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Fluid Kinematics and Constitutive Laws

In using the differential balance equations derived previously, it will be insightful to better understand
the basic types of motion that a fluid element may experience. This is the area of "fluid kinematics." In
particular, we will be interested in relating the deformation of a fluid element to the stresses that act on
it. By definition, a fluid cannot sustain a shear stress no matter how small. The following discussion will
describe the relationship between the magnitude of a shear stress and the accompanying fluid
deformation for so-called "Newtonian fluids.” We will also briefly consider some models of Non-
Newtonian fluids. Also, Fourier's Law, which describes the transport of internal energy by heat
conduction, will be introduced.

Fluid Kinematics.

The possible motions of a small element of fluid are illustrated in Figure 1. The element contains a given
set of fluid particles, with no transfer of matter in or out. The motions are translation, rotation, shear
strain, and dilatation. Since the translation and rotation are both solid body type motions, in which no
part of the element moves relative to any other part, these types of motion do not, by themselves, give
rise to "viscous" stresses. A viscous stress is one that is generated due to relative motion between
different parts of a fluid. Pressure is not a viscous stress, since pressure does not originate from relative
motion between different parts of a fluid. On the other hand, it is clear from Figure 1 that shear strain
and dilatation involve motions in which parts of the fluid element move relative to one another, resulting
in a deformation of the fluid element. Therefore, these latter types of motion are expected to be
responsible for the generation of viscous stress in a flowing fluid.
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Figure 1.

By considering a differential fluid element, expressions will be derived for the rates of rotation, shear
strain, and dilatation in terms of the flow velocity field v. The expression for the rate of translation is
trivial, since the rate of translation is simply equal to v.

Consider a fluid element that is initially in the state illustrated on the left hand side of Figure 2. A short
time dt later, the bottom left corner of the fluid element has been translated along the x; axis by a
distance that is equal to v;dt and along the x, axis by v,dt. Furthermore, the center of the fluid element
has rotated from an initial angle &; with respect to the x; axis to a final angle 8= @; + d6. Also, the left
and bottom sides of the fluid element have been shear strained from being initially at 90° with respect to
one another to a final angle of 90° - d 3 - de, where the angles da and df are indicated in Figure 2. To
avoid crowding the figure even more, dilatation of the fluid element is not illustrated in Figure 2. Later,
we will look at dilatation separately.
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initial state final state

Figure 2.

It will be helpful to express the angles da and dg in terms of velocity gradients. If the length ds of the
arc spanned by the angle de (Figure 3) was known, then de could be calculated using dea = ds/dl;,
where dl; is the length of the bottom side of the fluid element. Since the angle d « is infinitesimal, the
length of the arc ds can be approximated by the vertical distance between the points labeled P1 and P2
in Figure 3. Now, this distance equals the difference in vertical displacement of the left and right ends of
the fluid element's bottom side as the element passes from the initial to the final state. The bottom left
corner of the fluid element moved vertically through a distance equal to v, dt (Figure 3), since v, is the
velocity of the bottom left corner in the x; direction. The bottom right corner of the element moved

ov
vertically through a distance equal to (v, + =2 dl,) dt since, for the bottom right corner, the velocity in
axl

ov
the x, direction is v, + =2 dl;. The length of the arc ds is, therefore
axl

initial state

o
ds = (Vo + 22 dly) dt - v dt

8Xl X,  final state
ov
ds= 24, dt )
0X1
Now it is straightforward to calculate de, vadt
5 SN IV Szl
Vv
de=ds/dl= =2 dt (2
0X1 )
(v, + —=dl)dt
6X1

Through similar arguments, one could show that

Figure 3.
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dp= ML gt 3)
OX9

Equations (2) and (3) will be useful in deriving mathematical expressions for the rate of rotation and the
rate of shear strain of the fluid element.

1). Rate of Rotation.

