simple k-k sortingalgorithm based on sample sort that nearly matches this bound.The main part of the paper considers several `sorting-like' problems. In the ranking problem, theranks of all elements have to be determined, but there is no requirement about their �nal positions.We describe an algorithms running in time (1 + o(1)) � k � n=4 steps, which is nearly optimal underthe considered model of the mesh. We show that the integer versions of the sorting and rankingproblems, where keys are drawn from f0; : : : ;m� 1g, can be solved asymptotically faster than thegeneral problems for small values of m. A related problem, the excess counting problem, can besolved in O(n) steps in many interesting cases.1 IntroductionOne of the most thoroughly investigated interconnection schemes for parallel computa-tion is the n � n mesh, in which a set of n2 processing units (PUs) is connected by atwo-dimensional grid of communication links. While the mesh has a large diameter incomparison to the various hypercubic networks, it is nonetheless of great importance dueto its simple structure and e�cient layout. A number of parallel machines with meshtopology have been built, and a variety of algorithmic problems have been analyzed ontheoretical models of the mesh.1.1 Routing and SortingRouting and sorting are probably the two most extensively studied algorithmic problemson �xed-connection networks. In a routing problem, a set of packets has to be redistributedin the network such that every packet ends up at the PU speci�ed in its destination address.Here, the address of a PU is determined by some �xed numbering of the PUs called anindexing scheme. A routing problem in which each PU is the source and destination of atmost k packets is called a k-k routing problem.In the k-k sorting problem, instead of a destination address each packet contains a keyfrom a totally ordered set, and the packets have to be rearranged such that the packetof rank i ends up at the PU with index bi=kc, for all i. Thus, in a routing problem thedestinations of the packets are given as part of the input, while in a sorting problem, the? Part of this work was done while the third author was visiting the Max-Planck-Institut.



destinations have to be computed from the given key values. For an introduction into theproblems of routing and sorting, and a survey of basic results, we refer the reader to [13].There is a trivial lower bound of 2 �n�2 for routing and sorting on the two-dimensionalmesh due to the diameter of the network. For large k, this bound is dominated by the lowerbound of k � n=2 for k-k routing and sorting due to the bisection width of the network,and several algorithms running in (1 + o(1)) � k � n=2 steps have recently been presented[8, 10, 9, 24].Note that, while the diameter lower bound of 2 � n � 2 (or n � 1 for algorithms thatoutput the result at a single PU) actually applies to most non-trivial algorithmic problemson the mesh, the bisection bound of k � n=2 does not seem to extend to any general classof problems with k items per PU. As a trivial example, we point out that computing thepre�x sums takes 2 �n� 2 steps with one item per PU, and 2 �n+O(k) steps with k itemsper PU. On the other hand, the bisection lower bound of k � n=2 for k-k sorting relies onthe assumption that the �nal positions of the packets are given by a �xed indexing scheme,and that we can thus force all k � n2=2 packets initially located in one half of the networkto move to the other half. If we drop this assumption, and only require the algorithm tocompute the ranks of the packets, then this simple lower bound no longer applies.1.2 Sorting-Like Problems.In this paper, we study several problems that are closely related to sorting, but that arenot covered by the above worst-case bisection bound for k-k sorting. These problems aremotivated by the observation that in many applications of parallel sorting it is actuallynot necessary to perform a sorting operation in its most general form, but it su�ces tosolve a slightly weaker problem.One example of such a problem is the ranking problem, already alluded to above, inwhich the ranks of all packets have to be computed, but the �nal positions of the packetsare not �xed. Many applications, e.g., in scienti�c computing, use ranking as a subroutine.In fact, the `Integer Sort' of the NAS Parallel Benchmarks [1], which is probably the mostwidely used set of benchmark problems for parallel machines, requires only a ranking,rather than sorting, of the keys.Other problems considered in this paper are the integer sorting, integer ranking, andexcess counting problems. Among other things, they have applications in PRAM emula-tions, list ranking, and unbalanced communication problems on �xed-connection networks.In the following, we describe and motivate these problems in more detail.Ranking. Let P = fp0; : : : ; pm�1g be a set of packets, where each packet pi contains avalue xi drawn from some totally ordered set X. The ranking problem is the problem ofcomputing, for each packet pi, the function Rank (pi;P) = jfj j xj < xi_(xj = xi^j < i)gj.Note that a sorting problem can be solved by �rst ranking the packets, and then routingeach packet to the destination corresponding to its rank. In the case of the sequential RAMmodel, as well as in the shared-memory PRAM, the time for permuting the data in thesecond step is dominated by that for computing the ranks. However, this is not the casefor �xed-connection networks of bounded degree such as the mesh, where routing can takea signi�cant portion of the time for sorting. On such networks, ranking can sometimes beperformed more e�ciently than sorting. Given the close relation between routing, sorting,and ranking described above, we can also think about the ranking problem as capturingsome of those features that distinguish sorting from routing.As we will show, ranking takes only about half as much time as sorting on the mesh.While the de�nition of ranking allows the �nal positions of the packets to be arbitrary,our algorithm in fact arranges the packets in a fairly regular pattern. More precisely, thepackets are arranged in blocks of side length o(n), such that each block contains only



