
Batch Query Processing for Web Search Engines

Shuai Ding
∗

Polytechnic Institute of NYU
Brooklyn, NY, USA

sding@cis.poly.edu

Josh Attenberg
Polytechnic Institute of NYU

Brooklyn, NY, USA
josh@cis.poly.edu

Ricardo Baeza-Yates
Yahoo Research
Barcelona, Spain

rby@yahoo-inc.com

Torsten Suel
Polytechnic Institute of NYU

Brooklyn, NY, USA
suel@poly.edu

ABSTRACT
Large web search engines are now processing billions of queries
per day. Most of these queries are interactive in nature, re-
quiring a response in fractions of a second. However, there
are also a number of important scenarios where large batches
of queries are submitted for various web mining and sys-
tem optimization tasks that do not require an immediate re-
sponse. Given the significant cost of executing search queries
over billions of web pages, it is a natural question to ask if
such batches of queries can be more efficiently executed than
interactive queries.

In this paper, we motivate and discuss the problem of
batch query processing in search engines, identify basic mech-
anisms for improving the performance of such queries, and
provide a preliminary experimental evaluation of the pro-
posed techniques. Our conclusion is that significant cost
reductions are possible by using specialized mechanisms for
executing batch queries in Web search engines.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]:
Information Search and Retrieval

General Terms
Algorithms, Experimentation

Keywords
Web Search, Query Processing, Batch Query Processing, Re-
sult Cache Updates

∗Part of this work was done while this author was visiting
Yahoo! Research Barcelona, under the Yahoo! internship
program

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’11, February 9–12, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0493-1/11/02 ...$10.00.

1. INTRODUCTION
Over the last decade, web search technology has devel-

oped into a multi-billion dollar industry that serves answers
to hundreds of millions of users each day. Users, in turn,
have come to rely on search engines for an ever-increasing
share of their information and other needs, in the process
supplanting many other printed, electronic, and human in-
formation sources. The current search engines index tens
of billions of web pages and petabytes of data and aim to
provide a single interface into many different types of in-
formation including web sites, books, news, videos, product
information, technical documents and images.

While search engines generate significant income, primar-
ily through advertising, they also incur large costs in terms
of hardware, power, and engineering. The current large-
scale search engines, including Google, Yahoo!, Microsoft
Bing, and Baidu, are based on tens to hundreds of thousands
of computer servers, representing multi-billion dollar invest-
ments, and requiring many millions more in maintenance
effort and power consumption. In addition, a competitive
search engine must employ teams comprising hundreds of
researchers, engineers and developers just to keep up with
the ever-increasing data size, user load, and user expecta-
tions. These teams perform significant analysis and mining
of the underlying data and modeling of users behavior in
order to increase the quality of the search results, improve
the targeting of the accompanying advertising, and optimize
the efficiency of the system.

Beyond the search engine companies themselves, there
currently exists an entire ecosystem of companies, includ-
ing new media, e-commerce sites, advertising networks, and
social networking sites that depend on or closely interact
with the search engines. These companies also perform sig-
nificant data mining and analysis to optimize their business.
While some of these companies can afford to acquire sig-
nificant amounts of data from the web, others use data and
mechanisms provided by the search engines, which due to in-
creasing cost and consolidation are more and more becoming
gatekeepers to much of the data on the web [4, 29].

Current search engine query processing systems are de-
signed with the goal of returning results in fractions of a sec-
ond. This is clearly very important since most of the queries
processed by the search engines are interactive queries—
those that are posed by human users. However, there are
also a large numbers of queries that do not require inter-

active results; this includes queries issued from within the
search companies in order to test, mine, and optimize the
search engines, as well as queries issued by outside parties
in order to mine information from the web. Our assump-
tion here, discussed further below, is that such queries will
increase significantly in volume and that it makes sense to
consider optimized query processing mechanisms for such
queries in order to achieve higher efficiency than the sys-
tems designed for interactive queries.

Thus, the topic of this paper is how to efficiently execute
batches of queries that do not require interactive answers.
We discuss some basic approaches that allow more efficient
processing of such queries, describe how to optimize these
approaches, and then provide an experimental evaluation
that shows significant performance gains compared to the
processing of interactive queries.

1.1 Motivation
Above, we have asserted that there are significant numbers

of queries that do not require interactive responses. We
now try to discuss and justify this claim in more detail. In
particular, we describe three important scenarios where such
queries arise:

(1) Cache Updates: We start with a very specific, but
important, example of non-interactive queries. All ma-
jor search engines cache the results of common search
queries, and a significant amount of work has focused
on optimizing caching mechanisms [5, 25, 21, 30, 32,
16]. Recently, work has focused on the need to also up-
date and refresh results stored in these caches [8] since
in practice performance is limited more by updates to
the document collection than by the size of the cache.
In particular, it makes sense to periodically recompute
and store results to common queries, by issuing batches
of queries whose results would soon expire to the search
engine. This has benefits over caching methods based
on simple invalidation in that batches can be sched-
uled to avoid peak loads and in that user queries do
not experience delays due to cache misses. In addition,
as we will demonstrate, queries can be processed more
efficiently, that is, with greater throughput, in batches.

