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Multicomponent Systems 
 

 

MASS TRANSFER. 

 

Mass transfer deals with situations in which there is more than one component present in a system; for 

instance, situations involving chemical reactions, dissolution, or mixing phenomena. A simple example of 

such a multicomponent system is a binary (two component) solution consisting of a solute in an excess 

of chemically different solvent.  

 

 

1. Introduction and Basic Definitions. In a multicomponent system, the velocity of different 

components is in general different. For example, in Fig. 1 pure gas A is present on the left and pure gas 

B on the right. When the wall separating the two gases is removed and the gases begin to mix, A will 

flow from left to right and B from right to left – clearly the velocities of A and B will be different.  

 

 
Fig. 1 

 

 The velocity of particles (molecules) of component A (relative to the laboratory frame of 

reference) will be denoted vA. Then, in this frame of reference, the molar flux NA
 of species A (units: 

moles of A/(area time) ) is 

 

 NA = cA vA            (1) 

 

where cA is the molar concentration of A (moles of A/volume). For example, (1) could be used to 

calculate how many moles of A flow through an area AC per unit time (Fig. 2). In Fig. 2, the flux is 

assumed to be normal to the area AC. Then the amount of A carried across the area AC per unit time is 

 

 

 Amount of A carried through AC per unit time = NA AC = cA vA AC   (moles / time) 

 

 

Since the volume swept out by the flow of A per unit time equals vA AC (see Fig. 2), the above 

expression is seen to equal this rate of volumetric "sweeping" times cA, the amount of A per volume.  
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Fig. 2 

 

 

More generally, for arbitrary direction of NA and a differential area element dB, the rate of A transport 

through dB would be (Fig. 3),  

 

 flux of A through dB = cAvAn dB   (moles / time)    (2) 

 

n is the outward unit normal vector to dB. One can understand equation (2) by realizing that  vA  n dB 

is the volumetric flowrate of A species (volume/time) passing across dB from "outside" to "inside", 

where "outside" is pointed at by the unit normal vector n. Multiplying the volumetric flowrate  vA  n 

dB by the number of moles of A per volume, cA, equals the moles of A passing through dB per unit time.  

 

 

dBn

vA

-n  · vA{

"outside"

"inside"

volume swept out per unit
time = -  dn · vA B

 
Fig. 3 

 

cA is related to the total molar concentration c (c is moles of particles, irrespective of particle type, per 

volume) via  
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 cA = xAc           (3) 

 

where xA is the mole fraction of A. Summing over the mole fractions of all species must produce unity 

(n equals the total number of different species present in solution), 
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Similarly, we can also define a mass flux of A, nA (units: mass of A/(area time) ), 

 

 nA = A vA            (5) 

 

Here, vA is still the velocity of species A, exactly the same as in equation 1. A is the mass 

concentration of A (mass of A per volume of solution), 

 

 A = A            (6) 

 

where  is the total density ( is the summed mass of all particles, irrespective of particle type, per 

volume) of the solution and A is called the mass fraction of A (i.e. A = A/). Summing the mass 

fractions of all species must equal unity 
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As previously stated, in general each chemical species "i" in a multicomponent mixture has a different 

velocity vi. However, it will nevertheless prove convenient to define an average velocity of the bulk 

fluid, a velocity that represents an average over all the vi's. In general, three types of average velocities 

are employed: mass average velocity v (v is what is usually dealt with in Fluid Mechanics), molar 

average velocity V, and volume average velocity vo. We will only deal with the first two average 

velocities, defined as follows: 

 

 v =  


n

i

ii

1

v            (8) 

 

 V = 

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From its definition, v is a mass fraction based average of the individual species' velocities, while V is a 

mole fraction based average. It can be shown that if total density  = 


n

i

i

1

 is constant irrespective of 

composition, and if the total molar concentration c = 


n

i

ic

1

is constant irrespective of composition, then 

v = V. It can further be shown that if all particles have the same mass m, so that mi = m for all i where mi 

is mass of i type particles, then xi =  i and therefore v = V. 

 

 Why bother with two different average velocities? The mass average velocity is what is needed in 

equations such as the Navier Stokes equations, which deal with momentum, a property that depends on 

how much mass is in motion. Thus, the amount of momentum per unit volume of a flowing 

multicomponent mixture is v ( v = mv/Volume, where m is the total mass traveling with velocity v; 

m/Volume = ); thus momentum must be calculated using the mass average velocity v. Similarly, the 

Equation of Continuity expresses conservation of mass, and is similarly written in terms of v. The 

physical laws expressed by these equations (conservation of momentum, conservation of mass) do not 

depend on the moles of particles involved, but they do depend on the mass of the particles. 

 On the other hand, when dealing with mass transfer, we will see that it is common to write some 

of the basic equations in terms of V as well as v. The reason for using V, in addition to v, is 

convenience. For instance, if in a particular problem there is no bulk flow of particles from one location 

to another so that, during the mass transfer process the number of particles at each point in space stays 

the same, then V = 0. Setting V to zero simplifies the mathematics. Figure 1 at the beginning of this 

handout provides an example. Imagine that, in their separated state as drawn, A and B are both ideal 

gases at the same pressure p and temperature T. Then, from the ideal gas equation, the molar 

concentration of A and B is the same, 

 

 cA = cB = c = p/RT   (R = gas constant) 

 

The equality of cA and cB to the total concentration c is appropriate because the gases are pure; thus in 

each compartment the concentration of the gas (A or B) must also equal the total concentration c. After 

the separating wall is removed, particles of A and B will mix until a uniform composition is achieved 

throughout the vessel. In the final state, assuming the gases remain ideal when mixed, the value of p and 

T will remain the same as in the unmixed state and therefore the total concentration c also remains the 

same, c = p/RT (p is now the total pressure, a sum of the partial pressures of A and B). Thus, in the final 

mixed state, the number of particles per volume c (here a sum of particles of A and B types) is the same 

as the number of particles per volume in the initial unmixed state. Thus mixing produced no net transfer 

of particles from one side of the vessel to the other, it only mixed the different particle types together. 

Under these conditions, when there is not net transfer of particles from one part of a system to another, 

V = 0.  

 In contrast, for the same mixing process, in general v will not be zero. For example, imagine that 

mass of A particles is twice as large as that of B particles. Then in the initial unmixed state the left hand 

side of the vessel (filled with A) contains more mass, and the density (mass/volume) of the gas A is 

higher than that of B even though its concentration (particles/volume) is the same. Once A and B mix, 

however, the density everywhere will become uniform. For this uniformity to be achieved mass must 
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have been transferred from the A side to the B side; therefore, in contrast to the molar average velocity 

V, the mass average velocity v was not zero during the mixing process.  

 

 

2. Integral and Differential Balances on Chemical Species. We will refer to the species under 

consideration as species A. Following a derivation that parallels that employed for the other conservation 

laws, the first step in the derivation of a conservation law on the amount of species A is to perform a 

balance for a closed control volume V'. V' is enclosed by a closed surface B (Fig. 4). 