packets with consecutive ranks; we refer to this as a blocked ranking. As it turns out, ablocked ranking is advantageous in some applications. For example, a blocked ranking isrequired as part of the list ranking algorithm for �xed-connection networks in [26].Integer Sorting and Ranking. The integer sorting and integer ranking problems arespecial cases of the sorting and ranking problems where the values of the keys are restrictedto the set f0; : : : ;m � 1g. This problem is motivated by the observation that in manyapplications the keys are drawn from a fairly small set of values, often not much largerthan the input size. (In fact, this assumption is part of the de�nition of the `Integer Sort'in the NAS Parallel Benchmarks [1].) For example, each key could be the index of a PU,or a pointer into an array or other data structure.We have to be a little bit careful in the de�nition of the two integer problems. Weassume that in the integer ranking problem, each PU has to compute the ranks of thepackets initially located in it. In the integer sorting problem, at the end of the computationthe PU with index i has to contain the key value belonging to the packet of rank bi=kc.Note that the de�nition of integer sorting is fairly weak in that it does not require anyway of determining the origins of the key values in the �nal output. In fact, it turns outthat integer sorting is asymptotically faster than integer ranking. We will show that bothproblems can be solved asymptotically faster than general sorting as long as m is notsigni�cantly larger than k � n2.Excess Counting. A problem related to integer sorting is the excess counting problem,which asks to mark all packets whose key values appear more than t times. Excess countingcan be used to detect imbalances, say, in irregular communication problems, or in thedistribution of key values. The application that originally motivated our interest in thisproblem arises in the context of a deterministic PRAM emulation on the mesh [18]. Thealgorithm maintains 2 � c�1 copies of each memory location, for some constant c, that aredistributed over the network. In order to access a memory location, it su�ces to access cof the 2 � c� 1 copies [17]. In a simulation of the algorithm of [18], requests for all 2 � c� 1copies are generated, and then excess counting is used to identify PUs that receive a largenumber of requests and eliminate some of these requests, thus speeding up the routing ofthe remaining packets [16].The running time of our algorithm for excess counting only depends on the thresholdt, and is independent of m, the size of the set of possible key values. If t = 
(n�), forsome � > 0, then excess counting can be solved in time proportional to the diameter ofthe network. This is signi�cantly faster than the corresponding integer sorting operation(which could also be used to solve the problem).1.3 Standard vs. Arbitrary ModelBefore we give an overview of the contributions of this paper, a few remarks about ourmodel of computation are in order. A common assumption in the literature on routingand sorting is that packets are `atomic entities' whose contents can only be accessedand manipulated in a very restricted fashion. More precisely, each packet consists of adestination address or key value plus some additional data, and the algorithm can readthe destination or key but cannot read or alter the data. In each step, a single packet plusO(log n) bits of auxiliary information can be transmitted across any edge.In the case of sorting, it is also commonly assumed that the only way to access a keyvalue is by means of a comparison with another key located in the same (or a neighboring)PU. This model, which we will refer to as the standard model, is the one assumed in ourresults for general sorting and ranking.However, the standard model does not seem appropriate for problems such as integersorting and excess counting, which are more e�ciently solved by non-comparison-based



methods. For these problems, we assume a less restrictive model, called the arbitrary model,which allows unrestricted access and manipulation of the input. If the keys are chosen fromf0; : : : ;m � 1g, then we assume that logm + O(log n) bits can be transmitted across acommunication link in a single step; this allows us to compare the running times withthose for general ranking under the standard model. (All results can also be transformedinto a `bit model', by multiplying the stated bounds by a factor of logm+O(log n).)Many lower bounds for the standard model, say the k � n=2 worst-case lower bound fork-k routing and sorting, follow directly from the observation that only a bounded numberof packets can cross a given bisection of the network in a single step; we call such a lowerbound a standard bisection bound. However, when proving bisection-based lower boundsin a less restrictive model, we have to be more careful, as it may not be immediatelyclear how much information has to be exchanged between di�erent areas of the networkin order to compute the given function (e.g., see [7]). In the case of the arbitrary model,lower bounds can be established with combinatorial arguments similar to those used inVLSI theory [14]; we call such a bound an information-theoretic bisection bound.1.4 Overview of this PaperIn this paper, we study several problems related to routing, sorting, ranking, and countingon the mesh. In addition to providing algorithms and lower bounds, we also attempt tomotivate and discuss these problems in a more general context.In Section 2 we review some recent algorithms for k-k routing and sorting on meshes,and describe their relation to the total-exchange operation, an important communicationprimitive in parallel computation. We present a modi�ed scheme for k-k routing that nearlymatches the bisection bound for both average-case and worst-case inputs. Finally, wediscuss an application of this scheme to the e�cient implementation of sorting algorithmson parallel machines.Section 3 considers the ranking problem with unrestricted key length. We prove a lowerbound of k � n=4 in the standard model (where k is the number of items per PU), andprovide nearly matching