(2) Internal Testing and Mining: As described above,
search engines employ multiple teams that perform
various mining and testing tasks with the intent of
improving the search engine. Many of these tasks are
performed on separate clusters running, e.g., mapRe-
duce [13], Hadoop1, Dryad [18], or similar systems.
However, there are also many tasks that involve issu-
ing batches of queries to the search engine. For ex-
ample, search engines perform significant amounts of
internal quality testing that involves issuing large num-
bers of queries. Common query processing optimiza-
tions, such as index tiering and early termination [26,
23] and indexing of subqueries [24, 9], use queries to
determine the best index organization. Data mining
operations may issue queries for various tasks such as
tuning of ad matching mechanisms and of crawl poli-
cies, or filtering and classification of content. While
there is not a lot of published work on the internal
day-to-day operations and engineering of search en-

1http://hadoop.apache.org

gines, in our own experience it is quite common to is-
sue significant batches of queries for mining and testing
purposes. (Additional automatic queries with interac-
tive response requirements may be triggered by various
browsing and online ad matching operations, but these
are not the topic of this paper.)

(3) Queries by Outside Parties: As mentioned, there
are now many outside entities who are closely con-
nected with major web search engines. Amongst these
parties are researchers, companies requiring keyword-
focused random access to web content, and third-party
search engines, where results are initially gleaned from
query interfaces of larger search engines. This pro-
grammatic access of web scale inverted indices has be-
come so important, that all of the major search engines
have APIs for automated access. For instance, Ya-
hoo! provides a service called BOSS (Build your Own
Search Service) that third parties (almost) unlimited
automated access to the Yahoo! search service. In May
2009, Yahoo! reported that about 30 million queries
per day were issued through BOSS,2 and a number of
companies including Hakia (semantic search), OneRiot
(social search), and Linguaseek (cross-language search)
rely on BOSS. Some of these applications require in-
teractive responses, but much of this traffic does not
need to be processed in real time. Additionally, the
capabilities of a web search engine can be leveraged as
a tremendous resource to aid data acquisition in the
context of building, maintaining, and evaluating mod-
els for data mining and machine learning [4, 17, 29].
Here, by issuing specific queries, including those de-
rived through data-driven processes and those gener-
ated by expert background knowledge, to a web search
engine, a far greater repository of information becomes
accessible than may otherwise be possible.

In summary, we have argued that there are many scenar-
ios that involve issuing large batches of queries to search en-
gines. As arbiters of the web’s data, we expect third party
demands on increase significantly in the coming years as
data on the web balloons in size and as innovative uses for
large data are devised. Combined with the ongoing consol-
idation in the core search ecosystem, driven in part by the
significant cost of engineering and maintaining a petabyte
general-purpose search engine implies that there will an ever
increasing demand by parties interested in issuing queries
over the web, but fewer and fewer companies able to afford
to acquire their own data and platform for executing such
queries.

We believe that there are two main obstacles that cur-
rently limit use of such queries. One obstacle, which is not

the focus of this paper, is that IR systems are designed with
humans rather than machines in mind. Thus, while rela-
tional databases are heavily standardized in their operations
and designed for the explicit purpose of supporting multiple
layers of software on top, search engines are focused on pro-
viding quality results to human users, and it can be difficult
to built additional tools on top of this foundation.

The other obstacle is limited access to queries. While
some limitations are due to concerns by search engines that

2These queries are not counted in the reported traffic and
market share figures for search engines.

outside parties could reverse engineer and then subvert their
ranking systems, another major factor is the cost of pro-
viding large numbers of queries to outside parties. This is
the problem we hope to address here, by making batches of
queries cheaper than normal, interactive queries. Of course,
once more companies start using such queries, they may also
over time learn how to overcome the first obstacle, the dif-
ficulty of building on top of search engines.

1.2 Optimizing for Batches of Queries
Having discussed possible applications of batched search

engine queries, we now have to argue that there is a reason to
believe that large batches of queries can be processed more
efficiently than interactive queries, thus justifying special
optimized query processing mechanisms for batched queries.

First, a trivial way to make batched queries cheaper to
schedule them during off-peak times. But beyond this sim-
ple approach, we are looking here at ways to make batched
queries fundamentally cheaper to execute, that is, faster or
by using fewer hardware resources. We identify and evaluate
three major sources of savings and approaches in this paper:

(1) Query Reordering: Given a batch of queries, we
can execute the queries in any order, resulting, e.g., in
significantly better caching behavior.

(2) Clairvoyance: Since we know all the queries in the
batch, we can use clairvoyant algorithms for caching
lists and partial results. It is known that for list caching,
there is still a significant gap between the best online
solution and the clairvoyant algorithm [16].

(3) Reusing Partial Results: Both clairvoyance and re-
ordering can then be exploited to get better reuse of
partial results. Reuse of partial results corresponding
to subqueries was evaluated, e.g., in [24, 9, 20] but it
turns out that it is quite difficult to ascertain which
subqueries will reappear often enough to justify stor-
ing the results. Reordering and clairvoyance, as we
will show, can very significantly improve this mecha-
nism over the online case.

Before proceeding to the contributions of this work, we note
some limitations of our research. One orthogonal idea that
we do not pursue in this paper is to interleave the batch
queries with the interactive query stream to essentially wait
for and piggy-back onto identical or similar queries in the
query stream. This is an interesting idea for future work,
but requires a somewhat different experimental setup and
evaluation measures.

Finally, we note some assumptions and limitations of this
work. Most of our approaches assume that query results are
based on an intersection of the query terms. Current search
engines tend to use intersections whenever suitable, but also
use slightly more general Boolean filters for many types of
queries. Furthermore, current search engines use very com-
plicated ranking models based on hundreds of predictive co-
variances, and often execute queries in several phases, first
a simple first-cut ranking function based on a traversal of
significant parts of the relevant index structures, followed
by the computation of a more elaborate ranking function
on a small subset of promising candidate documents. In
this paper, we focus on the first phase. We note that some
applications of batch queries, say those testing the quality

of search results, require second-phase results, and our tech-
niques would only give savings for the cost of the first phase.
In other applications, first-phase results might in fact be suf-
ficient to achieve the given mining task3. Finding savings in
the second phase is a problem for future research.