The rate of rotation equals the angular velocity of the center of the fluid element. The angular velocity is
given by the rate at which the angle @ (see Figure 2) changes with time. In other words, we need an
expression for dg/dt = (0 - €;)/dt. In the initial state depicted in Figure 2, &; = 45°. In the final state
depicted in Figure 2, ¢=da + (1/2)(90° - da - df) = 45° + (1/2)(dx - d3). Therefore,

didt = (05 - 0;)/dt = {45° + (1/2)(dex - dB) - 45°)}/dt
ddt = (1/2)(da - dA)/dt ()

Substituting in equations (2) and (3) for deand dg,

dardt = (1/2)( ZVZ at- L gty / dt

X1 OX2
Vo oV
dardt = (1/2)( 22 . ML 5)
OX]  OX2

Equation (5) gives the rate of rotation of the fluid element about the x; axis, which points up out of the
plane of Figure 2. Usually, angular velocity is denoted by the symbol Q. Equation (5) then equals the (2;
component of the angular velocity. By identical arguments, we could derive expressions for (2, and 2,
corresponding to rotation of the fluid element about the x; and x, axes. The final result for the angular
velocity would be

Q=2 d+d+ (X% (6)
or
ov ov ov1 oV ov oV
Q=2 =2 - Z2y 8+ (U2)( L - T3y g+ (U2)( 2 - Ty g @)
OX9  0X3 oX3 0X1 OX]  OX2
Comparing equation (7) with the curl of the velocity,
ov ov ov1 oV ov oV
Vxv=( oS- T2y a4 (L - g+ (22 - Ty g ®)
OX9  0X3 oX3 0X1 OX]  OX2

it is apparent that the angular velocity is just one half the curl, i.e.
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Q =(1/2) (V x V) 9)

The curl of the velocity, V x v, is often referred to as the "vorticity" (symbol ®), so that Q = (1/2) .
The above derivation explains why flows for which V x v = 0 are referred to as irrotational. The reason
is that if we were to look at a point inside an irrotational flow, we would find that an infinitesimal fluid
element at that point has zero angular velocity (i.e. is not rotating). Some examples of irrotational flows
are uniform flow and "potential vortex™ flow. Some of these flows will be encountered later in the
course. Rotation does not bring about a relative motion between different parts of the fluid and
therefore does not contribute to the generation of viscous stress. Although equation (7) was written
in Cartesian coordinates, the tensor expression in equation (9) can be transcribed into another
coordinate system of choice by substituting the proper expressions for V and v.

2). Rate of Shear Strain. "Rate of strain" refers to the rate at which parts of a fluid are being
separated. Shear strain rate is defined as the rate at which two opposite sides of a fluid element are
separated due to shearing motion, divided by the perpendicular distance between them. Figure 4
illustrates the concept of shear strain for a cubic fluid element immersed in the sketched velocity field. In
the time dt, the bottom edge of the element is translated to the right by a distance v,dt, while the top

edge is translated to the right by a distance (v, + ﬂ dl,) dt. Note that (v, + ﬂ dl) is the speed of
5X2 5X2

the fluid in the x; direction at the top of the fluid element, and dl; is the fluid element'’s length in the x,

direction. Because the top side of the fluid element moves faster to the right than the bottom side, a

shearing motion is present. As time progresses, the fluid element becomes more distorted. The rate at

which shearing motion separates the top and bottom sides is

(v + L) dt - vet] £ dt = L, N
0X2 0X2 (v, +—-dl,) dt
a)C2
The term in the [ ] brackets is the shear separation, X2
measured along the x; direction, that occurs l
between the top and bottom sides in the interval dt v (xy) i
1
1

(i.e. this term represents how much farther the top
side traveled to the right than the bottom side

during the time dt). The division by time dt T T
converts the above expression to a rate of shear
separation. The perpendicular distance between
the top and bottom sides of the fluid element is dl;;
therefore, the rate of shear strain, written i, is !