randomized and deterministic upper bounds.In Sections 4 and 5 we consider the integer sorting, integer ranking, and excess countingproblems under the arbitrary model. We give nearly tight bounds for all of these problems,and show that in most cases they can be solved asymptotically faster than the generalsorting problem.1.5 Model of ComputationOur model of computation is the d-dimensional mesh. It consists of N = nd processingunits (PUs) laid out in a d-dimensional grid of side length n, where every PU is connectedto each of its (at most) 2 � d immediate neighbors by a bidirectional communication link.We assume that in a single step a PU can exchange a bounded amount of data witheach of its neighbors, as de�ned in the following paragraph. For the sake of simplicity, weassume that a PU can perform an unbounded amount of internal computation in eachstep. Unless stated otherwise, all presented algorithms can be adapted to run in the sametime bounds on a model with bounded internal computation, provided the input size is atmost polynomial in n.In the standard model, assumed in Sections 2 and 3, a single packet, plus O(log n) bitsof auxiliary information, can be transmitted across a communication link in each step. Theonly way of accessing a key value in the standard model is by performing a comparisonwith another key located in the same PU. In the arbitrary model, assumed in Sections 4 and5, the key values can be manipulated in an arbitrary fashion, and up to logm+O(log n)



bits of data can be transmitted across a directed communication link in each step, wherethe key values are chosen from f0; : : : ;m� 1g.Throughout the paper, we focus on the case d = 2. For most results, generalizationsto meshes of higher dimension, as well as toroidal networks, follow immediately. We alsoassume that k = !(1), which is the most interesting case, and which allows for a moresuccinct statement of many of our upper bounds.2 Routing, Sorting, and the Total-Exchange OperationIn this section, we brie
y review the basic ideas underlying the recent optimal algorithmsfor k-k routing and sorting on the mesh [8, 10, 9]. In particular, we focus on the relationof these algorithms to the total-exchange operation [2], a communication primitive usedin many parallel algorithms. We then present a very simple routing scheme based on thetotal-exchange operation which achieves nearly optimal performance on both average-caseand worst-case inputs, and which we believe to be of practical interest. Finally, as anapplication of our routing scheme, we describe an e�cient implementation of a sortingalgorithm based on sample sort. In the description of the algorithms in this section, weomit most details about their exact implementation on the mesh, in order to keep thepresentation as simple and general as possible.2.1 Total-Exchange OperationThe total-exchange operation (also sometimes called personalized all-to-all or gossiping)is a communication primitive in which each PU of a parallel machine sends a di�erentmessage of �xed length to each other PU. If each message consists of w packets of data, thenwe say that the total-exchange has size w. The total-exchange operation arises in manyparallel applications [2], and its simple and regular structure allows for a very e�cientimplementation (relative to the available bandwidth) [5]. As a consequence, the total-exchange operation has also been studied with respect to its ability to e�ciently performother, more general communication patterns (e.g., see [5, 20]).Given a partition of a mesh into blocks, we can also de�ne the blocked total-exchangeoperation, in which the blocks play the role of the PUs in the total-exchange, that is, eachblock sends a �xed amount of data to each other block.Several optimal randomized [8] and deterministic [10, 9] schemes for k-k routing andsorting on the mesh have recently been proposed. The randomized schemes are based onwork by Valiant [27] and Reif and Valiant [21], while the deterministic schemes can beviewed as e�cient implementations of Leighton's Columnsort [12]. The basic structureof these algorithms consists of two phases, with each phase containing a blocked total-exchange. This is most explicitly described in the deterministic algorithms in [9, 10], wherethe network is partitioned into m su�ciently large blocks, and each block Bi is subdividedinto m buckets, bi;0; : : : ; bi;m�1. In every blocked total-exchange, the content of bucket bi;jin Bi is sent to bucket bj;i in Bj . Following is a high-level description of the algorithms.1. In the �rst phase, each block distributes its packets `approximately evenly' over itsbuckets. Then it calls a blocked total-exchange of size w = k �N=m2. The distribution ofthe packets over the buckets can either be done deterministically by sorting the packetsinside each block Bi and placing the packet of rank j into bucket bi;jmodm, or we canuse randomization.2. In the second phase, each block Bi sorts its packets, and places the packet of rank jinto bucket bi;bj=wc. Then another blocked total-exchange of size w is performed. After-wards, local operations are used to bring the packets to their destinations.



It can be shown that after the second blocked total-exchange, each packet is withinone block of its �nal destination (assuming that the blocks are su�ciently large, and thatblocks with consecutive indices are adjacent in the network). Note that in the case ofrouting, we can simply place each packet into the bucket corresponding to its destinationblock during the second phase. This results in an approximately equal number of packetsin each bucket, and the size of the second total-exchange is then determined by (an upperbound on) the maximum number of packets in any bucket.The running time of this scheme is dominated by the time for the two blocked total-exchange operations. In [9, 10] it is shown that a blocked total-exchange of size k � n2=m2can be performed in (1+o(1)) �k �n=4 steps on the n�n mesh. This is also clearly optimal,and leads to a running time of (1 + o(1)) � k � n=2 for k-k routing and sorting.2.2 Routing with Good Average-Case and Worst-Case PerformanceThe approach described in the previous