The remainder of the paper is organized as follows: Sec-
tion 2 gives background and related work, Section 3 and 4
describe the technical details, Section 5 gives experimental
results and finally Section 6 concludes.

2. BACKGROUND AND RELATED WORK
Web search engines are facing formidable performance

challenges due to data sizes and query loads. The major
engines have to process tens of thousands of queries per sec-
ond over tens of billions of documents. To solve this perfor-
mance problem major search engines employ large clusters
of servers. However, given suitable mechanisms for load bal-
ancing, the problem of optimizing overall throughput can be
reduced to the single-node case, i.e., how to maximize the
number of queries per second that can be processed on each
machine within a reasonable response time.

One important technique for optimizing performance in
search engines is caching. Caching takes advantage of a com-
puter system’s hierarchical architecture and enables fast ac-
cess to recently used data. It has been studied extensively in
search engines on three different levels: Result caching [25,
22, 21, 30, 34], which deals with the case where identical
queries are issued repeatedly by keeping a cache of recently
returned results, list caching [30], which keeps inverted lists
corresponding to frequently used terms in memory, and in-

tersection caching [24, 9] where results of frequent subqueries
are cached. Baeza-Yates et al. studied the trade-off between
result caching and list caching [5], Skobeltsyn et al. com-
bined pruned indexes and result caching in [32], and Kumar
et al. considered top-k aggregation algorithms in the context
of intersection caching [20]. Recently, Barla Cambazoglu et

al. studied techniques for refreshing the content of a result
cache [8], which in fact is one important motivation of this
paper.

In our batch processing problem, we are given a large
stream of distinct queries, as any duplicate queries can be
trivially resolved using caching. Thus, only list caching and
intersection caching are potentially useful in this context.
However, the list caching problem in batch query processing
is quite different from the traditional list caching problem
because we can shuffle the order of the queries to take ad-
vantage of locality and improve caching performance, and
we can use a clairvoyant cache eviction policy [7] since we
know all future queries. While there is no previous work
on the problem of reordering the query stream to improve
cache performance in search engines, there is work in the
context of web server and proxy caching, where the so-called
r-reordering problem [15, 2] was shown to be NP-hard.

A powerful extension to traditional posting list caching is
so-called intersection caching [24]. The basic idea of this set-
ting is to cache commonly used subqueries (usually pairs of
terms) in order to speed up query processing by alleviating
the need for repeated computation. In [20], pruning tech-
niques are combined with intersection caching to achieve fur-
ther performance gains. Intersection caching offers increased

3e.g. tasks involving queries demanding all documents
matching a key-phrase

potential benefits in addition to algorithmic challenges in the
context of batch query processing; here we have the power
to foresee future sub-queries and to alter their order. In a
heavy-tailed query distribution such as a typical query log,
intersection cache-hits may a high payoff, but have an ex-
tremely low rate of occurrence [9]. Further separating our
work from the prior work on intersection caching, here we
only consider in-memory caching, ignoring the possibility
of precomputing intersections and storing them on disk for
later retrieval.

Query processing in search engines has been extensively
studied; for a basic overview, see [37, 6]. For recent research
on performance optimization such as index compression and
pruning, see [26, 36]. We assume we are given a collection of
N documents, where each document is uniquely identified
by a document ID (docID) between 0 and N − 1. The col-
lection is indexed by an inverted index structure, used by all
major web search engines, which allows efficient retrieval of
documents containing a particular set of words (or terms).
An inverted index consists of many inverted lists, where each
inverted list Iw contains the docIDs of all documents in the
collection that contain the word w. Each inverted list Iw
is typically sorted by document ID, and usually also con-
tains for each docID the number of occurrences of w in that
document and maybe the locations of these occurrences in
the page or other extra information (title, font, etc). In-
verted indexes are usually stored in highly compressed form
on disk or in main memory, such that each list is laid out in
a contiguous manner.

A query q = {t0, t1, t2, · · · } is a set of terms (words).
The most common way to rank the results is based on com-
paring the terms contained in the documents and the query.
More precisely, documents are modeled as unordered bags
of words and a ranking function assigns a score to each doc-
ument with respect to the current query. There are many
different ranking functions proposed, such as Okapi’s BM25
[27] or the Cosine measure [33]. The techniques proposed
in this paper are not limited to a particular class of ranking
function, except that we do assume query processing based
on intersections of terms. Many ranking functions studied
by the traditional IR community do not require the result
document to contain all the query terms. However, most
search engines prefer conjunctive semantics for queries, and
try to consider only documents containing all query terms
whenever possible. This is due to many reasons including
collection size, user expectations and preponderance of short
queries. Given an inverted index, a query is executed by
computing the scores of all documents in the intersection
of the inverted lists for all the query terms. This is effi-
ciently done in a document-at-a-time approach where we
simultaneously scan each of the inverted lists and compute
the score for any document that is encountered in all lists.
It is shown in [19] that this is more efficient than a term-

at-a-time approach (we process the inverted list one after
another). So in this paper we use the document-at-a-time

approach (Note that all the proposed techniques can be ap-
plied to the term-at-a-time approach). Another important
optimization of query processing is pruning technique, which
attempts to determine the top-K results without a complete
scan of all the inverted lists, by presorting the lists accord-
ing to their contribution to the score. There has been a lot
of work on this issue over the last two decades, see, e.g., [3,
23, 28]. We note that our approach is based on a complete

scan of the list intersections, and that integration with early
termination techniques is left for future work.