v

final state

¢lll

Figure 4.
ov ov
no=—tdly fdl, =+ (10)
OX2 OX2
The subscripts "12" indicate that the rate of shear strain refers to shear occurring in the x;-x, plane.
Comparing equation (10) with equation (3) for the angle dz,
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2 = dﬂ/ dt

(11)

In figure 4, the fluid element is sheared in the x; direction. In general, a fluid element may be sheared
along both the x; and x, directions as illustrated in Figure 5. Then the rate of shear strain equals the sum

of de/dt and dg /dt
nz=dg/dt+da/dt (12
Substituting in equations (2) and (3),
ovV1 oOv
N2 = (—1+—2) (13) Fig. 5.

OXp 0X1

Equation (13) is the final expression for the rate of shear strain in the x;-x,

X

plane. By inspection, ., = 7. Similar expressions could be derived for the rates of shear strain in the

X2-X3 and X;-X3 planes. The results can be summarized in the expression
A= (he )
Xj  OXj

(14)

Equation (14) is expressed in Cartesian coordinates, but could be transcribed into other coordinate

systems by appropriate change of coordinate variables. We note that since a shear strain rate brings
about a separation of different parts of the fluid, so that parts of the fluid are in relative motion
with respect to one another, a viscous stress will be generated. The following section on Newtonian

fluids discusses how the rates of shear strain relate to the stress tensor.

3). Rate of Dilatation.

The rate of dilatation can be thought of as the rate of expansion, per unit volume, that a fluid element is
experiencing. An expansion imposes strain on a fluid element, since parts of the fluid are being

separated. Since parts of the fluid are being separated they are in relative motion to one another,

and dilatation therefore contributes to the viscous stress in a flowing fluid. Consider a small fluid
element with a volume equal to l;1,l3, where I; is the length of the fluid element in the x; direction. To
emphasize that the fluid element is very (i.e. infinitesimally) small, one could write dl; instead of I;.
However, the notation of the following derivation would then be more confusing. Therefore, for
simplicity, I; will be used to denote the length of the fluid element along the x; axis.

The rate of dilatation ¢ is defined as

1 d
(T
¢ ol Olt(123)

(15)

Since ;1,15 is the volume Ve of the element, ¢ = (1/ Vg) dVe /dt. According to the product rule of

differentiation,
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1 dly d|2
=— (Il + Iyl
7= |1|2|3(23dt 184 dt

(16)

Now, the change dl; that occurs over a time dt is given by dl; = (lis - lii), where ljj is the initial value of [;

(at time t) and ljs is the final value of i (at time t + dt). Let's consider the bottom side of the fluid
element in Figure 6. Over the time dt, the left end of the bottom side moves to the right by a distance of

ov
vidt. The right end of the bottom side moves to the right by a distance of (v; + =1 l;) dt, where v; +

ov
-1 I, is the speed of the right end in the x; direction. The change dl; in the length of the bottom side

8x1

axl

of the fluid element, as the fluid element passes from the initial to the final state, equals

ov ov
dly= (Vi + —L1) dt - vidt = L1, dt

o0X1 o0X1
Thus
1oy _ov
Iy dt  0xq

Similar arguments could be used to show that

1dp_ovp 1d3_ovg

l> dt - OX9 I3 dt - 0X3

(17)

(18)

final state

initial state

Inserting these expressions into equation (16) yields the rate of dilatation

_ ov1 N ovo N ov3
OX] OXp OX3

But the above is just the definition of the divergence of velocity, thus

¢:Vov

I ——— X
| 1 1
14— y,dt —>1 I

| |

| 1 |

i— (v, +— 1)) dt -

! 8x1 '

Figure 6
(19)

Equation (19) attaches a physical meaning to the divergence of velocity; specifically, V « v is seen to
equal the rate at which a fluid element expands on a per unit volume basis. A positive value of V ¢ v
corresponds to expansion, while a negative one indicates contraction. Since the amount of matter inside
the fluid element is fixed, if V « v is positive the density of the fluid element must decrease (since its
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volume increases). If a flow is incompressible, so that the density of the fluid cannot change, V «v =0
and no dilatation occurs.