subsection is nearly optimal with respect to worst-case inputs, in which all k �N packets have to cross the bisection of the network. However,the running time is a factor of 2 away from the lower bound with respect to average-caseinputs, in which only half of the packets have to cross the bisection.It is not di�cult to modify the scheme such that it runs in optimal time on average-caseinputs, by essentially omitting the �rst phase [11]. (This is because the sole purpose ofthe �rst phase is to distribute the packets evenly over the network, thus reducing a worst-case to an average-case problem.) Unfortunately, this one-phase algorithm has a miserableworst-case performance. Of course, one could add an additional step to the algorithmthat scans the input to decide whether it should be treated as worst case or average case.While this approach may solve the problem from a purely theoretical point of view, itseems unlikely that it would lead to any practical and elegant routing schemes.In the following, we describe a simple re�nement of the above two-phase routing schemethat has both good average-case and good worst-case performance. A somewhat similaridea, although in a di�erent context, is described in [20]. For the remainder of this subsec-tion, we restrict our attention to routing problems. Our scheme consists of the followingtwo phases.1. In the �rst phase, each block Bi computes wi, the minimum, over all blocks Bj , ofthe number of packets that have to be sent from Bi to Bj. It then places wi packets withdestinationBj into each bucket bi;j, and distributes all remaining packets evenly over thebuckets, either by sorting with respect to destination blocks, or through randomization.Then a blocked total-exchange of size w = k �N=m2 is performed. This delivers (at least)m � wi packets from each Bi to their destination blocks, and distributes the remainingk �N �m �Pi wi packets evenly over the network.2. In the second phase, each Bi places all remaining packets with destination in Bjinto bucket bi;j. Then it calls a blocked total-exchange operation of size approximatelyw0 = k �N=m2�Piwi=m. Afterwards, local operations can be used to bring the packetsto their �nal destinations.It can be shown that for a random input we have w0 = o(w) with high probability. Hence,the total running time for this case is dominated by the cost of the �rst total-exchange,and we obtain the following result.Theorem 1 The described scheme performs k-k routing on meshes in (1 + o(1)) � k � n=2steps for all distributions, and in (1 + o(1)) � k � n=4 steps on the average.Thus, we achieve optimality for both average-case and worst-case inputs. In addition,the algorithm also seems to perform well on inputs that are `between average and worstcase', although it does not achieve optimality on every possible input,



2.3 Application to SortingAs a simple application of our routing scheme, we can obtain a sorting algorithm based onsample sort [22, 21, 3] that performs optimally on both worst-case and average-case inputs.Informally speaking, sample sort uses randomly [22, 21, 3] or deterministically [9] selectedsplitters in order to reduce a sorting problem to a routing problem. In many cases, thetime for solving this routing problem dominates the time for selecting and handling thesplitters. (Although for realistic problem sizes the latter may also be signi�cant, see [25]for a discussion.) The routing problem resulting from this reduction can be either worstcase or average case (or somewhere in between), depending on the input to the sortingproblem. By applying the routing scheme from the previous subsection, we obtain thefollowing result.Theorem 2 There are simple randomized and deterministic algorithms that perform k-ksorting on meshes in (1+o(1)) �k �n=2 steps for all distributions, and in (1+o(1)) �k �n=4steps on the average.While in our algorithm the routing times for the average case and worst case di�erby only a factor of two, this gap can be signi�cantly larger in actual implementationsof sample sort on parallel machines (e.g., see [3, 4]), due to the algorithm used in therouting phase (and partly also due to the router). Because most parallel machines cane�ciently implement highly regular communication patterns such as the total-exchange,we believe that the simple routing scheme in Section 2.2 may provide a practical solutionto the problem of worst-case key distributions in sample sort and related algorithms.3 RankingIn this section, we give nearly tight bounds for ranking in the standard model. We �rstprove a lower bound, and then present an algorithmic scheme that leads to nearly optimalrandomized and deterministic solutions. We assume that every PU initially holds k packets.3.1 Lower BoundWe prove a simple lower bound for ranking in the standard model, where we can onlycompare two key values located in the same PU:Theorem 3 Any randomized or deterministic algorithm for ranking requires at least k�n=4steps on the standard model of the mesh.Proof: Partition the packets into pairs (li; ri), 0 � i < k � nd=2, where each li is initiallylocated in the left half, and each ri is initially located in the right half of the network.Consider all assignments of key values to the packets such that val(li) = 3 � i + 1 andval(ri) 2 f3 � i; 3 � i + 2g, for all 0 � i < k � nd=2. Thus, in order to compute the rank ofli, it is necessary to perform a comparison between li and ri. Since a comparison can onlybe performed between packets located in the same PU, at least one packet in each of thek �nd=2 pairs has to cross the bisection. As at most 2 �nd�1 packets can cross the bisectionin a single step, the theorem follows. 2In the arbitrary model, we have to be more careful, since an algorithm might try toperform a comparison between packets in di�erent areas of the network with only par-tial knowledge of their key values. In fact, there are well-known randomized protocolsthat compare two �-bit values located in di�erent processors by communicating o(�) bitsbetween the processors [28]. If the range of key values is su�ciently large, then these pro-tocols can be used to obtain asymptotically faster algorithms for ranking in the arbitrarymodel.