 

 Fig.4 

 

 

 The amount of species A inside V' can change either due to convection through the boundary B, 

or by generation/consumption of A due to a chemical reaction. In words, the conservation for species A 

can stated as: 

 

Accumulation of A in V' = convection of A into V'  + generation of A by chemical reactions 

             (10) 

 

An integral molar balance on species A, performed over the control volume V', is written 

 

  
d

d
dt

c VA

V

'
'

    =    c BA A

B

v n d  + 
'

'd

V

A VR       (11) 

 

n is the outward unit normal vector to surface B, not to be confused with the mass flux ni = i vi of 

species i. On the left side, cA is concentration of A in moles per volume; thus cAdV' is the number of 

moles of A in a differential volume dV'. Integrating (i.e. summing) this term over the entire control 

volume V' yields the total number of moles of A in V'; the time derivative of this integral is the rate of 

change of moles of A inside V' (units: moles/time). Thus, the left hand term is just the rate of 

accumulation of A in V', expressed in molar units.  

 The accumulation term equals the rate at which A is convected into V' (1st term on right) plus 

the rate at which A is generated inside V' by a homogeneous chemical reaction (2nd term on right). The 

convection term can be understood by referring to Fig. 5. – vA  n is the component of the species 
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velocity perpendicular to B, so that – vA  ndB is the volumetric flowrate across the area element dB for 

particles traveling with a velocity vA. Multiplying this volumetric flowrate by the moles of A per volume 

results in – cAvA  ndB, the molar flowrate of A through dB. Summing all the molar flowrates over the 

entire surface B then leads to the convection term (1st term on right) in equation (11).   

 

 

 Fig. 5 

 

 

 The 2nd term on the right in equation (11) represents production of A by homogeneous 

reactions. A "homogeneous" reaction is one that occurs throughout the interior of V'. In contrast, a 

heterogeneous chemical reaction would be one that occurs only at an interface – for instance, between a 

solid and a liquid phase – and is not distributed throughout the entire volume. The molar reaction rate 

RA has units of moles/(volume time) and represents the rate at which moles of A are produced or 

consumed by all homogeneous reactions. RAdV' is the number of moles of A produced inside a volume 

element dV' per unit time (units: moles/time). Summing this production over the entire control volume 

leads to the total molar rate of production of A, inside V', due to homogeneous chemical reactions.  

 Equation (11), by assumption, did not include any generation of A due to heterogeneous 

reactions. Clearly, if in V' there was a large interface at which a heterogeneous reaction leads to 

production of A, one would have to add that term to equation (11). The term would typically have the 

form of a rate of production of A per area (moles / (area time)) times the total area of the reacting 

surface. However, it may also be that a heterogeneous reaction is actually more conveniently modeled as 

homogeneous. For example, imagine that small catalyst particles (e.g. platinum powder) are suspended 

in a liquid inside V', and that a reaction that produces A occurs on the surface of these powder particles. 

Because the reaction occurs only at the interface between a particle and the liquid, it is heterogeneous. 

However, since the particles are dispersed throughout V', one could think of the reaction rate on a per 

volume basis (i.e. moles produced per volume of solution per time) as opposed to a per area basis 

(moles produced per surface area of particles per time). 

 As done previously for the other balances, one can (1) use the Divergence Theorem to convert 

the surface integral of the convection term (1st term on right) into a volume integral, (2) move the d/dt 

derivative inside the accumulation integral since the integration limits are time independent (the limits do 

not depend on time because a fixed control volume is considered, whose shape and location do not 

change; this assumption can be relaxed at the expense of a somewhat more complicated mathematical 

expression), and (3) combine all terms under a common volume integral to obtain, 
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   

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



'

'd

V

AAA
A VRc
t

c
v    = 0       (12) 

 

The only way to ensure that equation (12) evaluates to zero for an arbitrary control volume V' is to 

require that 

 

 AAA
A Rc
t

c





v = 0         (13) 

 

 




c

t

A
= AAA Rc  v          (14) 

 

Equation (14) is the differential molar balance on species A. It states that the rate of accumulation of 

moles of A at a point in space (left hand side) equals the rate at which moles of A are convected into that 

point (1st term on right), plus the rate at which moles of A are produced at that point by chemical 

reactions (2nd term on right). These physical interpretations can be verified by tracing the origin of the 

terms back to the corresponding terms in the integral balance, equation (11).  

 Multiplication of equation (11) by the molar mass MA (mass / mole of A) of species A, and 

recognizing that A, the mass of A per volume, is given by 

 

 A = MAcA           (15)  

 

leads to the integral mass balance on species A, 

 

   
d

d
dt

VA

V

 '
'

    =     A A

B

Bv n d  + r VA

V

d '
'
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In equation (16), the mass reaction rate rA has units of mass/(volume time) and represents the 

production or consumption of mass of species A by all chemical reactions. rA is given by 

 

 rA = MARA           (17) 

 

Through manipulations analogous to those that led to (14), equation (16) can be converted to a 

differential mass balance on species A,  

 

 




A

t
=    A A Arv          (18) 

 

Recalling that  

 

 NA = cA vA      (molar flux)     (1) 

 

 nA = A vA      (mass flux)     (5) 
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equations (14) and (18) can be written as  

 

 




c

t

A
= AA R N           (19) 

 

 




A

t
= AA r n           (20) 

 

Note that, in deriving these equations, no assumptions were made as to which component of a solution 

(i.e. a solute, the solvent, etc.) is represented as species A – therefore, these equations apply to each 

solute species as well as the solvent. Thus, if one chooses to label the solvent as species A, then a solute 

species could be labeled as species B. The equations that would be used for the solute B are exactly as in 

(19) and (20) except that the subscript A would be replaced by the subscript B.  

 

 The differential species' balances were derived independent of any particular coordinate system. 

To apply them to solving a particular problem, one must first choose a coordinate system suited to 

describing the problem and then transcribe the equations into that coordinate system. For example, 

equation (18) becomes 

 

t
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3

3

2

2

1

1  (Cartesian "CCS" coordinates)  (21) 

 

t
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t
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
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A
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φ
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


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


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11
2

2
    

       (spherical coordinates)   (23) 

  

Compared to the CCS expression, the more complex form of the cylindrical and spherical coordinate 

expressions for the divergence term (the convection term) results from the curvilinear nature of these 

coordinates; i.e., the angular coordinate variables (such as  and ) change along curves, not lines (see 

later handout on curvilinear coordinate systems). 