The above introduction to the kinematics of fluid flow will be helpful for the next section, in which the
relationship between types of deformation (in particular, shear strain and dilatation) and viscous stress
will be examined in detail.

Newtonian Fluids
For many fluids, it is an experimental fact that:

). viscous stresses are linearly related to the rates of strain arising from shear and dilatation.
The rate of strain due to shear is given in equation (14); that due to dilatation is given in
equation (19). Note: a function f is linear in a variable b if the expression f(b,) + f(bz) = f (b, +
b,) holds. An example of a linear function is f(x) = cx, where c is a constant.

ii). viscous stresses vanish when all rates of strain vanish

iii). the fluid structure is isotropic, so that the state of stress does not depend on how the fluid
body is oriented with respect to the direction of deformation.

Fluids that obey these criteria are generally referred to as "Newtonian.” An additional criterion is that

the stress tensor must be symmetric, so that ajj = oji, as was argued in the previous handout. It can be
proven, though we will omit the proof, that for Newtonian fluids a general relationship between the

stresses oij and the rates of strain must have the form
aij = A (V * V)4 + cdj + 2 (ei) (20)

In equation (20), A, 1z and c are three scalar parameters that are independent of rates of strain but may
depend on temperature, pressure, fluid density etc. x is called the shear viscosity, or more often, simply
"viscosity". Note that the stress depends on rates of dilatation and shear, as anticipated from our
discussion of fluid kinematics. 4 is called the "second coefficient of viscosity". It will be shown that ¢
can be identified with pressure. djj is the Kronecker delta. In Cartesian notation, the "rate of strain

tensor" ejj is defined as

. OV;
ey = (1/2) (M4 (21)

Xj  OXj
By comparing equation (21) with equation (14), we see that if i = j then ejj equals one half the rate of
shear strain yj. When i = j, then ejj = eji = ovi/oxi, which is the ith term of the divergence of the velocity
v and can be thought of as the rate of "dilatational” strain in the ith direction. Expressions such as
equation (20) that relate strain rates to stress based on the behavior of a material are usually referred to
as "constitutive relations™ or as "rheological equations of state." Equation (20) is the constitutive
relation for a Newtonian fluid.
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To consider equation (20) in more detail, we start by specializing to the case when the fluid is in static
equilibrium. Then all rates of deformation (V « v and ejj) vanish, and

O11=0x=033=C (normal stresses) (22)

and
O12=013=0p1 = 03 = 031 = 032 =0 (shear stresses) (23)

The fact that shear stresses in a fluid in static equilibrium are zero is already familiar from the earlier
discussion of hydrostatics, and is a consequence of the fact that a fluid in static equilibrium is not being
strained either by shear or by dilatational deformations. Furthermore, in static equilibrium, the normal
stress on a surface is equal to the "thermodynamic” pressure - pth. The minus sign indicates that the
stress is compressive on the surface. The thermodynamic pressure is that which is found from an
equation of state (e.g. for an ideal gas, pth = NRT/V, with n the number of moles, R the gas constant, T
the absolute temperature, and V the volume occupied by the gas). These considerations allow ¢ in
equation (22) to be identified as the negative of the thermodynamic pressure,

C=-Pr (24)
In general, a fluid will be in motion and undergo deformation. Since the parameter ¢ does not depend on

such deformations (i.e. rates of strain), it retains its equality to the thermodynamic pressure. For a
Newtonian fluid that is undergoing deformation, equation (20) states that the normal stresses become

o011 = A (V *V) - pin + 2 (Ov1/0X1) (25a)
022 = A (V *V) - pih + 2 (OV2/0X2) (normal stresses) (25h)
ox=A (V o V) - Pth + 2/1 (5V3/5X3) (25¢)