3.2 Basic SchemeWe now present our basic algorithmic scheme for ranking, which can be seen as an exten-sion of the well-known sample sort algorithm [3, 21, 22]. We will later use this scheme toobtain nearly optimal randomized and deterministic solutions.Partition the mesh into g square blocks of equal size, called G-blocks, where g = !(1).Let f = !(g) be a multiple of g. (Suitable choices for g and f are discussed further below.)Our basic scheme consists of the following steps.1. Select a global set of s = !(f) approximately evenly spaced splitter elements, andcompute the exact global ranks of the splitters. Then broadcast the splitters and theirranks to all G-blocks.2. Use the splitters to estimate for every packet pi its ranks ri, and de�ne Ri = bf �ri=(k � n2)c. Each Ri, 0 � Ri < f , is the index of the destination interval of pi.3. Compute a suitable assignment of destination intervals to G-blocks, such that f=gintervals are assigned to each G-block.4. Route each packet to the G-block to which its destination interval was assigned.5. Complete the ranking by locallysorting the packets in the G-blocks.Lemma 1 Step 1, 2 and 5 can be performed in o(k � n) steps. At most (1 + o(1)) � k � n2=fpackets are allocated to any destination interval.Proof: The selection of the splitters and computation of their global ranks in Step 1 can beperformed in o(k �n) steps using either randomized [8, 21, 22] or deterministic [9] samplingtechniques. Step 2 can be performed in time o(k � n) by sorting the packets together withthe splitters in the G-blocks.Every destination interval is assigned approximately k � n2=f packets, up to a smallinaccuracy due to packets that lie between two splitters that are in di�erent destinationinterval. This inaccuracy is bounded by the maximum number of packets between anytwo splitters. If s is chosen su�ciently larger then f , then this is number is lower-ordercompared to k � n2=f . 2It remains to show how we can assign the destination intervals to the G-blocks suchthat the routing in Step 4 can be performed e�ciently. The assignment must be such thatthe routing is as `balanced' as possible. More precisely, we want to minimize the maximumnumber of packets that have to be sent from any G-block to any other G-block. This goalis justi�ed by the following lemma.Lemma 2 If at most (1 + o(1)) � k � n2=g2 packets have to be routed between any twoG-blocks, then the routing in Step 4 can be performed in (1 + o(1)) � k � n=4 steps.Proof: Apply a blocked total-exchange of size (1 + o(1)) � k � n2=g2 with respect to theG-blocks, as de�ned in Section 2.1. 2Thus, if we can e�ciently �nd a good assignment, then we immediately obtain a rankingalgorithm running in (1 + o(1)) � k � n=4 steps. We formalize the problem as follows. LetM = k �N = k � n2 be the total number of packets, and let A = (ai;j) be a g � f matrix,where entry ai;j gives the number of packets in the ith G-block belonging to the jthdestination interval. It follows that0 � ai;j �M=f; for all 0 � i < g; 0 � j < f;Pj ai;j =M=g; for all 0 � i < g; andPi ai;j =M=f; for all 0 � j < f:



We have to partition the set of columns into g disjoint subsets of f=g columns each, suchthat every row sum in every subset is at most (1 + o(1)) times the average value. Moreformally, we have to construct an f � g zero-one matrix S = (si;j), withXj si;j = 1; for all 0 � i < g; Xi si;j = f=g; for all 0 � j < f; (1)satisfying (A � S)i;j = (1 + o(1)) �M=g2; for all 0 � i; j < g: (2)3.3 Randomized SolutionWe now show that a randomly chosen matrix S satis�es (2) with high probability (i.e.,with failure probability at most M��, for some � > 0). A similar idea was mentioned in[3] in the context of an implementation of sample sort on the CM-5, where the authorspropose to `randomize the locations of the buckets' in order to make the performance ofthe algorithm independent of the key distribution.Thus, we randomly select a matrix S satisfying (1) and prove that (2) holds with highprobability given an appropriate choice of f and g. Note that (2) imposes g2 conditionsthat must be satis�ed simultaneously. If any single condition is violated with probabilityat most M��=g2, then the probability that any of them is violated is at most M��.Lemma 3 If f = !(ln1=3M), then a randomly selected zero-one matrix S that satis�es(1) also satis�es (2) with high probability.Proof: We can bound the probability for a single condition by analyzing the followingsituation. Given a multi-set T of f numbers between 0 and M=f whose sum is equal toM=g, we have to bound the probability that the sum of the elements of a random subsetS of size f=g exceeds M=g2+ t, for t = o(M=g2). The expected value of this sum is M=g2.A majorization argument shows that the probability that the sum of the values ofthe elements in S exceeds M=g2 + t is smaller than the probability that the sum of f=gindependently selected elements Xi, with 0 � Xi �M=f and with expected value M=g2,exceeds M=g2+ t (see [23] and the references therein). Applying Hoe�ding's Inequality [6]this probability can be estimated as follws.Pr(Xi Xi �M=g2 + t) � exp(�2 � f3 � t2=(g �M2)):So, we should take t(f; g;M) = c �M � ln1=2M � g1=2=f3=2;for some constant c, to get the desired bound on the probability. In order that t(f; g;M) =o(M=g2), we must have ln1=2M � g5=2 = o(f3=2). Since the only condition on g is g = !(1),the lemma follows. 23.4 Deterministic SolutionWe now derive a deterministic solution by performing a (very simple) derandomization[15] of the above algorithm. To do so, we show that the parameters f , g in the randomizedsolution can be chosen such that the sample space is of size O(N) and the success prob-ability is non-zero. We can then search the entire sample space by assigning a constantnumber of samples to each of the N PUs.Lemma 4 Let k be polynomial in N . If f = logN= log logN then it su�ces to test atmost N matrices satisfying (1) in order to �nd one that also satis�es (2).