 

The differential equation of continuity (total mass balance) derived in fluid mechanics for single 

component systems also applies to multicomponent systems in which chemical reactions happen. To 

prove this is straightforward, and begins by summing equation (18) over all species present in solution,  
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
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Interchanging the summation and /t operations on the left hand side and making use of the relation 

 

 




n

i

ρρi

1

           (25) 

 

the left hand side of equation (24) becomes 

 

 
t

n

i

ρi






1 = 

t

ρ




           (26) 

 

Furthermore, using the definition of the mass average velocity v, 

 

 v =  


n

i

ii

1

v            (27) 

 

 and the fact that the mass fraction i = i/,  

 

 v =  


n

i

ii

1

v = 


n

i

iiρ

1

v           (28) 

 

Using equation (28), the convection term 




n

i

ρ ii

1

v in equation (24) becomes 

 




n

i

ρ ii

1

v = - v         (29) 

 

Finally, the chemical reaction term in equation (24) is required to evaluate to zero 

 

 


n

i

ri

1

= 0            (30) 

 

since mass is not produced or destroyed in chemical reactions (nuclear reactions can interconvert mass 

and energy, but this case is not being considered). Substituting equations (30), (29), and (26) into 

equation (24) leads to 
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t

ρ




= - v           (31) 

 

Equation (31) is the differential equation of continuity familiar from fluid mechanics. This equation 

states the law of mass conservation; even in multicomponent systems, even if chemical reactions are 

present, the total accumulation of mass at a point (left hand side) can only occur by convection of mass 

to that point (right hand side). For multicomponent systems whose density  is constant (i.e.  does not 

vary from point to point irrespective of variations that may be present in temperature, pressure, or 

composition), equation (31) again simplifies to the condition for incompressible systems, 

 

 v = 0           (32) 

 

 

3. Diffusion Fluxes. The diffusion flux of species A is that portion of its total flux that is not attributed 

to bulk flow (as represented by the mass or molar average velocities). More precisely, jA, the mass 

diffusive flux of A, is defined as 

 

 jA  = total mass flux of A – mass flux of A due to bulk motion  

 

  = nA - Av = AvA - Av = A(vA – v)       (33) 

 

 

Similarly, JA, the molar diffusive flux of A, is defined by 

 

 JA  = total molar flux of A – molar flux of A due to bulk motion  

 

  = NA - cAV = cA(vA - V)         (34) 

 

 

For instance, in equation (34), the molar diffusion flux JA is seen to be the difference between the total 

molar flux of A (NA) and molar flux of A (cAV) attributable to a bulk flow of molar average velocity V. 

The total fluxes, nA and NA, are then the sums of the fluxes of A due to bulk motion and diffusion,  

 

 nA = jA + Av            (35) 

 

 NA = JA + cAV           (36) 

 

 

Note that the diffusive fluxes jA and JA have different units, mass/(area time) for jA and moles/(area 

time) for JA. Also, jA and JA in general possess different numerical values.  

 

 

4. Causes of Diffusion. Why would a species move with a flux that is different from bulk motion? One 

cause of diffusion is concentration differences. For example, using a slight variation on Fig. 1, imagine a 

constant density ( = constant; irrespective of composition) mixture of liquids A and B, enclosed in an 
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apparatus that consists of a pair of vessels connected by a narrow neck (Fig. 6). Initially, the stopcock 

on the neck is closed, and the amount of A is greater in the left vessel than in the right. The vessels have 

equal volume and, since the density of the mixture does not vary with composition by assumption, are 

filled with equal mass of liquid. Then, at some point, the stopcock is opened and the mixture is allowed 

to achieve a new state of equilibrium. The amount of mass in each vessel is fixed since  is assumed not 

to depend on composition, so opening the stopcock to mix up A and B does not result in a net transfer 

of mass. If there is no net, bulk flow of mass in the system, then v = 0. Nevertheless, from experiment it 

is known that opening of the stopcock does result in a net transfer of A and B such that, at equilibrium, 

there are no differences in composition between the two vessels. In other words, a net transport of A 

occurred from a region of greater concentration (left vessel) to one of lesser concentration (right vessel), 

while B flowed in the opposite direction (right to left – i.e. from high concentration of B to low 

concentration of B). This mass transport eliminated the concentration differences that were present 

initially, and took place in absence of any bulk flow (v = 0); it occurred entirely due to diffusive fluxes. 

The diffusion occurred spontaneously because it was thermodynamically favored.  

 

T

T

A

A

A

A

B

B

B

B

 = constant

initial state

final state

 
Fig. 6 

 

 

Let's look a little closer at the thermodynamic origins of diffusion. The discussion will focus on binary 

mixtures, where the fluid of interest consists of two components, so that the number of species n = 2. 

One can imagine that such a mixture undergoes a process in which its extensive internal energy U plus 

extensive external potential energy Y are changed infinitesimally. Denoting the extensive entropy of the 

mixture by S, its volume by V, the chemical potential per mass of species i by i, the external potential 

energy per mass of species i by yi, and the total mass of species i by mi, thermodynamics states that 

 

 d(U + Y) = TdS – pdV + A dmA + yAdmA + B dmB + yBdmB     (37) 

 

Rewriting equation (37) for a unit mass of the solution yields 

 

 d(u + y) = Tds – pdv + A dA + yAdA + B dB + yBdB     (38) 

 

where s is entropy per unit mass of the solution, v is volume occupied by unit mass of solution, u is 

internal energy per unit mass of solution, and y is external potential energy of a unit mass of solution. 

Now, A and B are subject to the constraint  

 

 A + B = 1           (39) 
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From (39), 

 

 dB = - dA           (40) 

 

Using (40) in (38) and slightly rearranging, 

 

 d(u + y) = Tds – pdv + {(A + yA) - (B + yB)}dA      (41) 

 

The term in parentheses, {(A + yA) - (B + yB)}, is referred to as the "exchange potential" T. 

Physically, TdA represents a differential change in internal + potential energy of a unit mass of the 

solution when some species B is exchanged for species A, increasing the mass fraction of A by dA. 

Thus, (41) can be written 

 

  d(u + y) = Tds – pdv + TdA        (42) 

 

 T = (A + yA) - (B + yB)         (43) 

 

 Thermodynamics also states that, for a system with n components, n + 1 intensive variables are 

sufficient to fully specify the equilibrium state (this statement is subject to some restrictions, such as 

absence of materials whose internal state is dependent on their history, for instance past mechanical 

deformation). Since binary fluid mixtures are being considered, for which n = 2, three intensive variables 

are needed. It will be convenient to choose temperature T, pressure p, and T. In the absence of 

equilibrium, one or more of these variables will vary with location in a way that non-equilibrium 

gradients in T, p, and T exist. To move toward equilibrium, the system will transfer heat and 

masses of the different species around so as to eliminate these gradients. For instance, heat flux will 

occur from hot to cold to equalize the temperature, and mass fluxes of individual chemical species will 

occur so as to equalize each species' total (i + yi) potentials. Non-equilibrium pressure gradients can be 

normalized by bulk flow of material from high to low pressure regions. 

 One possible way the system can eliminate non-equilibrium gradients in T, p, and T is by 

diffusion of the various chemical species; it is then logical to assume that the diffusive fluxes will be 

functions of these gradients, with steeper gradients producing greater fluxes. Let's consider the diffusive 

mass flux jA, assumed to be a function of the gradients such that jA = jA(T, p, T). When the 

gradients T, p, and T are not too large, one could perform a Taylor series expansion of jA (around 

equilibrium) in the gradients and truncate it after the first order terms. Such an expansion would lead to 

the following mathematical relation for jA:  

 

 jA = - C1T - C2T - C3p          (44) 

 

The proportionality factors Ci are functions of T, p, and T, but not of the nonequilibrium gradients in 

these quantities (this is because, recalling Taylor Series expansions, these factors are to be evaluated at 

equilibrium, the "point" around which the expansion is being formed. However, at equilibrium, the non-

equilibrium gradients are zero). Equation (44) must be constrained to obey requirements imposed by 

thermodynamics. In particular, using the second law of thermodynamics, it can be shown that C3 must 
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equal 0 (Landau & Lifshitz, Fluid Mechanics, Pergamon Press, pgs 187 and 222, 1959). Therefore, (44) 

simplifies to 

 

 jA = - C1T - C2T           (45) 

 

A species' chemical potential, at some point in the mixture, can be viewed as a function of the pressure, 

temperature, and composition at that point. For a binary mixture, this means that A = A(T, p, A) and 

B = B(T, p, A). [An implicit assumption is being made that thermodynamic relations such as A = 

A(T, p, A), which are strictly applicable to systems at equilibrium, apply even though equilibrium does 

not exist throughout the system. Qualitatively, this assumption can be expected to hold over sufficiently 

short length scales over which only insignificant variations in temperature, pressure, and composition 

occur, so that the values of these quantities are well defined. Since thermodynamic quantities are only 

needed at a “point” (i.e. over very short lengths), from a practical perspective this consideration is not 

limiting. Also, note that B is not an independent thermodynamic variable since, for a binary mixture, B 

= 1 - A.]  