Therefore, when a Newtonian fluid is being deformed (strained), the normal stresses are a sum of three
contributions: the thermodynamic pressure, and two terms due to "dilatational” rates of strain. The first
of the dilatational terms is proportional to the second coefficient of viscosity A, and the other is
proportional to the viscosity z. In fluid mechanics, a common convention is to define a so-called
"mechanical pressure” p as the negative average of the normal stresses,

p= -1/3 (011 + o +033) (26)
=-1/3[3A(V *V)-3pin + 21 (OVv1/0X1 + OV2/OX2 + OV3/OX3)]
=-1/3[83A(VeV)-3pmn+2u(V V)]

P=pin-(A+2/3 1) VeV (27)

The mechanical pressure p is what is customarily referred to as "pressure” in fluid mechanics equations
and calculations. It lumps together (due to convention) the “true™ pressure plus a contribution that
arises from dilatational rates of strain, thus representing the average normal stress. From equation (27),
for a fluid that is expanding the mechanical pressure will be less than the thermodynamic pressure. For
nearly incompressible (i.e. liquid) flows, V « v is essentially zero and the distinction between p and pih
becomes insignificant. However, the distinction may be important when the flow is compressible and
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very pronounced dilatation of the fluid is occurring as, for example, in a shockwave or an explosion. For
an ideal monatomic gas, it can also be shown that (4 + 2/3 x) is equal to zero. Using p as defined by
equation (27), the normal stresses (equations (25)) for a Newtonian fluid may be rewritten as

o1 =-p-(23) u(V V) + 2u (0vi/0x1) (28a)
o2 =-pP-(213) 1 (V * V) + 21 (Ov2/Ox2) (normal stresses) (28b)
o33=-P-(213) 1 (V V) + 21 (0OvslOX3) (28c)

According to equations (28), the normal stresses in a Newtonian fluid can be viewed as arising from a
mechanical pressure contribution as well as viscous stresses due to dilatational rates of strain.

The shear stresses aij, 1 # j, for a Newtonian flow are (see equation (20))

oVl OV

o=on=u(— l =2 —=) (29a)
OX2 5X1
ovy oV

on=op=u(—= 2,738 —) (shear stresses) (29b)
0X3 8X2
ovy oV

on=oi=u(— 3,7 —) (29c)

oX1 8X3

By comparing to equation (14), we see that the shear stresses solely arise from a viscous contribution
due to shear rates of strain. The proportionality parameter between the shear rate of strain and the
resultant shear stress is the viscosity . In summary, equation (20) can be restated as

G = - P - (213)  (V * V) & + 24 (&) (30

Note that viscous contributions, both to normal and shear stresses, vanish if the rates of strain (both
shear and dilatational) vanish. Furthermore, the relationship between the viscous contributions to stress
and the rates of strain is linear (i.e. ojj depends linearly on the rates of deformation V « v and ejj).
Finally, no specific orientation of the fluid body with respect to the direction in which it is deformed has
been implied (i.e. the fluid behaves isotropically). As stated at the outset of this section, these qualities
are the hallmarks of Newtonian fluids. Below we consider some simple cases of Non-Newtonian
behavior.

Equation (30) states how the stress tensor o, existing at a point inside a flowing Newtonian fluid, is
related to the rates of strain at that point. Furthermore, we also know how to express the rates of strain
(shear and dilatational) in terms of the derivatives of the velocity v. In a previous handout, differential
balances for momentum and energy were written in terms of the stress tensor . During those
derivations, no particular constitutive expression for the stress tensor was assumed and the resultant
expressions were valid for any type of fluid (not necessarily a Newtonian fluid). In the next handout,
equation (30) for the Newtonian stress tensor will be substituted into the differential balance equations.
Once that is accomplished, the differential balance equations can be applied to address problems
involving the flow of Newtonian fluids.
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An Introduction to Non-Newtonian Fluids