Proof: Lemma 3 implies that for f = !(ln1=3M) a randomly selected S satis�es (2) withhigh probability. Hence, there exists an S that satis�es (2). The size s(f; g) of the samplespace can be estimated as s(f; g) = f !((f=g)!)g < ff :Thus, if we choose f � logN= log logN , then ff < N . Assuming that k is polynomial inN , the condition f = !(ln1=3M) is also satis�ed. 2Since the matrices that have to be tested can be generated in a systematic way, thetests can be performed in a distributed fashion. Thus, Lemma 4 implies that every PUhas to generate and test only one f � g zero-one matrix. This takes O(f � g2) time. Sincef < logN , this time is negligible in comparison to the routing time. Combining all resultsfrom Lemma 1 to 4, we obtain the main result of this section.Theorem 4 If every PU initially holds k packets, then the ranking problem can be solveddeterministically in time (1 + o(1)) � k � k=4 on the n� n mesh.It follows from Lemma 1 that at most (1 + o(1)) � k � n2=g packets are routed to anyG-block. If desired, we can redistribute the packets in o(k � n) steps such that every PUholds exactly k packets at the end.The large lower-order terms make the deterministic algorithm impractical for reason-able values of n and k.4 The probabilistic algorithm, on the other hand, has a fairly simplestructure and may be of practical interest.4 Integer Ranking and SortingIn this section, we consider the integer ranking and integer sorting problems, where thekeys are restricted to the set f0; : : : ;m � 1g. We will show that both problems can besolved asymptotically faster than general sorting, provided that m is not much larger thank � n=2. Throughout this section, we assume the arbitrary model of the mesh, which ismore useful than the comparison-based standard model for problems with restricted keysize. We begin with the following lower bound (which, of course, also extend to the morerestricted standard model.)Theorem 5 If m = O(k �n2), then any deterministic algorithm for integer sorting requires
(n+pm � k= log n) steps on the arbitrary model of the mesh.Proof: (Sketch) Consider any two square blocks B0 and B1 of side length qm2k in themesh. Let X be the set of those inputs where every possible key value appears exactlyonce in B0 [ B1, while all keys in the rest of the network have value 0. Note that everyinput in X results in the same output. If we do not distinguish between inputs that can beobtained from each other by only permuting keys within B0 or within B1, then X contains� mm=2� distinct inputs.A simple crossing-sequence argument (e.g., see [14]) shows that at least log(jXj) =
(m) bits of data have to be communicated between B0 and B1, since otherwise there isan input � that coincides with some �0 2 X in B0, and with some �1 2 X, �0 6= pi1, in therest of the network, and that results in the same output as �0 and �1. The lower boundthen follows from the fact that B0 and B1 have only O(pm=k) outgoing edges, each ofwhich can transmit at most m+O(log n) bits in each step. 24 Going through the proofs of the above lemmas, we �nd that for f = logN= log logN , we can takeg = log1=3N . On the mesh this gives lower-order terms bounded by O(k � n= log1=3 n).



For the case of integer ranking, the above lower bound can be strenghtened slightly.We obtain the following result, the proof of which is omitted.Theorem 6 Ifm = O(k�n2), then any deterministic algorithm for integer ranking requires
(n+pm � k � log(n�k=m)logn steps on the arbitrary model of the mesh.We now describe algorithms for integer sorting and ranking whose running times nearlymatch the lower bounds. Our algorithms are based on counting sort, and rely on an e�cientimplementation of a restricted form of the `multipre�x' operation described in [19]. We�rst present a simple, but non-optimal, algorithm that solves both integer sorting andranking, and then explain how the algorithm can be modi�ed into optimal solutions foreach problem.In the following, we assume that k � n2 > m > k. (If m � k, then the problem can besolved in O(n + k) steps by a simple pipelined pre�x operation.) The algorithm consistsof the following steps.1. Partition the mesh into blocks of side length pm=k, and determine in each blockthe number ai of occurrences of key value i, for 0 � i < m. Arrange the numbers insideeach block such that ai is contained in PU Pimodk of the block.2. Combine the values ai from all blocks in the mesh by repeatedly `merging' groupsof four adjacent blocks. That is, add the corresponding ai values from the four blocks,and distribute the resulting values over the larger block.3. Use a simple pre�x operation to compute the ranks of the key values.4. In the case of integer sorting, simple routing and segmented broadcast operationscan be used to bring the key values to the correct PUs. For integer ranking, we have todeliver the rank information to the PUs initially holding the keys. To do so, we reversethe `merging' in Step 2 by performing a downwards pass in the merging tree (as instandard pre�x algorithms).Step 1 of the algorithm can be performed in O(pm � k) steps using local sorting. It canbe shown that the running time for Steps 2 and 4 is dominated by the time needed forthe lowest level of the merging tree, which is also O(pm � k). Thus, the algorithm runs intime O(pm � k).The non-optimality of this simple algorithm is due to the ine�cient representations ofthe key values as a collection of values ai in the upward pass in Step 2, and the rank valuesin the downward pass in Step 4. To improve the running time of the algorithm, we assumethat the keys and ranks in Steps 2 and 4 are given as sorted lists. Note that a sortedlist of � key values from f0; : : : ; �� 1g can be represented with O((1 + log(�=�)) � �) bits.Using such a representation, and starting with blocks of side lengthpm=k= log n in Step 1,we can reduce the time for Steps 2 and 4 to O(pm � k= log n) and O(pm � k � log(n�k2=m)log n ,respectively. This establishes the following results.Theorem 7 If m = O(k �n2), then integer sorting and integer ranking can be performed intime O(n+pm � k= logm) and O(pm � k � log(n�k2=m)log n , respectively, on the arbitrary modelof the mesh.Thus, the results asymptotically match the lower bounds. The algorithms can beadapted to the case where m = o((k � n2)1+�) for any constant � > 0, for which theystill achieve an asymptotic improvement over general sorting.