 Taking the chemical potentials to be functions of T, p, and A, using them in the definition for T 

(equation (24)), and applying the chain rule of differentiation to obtain an expression for T yields  

 

T = 
     

A

BABABA ω

Tp
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
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








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






 

 

 + BA yy             (46) 

 

Inserting (46) into (45) results in  

 

jA = - 
 


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
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
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21

,

C
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C BA




T   -   C1 

 

A
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



,












p   

 

 -  C1 
 

pT
ωA ,

BA












 
   -   C1  BA yy        (47) 

 

The unwieldy prefactors in front of the various gradients are usually expressed more succinctly by 

defining three quantities DAB, kT, and kP as follows, 

 

 kT DAB / T = 
 

21

,

C

A
pT

C BA 









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


       (48) 
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 kP DAB / p = C1 
 

A
Tp

BA





,












       (49) 

 

  DAB = C1 
 

pT
ωA

BA

,











 
        (50) 

 

If the diffusion coefficient DAB (equation (50)) and chemical potentials are known (i.e. from 

experimental measurement), C1 can be evaluated from (50) and substituted into (48) and (49). With 

equations (48) through (50), (47) becomes 

 

jA =  -  (DAB kT / T ) T   -  (DAB kP / p)p  -  DAB   -  C1  BA yy     (51) 

 

The product DAB kT is called the thermal diffusion coefficient, kT the thermal diffusion ratio, and DAB kP 

may be called the barodiffusion coefficient. Equation (51) shows that diffusive flux of mass of species 

A, in a binary solution of A and B, can arise from four different contributions. 

 

 

(i). Ordinary Diffusion. Ordinary diffusion arises from variation in composition, and is represented by 

the third term on the right of equation (51). This term involves , and would be zero if the mass 

fraction of A was uniform (constant). Ordinary diffusion is the most common cause of diffusion. When 

diffusion arises only from variations in composition, equation (51) simplifies to 

 

 jA = - DAB A          (52) 

 

Equation (52) is known as Fick's Law, a central equation in mass transport that states that the diffusive 

mass flux is equal to a material parameter (DAB) times a gradient in composition. As written in equation 

(52), diffusion occurs from higher to lower mass fractions; in other words, down a composition 

gradient. The "-" sign ensures that the diffusive flux jA points in the opposite direction of the gradient 

A; jA points in the direction of steepest decrease of A. 

 While often DAB is assumed constant, in general it varies with T, p, and A. A constant DAB is 

usually a good assumption if the solution is sufficiently dilute; that is, one species (the solute) is present 

at much lower concentrations than the other species (the solvent). Under dilute conditions, the solute 

molecules are far apart and "do not see" each other and therefore their diffusion is not influenced by 

changes in their concentration as long as dilute conditions persist. The units of DAB are length2/time (eg. 

cm2/sec).  

 It is useful to briefly comment on the molecular basis of ordinary diffusion. Imagine having 1000 

blue molecules and 1000 red molecules. You then explore all the ways of arranging these molecules in a 

pattern on a surface. You would discover that many more arrangements exist in which blue and red 

molecules are well mixed on the surface than ones in which significant separation of red and blue 

molecules is present. In other words, the probability of finding a well mixed state, in which red 

molecules are interspersed with blue ones, is much higher than that of a poorly mixed one in which the 

two colors are well separated. In thermodynamic terminology, the entropy of a well mixed state is 

greater. Therefore, a system prepared in a less probable state, one that includes significant separation of 
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red and blue particles (i.e. concentration gradients) will spontaneously evolve to a more probable, well-

mixed state. 

 

 

(ii). Forced Diffusion. Forced diffusion arises due to variation in the external potential of species A and 

B, and is represented by the fourth term on the right of equation (51). One common example of forced 

diffusion occurs with charged species in an electric field. For example, if a solution with Na+ cations and 

Cl- anions is placed in an external electric field, the cations will migrate in the direction of the electric 

field while the anions will migrate opposite to it. This is one possible manifestation of forced diffusion. 

Fluids containing charged particles are dealt with extensively in electrochemistry.  

 An interesting observation is that gravitational potential does not lead to mass diffusion. Rather, 

this term evaluates to zero. This can be understood as follows. Imagine a particle of A with gravitational 

potential energy mAgz, where z is height in the gravitational field, mA is the mass of the particle, and g is 

the gravitational constant. Then yA, the gravitational potential per unit mass of A, is  

 

 yA = mAgz / mA = gz 

 

Therefore,  

 

 Ay = g 

 

Similarly, for a particle B with a different mass mB,  

 

 yB = mBgz / mB = gz  

 

and 

 

 By = g.  

 

Since Ay = By = g, Ay - By = g – g = 0. For gravitational potential, therefore, the forced diffusion 

term in equation (28) evaluates to zero. The reason for the null result is that gravitational potential of a 

particle, when normalized by the particle's mass, is always simply gz, independent of whether it is an A 

particle, B particle, etc. Thus, on a per unit mass basis, different density materials do not possess 

different gravitational potentials and no forced diffusion results.  

 Having said this, one may be wondering why do denser particles settle in a gravitational field – 

does that not represent mass transfer due to an external field? For diffusive mass fluxes such as jA, this 

effect is accounted for by the second term (pressure diffusion) in equation (51) (see below).  

 

 

(iii). Thermal Diffusion (Soret effect). Thermal diffusion arises due to spatial variation in temperature. 

Thermal diffusion is represented by the first term on the right of equation (51). In most problems of 

practical interest, this cause of mass diffusion is quite small. Referring back to equation (47), the 

prefactor in front of the thermal diffusion term has two contributions: (1) variation of chemical 

potentials with temperature and (2) directly from the presence of a temperature gradient (the "C2" 
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contribution). By inspection, the chemical potential contribution, -
 

A
pT

C BA





,
1 












T, will 

produce a flux of species A in the direction of increasing temperature if 
 

A
pT 



,

BA












is negative 

(note: C1 can be shown to be positive). Usually, the derivative of a chemical potential with respect to 

temperature is negative. Then A will concentrate in (diffuse to) hotter regions if its chemical potential 

decreases with temperature faster than the chemical potential of B. The effect of such thermal diffusion 

is to take advantage of existing variations in temperature so as to decrease the chemical potentials of the 

various species as much as possible, leading to the lowest possible total free energy of the solution. 