Overall, our work makes the following contributions:

1. We introduce, motivate, and study batch query pro-
cessing in search engines, which we argue will become
increasingly important.

2. We study two important aspects of the batch query
processing problem; one assumes I/O is the main bot-
tleneck for the system, and the other assumes CPU is.
We show both are challenging algorithmic problem in
their own right. For each aspect we design algorithms
that appear to work quite well in practice.

3. We perform an extensive experimental evaluation of
our approaches on real-life large data sets. Our re-
sults show significant improvements compared with the
baseline.

3. I/O SAVINGS
In a setting with limited memory and a large, web-scale

index, disk accesses may become the primary bottleneck
when performing query processing. In these cases, the time
to answer a query may be dominated by random disk seek
required to gather those posting lists not resident in mem-
ory. In such an environment, the limitations on throughput
imposed by disk accesses can seriously hinder performance.
However, the batch query processor has several tools avail-
able to alleviate this hindrance that are unavailable to the
online search engine. Amongst these are query reordering
and clairvoyant cache eviction strategies.

3.1 Query Reordering
Almost any caching policy benefits from locality – while

having a particular term occur at a uniform spread through-
out a query stream would incur numerous disk accesses and
cache evictions, having the same terms occur sequentially or
near sequentially may only necessitate a single disk lookup.
It is this intuition that motivates our first family of batch
query optimizations – reordering queries in such a way that
the impact of disk reads is minimized.

We illustrate two basic classes of heuristics for I/O im-
proving query reordering, with the intent of improving term
locality in the query stream for better cache eviction perfor-
mance and therefore reduced disk-induced latency.

• Sorting-Based Reordering This technique simply
sort the queries alphabetically with the hope that the
queries will be clustered.

• Cluster-Based Reordering This technique imparts
a top-down or bottom-up agglomerative clustering on
queries based on the frequency of terms present in each
query. The global query frequency of all terms in a
query set is first computed. Terms are now ordered by
their query-frequency. Traversing from most to least
frequent, queries are clustered based on the presence
or absence of terms. See [10] for details.

We note that there are many other heuristics that one
can think of, such as the TSP-based technique proposed in
[14] and so forth. For the batch query processing, a fast
heuristic is more preferable as this is an online process, so
we believe that our proposed techniques give a good trade-
off between the effort used on re-ordering the query stream
and the improvements we get.

Figure 1: Caching performance using LRU and
Clairvoyant, with different query stream reordering,
on our 1.16 million query stream. The x-axis is the
size of the cache in millions, and the y-axis is the size
of data needs to be transferred from disk in TB.

3.2 Cache eviction
Traditionally caching technique can not explore the clair-

voyant feature because the query stream in the future is un-
known. But in our case where the future of the query stream
is known, clairvoyant caching technique will be realistic. The
basic idea for clairvoyant caching is to evict things whose
next use will occur farthest in the future and it is shown to
be optimal under certain cost model. For details please re-
fer to [7]. Figure 1 shows the different caching performance
for original query stream and reordered query stream, on
the 1.16 million distinct queries from Excite query log (for
details see Section 5). From Figure 1 we can see that af-
ter reordering the query stream, the caching performance is
greatly improved. Moreover, clustered-based reordering out-
performs sorting-based reordering. Also clairvoyant caching
technique is much better compared with our baseline caching
technique LRU.

4. REUSE OF SUB-QUERIES
In many other search engines, the inverted index fits in

the main memory and the CPU computation is the main
bottleneck for query processing. Actually this is the real case
for many of the commercial search engines such as Google
or Yahoo! [12]. So in this section we discuss the techniques
to improve query processing in this case.

If one assumes that the inverted index is able to reside
in main memory, the problem faced in batch processing is:
given a large sequence of distinct queries, we want to find
efficient techniques to process these queries in a batch mode.
The general idea for speeding up the query processing is to
store and re-use the sub-queries on the fly. For instance,
two queries share the same sub-query such as ’free software

download’ and ’free ebook download’ can be re-phased as ’free
download > X’ then ’X software’ and ’X ebook’, where X
will be interpreted as an intermediate results for the cor-
responding pair. A similar idea is studied in [24] and [9].
Unlike prior work, the batch setting is able to leverage fu-
ture knowledge via a clairvoyant algorithm, alleviating the
difficult task of modeling sub-query frequency estimation.

In this work, we use a very simple model for the cost of
query processing, just the sum of the inverted list length
for all the terms in this query as in [24, 9]. For instance,

the cost for the two-term query ’free download’ will be mod-
eled as list-length(free) plus list-length(download). By using
this model, we always get benefit by storing the sub-query
for ’free download’ and then re-use it more than once, be-
cause the list length for the intersection of the sub-query
’free download’ is always not longer than that of either of the
terms. Note, however, that this simplifying independence
assumption is often violated in reality and typical query pro-
cessing systems have to take the document-at-a-time tech-
nique and skipping behavior of the query processing into
account. For the two queries ’free software download’ and
’free ebook download’, if the inverted list for ’ebook’ and ’soft-
ware’ are much shorter compared with ’free’ and ’download’,
we can potentially do much worse by computing and stor-
ing the result for the sub-query ’free download ’ and then
re-use it for only a few times. compared with the straight
forward approach. The reason is that in the original query
most of the inverted lists in ’free download’ will be skipped
when doing document-at-a-time because they are quite long
compared with the third list, but if you materialize it most
of the lists in ’free download’ will not be skipped, resulting
in a worse performance. But we will see that in general on
large scale (many queries) our model estimates the query
cost quite well.4

The rest of this section will be organized as follows: we
first describe our query processor in section 4.1, then we di-
vide our problem into two parts: in section 4.2 we assume
there is a fixed amount of memory budget and try to get the
maximal benefit, without evicting materialized sub-queries.
Then in section 4.3 we reorder and evict the materialized
sub-queries to reduce further the amount of main memory
consumption. Our framework is shown in Figure 2. From
Figure 2 we can see that in the first phase, we are given a
memory budget and try to take advantage of the clairvoyant
to rewrite the query stream so that the maximal benefit is
achieved. In the second phase we reorder the query stream
passed from the first phase and evict stale sub-query to fur-
ther reduce the memory consumption.