5 Excess CountingIn this section, we consider the excess counting problem, where each PU holds k coloredpackets, and we want to mark those packets whose colors occur more than some thresholdt times. We start with a lower bound. The proof uses an information-theoretic bisection-bound argument applied to some corner section, similar to those in Section 4.Lemma 5 The excess-counting problem with threshold t requires that some connectionstransfer 
(k � n=pt) bits.Proof: Divide the mesh in a corner C and the remainder of the network R. C has size(n=(2 � t)1=2)� (n=(2 � t)1=2), and contains x = k �N=(2 � t) packets. All colors occurring inC are unique. In R there are k �N � (1� 1=(2 � t)) > 2 � x � (t� 1) packets.Suppose that 2 �x colors occur exactly t�1 times in R, and that the x colors occurringin C are chosen from these 2 �x colors. Then clearly the complete information on the colorsoccurring in C has to be sent into R. There are �2�xx � possible choices of these x colors Thus,at least log ��2�xx �� = 
(x) bits have to be transferred over the 2 � n=(2 � t)1=2 connectionsbetween C to R, and the result follows. 2In the following, we derive an algorithm whose running time comes comes quite closeto the above lower bound. Note that a trivial possibility is to sort the packets on theircolors, and then count the packets of each color; this can be done in (1+o(1)) �k �n=2+2 �nsteps. A factor of two can be gained by applying the ranking algorithm of Section 3 (usingthe fact that the algorithm produces a blocked ranking). If the number of possible colors isvery large, and t small, then this is the best algorithm we know. If the number of possiblecolors is not too large, then we can apply the techniques of Section 4.In the following, we present an alternative scheme that runs in time independent ofthe number of possible colors, and that is considerably faster than sorting for su�cientlylarge values of t. Its structure di�ers signi�cantly from the algorithm for integer sorting.The algorithm is inspired by the following observation.Observation 1 Consider a network that is partitioned into x subnetworks. If a coloroccurs more than t times in total, then in some subnetwork it occurs at least dt=xe times.We assume the arbitrary model. Initially the network is partitioned into t subnetworkswith N=t PUs each, called blocks (assume that t divides N). The packets in each subnet-work are sorted on their colors and the frequency of each color is determined. All occurringcolors are candidates. Iteratively, the candidates in pairs of subnetworks are merged to-gether. More precisely, inductively we assume that the following invariant holds at alltimes:Invariant 1 After i merges, and for any subnetwork S with 2i � N=t PUs, a color c is acandidate in S i� it occurs at least 2i times. There are at most k � N=t candidates in S,and the candidates and their frequencies are known in all blocks in S.Intially Invariant 1 holds. Finally, for i = log t, the invariant states that a packet is acandidate i� it occurs more than t times in the whole network, and that the candidatesare known in every block. In that case, one more local operation su�ces to mark all packetswith colors that occur more than t times.Assume that Invariant 1 holds after merge i. Then the following steps are performedto merge two subnetworks S1 and S2 of 2i blocks each (we only describe the operations inS2, as the situation in S1 is symmetric):Algorithm excess-merge1. The candidates from S1 and their frequencies are broadcast to all blocks of S2.



2. In each block of S2, determine the frequency of the candidates from S1.3. The frequencies of the candidates of S1 in the blocks of S2 are added up, and madeavailable in every block. These numbers are then added to their frequencies in S1.4. All old candidates from S1 and S2 that occur more than 2i+1 times are selected ascandidates.Theorem 8 By iterating excess-merge for i = 0; 1; : : : ; log t � 1, excess counting withthreshold t can be performed in time O(n+ log t � k � n=pt) on an n� n mesh.Proof: The correctness follows from the invariant, which is obviously restored after everymerge. To analyze the running time, we consider the described merging of two subnetworksconsisting of 2i blocks each. The blocks have size n=pt� n=pt and the subnetworks havesize (2bi=2c �n=pt)� (2di=2e �n=pt). Step 1 takes O((2i=2+k) �n=pt) steps (distance plusbisection bound). Step 2 can be implemented by sorting in every block S, and Step 3 issimilar to a broadcast. Thus, this application of excess-merge takes O((2i=2+k) �n=pt)steps. By summing over all log t iterations we obtai the result. 2The result can be generalized to a bound of O(d � n + log t � k � n=t1=d) for excessdetermination on a d-dimensional mesh. Note that our scheme outperforms sorting for allt = !