 The underlying physical causes of thermal diffusion originating directly from the presence of a 

thermal gradient, -C2T, depend on the particular situation considered and are difficult to explain in 

general. One cause has to do with the fact that, at a given temperature, the mass flux associated with a 

heavier molecule (the mass flux is proportional to the mass of the molecule times its velocity) is larger 

than for a light molecule. This dependence of mass flux on molecular mass, when combined with a 

gradient in temperature can lead to different rates of thermal mass diffusion due to differences in 

molecular masses.  

 

 

(iv). Pressure Diffusion. Pressure diffusion arises from variations in pressure, and is represented by the 

second term on the right in equation (51). By inspection (see equation (47)), pressure diffusion of A to a 

region of higher pressure will result if 
 

A
Tp

BA





,




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






is negative (under this condition jA points in 

the same direction as p). Thermodynamics tells us that the derivative  
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A
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
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


= AV



 

 

where AV


 is the volume occupied by a unit mass of A in solution, referred to as the partial mass 

volume of A. Thus 
 

A
Tp
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



,
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


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






= AV



 - BV


, and will be negative if a unit mass of A occupies a 

smaller volume in solution that a unit mass of B. In other words, this term will be negative if A is denser 

than B, under which condition A will preferentially diffuse to regions of higher pressure. From a 

thermodynamic perspective, pressure diffusion occurs because denser fluids have lower pressure-volume 

energy per unit mass (i.e. it costs less work to insert a unit mass of a denser fluid into a region of high 

pressure because the denser fluid occupies less volume), and by increasing the mass concentration of 

denser fluids in high pressure regions the total free energy of the system is minimized. Since gravity 

induces pressure variations inside a liquid, it can lead to pressure diffusion. In devices such as 

centrifuges in which pressure differences corresponding to thousands of g's can be attained, pressure 
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driven mass diffusion is used to separate different solution components based on minute differences in 

their densities.  

 

 

5. Fick's Law. Having briefly outlined the four causes of mass diffusion – spatial variations in 

composition, external potential, temperature, and pressure – it is useful to highlight the most common 

scenario in which only ordinary diffusion is of importance. The discussion will be specialized to binary 

solutions that obey Fick's Law, equation (52). The restriction to binary solutions is not as limiting as it 

may seem. Indeed, even when more than two components are present, as long as the solutions are 

sufficiently dilute the diffusion of solute species can be modeled as for a binary system. This is because 

when one of the species (the solvent) is present in vast excess, with all the rest (the solutes) in trace 

amounts, the diffusion of each solute species can be treated as if it was in pure solvent alone. Under 

these dilute conditions a solute particle will not "see" any of the other solute particles, and so its 

diffusion will not be affected by their presence but only by the solvent. Such a situation is effectively a 

two component problem, the solute of interest plus the solvent. 

 

Fick's Law can be written in several common forms: 

  

Mass diffusion flux; reference bulk average velocity v (equation 52 above):  

 

 jA = A(vA - v) = - DAB A         (52) 

 

If the total mass density  = constant throughout the solution, irrespective of composition, then  can be 

moved inside the gradient operator: 

 

 jA = - DAB A    ( = constant)      (53) 

 

 

Molar diffusion flux; reference bulk average velocity V: 

 

 JA = cA(vA - V) = jA M/(MAMB) = - cDAB xA       (54) 

 

In equation (54), M is the average molar mass (mass per mole of particles, also referred to as the 

average molecular weight) of the solution,  

 

 M = /c = (cAMA + cBMB)/c = xAMA + xBMB       (55) 

 

MA and MB are the molar masses of A and B particles, respectively (e.g. the molar mass of water is 18 

grams per mole of water molecules). Equation (54) can be derived directly from equation (52) through a 

rather lengthy algebraic procedure involving conversions between mass fractions and mole fractions, 

densities and molar concentrations. If the total molar concentration c is constant throughout the 

solution, irrespective of composition, c can be brought inside the gradient operator and equation (54) 

becomes: 

 

 JA = - DAB cA    (c = constant)     (56) 
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Finally, it should be emphasized that the diffusion coefficient DAB in all of the above Fick's Law 

expressions is the same (has the same numerical value and units of length2 /time), whether the 

expressions are for a mass diffusive flux or a molar diffusive flux. In the strictest interpretation, the 

above expressions are specialized to binary solutions in which the only gradients present are those in 

composition. However, as already mentioned, they in fact work quite well for dilute solutions containing 

more than one solute.  

 

 

6. Convective Mass Transfer. Application of Fick's Law to the calculation of a diffusive mass flux 

requires knowledge of the composition gradient at each point in space at which the mass flux is to be 

determined. Further complicating the picture, there are many situations in which convective mechanisms 

are important in addition to diffusive ones. By convective mechanisms one means mass transfer that 

arises by virtue of bulk motion. For example, in the case of the total mass flux nA of species A, equation 

(35) states that 

 

 nA = jA + Av           (35) 

 

In equation (35), jA is the diffusive part of the total mass flux nA (arising from the presence of 

thermodynamically unfavorable gradients in properties such as concentration), while Av is mass transfer 

of A due to bulk motion. It is this Av part that one is referring to as "convective" mass transfer. In the 

case of the molar flux NA, the convective part is cAV. This is evident from equation (36),  

 

 NA = JA + cAV           (36) 

 

To obtain the total mass transfer of a species, one would need to calculate not only the diffusive portion 

(jA or JA) but also the convective contribution. The sum of these two terms then leads to the total mass 

transfer (whether expressed in mass or molar units).  

 The trouble is that, for an arbitrary situation in which mass transfer may occur by diffusion as 

well as by convection, the necessary calculation of composition and velocity at each point inside a 

mixture is often simply too hard. The difficulties make calculation of mass transfer from Fick's Law and 

equations such as (35) or (36) virtually impossible. Therefore, another approach, based on so-called 

mass transfer coefficients, is very commonly implemented. In general, one is interested in calculating 

mass transfer across the boundary of some system (e.g. from a liquid into a gas, from one liquid into 

another liquid, etc.). Then one way to define a mass transfer coefficient kC (units: length/time) is as 

follows,  

 

 NA = kC (cAS - cA)          (57) 

 

NA is the molar mass transfer of A across the boundary (moles /(area time)), cA is molar concentration 

of A (moles / volume) in the bulk of the system far away from the boundary (surface), and cAS is the 

molar concentration of A right at the boundary but still on the same side as the bulk of the system.  
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Fig. 7 

 

 Fig. 7 depicts this situation. In the figure, flux of A, NA, is occurring from the bulk of a solution 

phase (system) to its boundary. The boundary could represent, for example, the interface between two 

immiscible fluids or between a fluid and a solid wall. The simplicity of equation (57) is achieved by two 

key assumptions: (i) concentration in the bulk of the system is uniform (hence cA is well-defined), so 

that concentration of A only varies across a "border" (or "film") region next to the boundary, and (ii) 

flux of species A from the bulk to the interface is proportional to the magnitude of the concentration 

change across the border film region (this change being equal to cAs - cA). However, note that the mass 

transfer coefficient kC is itself in general a function of flow geometry, temperature, concentration, and 

possibly other parameters. Still, relatively simple expressions for kC can be often developed directly from 

experimental measurements, or from theory when possible. Use of equation (57) is supported by its 

often excellent success in applications.  