4.1 Query Processor
In this section we describe the query processor used in

our system. We re-implement the query processor based on
the description in [35], we use Pfordelta compression [35] to
compress the inverted list, with document-at-a-time and a
128 fixed block size for skipping. Besides the basic function-
ality, the processor is able to cache the intermediate result
for sub-queries and evict a sub-query as well. The basic
operations in our query processor includes:

1. Ta Tb Tc · · · > X

executes the query with terms Ta Tb Tc · · · and caches
the intermediate results into X. Note that the terms
Ta Tb Tc · · · can be the terms from the original query,
or cached intermediate results itself.

2. Ta Tb Tc · · ·

executes the query with these terms, that can also be
cached intermediate results.

3. Delete-X

deletes the cached sub-query represented by X

4Our techniques are not limited to this simple model; the
design and evaluation of improved cost models are topics of
future work.

With the modified query processor, we can rewrite the
query stream following the above grammar and our query
processor will automatically cache the sub-queries and re-
use it. An example is shown in Figure 3. From Figure 3
we can see that when a pair is materialized and reused, it
replaces the corresponding terms in the query, reducing the
sum of list length because the intersection size is always not
longer than the sum of the corresponding terms.

For the precise format of the cached sub-query, recall that
an inverted list is a sequence of postings sorted by document
ID, thus a posting in the cached intersections list simply con-
tains the document ID in the intersection and information
about corresponding score for the ranking purpose for the
sub-query. Note that in this work we are not using over-
lapped sub-queries, as our initial experiments showed that
they give no extra benefit because we have to maintain an
extra data structure (to make sure the scores do not over-
lap).

Then, in the next section, we discuss how we rewrite the
query stream given a fixed memory budget so that we can
take full advantage of the sub-queries.

4.2 Fixed Memory Budget
In this section we assume that there is a fixed amount of

main memory (S) that we can use, and we can materialize
as many pairs as long as we do not exceed the memory lim-
itation. The cost for a query is modeled as the sum of the
lists length for its terms. Given a query stream { Q1, Q2,
Q3, · · · , Qn} where Qi contains terms {T1, T2, · · · }, the
computation cost for the query stream without rewriting is:

C =

n∑

i=1

cost(Qi) =

n∑

i=1

|Qi|∑

j=1

listLength(Tj) (1)

When we materialize a pair with terms Ti and Tj , we
store its result into a temporal buffer X in memory, the
computation cost for the producing of the pair is:

cost(Ti Tj > X) = listLength(Ti) + listLength(Tj) (2)

Also we need to consume listLength(X) memory space
to store the temporal result. When we re-use it, the corre-
sponding computation cost will be modeled as listLength(X)
rather than listLength(Ti) + listLength(Tj). Note that we
are not using overlapped pairs, so when we materialize the
pair and re-use it in certain queries, the maximal benefit for
other potential good pairs will decrease if they share certain
terms with this pair. For instance, if we rewrite the query
{Ti Tj Tk} into {X Tk}, materializing {Tj Tk} will not give
any extra benefit for this particular query.

Now we can formally define the problem: (1) given a query
stream { Q1, Q2, Q3, · · · } with original cost C, which is
modeled as the sum of all the lists lengths for the terms
in the query sequence; (2) given a max buffer size S and
a candidate pool filled with all the pairs { p1, p2, p3, · · · }
which are potentially beneficial (we will talk about how to
get this candidate pool later); and (3) assuming that when a
pair pi is chosen it will be used in the queries and replace the
corresponding terms to reduce the cost of those queries by
reducing the list lengths, the reduction is called benefit(pi);
then we want to select a set of pairs { p1, p2, p3, · · · }
with size(p1), size(p2), · · · which is the intersection size
for the pair (memory cost), and with cost(p1), cost(p2), · · ·
which is the sum of lists lengths for the terms in the pair

(computation cost), so that:

∑
size(pi) ≤ S (3)

and minimize

C +
∑

cost(pi)−
∑

benefit(pi) (4)

Note that this problem is different from the one in [24]
because there the cost for producing the pair is ignored.
This problem is in general NP-hard as we prove below.

Proof. Assume there is a polynomial algorithm P for
the above problem, we set S as large as needed, and assume

∑
cost(pi) = C(p) . (5)

Then we construct the following generalized maximum cov-
erage problem [11]:

∑
cost(pi) ≤ C(p) (6)

and maximize
∑

benefit(pi) (7)

We claim that if the polynomial algorithm P gives an op-
timal result for (4) then it also gives the optimal result for
(7) with the constrain (6), which is a generalized maximum
coverage problem and NP-hard by itself, which is a contra-
diction.