Non-Newtonian fluids are common. Toothpaste, cream cheese, slurries, and polymer solutions are just a
few examples. In what follows, we will assume that they are incompressible, with normal stresses
characterized by a mechanical pressure p, but different relationships between the shear stress o and the
velocity gradients depending on the type of fluid. There are several classifications of Non-Newtonian
fluids. For time-independent fluids, the shear stress depends on the rate of shear strain in a nonlinear
(i.e. non-Newtonian) fashion but does not depend on the history of the deformation applied to the fluid.
The fluid has no "memory." For time-dependent fluids, the history of deformation applied to the fluid
affects the relationship between the shear stress and the deformation. For example, it is possible that by
applying a stress to the fluid, thus causing it to flow, a break up or rearrangement of its molecular level
structure takes place. This structural rearrangement, in turn, affects the relationship between the applied
stress and the resultant deformation of the fluid. The extent of rearrangement of the structure of the
fluid depends on how long and how forcefully the stress was applied; in other words, on the history of
the flow. It is in this sense that a fluid can be said to possess "memory.” While time-dependent fluids are
a very interesting topic, they are also sufficiently specialized to place them outside of our scope.
However, in order to provide a glimpse into non-Newtonian fluids, we will consider two of the best
known examples: Bingham plastics fluids and power-law fluids. Both are examples of time-
independent, non-Newtonian fluids.

Bingham fluids. Bingham plastics are distinguished by the existence of a yield stress op. In order to
cause a Bingham fluid to flow, the applied shear stress must exceed the yield stress. Once the yield
stress is exceeded and the fluid begins to flow, the total shear stress increases following a linear
dependence on the rate of shear strain, similar to a Newtonian fluid. In equation form,

aij = oo + p dvildx; (31)

where w5 is the plastic viscosity. Note that, for a Bingham plastic flow, if there is any shear deformation
taking place the shear stress cannot be lower than the yield stress. Figure 7 depicts the g; relationship to
the shear strain rate dvi/dx; graphically. Examples of materials that can exhibit Bingham type behavior
are plastics, paint emulsions, and clay suspensions.

Gij A

Hp

>

dVi/dXJ Figure 7.

Power law fluids. For a power law fluid, the shear stress is related to the rate of shear strain by
equation (32)

aij = k (dvildx;)" = k (dvildx;) ™D (dvi/dx;) = zapp (dvildx;) (32)
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where k and n are constants characteristic of a particular fluid. A power law fluid reduces to a
Newtonian fluid for n = 1, in which case k is the viscosity 2. The combination k (dvi/dx;)®Y is referred
to at times as the apparent viscosity ziapep.

For n < 1, the gj relationship to dvi/dx; appears as in Fig. 8. Note that, at zero shear rate, the
slope and the apparent viscosity approach infinity, indicating that the power law model has some
unphysical characteristics. Nevertheless, this model serves as a good approximation for a number of
fluids. For n < 1, the slope of oj; versus dvi/dx; decreases as dvi/dx; increases (Fig. 8). Fluids or flows
exhibiting this type of qualitative behavior, namely decreased rate of rise of shear stress at higher shear
strain rates, are termed pseudoplastic.

Fig. 8 also plots the qualitative dependence of o; on dvi/dx; when n > 1. When n > 1, the rise of
shear stress with dvi/dx; becomes more pronounced at higher values of dvi/dx;. The initial slope of the
stress versus rate-of-strain curve starts at zero, but it becomes progressively higher at higher flow rates
as the apparent viscosity increases. These types of flows are termed dilatant.