 

 

7. Species' Balances for Systems That Obey Fick's Law.  

Equations (14) and (18), the differential molar and mass balances on a species, are general in the sense 

that they are independent of the number of components present or any models of diffusion. For example, 

they do not require ordinary diffusion to obey Fick's Law. These equations are only based on the 

statement that the rate at which the amount of A can change at a point in space equals the rate at which 

A is convected into that point plus the rate at which it is generated by chemical reactions. However, in 

their present form,  

 

 




c

t

A
= AAA Rc  v          (14) 

 

 




A

t
=    A A Arv          (18) 

 

these equations can be inconvenient because they contain the species' velocity vA, which must be known 

in order to accomplish the usual goal of solving for the mass or molar concentrations. One way to model 

vA is to consider it as consisting of the two contributions previously encountered: (i) one due to bulk 

flow of the fluid mixture and (ii) one due to the diffusion of species A.  
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 nA = AvA = jA + Av           (35) 

 

 NA = cAvA = JA + cAV          (36) 

 

Separation of the total flux of A into diffusive and bulk convection contributions is motivated by 

convenience. The mass average velocity v is easy to measure, and can be obtained by direct calculation 

from the differential equations of fluid mechanics (e.g. Navier Stokes equations for Newtonian fluids 

with  and  constant). Typically, the diffusive fluxes are modeled well by Fick's Law for solutions in 

which only ordinary diffusion is present and which are either binary or, as discussed earlier, dilute.  

 Equations (14) and (18) can be specialized to fluids that follow Fick's Law. One can begin by 

inserting (35) into (18) to obtain 

 

 




A

t
 = Aj  vAρ + rA        (58) 

 

  = Aj  Aρ v v Aρ + rA       (59) 

 

A vector identity was used in deriving equation (59) from equation (58) (equation (30d) from Handout 

1). Substituting Fick's Law for jA,  

 

 jA = - DAB A          (60) 

 

into (59) and rearranging 

 

 




A

t
= DAB A - Aρv v Aρ + rA       (61) 

 

The left hand side term and the 2nd term on the right can be rewritten using the material derivative 

notation, 




A

t
 + Aρv  = 

t

ρA

D

D
, and (61) becomes 

 

 
t

ρA

D

D
= DAB A v Aρ + rA        (62) 

 

Equations (61) and (62) are common forms of the differential mass balance on species A with Fick's Law 

diffusion. These equations simplify for mixtures assumed to possess a constant density, and for which 

the diffusion coefficient can be regarded as constant. For constant  v = 0, so the 3rd right term in 

equation (61) and the 2nd right term in (62) drop out. If in addition DAB is also assumed constant, and 

recalling that A = A, equation (61) rearranges to 

 

 




A

t
= DAB 2A - Aρv  + rA   (, DAB constant)   (63) 
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In physical terms, equation (63) states that the rate at which mass density of A changes at a point (left 

hand side) equals the rate at which mass of A diffuses to that point due to concentration gradients (first 

term on right), plus the rate at which mass of A is convected to that point by bulk motion v of the fluid 

(second term on right), plus the rate at which mass of A is generated at that point by all chemical 

reactions (third term on right). In the material derivative notation, equation (63) becomes 

 

 
Dt

DρA = DAB 2A + rA    (, DAB constant)    (64) 

 

Recall that the term 
Dt

DρA  includes a local rate of change, 




A

t
, plus change due to motion through a 

gradient of , Aρv . Equation (64) states: the rate at which the mass density A changes inside a 

fluid element moving with the mass average velocity v (left hand side) equals the rate at which mass of A 

diffuses into the fluid element (first term on right) plus the rate at which mass of A is generated inside 

the fluid element by chemical reactions (second term on right). Compared to equation (63), the 

difference lies in interpretation of the term Av . For a stationary point through which a fluid flows, 

as in equation (63), this term represents the change in amount of species A due to bulk convection that 

brings to that point species A at a different rate than the rate at which it removes A. In contrast, when 

thinking not in terms of a stationary point but a fluid element that moves with the flow, Av  

represents change in composition that an observer in the fluid element would observe due to motion 

through a gradient of A; i.e. from an area of one concentration of A to another.  

 Expressed in Cartesian, cylindrical, and spherical coordinate systems, equation (63) becomes 
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 (Cartesian)  (65) 
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          (cylindrical)  (66) 
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          (spherical)  (67) 

 

Equations (65) to (67) are specialized to the case of constant  and DAB.  

 

 The above equations were obtained by taking the general differential mass balance on species A, 

separating the total flux AvA of species A into bulk convection and diffusion contributions, and using 

Fick's Law to model the diffusion flux. Instead, had one started from the differential molar balance, 

equation (14),  
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



c

t

A
= AAA Rc  v          (14) 

 

and separated the total molar flux cAvA into bulk and diffusive contributions according to equation (36), 

cAvA = JA + cAV, the result would be 

 

 




c

t

A
= – JA –  cAV + RA = –  JA –  cA  V  –  V  cA + RA    (68) 

 

Inserting in Fick's Law for JA, JA = – cDAB xA, leads to 

 

 




c

t

A
= AAB xcD    –  cA  V  –  V  cA + RA      (69) 

 

If the total concentration c and diffusion coefficient DAB are constant (i.e. c and DAB do not vary from 

point to point irrespective of variations that may be present in temperature, pressure, or composition), 

equation (69) becomes 

 

 




c

t

A
= AAB cD 2   –  cA  V  –  V  cA + RA (c, DAB constant)   (70) 

 

Even though the total molar concentration c was assumed constant, the divergence of the molar average 

velocity,  V, will in general not be zero and therefore the 2nd right term in (70) cannot be dropped. 

This is in contrast to the case of constant , for which  v equals zero. One could show that  

 

  V = R/c       (c = constant)    (71) 

 

where  

 

 R = 


n

i

iR

1

           (72) 

 

R is the total production rate of particles, in units of moles/volume, due to chemical reactions. Equation 

(71) was stated here without proof, but can be derived by summing equation (70) over all of the 

components of a mixture. What is the value of R? For a reaction such as  

 

 B  A 

 

R = RA + RB = 0 since one B molecule is converted to exactly one A molecule, so that RB = - RA and the 

total number of molecules does not change. However, for a reaction such as 

 

 B  2A 
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R = RA + RB = RA/2 since only one molecule of B is consumed for two molecules of A produced (i.e. RB 

= - RA/2 ).  

 

Equations (61) and (69) assumed that the solution is either binary or, if more than two components are 

present, sufficiently dilute. The key point here is that the diffusion of a molecule of A should occur as if 

through pure B; this will be true even if other species are present (i.e. in addition to A and B) as long as 

the concentrations of the additional species are very dilute. If the concentrations are not dilute, then the 

diffusion term is usually modified by defining additional “diffusion coefficients” responsible for coupling 

the diffusion flux of a species to compositional gradients of all the other components. Of course, for a 

strictly binary solution of A and B, equations (61) and (69) hold over the entire range of composition, 

dilute as well as concentrated. 