Now we describe our algorithm for the query stream rewrit-
ing. Given a query stream we first produce the candidate
pool and the bipartite graph:

• Candidate Pool We simply scan the query stream
and put all the pairs which appear more than once into
the pool. As most of the queries are short, this phase
is fast and the time cost can be ignored even for a large
query stream.

• Bipartite graph The relationship between pairs of
sub-query in the candidate pool and the queries can
be seen as a bipartite graph as shown in Figure 4.
This relationship can be easily established from the
scan above and the cost can be neglected.

Then our algorithm works as follows (Clairvoyant Greedy):

1. Set available space as S. For all the pairs in the can-
didate pool, compute its potential max benefit score
(the pairs will be overlapped so the max benefit is not
likely to achieve). Store them in a heap.

2. Pick the pair with the maximal benefit score per caching
size as the current pair, extract it from the pool. Up-
date the potential max benefit score for all the other
pairs which share terms in the same query Q with the
current pair based on the bipartite graph.

3. Remove the links for the pairs which share the same
terms in Q with the current pair in the bipartite graph,
update the available space by decreasing it by the size
of the current pair.

4. If there is space available, repeat. Otherwise, exit.

Essentially our algorithm is a greedy one, which chooses
the best choice by choosing the pair with largest ratio of
benefit by space. Note that the third step is important,
which breaks the outdated link in the bipartite graph. By
doing this, we will not over-decrease the benefit score in the
future which makes the algorithm unfair.

As mentioned, all previous work only studies the usage
of pairs of terms. However, in practice common patterns
also appear in 3-term combinations and more-term combi-
nations, such as ’cheerleader champions 1999’ or ’Chicago
advertising agencies’. To take advantage of 3-term combina-
tions and more-term combinations, we only need to change
the candidate pool and add the 3-term combinations and
more-term combinations to the pool in our algorithm men-
tioned above, then greedily choose the best one and so on.
The problem here for batch query processing is that will be
too expensive to scan the query stream again and again and
naively count all the 3-term combinations and more-term
combinations because it will be exponentially growing, and
also if we keep one entry for each of the possible more-term
combination for checking, the memory usage will be huge.
The algorithm we use to get 3-term combinations and more-
term combinations candidate is similar to ’Apriori’ as in [1],
basically we do a bottom-up search based on what we al-
ready have in the pool. In general, we start from 2-term
combinations in the candidate pool, add an entry for check-
ing for the 3-term combinations only if all its 2-term appear
in the pool already. For example, we will add an entry for
’cheerleaders champions 1999’ only if ’cheerleaders champi-

ons’ and ’champions 1999’ and ’cheerleaders 1999’ are all in
the pool already. By doing this the cost for pool-filling will
be reduced greatly.

Figure 2: Framework for query rewriting.

Figure 3: An example for query rewriting.

Figure 4: Bipartite graph for pairs and queries.

4.3 Reordering to Reduce Memory Usage
In this section, we get the query stream passed from our

clairvoyant greedy algorithm, basically the query stream
looks like the one in Figure 3, containing many material-
ized pairs. Note that in the previous section we take full
advantage of the clairvoyance and greedily materialize the
sub-query which will be useful in the future query using a
fixed amount of memory. Actually after a pair is materi-
alized and re-used, it can be removed from the memory,
using the ”DELETE” operation in our query processor. In
this case the memory usage will be reduced further. As we
already know the future of each appearance for the material-
ized pair, we can use clairvoyant caching to evict pairs when
we want to set the memory buffer smaller. Further more, we
can re-order the queries so that the materialized sub-queries
are clustered and then we can further reduce the memory
usage using clairvoyant caching. Actually this is the same
as the caching problem explored in the first part, where the
basic unit for caching is a materialized pair instead of a sin-
gle term. From the first part we know the best heuristic
is the cluster technique, so we use it to cluster the materi-
alized pairs. Then we use clairvoyant caching to evict the
sub-queries when the buffer size is set smaller.

5. EXPERIMENTAL EVALUATION
We now present our experimental setup and give some

results for our algorithms.
Data sets and experimental setup: For our experi-

ments we use a subset of 10 million pages selected at random
from a crawl of about 120 million web pages crawled by the
PolyBot web crawler [31]. This subset size corresponds to a
scenario where the pages are evenly handed out over a dis-
tributed search engine. The uncompressed size of the pages
was more than 100G. After indexing the compressed size
of the inverted index is 4.2 G using Pfordelta compression
technique without position information. For ranking we use
Okapi BM25.

Queries are taken from a large log of queries issued to the
Excite search engine on 1999. Totally there are 2, 477, 283
queries in the original query log and 1, 161, 793 distinct
queries, where 840, 156 of the queries are singleton queries.
We remove the stop words and non-Ascii characters in the
query log. The distribution for queries is shown in Figure
5, and follows a Zipf distribution. Figures 6 and 7 plot the
distribution for pairs and 3-term frequencies in the query

Figure 5: Distribution of queries frequency (log-log
scale).

stream without counting duplicated queries. It matches with
the results mentioned in [9], where not only the query fre-
quency in the original query stream follows a power law dis-
tribution, but also the frequency for pairs and 3-term combi-
nations follow the same distribution. Actually this indicates
that caching a few good pairs will give most of the benefit.
From Figures 6 and 7 we can see that the slope for 3-term
combination frequency is larger than that for pairs, as ex-
pected.

Figure 6: Distribution of pairs frequency (2-term
sub-query, log-log scale).