Gij A

pseudoplastic

dilatant

o
y

0 dvy/dx; Figure 8
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Fourier's Law of Heat Conduction

What is heat? Simply put, heat is energy stored in the microscopic state of agitation of matter. Matter
can store energy in different ways. For example, as you may recall, electrons can possess different
amounts of energy within an atom. In a "hot" atom, electrons may occupy higher energy levels than in a
cold one. Similarly, nuclei, and indeed the entire atom and molecules made of atoms, have additional
types of energy. For instance, molecules can translate (i.e. move about), as well as rotate, and their
bonds can vibrate more or less forcefully. Such motions have kinetic (e.g. due to motion or rotation of a
molecule) and potential energy (e.g. due to stretching or deformation of a chemical bond) associated
with them. Hotter molecules are more agitated in their microscopic motions, thereby possessing more
energy than colder molecules. Heat capacities, which you may recall from thermodynamics, measure the
extent to which a material can make "use™ of such higher energy states available to it to store heat
energy. Why, and how, can heat energy move about, giving rise to heat transfer?

For single component systems, to which we specialize for now, there are three recognized
processes: convection, radiation, and conduction. Convection refers to transfer by virtue of mass
flow. When some fluid flows (i.e. is convected) into or out of a control volume, it brings with it its
energy and thus energy transfer "by convection™” occurs. If we have a cup that defines a control volume,
and we pour some liquid into this control volume, energy transfer by convection has occurred. Second,
heat can be transferred by "radiation.” Radiative heat transfer is transfer at a distance that is mediated
by electromagnetic radiation. For instance, the Sun sends out electromagnetic radiation across the
vacuum of space to earth. When the radiation encounters matter, it may be absorbed by a molecule or
atom of the matter, thereby exciting molecular or atomic motions that correspond to an increase in the
matter's internal energy. We would say that the internal energy of the system has increased because
radiative heat flowed into the system via electromagnetic radiation. We consider radiative transfer in
more detail below. Third, heat may be transferred by "conduction.” Heat conduction is independent of
any velocity field v associated with bulk motion, or of the presence of electromagnetic radiation. One
way in which heat conduction occurs is by molecules directly interacting (colliding) with one another.
Due to these interactions, a transfer of thermal energy from the hotter side (more agitated molecules)
to the colder side occurs. Heat conduction may also occur by exchange of molecules between hot and
cold regions, such that the exchange is not associated with a net convection of matter. An example of
heat transfer by conduction is the gradual warming of the free end of a spoon that is immersed into hot
water at its other end.

According to the empirical Fourier's Law of heat conduction,

Qe = -&xVT (33)

where qc is the conductive heat flux vector (energy/(area time); e.g. Joules/(m? sec) ), «is the "thermal
conductivity" which is a material property (in SI units of Joules/(sec m °K)), and VT is the gradient of
the temperature field (in SI units of °K/m). From equation (33), it is evident that heat flows down
(hence the minus sign) a temperature gradient. In other words, heat flows from hotter to colder regions.
A good heat conductor, such as many metals, possesses a high value of « (iron at 300 °K: x= 80 W/(m
°K)), while a poor heat conductor such as wood exhibits a low « (for wood, x~ 0.2 W/(m °K)). The
conductive flux of heat in a poor conductor is slower and the magnitude of the vector gc will be less. In
the next handout, Fourier's Law will be used in the differential energy balance equation to
mathematically represent heat transfer by conduction.
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Heat Transfer by Radiation

In this section we introduce key concepts of heat transfer by electromagnetic radiation. How can
electromagnetic radiation transfer heat? From chemistry or physics we recall that atoms and molecules
can absorb a photon of electromagnetic radiation, a process that promotes the atom or molecule into an
excited state of a higher energy. In other words, this process makes the atom or molecule "hotter." For
example, absorption in the infrared region of the electromagnetic spectrum usually excites a molecule by
increasing the vibration (stretching and other motions) of its chemical bonds, while absorption in the
visible and ultraviolet is often associated with excitation of d-orbital electrons or of 7 electrons (e.g.
from double C=C bonds). Following absorption of a photon in the visible or ultraviolet region of the
spectrum, the energy is then often decayed into the vibrational, rotational, and translational motions of
the molecules or atoms. In summary, electromagnetic radiation can transfer heat because photons can be
absorbed by matter, and their energy becomes converted to heat in the process.