 

 

8. The Bulk Reference Velocity and the Dilute Solution Limit.  

The preference for choosing to work in mass units (nA, jA, v, A) or molar units (NA, JA, V, cA) is based 

on convenience. Often, convenience has to do with handling of the bulk convection terms; these are the 

terms involving the bulk average velocities v or V. For example, if one expects V but not v to be zero, 

one may choose (69) instead of (61) because the species mass balance would be simpler. An example of 

a scenario in which V is zero is equimolar counterdiffusion. This situation often arises in the 

interdiffusion of ideal gases in the absence of forced or natural convection. In equimolar 

counterdiffusion, the two components have molar fluxes that are equal in magnitude but opposite in 

direction, so that the total molar flux is zero, 

 

 NA = - NB           (73) 

 

 total molar flux = NA + NB = cV = 0        (74) 

 

 

In equation (74), identification of cV as the total molar flux, which equals the sum of the molar fluxes 

Ni, follows from the definition V = 


n

i

iix

1

v : 

 total molar flux = 


n

i

i

1

N = 


n

i

iic

1

v = c


n

i

iix

1

v = cV      (75) 

 

Similarly, the total mass flux, given by the sum of all the mass fluxes ni, equals v, 

 total mass flux = 


n

i

i

1

n = 


n

i

iiρ

1

v = 


n

i

ii

1

v = v         (76) 

 

Relations (75) and (76) often come in useful when manipulating mass transfer expressions. While V is a 

good choice for some problems, in other situations v may be constant or zero, e.g. if nA = - nB. In 

general, deciding whether v or V is more convenient as the bulk average velocity may not always be 

transparent and may require prior experience with solving mass transfer problems. Fortunately, this 
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decision is entirely eliminated in an important class of mass transfer problems in which bulk convection 

is negligible. Let’s consider the requirements for neglecting bulk convection.  

 Bulk convection is represented by the terms involving the bulk average velocities in the above 

equations (for example, 2nd term on the right in equations (58) and (68)). These terms will be zero if v 

= 0 and V = 0. In general, both the mass and molar bulk average velocities will be zero when (i) there is 

no forced convection, (ii) there is no free convection, and (iii) the solution is dilute. Forced convection 

refers to convection "forced" by pressure gradients, shaft work, and forces such as may arise from 

external potentials such as gravity. Most often, forced convection is driven by machinery – e.g. pumps, 

impellers. Free convection refers to the specific case when convection is caused by variation of fluid 

density. Free convection occurs because, in the presence of a gravitational field, less dense fluid will rise 

to the top. The rising of hot air through colder air is an example of free convection. Free convection is 

also known as natural convection. 

 Even if forced and free convection are not present, diffusion itself can still engender convection. 

This ability of diffusion to create bulk convection is why the solution is stipulated to be dilute (condition 

(iii) in previous paragraph). To illustrate how diffusion can create bulk convection, let us consider again 

the two bulb apparatus encountered earlier (Fig. 8). For the purposes of this illustration it is assumed 

that pure species A (in the left bulb) is denser than pure species B (in the right bulb), and the question is 

whether bulk convection of mass is (v  0) or is not (v = 0) present when A and B mix. Initially there 

must be more mass on the left than on the right, since A is denser than B. When the valve is opened, a 

final state is reached in which the composition inside both bulbs will be the same. In the final state, right 

and left bulbs both contain equal amounts of mass – therefore, mass was moved from left to right on 

passage from the initial state (in which more mass was present in the left bulb) to the final state (in which 

both bulbs contain equal mass). This movement was by bulk convection, since there was not just mixing 

of A and B, but also a net transfer of mass from left to right. This convection was not driven by a 

pressure gradient, shaft work, or body forces – it was engendered by the interdiffusion of A and B 

species. Thus, the above thought experiment proves that diffusion can engender bulk convection of 

mass. This was an example of mass transfer in a concentrated solution since the amount of A and B 

present in the two bulb apparatus was comparable. 

 

TA

A A
B

B

B

initial state

final state

 
Fig. 8.  

 

 

 Next, imagine the same apparatus. However, while the right bulb is again filled with pure B, the 

left bulb is filled with a dilute solution of A solute in a vast excess of B solvent. For concreteness, 

imagine that the right bulb has 10000 B molecules, while the left bulb has 9900 B molecules and 100 A 

molecules. Since A is again denser than B, more mass is present on the left than on the right. However, 
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because the A concentration is so dilute, this initial difference in mass between the two bulbs is very 

slight, almost imperceptible. On passage from the initial to the final state, we expect about 50 molecules 

of A to flow from left to right so that at equilibrium, on average, the composition inside both bulbs is the 

same (9950 B molecules and 50 A molecules in each bulb – note that B has to flow from right to left to 

"make room" for the A molecules going from left to right). Clearly, the bulk convection of mass will be 

much, much less than for the concentrated case discussed above, since the two bulbs were very similar in 

mass to begin with.  

 The important question is whether bulk convection can be made so small, under sufficiently 

dilute conditions, that it can be neglected in comparison with diffusion. More precisely, can the 2nd right 

term (bulk convection) in equation (58) (note: there are no reactions in the example under discussion so 

rA = 0) 

 

  




A

t
= DAB A –     Av          (58) 

 

be ignored to yield the simpler equation 

 

  




A

t
= DAB A           (59) 

 

which retains only the diffusive term on the right. The answer is YES; i.e. bulk convection can be 

neglected for sufficiently dilute solutions. For example, for binary mixtures of A solute in B solvent, the 

total flux of A, nA, is given by  

 

 nA = AvA = jA + Av = A(vA – v) + Av 

     

As stated earlier, jA = A(vA – v) is diffusive mass flux and Av is flux of A due to bulk convection. The 

ratio of bulk convection to diffusion is 

 

 (bulk convection) / diffusion = Av / jA = Av / [A(vA – v)] = v / (vA – v) 

 

Using the definition of v for a binary solution, v = AvA + BvB, leads to  

 

 (bulk convection) / diffusion = Av / jA = (AvA + BvB)/(vA - AvA - BvB) 

 

In the dilute limit, solute (species A) vanishes. Therefore, A 0 and B  1, leading to 

 

 (bulk convection) / diffusion = Av / jA = vB / (vA - vB)     (77) 

 

If vB << vA, then (77) simplifies to  

 

 Av / jA  vB / vA << 1          (78) 
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Inequality (78) shows that, for vB << vA, the bulk convection term is much less than the diffusion term. 

This inequality will always hold for sufficiently dilute solutions. Let's return to the previous thought 

experiment in which 50 molecules of A were transported from the left to the right bulb. To make room 

for the incoming A molecules, the B solvent molecules must be simultaneously displaced in the opposite 

direction. However, because there are so many more B molecules than A molecules, on average a B 

molecule only needs to travel a short distance; in other words, it is the summed displacement of 10000 B 

molecules that must counterbalance the addition of just 50 A molecules. On average, a B molecule will 

only need to be displaced by a fraction,  50/10000 = 1/200, in the direction opposite to that of the A 

molecules. This means that the velocity of a typical B molecule will only be about 1/200 that of a typical 

A molecule during the mixing process. Thus, vB / vA  0.005 << 1, satisfying the inequality (78) and 

demonstrating that bulk convection could indeed be neglected compared to diffusion. Put differently, if 

one adds a grain of sugar (species A) to a bathtub of stationary water (species B), the water is not 

displaced very much even as the sugar disperses through the entire bathtub. Thus the average velocity of 

the sugar, vA, must be much greater than the average velocity of a typical water molecule, vB, during this 

mixing process. Therefore, in this dilute, binary sugar solution it would also be appropriate to neglect 

bulk convection since vB / vA << 1. 