Next we show that with our clairvoyant greedy algorithm,
the performance for batch query processing can be improved.
Figure 8 shows the performance gain with different caching
space. The x-axis is the memory budget with respect to the
total compressed inverted index size. From Figure 8 we re-
enforce the notion that a small number of sub-queries give
the most of the benefit. And even with only 8% of the in-
dex size as cache size we can get up to 26% speed up in
the processing time on the 1.1 million query stream. This
is mostly due to the fact that the distribution of the sub-
queries (pairs) follows a Zipf distribution as already men-
tioned, so as we increase the buffer size the candidate be-
come less promising. Also from Figure 8 we see that using
list length as the query cost model works pretty well, as it
gives a good estimate of the performance gain in processing
time.

To compare with the techniques used in [24], we imple-

Figure 7: Distribution of 3-term combination fre-
quency (log-log scale).

Figure 8: Performance gains with caching pairs (2-
term sub-queries) using our greedy algorithm, with
different cache size with respect to the inverted in-
dex size. Zero means no sub-queries are cached and
re-used, 110% means the cache size is even larger
than the inverted index size. We average the num-
bers over our 1.1 million queries.

mented their intersection caching algorithm using strict ad-
mission. Note that due to the different compression tech-
nique and skipping strategies, the absolute performance gain
will vary compared with [24]. We compare the average time
for each query in our query stream, using 30% inverted index
size as the caching buffer. Our algorithm is then better (4.6
ms per query) than the strict admision case (6.05 ms per
query) and the naive algorithm (6.86 ms per query), mainly
due to the use of the clairvoyant technique that only stores
the results for pairs that will be useful in the future. That
is a 24% improvement over [24].

Figure 9 shows the performance gain with different num-
ber of queries, with unbounded memory size. Here we show
the improvement based on the measure of the sum of list
length instead of real query processing time for convenience.
From Figure 9 we can see that for batch query processing,
we need more queries to get more benefit.

Figure 10 shows that after putting 3-term combination
and 4-term combination into our candidate pool, extra ben-
efit is achieved compared with using 2-term sub-query only.
But as we can see, the improvement is not huge (less than
10%), the main reason is that even a three term combina-

Figure 9: Performance gain with different numbers
of queries (in thousands). The benefit is showed as
the sum of lists lengths.

Figure 10: Performance with 2-term, 3-term and 4-
term sub-queries, averaged on our 1.1 million query
stream. For 5-term sub-query the additional benefit
is tiny.

tion such as ‘cheerleader champion 1999’ is very promising,
using only 2-term sub-query will not completely lose the
benefit because it is very likely that ‘cheerleader champion’
or ‘cheerleader 1999’ will be materialized.

Note that in Figure 8 we know that even with a buffer
size of 8% of the inverted index we can get a good improve-
ment compared with not using sub-queries. Actually we can
reduce the memory usage further by re-ordering the appear-
ance of the sub-queries and making them clustered, then use
a clairvoyant caching technique as mentioned in Section 4.3.
Figure 11 shows the result. We can see that if we use the
cluster technique to cluster the materialized sub-queries and
then use clairvoyant caching for evicting the sub-queries, ac-
tually we can use even less than 8% inverted index size to get
the same amount of benefit. Moreover, as we decrease the
cache buffer size further, the eviction of sub-queries starts
to “hurt” our performance gains, and also we can see that
the cluster technique outperforms the sorting technique.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we present Batch Query Processing as a

new and important problem for search engines. We study

Figure 11: Performance gains with clairvoyant
caching on clustered and sorted rewritten query
stream, x-axis is the buffer size wrt the total in-
verted index size, y-axis is the improvement in query
processing time compared with the naive query pro-
cessing.

the possible techniques in Batch Query Processing for im-
proving the I/O and CPU performance. Our experiments
show significant improvements compared with the baseline
approach.

There are some limitations and interesting future works.
Firstly, how to combine our work with the pruning technique
is an open problem to us. Secondly, for the case where the
inverted index is fit into main memory, it is interesting to
explore if there is a way to maximize the query processing
benefit and reduce the memory consumption at the same
time. In other words, it is interesting to combine the prob-
lem mentioned in Section 4.2 (which is NP-hard) and Section
4.3 (which is also NP-hard). Thirdly, it would be interesting
to have a technique which optimizes both the I/O and CPU
at the same time.

Another interesting future work will be to apply batch
query processing technique for the online case given that
the largest search engine gets tens of thousands of queries
per second. Let us assume that the probability of a query
q (term pair tp) appearing in a query stream is pq (pt).
It would be worth to delay answering the query if appears
again quickly enough. However caching does the same func-
tion without needing to delay the query. Hence, caching or
reusing would be interesting if a query or a term-pair ap-
pears soon enough. The fraction of those queries would be
p2q or p2t for terms. Modeling the query or term pair dis-
tribution as a power law of parameter α and summing for
all possible queries or term-pairs, it is not difficult to show
that the fraction of frequent queries in any interval of time
is upper bounded by ζ(2α)/ζ(α)2 where where ζ is the Zeta
Riemann function. Using the power-law parameters for our
data set we obtain an upper bound for this fraction of 0.56
for queries and 0.47 for terms. As the hit-rates for caching
are close to, or well above, these numbers, respectively, we
can infer that the query distribution should become more
biased to be able to make query or term-pair reuse inter-
esting in the online case or that the query load should be
much larger than what it is today. Nevertheless, in the fu-
ture the query load will be large enough and hence our work
will make sense also for the online case.

7. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proceedings of the 20th VLDB
Conference, pages 487–499, 1994.

[2] S. Albers. New results on web caching with request
reordering. In Proc. of Sixteenth annual ACM symposium
on Parallelism in algorithms and architectures, 2004.

[3] V. Anh and A. Moffat. Compressed inverted files with
reduced decoding overheads. In Proc. of the 21th Annual
int. ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 290–297, 1998.