Following is a summary of key definitions and equations involved in radiative heat transfer.

(i). The monochromatic absorptivity a, is defined as the fraction of incident radiation, of wavelength
A, absorbed by the surface of an opaque material,

a,=lasl lis (34)

Iaz and Ii; are the absorbed and incident intensities of radiation of wavelength A, respectively. Recall
that units of intensity are energy /(area time).

e Forablack body, a; =1 at all wavelengths (all incident radiation is absorbed).

e Foragray body, a; = C at all wavelengths where C is a positive constant less than 1 (a fixed
fraction of incident radiation is absorbed at all wavelengths).

e Forareal body, a, is less than one and in general varies significantly with wavelength.

(i1). Surfaces also radiate electromagnetic energy. The monochromatic emissivity e, of a surface is
defined as the rate (energy / (area time)) at which electromagnetic energy of wavelength A is emitted by
the surface, divided by the rate at which a black body surface would emit radiation at the same
wavelength and at the same temperature,

e, = lea/ lesa (35)

le. and Igg; are intensities emitted by the surface of interest and a black body surface, respectively, at
wavelength A.

e From equation (35), for a black body surface e; = 1. In addition to being best absorbers of
radiation, black bodies are also the best emitters.

e For real surfaces that do not fluoresce or luminesce at the wavelength A, e, is less than 1. Real
surfaces do not emit as strongly as black body surfaces.

A surface simultaneously emits radiation at many different wavelengths. The total emissivity e for a
real surface is defined as the ratio of Ig, the total intensity emitted by the real surface over all
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wavelengths, to Igg, the total intensity emitted by a black body surface over all wavelengths and at the
same temperature,

e= IE/IEB (36)

Theory and experiment have demonstrated that the emission intensity of a black body surface follows
the Stefan-Boltzmann Law,

IEB = O'Ts4 (37)

o =1.355 x 10™ cal/(sec cm? °K?) is the Stefan-Boltzmann constant (in English units, o = 0.1712 x

10°® Btu / (hr ft? °R*) ), and Ts is the absolute temperature of the black body surface. If the temperature

of a real surface is known, the rate per area at which it emits electromagnetic radiation can be calculated
from

I = e0'T54 (38)
Tables of e are available for various materials and surfaces.

For a situation in which a surface is emitting radiation the rate of radiative energy loss by the
surface (energy /(area time)) to the surroundings is given directly by equation (38). An example is
presented in Fig. 9. Here, we assume a steady state situation (no accumulation of energy) in which a
surface has heat conducted to it from one side and then emits this energy to the surroundings on the
other side. We define z as the coordinate normal to the surface. For steady state (i.e. no accumulation of
energy at the surface), it is then required

-k(d—Tj - eoTé (39)
dz z=0

In equation 39, Fourier's Law was used to represent the conductive heat flux on the left, with the
subscript z = 0 indicating that the derivative is to be evaluated at the surface. For this steady state
situation, equation 39 states that the rate of heat conducted to the surface must equal the rate at which
it is removed from the surface by radiative emission.

raciative energy emission

‘z to srroundings
z=10

T
T

etetgy transfer to
swface by cotwduct on
(medam of conductivty k)

temp. = T3

Figure 9
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The physical picture gets more complicated when more than one surface is present. The complications
arise because all of the surfaces will be emitting to and absorbing radiation from each other. In such
cases, geometrical factors are calculated or obtained from tabulated information that provides "view
factors" between different surfaces; these factors account for how much one surface is exposed to
radiation from another. More precisely, the view factor F; is defined as the fraction of electromagnetic
energy that leaves surface i that is subsequently intercepted by surface j. Treatments of heat transfer by
radiation for such more complex situations can be found in specialized texts.