 In summary, when (i) there is no forced convection, (ii) there is no free convection, and (iii) the 

solution is dilute, bulk convection terms in the species' balance equations can be neglected. Thus 

equations (68) and (58) become 

 

  




c

t

A
= AAB xcD   + RA   (no bulk convection)    (79) 

 

  




A

t
= DAB A  +  rA   (no bulk convection)    (80) 

 

If c, DAB, and  are constant, then 

 

 




c

t

A
= AAB cD 2  + RA  (c, DAB constant; no bulk convection)  (81) 

 

 




A

t
= DAB 2A  +  rA  (, DAB constant; no bulk convection)  (82) 

 

For the case of no chemical reactions (RA and rA = 0), equations (81) and (82) are known as Fick's 

Second Law of Diffusion.  

 There are some additional, special conditions under which bulk convection can be neglected. For 

instance, equation (63), which holds for the case of constant  and DAB, will reduce to equation (82) if 

the vectors v and A are perpendicular so that v  A = 0. Thus incompressible flows in which bulk 

convection (forced or natural) is perpendicular to the direction of diffusion also obey (82).  

 

9. Common Boundary and Initial Conditions in Mass Transport.  

9.i Conditions on Concentration. The concentration of a chemical species can be specified at a point in 

space or time.  Examples are: 
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 A(x1 = 0) =           (83) 

 A(t = 0) =           (84) 

 

where the value of  is given. Often, a condition on concentration may appear in the form of a 

partition coefficient or a Henry's Law constant. For example, imagine two phases in contact, both of 

which contain species A (Fig. 9). In phase I, the concentration of A is known, and the goal is to solve for 

the concentration profile of A in phase II. A common practice in these types of problems is to assume 

that, at the interface between the two phases, local equilibrium applies. Local equilibrium means that 

the concentrations of A, immediately on the two sides of the interface, are in equilibrium. This condition 

can be specified by an equilibrium partition coefficient Hc, for example 

 

phase I

phase II
interface z(  = 0)

Z

 
 

Fig. 9 

 

 

  AII(z = 0) = Hc AI(z = 0)         (85) 

 

In equation (85), AII(z = 0) is the concentration of A at the interface immediately inside phase II and 

AI(z = 0) is the concentration of A at the interface immediately inside phase I. In essence, the partition 

coefficient accounts for the relative preference of A particles to be dissolved inside the two phases. If Hc 

and AI(z = 0) are known, then AII(z = 0) can be calculated and used as the boundary condition on A 

inside phase II.  

 

A closely related concept is Henry's law, 

 

 pA = HxA           (86) 

 

where pA is partial pressure of A in a gas phase, xA is its mole fraction in a liquid that is in equilibrium 

with the gas, and H is Henry's Law constant. Henry's law works well for dilute solutions; i.e. small xA. 

For example, if a gas mixture containing oxygen at a partial pressure pO2 is in contact with a water phase 

then, assuming local equilibrium, the mole fraction of oxygen in the water phase immediately at the 

water-gas interface would be 

 

 xO2(z = 0) = pO2/H          (87) 

 

If pO2 and H are known, the mole fraction xO2(z = 0) can be calculated and used as a boundary condition 

in solving for the oxygen concentration profile in the water phase. Note that the value of H will depend 
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on the specific system considered. For ideal solutions obeying Raoult's Law, H equals the saturation 

pressure pASat of the partitioning species A.  

 

 

9.ii Conditions on Fluxes. Boundary and initial conditions can also express statements about the flux of 

a species. The most obvious example is perhaps that of an impermeable boundary, across which there 

can be no transport of a species. Since diffusion of species A across the boundary must be zero,  

 

 jA(z = 0) = 0    (impermeable boundary)     (88) 

 

The "" subscript indicates diffusion perpendicular to (i.e. across) the boundary. For ordinary diffusion 

obeying Fick's Law, equation (88) becomes 

 

 jA(z = 0) = - DAB 

0














z

A

z

ω
= 0 so that  

0














z

A

z

ω
= 0   (89) 

 

z is the coordinate perpendicular to the boundary, as in Fig. 9. While equation (89) is written in terms of 

the mass diffusive flux, an analogous statement can be made regarding the molar diffusive flux. For the 

molar flux, the gradient of mole fraction xA with respect to z vanishes at z = 0. 

 In contrast, at a permeable boundary species A can cross from phase I to phase II. If steady state 

applies, then A cannot accumulate at the boundary. Under these conditions, 

 

 nA,I(z = 0) = nA,II(z = 0)  (steady state; permeable boundary)   (90) 

 

nA,I and nA,II are mass fluxes of A perpendicular to the permeable boundary. Equation (90) states that 

the mass flux nA,I of A to the boundary from phase I must equal the flux nA,II of A from the boundary 

into phase II – otherwise A would accumulate at the boundary and the condition of steady state would 

be violated.  

 When bulk convection perpendicular to the interface is negligible (this implies dilute solutions – 

see earlier discussion), nA = jA and, assuming diffusion obeys Fick's Law, boundary condition (90) can 

be recast as 

 

DI

0z

I





z

ωA = DII

0z

II





z

ωA  (steady state; permeable boundary; no bulk convection  

     across boundary)      (91) 

 

DI and DII are diffusion coefficients of A in phase I and II, respectively, and I and II are the 

corresponding total densities of the two phases. Equation (91) enforces continuity of the diffusion flux 

of A across the interface – the diffusive flux of A to the boundary from phase I equals that away from the 

boundary into phase II.  
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9.iii Conditions Involving Heterogeneous Reactions. When a chemical reaction occurs at a boundary 

or an interface, it is referred to as a heterogeneous reaction. Heterogeneous reactions typically appear 

in mass transport problems in the form of boundary conditions. For example: 

 

(a). Infinitely rapid, irreversible consumption of A at a surface located at z = 0: 

 

 A(z = 0) = 0           (91) 

 

In (91), the reaction is assumed to occur so fast that concentration of A at the surface is effectively zero. 

In other words, as soon as a particle of A arrives at the surface, it reacts and therefore is eliminated. 

 

(b). Steady-state, slow consumption of A at a surface located at z = 0: 

 

 nA(z = 0) = rA
S          (92) 

 

Since steady state applies, A cannot accumulate at the surface. Therefore, as stated in equation (92), the 

rate rA
S (units: mass / (area time)) at which mass of A is consumed by the heterogeneous surface reaction 

must equal the flux nA at which mass of A arrives at the surface. 

  

 The above examples of boundary conditions were expressed using the mass units. Any of these 

conditions could just as well be written in molar units. For example, in molar units equation (92) would 

become 

 

 NA(z = 0) = RA
S          (93) 

 

where RA
S is the rate (units: moles / (area time)) at which A is consumed by the surface reaction and NA 

is the molar flux of A perpendicular to the surface.  

 

 