(1). To the best of our knowledge, the deterministic sequential complexity of thisproblem is the same as that of sorting. (In a randomized setting, better performance canbe achieved by applying hashing and bucket-sort.) So our algorithm gives an interestingexample of a problem for which an adaptation of a sequential algorithm does not lead to agood parallel algorithm for the mesh. Also, we see here that problems which are apparentlyof about the same complexity sequentially, might have a substantially di�erent complexityon the mesh.AcknowledgementWe thank Greg Plaxton for helpful discussions about the material in Section 2.References1. Bailey et al., `The NAS Parallel Benchmarks,' Tech. Rep. RNR-94-007, NASA Ames Research Center,1994.2. Bertsekas, D. P., J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Prentice-Hall, 1989.3. Blelloch, G. E., C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, M. Zagha, `A Comparisonof Sorting Algorithms for the Connection Machine CM-2,' Proc. 3rd Symp. on Parallel Algorithms andArchitectures, pp. 3{16, ACM 1991.4. Dusseau, A. C., `Modeling Parallel Sorts with LogP on the CM-5,' Tech. Rep. CSD-94-829, Universityof California at Berkeley, 1994.5. Hinrichs, S., C. Kosak, D. R. O'Hallaron, T. M. Stricker, R. Take, `An Architecture for Optimal All-to-All Personalized Communication,' Proc. 6th Symp. on Parallel Algorithms and Architectures, pp.310{319, ACM, 1994.6. Hofri, M., Probabilistic Analysis of Algorithms, Springer, 1987.7. Iwama, K., E. Miyano, Y. Kambayashi, `Routing Problems on the Mesh of Buses,' Proc. 3rd Int. Symp.on Algorithms and Computation, LNCS 650, pp. 155{164, Springer, 1992.8. Kaufmann, M., S. Rajasekaran, J. F. Sibeyn, `Matching the Bisection Bound for Routing and Sortingon the Mesh,' Proc. 4th Symp. on Parallel Algorithms and Architectures, pp. 31{40, ACM, 1992.9. Kaufmann, M., J. F. Sibeyn, T. Suel, `Derandomizing Algorithms for Routing and Sorting on Meshes,'Proc. 5th Symp. on Discrete Algorithms, pp. 669{679 ACM-SIAM, 1994.10. Kunde, M., `Block Gossiping on Grids and Tori: Deterministic Sorting and Routing Match the BisectionBound,' Proc. 1st European Symp. on Algorithms, LNCS 726, pp. 272{283, Springer, 1993.11. Kunde, M., R. Niedermeier, K. Reinhardt, P. Rossmanith, `Optimal Average Case Sorting on Arrays,' Proc. 12th Symp. on Theoretical Aspects of Computer Science, pp. 503{513, Springer, 1995.



12. Leighton, F. T., `Tight Bounds on the Complexity of Parallel Sorting,' IEEE Transactions on Com-puters, C-34(4), pp. 344{354, 1985.13. Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees and Hypercubes,Morgan Kaufmann, 1991.14. T. Lengauer, `VLSI Theory,' in Handbook of Theoretical Computer Science, Volume A: Algorithms andComplexity, J. van Leeuwen (ed.), pp. 805{833, Elsevier/MIT Press, 1990.15. Luby, M., `A Simple Parallel Algorithm for the Maximal Independent Set Problem,' SIAM Journal onComputing, 15, pp. 1036{1053, 1986.16. Meyer, U., J.F. Sibeyn, `Simulating the Simulator: Deterministic PRAM Simulation on a Mesh Simu-lator,' Proc. Eurosim `95, F. Breitenecker and I. Husinsky (Eds), Elsevier, 1995, to appear.17. Mehlhorn, K., U. Vishkin, `Randomized and Deterministic Simulations of PRAMs by Parallel Machineswith Restricted Granularity of Parallel Memories,' Acta Informatica, 9(1), pp. 29{59, 1984.18. Pietracaprina, A., G. Pucci, J. F. Sibeyn, `Constructive Deterministic PRAM Simulation on a Mesh-Connected Computer,' Proc. 6th Symp. on Parallel Algorithms and Architectures, pp. 248{256, ACM,1994.19. Ranade, A., S. N. Bhatt, S. L. Johnsson, `The Fluent Abstract Machine', Advanced Research in VLSI:Proc. 5th MIT Conference, pp. 71{94, MIT Press, 1988.20. Rao, S. B., T. Suel, Th. Tsantilas, M. Goudreau, `E�cient Communication Using Total-Exchange',Proc. 9th International Parallel Processing Symposium, pp. 544{550, IEEE, 1995.21. Reif, J. H., L. G. Valiant, `A logarithmic time sort for linear size networks,' Journal of the ACM, 34,pp. 68{76, 1987.22. Reischuk, R., `Probabilistic Parallel Algorithms for Sorting and Selection,' SIAM Journal of Comput-ing, 14, pp. 396{411, 1985.23. Schmidt, J.P., A. Siegel, A. Srinivasan, `Cherno�-Hoe�ding Bounds for Applications with LimitedIndependence,' Proc. 4th Symp. on Discrete Algorithms, pp. 331{340, ACM-SIAM, 1993.24. Sibeyn, J. F., `Desnaki�cation of Mesh Sorting Algorithms,' Proc. 2nd European Symp. on Algorithms,LNCS 855, pp. 377{390, Springer, 1994.25. Sibeyn, J.F., `Sample Sort on Meshes,' Tech. Rep. MPI-I-95-1012, Max-Planck Institut f�ur Informatik,Saarbr�ucken, Germany, 1995.26. Sibeyn, J. F., `List Ranking on Interconnection Networks,' Tech. Rep. MPI-I-95, Max-Planck-Institutf�ur Informatik, Saarbr�ucken, Germany, 1995, to appear.27. Valiant, L. G., `A Scheme for Fast Parallel Communication,' SIAM Journal on Computing, 11, pp.350{361, 1982.28. Yao, A. C., `Some Complexity Questions Related to Distributive Computing,' Proc. 11th Symp. onthe Theory of Computing, pp. 209{213, ACM 1979.

This article was processed using the LATEX macro package with LLNCS style