[4] J. Attenberg and F. Provost. Why label when you can
search? strategies for applying human resources to build
classification models under extreme class imbalance. In
KDD, 2010.

[5] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdoch,
V. Plachouras, and F. Silvestri. The impact of caching on
search engines. In Proc. of the 30th Annual int. ACM
SIGIR Conference on Research and Development in
Information Retrieval, 2007.

[6] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley, 1999.

[7] L. Belady. A study of replacement algorithms for virtual
storage computers. IBM Systems Journal, 1966.

[8] B. B. Cambazoglu, F. P. Junqueira, V. Plachouras,
S. Banachowski, B. Cui, S. Lim, and B. Bridge. A
refreshing perspective of search engine caching. In 19th
International World Wide Web Conference, 2010.

[9] S. Chaudhuri, K. Church, A. C. Konig, and L. Sui.
Heavy-tailed distribution and multi-keyword queries. In
Proc. of the 30th Annual int. ACM SIGIR Conference on
Research and Development in Information Retrieval, 2007.

[10] C.-S. Cheng, C.-P. Chung, and J. J.-J. Shann. Fast query
evaluation through document identifier assignment for
inverted file-based information retrieval systems. In Inf.
Processing and Management, 2006.

[11] R. Cohen and L. Katzir. The generalized maximum
coverage problem. Information Processing Letters, 2008.

[12] J. Dean. Challenges in building large-scale information
retrieval systems. In Second ACM International Conference
on Web Search and Data Mining, April 2009.

[13] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In 6th Symposium on
Operating System Design and Implementation, pages
137–150, 2004.

[14] S. Ding, J. Attenberg, and T. Suel. Scalable techniques for
document identifier assignment in inverted indexes. In 19th
International World Wide Web Conference, April 2010.

[15] T. Feder, R. Motwani, R. Panigrahy, and A. Zhu. Web
caching with request reordering. In Proceedings of the
thirteenth annual ACM-SIAM symposium on Discrete
algorithms (SODA’02), 2002.

[16] Q. Gan and T. Suel. Improved techniques for result caching
in web search engines. In 18th International World Wide
Web Conference, 2009.

[17] P. Ipeirotis, L. Gravano, and M. Sahami. Probe, Count,
and Classify: Categorizing Hidden-Web Databases. In
SIGMOD, 2001.

[18] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from sequential
building blocks. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer
Systems, 2007.

[19] M. Kaszkiel, J. Zobel, and R. Sacks-Davis. Efficient passage
ranking for document databases. ACM Transactions on
Information Systems, 17:406–439, 1999.

[20] R. Kumar, K. Punera, T. Suel, and S. Vassilvitskii. Top-k
aggregation using intersections of ranked inputs. In Second
ACM International Conference on Web Search and Data
Mining, April 2009.

[21] R. Lempel and S. Moran. Predictive caching and

prefetching of query results in search engines. In
Proceedings of the 28th VLDB Conference, 2002.

[22] R. Lempel and S. Moran. Optimizing result prefetching in
web search engines with segmented indices. In 12th
International World Wide Web Conference, 2003.

[23] X. Long and T. Suel. Optimized query execution in large
search engines with global page ordering. In Proceedings of
the 29th VLDB Conference, pages 129–140, 2003.

[24] X. Long and T. Suel. Three level caching for efficient query
processing in large web search engines. In 14th
International World Wide Web Conference, 2005.

[25] E. Markatos. On caching search engine query results. In 5th
International Web Caching and Content Delivery
Workshop, 2000.

[26] A. Ntoulas and J. Cho. Pruning policies for two-tiered
inverted index with correctness guarantee. In Proc. of the
30th Annual int. ACM SIGIR Conference on Research and
Development in Information Retrieval, 2007.

[27] Okapi bm25. http://en.wikipedia.org/wiki/Okapi BM25/.
[28] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document

retrieval with frequency-sorted indexes. J. of the American
Society for Information Science, 47(10):749–764, 1996.

[29] S. Rajan, D. Yankov, S. Gaffney, and A. Ratnaparkhi. A
large-scale active learning system for topical categorization
on the web. In WWW, 2010.

[30] P. Saraiva, E. de Moura, N. Ziviani, W. Meira, R. Fonseca,
and B. RibeiroNote. Rank-preserving two level caching for
scalable search engines. In Proc. of the 24th Annual int.
ACM SIGIR Conference on Research and Development in
Information Retrieval, 2001.

[31] V. Shkapenyuk and T. Suel. Design and implementation of
a high-performance distributed web crawler. In Proc. of the
Int. Conf. on Data Engineering, pages 357–368, 2002.

[32] G. Skobeltsyn, F. Junqueira, V. Plachouras, and
R. Baeza-Yates. Resin: A combination of results caching
and index pruning for high-performance web search
engines. In Proc. of the 31th Annual int. ACM SIGIR
Conference on Research and Development in Information
Retrieval, 2008.

[33] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann, second edition, 1999.

[34] Y. Xie and D. O’Hallaron. Locality in search engine queries
and its implications for caching. In IEEE Infocom, 2002.

[35] H. Yan, S. Ding, and T. Suel. Inverted index compression
and query processing with optimized document ordering. In
18th International World Wide Web Conference, 2009.

[36] J. Zhang, X. Long, and T. Suel. Performance of compressed
inverted list caching in search engines. In 17th
International World Wide Web Conference, 2008.

[37] J. Zobel and A. Moffat. Inverted files for text search
engines. ACM Computing Surveys, 2006.

